
Lawrence Berkeley National Laboratory
Joint Genome Institute

Title
Genomic discovery of the hypsin gene and biosynthetic pathways for terpenoids in 
Hypsizygus marmoreus

Permalink
https://escholarship.org/uc/item/8kh3x35z

Journal
BMC Genomics, 19(1)

ISSN
1471-2164

Authors
Min, Byoungnam
Kim, Seunghwan
Oh, Youn-Lee
et al.

Publication Date
2018-12-01

DOI
10.1186/s12864-018-5159-y
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8kh3x35z
https://escholarship.org/uc/item/8kh3x35z#author
https://escholarship.org
http://www.cdlib.org/


RESEARCH ARTICLE Open Access

Genomic discovery of the hypsin gene and
biosynthetic pathways for terpenoids in
Hypsizygus marmoreus
Byoungnam Min1†, Seunghwan Kim2†, Youn-Lee Oh3, Won-Sik Kong3, Hongjae Park1, Heejung Cho2,
Kab-Yeul Jang3, Jeong-Gu Kim2* and In-Geol Choi1*

Abstract

Background: Hypsizygus marmoreus (Beech mushroom) is a popular ingredient in Asian cuisine. The medicinal effects
of its bioactive compounds such as hypsin and hypsiziprenol have been reported, but the genetic basis or biosynthesis
of these components is unknown.

Results: In this study, we sequenced a reference strain of H. marmoreus (Haemi 51,987–8). We evaluated various
assembly strategies, and as a result the Allpaths and PBJelly produced the best assembly. The resulting genome
was 42.7 Mbp in length and annotated with 16,627 gene models. A putative gene (Hypma_04324) encoding
the antifungal and antiproliferative hypsin protein with 75% sequence identity with the previously known N-terminal
sequence was identified. Carbohydrate active enzyme analysis displayed the typical feature of white-rot fungi where
auxiliary activity and carbohydrate-binding modules were enriched. The genome annotation revealed four terpene
synthase genes responsible for terpenoid biosynthesis. From the gene tree analysis, we identified that terpene synthase
genes can be classified into six clades. Four terpene synthase genes of H. marmoreus belonged to four different groups
that implies they may be involved in the synthesis of different structures of terpenes. A terpene synthase gene cluster
was well-conserved in Agaricomycetes genomes, which contained known biosynthesis and regulatory genes.

Conclusions: Genome sequence analysis of this mushroom led to the discovery of the hypsin gene. Comparative
genome analysis revealed the conserved gene cluster for terpenoid biosynthesis in the genome. These discoveries will
further our understanding of the biosynthesis of medicinal bioactive molecules in this edible mushroom.

Keywords: Hypsizygus marmoreus, Beech mushroom, Fungal genome, Hypsin, Marmorin, Hypsiziprenol A9, Secondary
metabolism

Background
Hypsizygus marmoreus is an edible mushroom with vari-
ous medicinal effects, including antitumor, antibacterial,
and antifungal properties [1–4] (Fig. 1). Several bioactive
molecules have been reported to underlie the medicinal
effects of H. marmoreus; in particular, the terpenoid com-
pound hypsiziprenol A9 inhibits cell cycle progression in
HepG2 cells, a human liver cancer cell line [2]. The

thermostable ribosome-inactivating protein hypsin, which
can be extracted from the fruiting body of the mushroom,
has antifungal and antiproliferative properties [5]. Another
ribosome-inactivating protein, marmorin, has antiprolifer-
ative and HIV-1 reverse transcriptase inhibitory activities
[6]. Despite the popularity of H. marmoreus as a gastro-
nomic and medicinal resource, the genetic basis or biosyn-
thetic pathways of these active compounds are unknown.
Using genome sequencing, we aim to understand the
mushroom’s bioactivity at the genomic level.
Various terpenoid compounds from different mush-

rooms have been reported to have medicinal effects [7].
Genome sequencing methods have been used to eluci-
date the biosynthetic pathways of terpenoid compounds
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by identifying terpene synthase genes. For example, po-
tential terpene synthase genes in Coprinus cinereus [8],
Omphalotus olearius [9], and Stereum hirsutum [10]
have been mined via genome sequencing, and their bio-
chemical activities have been studied. In particular, coex-
pression of cop6 and the two P450 monooxygenase
genes of C. cinereus has been reported to produce the
antimicrobial compound lagopodin [8]. Thus, it is im-
portant to combine molecular, genetic, and biochemical
techniques within the genomic context to understand
the biosynthesis of natural bioactive compounds. Both
biochemical compounds and many proteins, such as
lectins, fungal immunomodulatory proteins, ribosome-
inactivating proteins, ribonucleases, and laccases, have
been suggested as candidates for medicinally active com-
ponents in mushrooms [11]. Ribosome-inactivating pro-
teins inhibit protein synthesis by modifying ribosomal
RNA. This results in HIV-1 reverse transcriptase inhib-
ition as well as antifungal, anticancer, and antiprolifera-
tive activities [11]. Plants are the primary sources of
these ribosome-inactivating proteins [3] and some
mushrooms. Examples of ribosome-inactivating proteins
expressed in mushrooms include velutin (Flammulina velu-
tipes) [12], flammulin (F. velutipes) [13], and lyophyllin

(Lyophyllum shimeji) [14]. Genes encoding these proteins
have not yet been explored despite the availability of gen-
ome sequences for these species [15, 16].
In this study, we reported the fully annotated genome

of H. marmoreus and elucidated the genetic basis of the
biosynthesis of bioactive molecules reported in this
mushroom. We obtained a high-quality genome assem-
bled from three different sequencing libraries using mul-
tiple genome assembly strategies. Sequential and
functional comparisons enabled us to identify the hypsin
gene in the genome. Orthologous gene analysis identi-
fied putative genes responsible for biosynthesizing hypsi-
ziprenol A9.

Results
Genome assembly using various strategies
We constructed and sequenced three genomic DNA se-
quencing libraries: paired-end and mate-pair Illumina li-
braries and a PacBio library (Table 1). To obtain a
high-quality genome assembly, we applied five assembly
strategies to the assembly procedure: (i) Allpaths, (ii)
Allpaths+PBJelly, (iii) Allpaths+SSPACE-longread, (iv)
Falcon, and (v) SPAdes. Allpaths assembled the two Illu-
mina libraries, and PBJelly [17] and SSPACE-longread

Fig. 1 Fruiting bodies of Hypsizygus marmoreus

Table 1 Sequencing data summary

Type Library Insert size Average
read size

Number of total reads

Genome Illumina paired-end 400 bp 300 bp 14,888,962 × 2

Illumina mate-pair 5000 bp 100 bp 157,055,636 × 2

PacBio – 7980 bp 1,125,617 (6 cells)

Transcriptome Illumina paired-end 1 – 100 bp 25,218,416 × 2

Illumina paired-end 2 – 100 bp 89,796,090 × 2

The two transcriptome libraries are technical replicates of the same sample
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[18] individually improved the assembly with PacBio
reads. SPAdes [19] used all three libraries for a hybrid
assembly. Because we had over 200× physical coverage
of PacBio reads, we also sequentially used Falcon [20],
FinisherSC [21], and Quiver [22] for PacBio-only assem-
bly. The results of the five assembly strategies are sum-
marized in Table 2. From the assembly assessment, we
selected the Allpaths+PBJelly assembly for further ana-
lyses (See Discussion).
The final assembly had a size of 42,710,661 bp including

235 scaffolds/278 contigs with 287.3× sequence coverage.
The GC percentage was 49.64%. We estimated the genome
size as 43.0 Mbp using the k-mer frequency calculation of
Illumina paired-end reads (Additional file 1: Figure S1). We
confirmed that the assembly was a haploid genome rather
than a diploid genome from the single peak in the k-mer
frequency plot (Additional file 1: Figure S1). Many mush-
rooms were in the dikaryon stage, which introduced dip-
loidy into their assembly. This impedes interpretation of
the genome because it is difficult to differentiate between
duplication and diploidy. We analyzed the ploidy of the
assembly by drawing a read coverage histogram and
confirmed that the genome was monokaryotic (Additional
file 1: Figure S2). This was consistent with the results of the
k-mer frequency estimation. There was no obvious
mitochondrial or contaminated sequence in the assembly
(Additional file 1: Figure S3).

Repeat elements
To avoid spurious gene prediction due to repeats, we
identified a total of 2,482,387 bp (5.81%) interspersed re-
peat regions. This included 28 long interspersed nuclear
element (7629 bp), 867 long terminal repeat elements
(887,560 bp), 586 DNA elements (378,418 bp), and 2044
unclassified elements (1,208,780 bp). We masked these
regions for gene prediction.

Genome annotation
Using the FunGAP pipeline [23], we predicted 16,627
protein-coding genes with an average size of 1586.1 nt.
Of these protein-coding genes, 14,179 genes (85.3%)
were supported by assembled transcripts, and this in-
cluded 10,522 (63.3%) highly supported genes (> 90%
coverage). Genome completeness was calculated using
BUSCO v3.0 at the gene level. Only 5 of 1335 single-
copy entries were missing, indicating > 99% genome
completeness. The quality of the gene prediction was
evaluated by comparing the predictions of three pro-
grams inside the FunGAP pipeline: Augustus 3.2.1 [24],
Braker 1.8 [25], and Maker 2.31.8 [26] (Additional file 2:
Table S1). Gene prediction results are summarized in
Table 3.
Approximately half of the predicted genes were func-

tionally annotated; in total, 7786 genes (46.8%) were an-
notated using Pfam domains, and 7447 genes (44.8%)
were annotated using SwissProt. The dominant func-
tions included WD, F-box, protein kinase, cytochrome
P450, and major facilitator superfamily domains, simi-
larly as observed in other mushroom genomes [27, 28].
The genome contained 1793 genes encoding secreted
proteins. We identified 1262 noncoding RNA elements
containing 171 tRNAs, including 9 selenocysteine
tRNAs, 191 small nucleolar RNAs (snoRNAs) from 127
different families, and 224 microRNAs from 90 different
families.

Phylogenetic location in Agaricomycetes
In March 2017, 85 Agaricomycetes genome assemblies
with predicted genes were present in the NCBI database.
We excluded 15 genomes with low BUSCO completeness
(< 95%); thus, we compared our assembled H. marmoreus
genome with 69 reference genomes (Additional file 2:
Table S2). In the resulting genome tree, H. marmoreus

Table 2 Preliminary assemblies using five assembly strategies

Metrics Allpaths Allpaths+PBJelly Allpaths+SSPACE-longread SPAdes Falcon

Libraries Paired-end
Mate-pair

Paired-end
Mate-pair
PacBio

Paired-endMate-pair
PacBio

Paired-end Mate-pair
PacBio

PacBio

Number of scaffolds 340 235 150 199 59

Number of contigs 1000 278 1018 261 59

Assembly size (Mbp) 41.6 42.7 42.3 42.1 42.2

N50 value (scaffolds) 628.3 kbp 764.8 kbp 947.1 kbp 1.1 Mbp 1.6 Mbp

N50 value (contigs) 152.4 kbp 621.3 kbp 149.5 kbp 766.3 kbp 1.6 Mbp

Number of scaffolds > 1 Mbp (scaffold sizes sum) 5 (8.4 Mbp) 7 (12.9 Mbp) 11 (18.6 Mbp) 12 (22.8 Mbp) 15 (29.2 Mbp)

Complete BUSCOs 1298 1304 1300 1301 1298

Fragmented BUSCOs 24 20 22 21 22

Missing BUSCOs 13 11 13 13 15

CGAL value −3.61e + 09 −3.52e + 09 −3.90e + 09 −1.12e + 09 −2.83e + 09
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clustered with other Agaricales species, with Termitomyces
identified as the closest relative (Fig. 2). Agaricomycetes
species had genome sizes of 25–119 Mbp with 9262–
32,854 genes. The genome size and gene number of H.
marmoreus were close to the average of these distributions
(Additional file 1: Figure S4).

Carbohydrate active enzymes (CAZymes)
The H. marmoreus genome contained a total of 630
CAZyme modules within 590 genes, including 222
glycoside hydrolases (GHs), 96 glycosyltransferases, 89
carbohydrate esterases, 21 polysaccharide lyases, 80
carbohydrate-binding modules (CBMs), and 122 auxil-
iary activity (AA) modules (Fig. 3a). Compared with
other Agaricomycetes genomes, the H. marmoreus gen-
ome was enriched in AA and CBM modules (P < 0.05).
The reference genomes had median values of 91 AA and
55 CBM modules. In detail, five subclasses were particu-
larly enriched in H. marmoreus: AA1, AA3, AA9,
CBM1, and CBM13 (P < 0.05, Fig. 3b). AA1, AA3, and
AA9 encode multicopper oxidases, glucose–methanol–
choline oxidoreductases, and copper-dependent lytic
polysaccharide monooxygenases, respectively. These
genes are well-known lignocellulose-degrading enzymes
[29]. As H. marmoreus is known as a white-rot fungus
[30], these enriched CAZyme families are congruent
with the representative feature of white-rot fungal ge-
nomes [31]. The cellulose-binding CBM1 module is gen-
erally enriched in white-rot fungal genomes, whereas
brown-rot fungal genomes have none or a few of these
modules [31]. We identified 25 CBM1 modules in the
genome. These modules were found with various
CAZyme modules including GH6, GH7, and AA9 in
various genes, which may lead to synergetic degradation.
Whereas CBM13 modules related to the ricin-type

beta-trefoil lectin domain (Pfam: PF00652) are found as
part of many carbohydrate-binding proteins [32–34],
none of these domains were accompanied by other
CAZyme modules. This suggests that CBM13-contain-
ing proteins in this genome are not involved in carbohy-
drate degradation processes. Instead, all these proteins
were extracellular proteins. Further experimental verifi-
cation is needed to reveal their biological and molecular
functions. In summary, the H. marmoreus CAZyme pro-
file revealed the features of white-rot fungi with enriched
lignocellulose-degrading enzymes.

Candidate hypsin and marmorin genes
Hypsin and marmorin are two major bioactive proteins
previously reported as ribosome-inactivating proteins with
antiproliferative activities against tumor cells [5, 6]. The
N-terminal sequences of both proteins are “ITFQGDL-
DARQQVITNADTRRKRDVRAAVR” (28 amino acids)
for hypsin and “AEGTLLGSRATCESGNSMY” (19 amino
acids) for marmorin. The N-terminal sequence of hypsin
was similar to those of plant ribosome-inactivating pro-
teins, such as alpha-momorcharin [35] and trichosanthin
[36]. The molecular weights were 20 and 9.5 kDa for hyp-
sin and marmorin, respectively. We searched the entire
genome for these N-terminal sequences and identified a
potential hypsin gene (Hypma_04324) with 71% identity
(20/28 matches) and 75% positive matches (21/28)
(Fig. 4).

Secondary metabolism genes
The H. marmoreus genome contained 20 secondary me-
tabolism gene clusters, including six terpene/phytoene
synthases, three type-I polyketide synthases, one sidero-
phore synthase, one nonribosomal peptide synthase, two
indole synthases, and seven unknown clusters. Agari-
cales genomes contained an average of 27 gene clusters
(range, 14–49) (Fig. 5). Type-III polyketide synthases,
which have been functionally characterized in several as-
comycetes [37], were lacking in all Agaricales genomes.
However, the Phanerochaete carnosa (Polyporales) and
Exidia glandulosa (Auriculariales) genomes contained
one copy each (Additional file 2: Table S3).
Cytochrome P450 has an important role in modifying

backbone secondary metabolites, such as lanosterol [38].
The H. marmoreus genome contained 132 cytochrome
P450 domains. The two Moniliophthora genomes con-
tained the largest numbers of this domain (342 and 361
domains, respectively, Fig. 5). Glucan synthases produce
various glucan compounds with bioactive properties. All
Agaricales genomes contained 2–4 glucan synthase
genes, with H. marmoreus containing two. Major facili-
tator superfamily and ABC transporters are important in
transporting secondary metabolites [39]. We found 125

Table 3 Gene prediction summary

Attributes Values

Total protein-coding genes 16,627

Transcript length (average/median) 1586.1/1316

CDS length (average/median) 1275.5/1038

Protein length (average/median) 425.2/346

Exon length (average/median) 221.8/129

Intron length (average/median) 65.4/55

Spliced genes 14,685 (88.32%)

Gene density (genes/Mb) 389.29

Coding regions 49.65%

Number of introns 79,007

Number of introns per gene (med) 4

Number of exons 95,634

Number of exons per gene (med) 4
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and 49 major facilitator superfamily and ABC trans-
porter genes, respectively, in the H. marmoreus genome.

Sesquiterpene synthases
Various terpenoid compounds are produced by biosyn-
thetic clusters. H. marmoreus produces the terpene com-
pound hypsiziprenol A9, which has antitumor properties
[2]. To elucidate the conserved and diverged structures
of terpenoid gene clusters, we obtained 759 terpene syn-
thase genes from the 70 Agaricomycetes genomes. The
Agaricomycetes genomes contained 1–25 terpene syn-
thase genes, including four genes in the H. marmoreus
genome (Additional file 1: Figure S5). From the gene
tree, we identified six groups of terpene synthase genes,

as reported previously [8, 10] (Fig. 6 and Additional file
1: Figure S6). The orthologs of three well-characterized
C. cinereus terpene synthases, Cop1, Cop3, and Cop4,
were identified in the H. marmoreus genome.
Various functional genes are clustered with terpene

synthase genes, including terpene-modifying enzymes,
regulatory proteins, and transporters (Fig. 7 and Add-
itional file 1: Figures S7–S9). In particular, clade 6 ter-
pene synthase genes had well-conserved gene clusters
across all Agaricomycetes orders including Agaricales,
Boletales, Polyporales, Russulales, and Jaapiales. This
cluster contained galacto-kinase, homoserine-kinase,
mevalonate-kinase, phosphomevalonate-kinase (GHMP
kinase, Pfam: PF00288, PF08544), HMGL-like domain

Serendipita vermifera
Serendipita indica100

Botryobasidium botryosum
Rhizoctonia solani AG-3 Rhs1AP

Rhizoctonia solani AG-1 IA100
100

Schizophyllum commune
Fistulina hepatica100

Gymnopus luxurians
Moniliophthora roreri MCA 2997
Moniliophthora roreri

100

Armillaria ostoyae
Armillaria solidipes
Armillaria gallica

Cylindrobasidium torrendii
100

100

100

Termitomyces sp. J132
Hypsizygus marmoreus100

Amanita thiersii
Amanita muscaria100

Leucoagaricus sp. SymC.cos
Agaricus bisporus var. bisporus
Agaricus bisporus var. burnettii

100

Coprinopsis cinerea
77

Galerina marginata
Hypholoma sublateritium

Hebeloma cylindrosporum90

Laccaria amethystina
99

82

98

100

100

Pleurotus ostreatus

100

Serpula lacrymans var. lacrymans
Coniophora puteana

Suillus luteus
Rhizopogon vesiculosus
Rhizopogon vinicolor

100

Hydnomerulius pinastri
Paxillus involutus

Paxillus rubicundulus
100

Pisolithus microcarpus
Pisolithus tinctorius100

Scleroderma citrinum
100

100

100

100

100

Plicaturopsis crispa
Piloderma croceum

Fibularhizoctonia sp. CBS 109695100
85

100

100

Heterobasidion irregulare
Stereum hirsutum100

Peniophora sp. CONT
100

Dichomitus squalens
Ganoderma sinense100

Trametes versicolor
Trametes pubescens

Pycnoporus coccineus
Trametes cinnabarina

100

100

Postia placenta
Fibroporia radiculosa100

Daedalea quercina
Fomitopsis pinicola100

Laetiporus sulphureus
52

100

Obba rivulosa
Gelatoporia subvermispora100

100

100

Phanerochaete carnosa
Phlebiopsis gigantea100

100

80

61

Punctularia strigosozonata
Jaapia argillacea

Neolentinus lepideus
Gloeophyllum trabeum100

100
100

100

Schizopora paradoxa
Phellinus noxius

Fomitiporia mediterranea100
100

100

Sistotremastrum suecicum
Sistotremastrum niveocremeum

100

Auricularia subglabra
Exidia glandulosa100

100

92

Aspergillus niger

0.1

Sebacinales

Cantharellales

Agaricales

Boletales

Amylocorticiales

Atheliales

Russulales

Polyporales

Corticiales
Jaapiales

Gloeophyllales

Hymenochaetales

Trechisporales

Auriculariales

Fig. 2 Phylogenetic location of Hypsizygus marmoreus among Agaricomycetes. Phylogeny was inferred from 102 concatenated single-copy orthologs
using RAxML 8.1.3. Bootstrapping-based branch support and a scale bar representing the mean number of amino acid substitutions per site are shown
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(pyruvate carboxylase, Pfam: PF00682), HIT zinc finger
(Pfam: PF04438), and response regulator receiver do-
main (Pfam: PF00072) (Fig. 7). GHMP kinase and
HMGL-like domains are directly related to the biosyn-
thesis of terpenoids [40, 41]. HIT zinc finger and re-
sponse regulator receiver domains are related to gene
regulation [42, 43]. These well-conserved gene clusters
suggest the putative resemblance of their product struc-
ture and their regulation. Conversely, clade 5 lacked a
conserved gene cluster. In other gene clusters, trans-
porter (major facilitator superfamily), heat shock protein
activator, helicase, and F-box-like domains were fre-
quently identified. Their exact molecular functions and
associations with terpene synthesis remain to be eluci-
dated by in vitro/in vivo experiments. The terpene

synthases and their adjacent genes displayed transcrip-
tional activity in hyphae (Additional file 1: Figure S10).
This suggests that they are coregulated, although further
investigation is needed to reveal whether they are related
to the biosynthesis of a terpenoid.

Discussion
Genome assembly assessment
The results of the five preliminary assemblies were eval-
uated using two approaches: BUSCO v3.0 completeness
calculation [44] and CGAL assembly likelihood calcula-
tion [45]. Falcon assembly displayed the lowest number
of scaffolds and the highest N50 value. However, it was
the most incomplete assembly, as it lacked the highest
number of BUSCO entries. This implies that this

Fig. 3 Carbohydrate active enzymes (CAZymes) in Agaricomycetes genomes. a Distribution of six CAZyme classes. The P values were calculated using
the Scipy (https://www.scipy.org) stats.fisher_exact function, which performs Fisher’s exact test. Only significant P values (P < 0.05) are indicated. Red
points indicate the Hypsizygus marmoreus genome. b Enriched CAZyme subclasses in the H. marmoreus genome (P < 0.05). Significantly depleted
CAZyme subclasses were not identified
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assembly misses some genomic regions that could con-
tain protein-coding genes. Scaffolding with
SSPACE-longread on Allpaths assembly decreased the
number of scaffolds by nearly half, but the actual num-
ber of contigs increased. SPAdes using all three libraries
generated comparable assemblies as the other libraries
with the lowest CGAL value. In terms of genome

completeness inferred by BUSCO, Allpaths+PBJelly dis-
played the best quality among the five candidates with
the largest assembly size (42.7 Mbp). For further investi-
gation, we predicted protein-coding genes in the All-
paths+PBJelly and Falcon assemblies. There were 571
more genes predicted in the Allpaths+PBJelly assembly
than in the Falcon assembly (Additional file 2: Table S4).

Fig. 4 A candidate hypsin gene obtained using sequence alignment. a Alignment of the experimentally determined N-terminal sequence of
hypsin and BLAST-searched Hypma_04324. b Schematic representation of the Hypma_04324

Fig. 5 Secondary metabolism genes of 22 Agaricales species. Detailed methods for building the genome tree and predicting secondary
metabolism genes are described in the Methods section. The genomes are listed in Additional file 2: Table S2. Aspergillus niger was used as
an outgroup
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In particular, there were nine Pfam domains that were
not found in the Falcon assembly gene prediction, which
could affect downstream functional analyses. Sequence
alignment revealed 1.27 Mbp and 782 kbp of unique re-
gions in the Allpaths+PBJelly and Falcon assemblies
against each other, respectively. One unique region in
the Allpaths+PBJelly assembly included a missing
BUSCO entry. Although the Allpaths+PBJelly assembly
was rather fragmented compared to the assemblies from
the other methods, the Allpaths+PBJelly assembly con-
tained more genomic regions, implying more complete-
ness for functional and comparative analyses. Thus, we
selected the Allpaths+PBJelly assembly as the final as-
sembly for the subsequent analyses.

Putative hypsin gene
The putative hypsin gene had 71% identity to reported hyp-
sin N-terminal sequence. The discrepancy may be due to

their regional origins, as the reported H. marmoreus was iso-
lated from China whereas our sample was obtained from
Korea. The matched region with the known N-terminal se-
quence was located starting at amino acid 185. The calcu-
lated weight of the truncated protein from the matched
region was estimated as 18.2 kDa, which is similar to the re-
ported molecular weight (20 kDa) of hypsin. As the reported
hypsin was purified from cell extracts, the hypsin gene iden-
tified in this genome might be post-translationally processed
to an active form. Interestingly, the hypsin gene contained a
lysine-specific metallo-endopeptidase (Pfam: PF14521, pep-
tidase M35 family) domain at amino acids 223–349 but dis-
played no significant sequence similarity with alpha-
momorcharin or trichosanthin. This protein was predicted
to have a signal peptide for secretion, similarly as other pep-
tidase M35 family proteins. The H. marmoreus genome con-
tained four copies of this protein, which is common in other
Agaricomycetes. Specifically, 39 of 70 genomes contained at

Fig. 6 A gene tree of terpene synthases. We used 759 putative terpene synthase genes from an orthologous group containing known terpene
synthase genes
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least one ortholog, and the Rhizoctonia solani genome had
38 copies. The exact molecular function and medicinal ef-
fects of this candidate hypsin remain to be elucidated. We
were unable to find a candidate gene for another known bio-
active protein, marmorin, in the current gene prediction and
genome assembly.

Conclusions
We constructed a high-quality genome assembly and an-
notation for the genes and gene clusters of medicinal
compounds. Thus, this study serves as a primary case
study for combining experimental results and the gen-
omics of mushrooms containing highly valuable bio-
active compounds.

Methods
Library preparation and sequencing
The mycelium of H. marmoreus Haemi 51,987–8 (Ko-
rean Collection for Type Cultures No. 46454, http://

kctc.kribb.re.kr/En/Kctc.aspx) was cultured in 65% po-
tato dextrose broth (BD Difco™, Franklin Lakes, NJ,
USA) under shaking at 24 °C for 3–7 days. The genomic
DNA of the monokaryotic strain was extracted from my-
celia using a DNeasy Plant Mini Kit (Qiagen, Valencia,
CA, USA). Three libraries were generated for genome
assembly: paired-end and mate-pair Illumina libraries
and a PacBio library. In total, 40 and 9 Gbp of data were
generated using Illumina and PacBio, respectively. RNA
molecules were extracted from mycelia using an RNeasy
Plant Mini Kit (Qiagen). Two mRNA sequencing librar-
ies were generated for gene prediction (23 Gbp). Illu-
mina reads were trimmed and filtered by base quality
and read length using HTQC 1.92.3 [46], and PacBio
reads were filtered by read length and read quality using
SMRT analysis 2.3.0 RS_Subreads protocol (https://
www.pacb.com/products-and-services/analytical-soft-
ware/smrt-analysis/). The sequenced data are summa-
rized in Table 1.

Fig. 7 Arrangement of conserved neighboring genes surrounding terpene synthase among Agaricomycetes species (clade 6). The figure displays
40-kbp regions encompassing terpene synthases in which each gene is labeled with Pfam annotation when available. Orthologous genes are
marked with the same color
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Genome size estimation
The genome size of H. marmoreus was estimated using
k-mer frequency. The paired-end Illumina library was
used to draw k-mer frequency plots, in which 17 and
19 k-mers, respectively, were set. JellyFish 2.2.4 [47] was
used to calculate the frequencies.

Genome assembly
Using three different genomic DNA libraries (Illumina
paired-end, Illumina mate-pair, and PacBio), we built five
candidate assemblies using the following strategies: (i) All-
paths, (ii) Allpaths+PBJelly, (iii) Allpaths+SSPACE-long-
read, (iv) Falcon, and (v) SPAdes. First, Illumina paired-end
and mate-pair libraries were used to run Allpaths [48] with
PLOIDY= 1. This assembly was improved by running
PBJelly 15.8.24 [17] and SSPACE-longread v1.1 [18], which
both require filtered subreads (filtered PacBio reads) as an
input. Falcon [20] was run using only PacBio reads with a
cutoff length of 8000 bp. FinisherSC [21] and Quiver [22]
were run to improve the Falcon assembly. We also used
SPAdes v3.10.1 [19] for a hybrid assembly using all three li-
braries with the --careful option. The five assembly candi-
dates were evaluated using BUSCO 3.0.2 [44] with
basidiomycota_odb9 lineage data and CGAL 0.9.6 [45].

Post-process of the assembly
We checked whether the assembly contained mitochondrial
or contaminated sequences. In a fungal genome assembly,
the mitochondrial genome generally has a much higher se-
quence depth and a lower GC content than the nuclear gen-
ome [49]. We ran BLASTn with the assembly against the
NCBI mitochondrial genome database (ftp://ftp.ncbi.nlm.-
nih.gov/blast/db/FASTA/mito.nt.gz). Hit scaffolds were in-
vestigated for their read coverages and GC contents if they
were outliers relative to other scaffolds. Sequence contamin-
ation was checked using Blobology 2015-12-16 [50].

Genome annotation
We first detected repeat regions to mask before gene pre-
diction using RepeatModeler and RepeatMasker (http://
www.repeatmasker.org). Protein-encoding genes in the as-
sembly were predicted using the FunGAP pipeline. mRNA
sequences were sampled into 58.8 million reads (5.83 bil-
lon bases) to decrease the computing time. mRNA reads
were mapped into the genome using Hisat 2.0.2 [51]. The
mapped reads were assembled using Trinity 2.2.0 [52].
Laccaria bicolor was set as the Augustus [24] species
model. Noncoding RNA elements such as tRNAs, snoR-
NAs, and microRNAs were annotated by scanning Rfam
database release 12.1 [53] using Infernal 1.1.1 [54].

Reference genomes for comparative analysis
We downloaded the protein sequences of 69 Agaricomycetes
species, including H. marmoreus, in FASTA format from the

NCBI database. We ran OrthoFinder 1.0.6 [55] to obtain
orthologous genes from the genomes and selected 102
single-copy orthologs to build a species tree. The program
was run with Aspergillus niger protein sequences comprising
an outgroup (GenBank accession: GCF_000002855.3).
RAxML 7.3.0 [56] was used to build the tree with “-f a -x
12345 -p 12345 -# 100 -m PROTGAMMAWAG” options.
The tree was visualized using Dendroscope 3.5.9 [57].

CAZyme analysis
CAZymes in the H. marmoreus genome and the 69 refer-
ence genomes were identified by combining dbCAN,
BLASTp, and Pfam domain predictions. The dbCAN 5.0
database [58] was searched using hmmscan [59] with de-
fault options, and the result was parsed using a script
(http://cys.bios.niu.edu/dbCAN/download/hmmscan-par-
ser.sh). BLASTp was run against CAZyme protein se-
quences download from dbCAN (http://cys.bios.niu.edu/
dbCAN/download/CAZyDB.03172015.fa) with an E-value
cutoff of 1e − 10. For Pfam domain prediction, we ran
InterProScan 5.25–64.0 [60] against the Pfam 31.0 data-
base and extracted CAZyme domain-containing proteins.
Pfam-A.full data was used to obtain Pfam domains associ-
ated with CAZymes. We annotated CAZymes when they
were predicted identically by more than two methods and
added Pfam and dbCAN-only predicted CAZymes after
manual curation. Enriched or depleted CAZymes were es-
timated using Fisher’s exact test from the Python Scipy
package (https://www.scipy.org/).

Search for hypsin and marmorin
The N-terminal sequences of hypsin and marmorin, namely
“ITFQGDLDARQQVITNADTRRKRDVRAA” and “AEGTL
LGSRATCESGNSMY,” respectively, were retrieved from
previous publications [5, 6]. BLASTp was used against all
protein sequences. We also ran tBLASTn against the assem-
bled transcripts and genome assembly for unannotated
genes.

Predicting secondary metabolism genes
AntiSMASH 4.0.1 [61] was used to predict secondary me-
tabolism genes in the genomes. The annotation of secondary
metabolism genes was based on Pfam notation as follows:
cytochrome P450, PF00067; glucan synthase, PF02364,
PF03935, and PF14288; and transporters, PF07690 and
PF00005. To obtain the terpene synthase genes of 70 Agari-
comycetes genomes, we selected an ortholog group in which
known terpene synthase genes (Cop1–5 genes) are included.
The ortholog groups were estimated using OrthoFinder 1.0.6
[55]. The group contained 759 gene members. Seventeen in-
complete genes (not starting with methionine) were ex-
cluded. The resulting 742 genes were used to build a gene
tree using Mafft 7.273 [62] and FastTree 2.1.3 [63] for se-
quence alignment and tree building, respectively.
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