
UC Irvine
ICS Technical Reports

Title
Transformations supporting interactive rescheduling for high-level synthesis

Permalink
https://escholarship.org/uc/item/8kh5p95p

Authors
Ang, Roger
Dutt, Nikil

Publication Date
1992-02-14

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8kh5p95p
https://escholarship.org
http://www.cdlib.org/

rJutlce: This Material
rnay be protected
:Jy Copyright Law
(Title 17 U.S.C.)

Transformations Supporting
Interactive Rescheduling
for High-Level Synthesi§___

Roger An~ and Nikil Dutt

Technical Report 92-20
February 14, 1992

Department of Information and Computer Science
University of California, Irvine

Irvine, CA 92717
(714) 856-8059

rang@ics.uci.edu

Abstract

f}f2('f/;V{S

z
6Pf
e3
ri o. 1)-;;_D

c_,, J.,

Traditionally, high-level synthesis (HLS) has been a fully automatic process over which the user has had
little or no control. To make HLS an acceptable methodology for expert designers, we need to allow for
more interactivity during synthesis. Since the scheduling step in HLS often determines the scope and quality
of the ensuing synthesis tasks, we describe behavior-preserving transformations for manual rescheduling of
behavior. We present the Structured Finite State Machine (SFSM) design model for scheduled behavior, show
its equivalence to the behavioral Control-Data Flow Graph (CDFG), define primitive behavior-preserving
transformations and indicate the utility of these transformations. The manual rescheduling capability we
describe allows expert designers to alter an automatically generated schedule to overcome simplifications
and assumptions made by automatic scheduling algorithms.

- .i' . ~ ~ r • .
't.

iii

,. , ,, {

I'•'

Contents

1 Introduction

2 Design Models and Notation
2.1 Control/Data Flow Graph (CDFG) .

2.1.1 Control Flow Graph
2.1.2 Data Flow Graph

2.2 Structured Finite State Machine (SFSM)

3 Related Work

4 Primitive Operations

5 Behavior-Preserving Rescheduling Transformations

6 Status and Future Work

7 Acknowledgements

8 Summary

9 References

1

2

2
2
3
5
6

9

10

13

19

20

20

20

1 Introduction

Traditionally, high-level synthesis has been a fully automatic process over which the user has had little or
no control, particularly in the selection of transformations and in the modification of synthesized designs.
To make high-level synthesis an acceptable methodology for expert designers, we need to allow for more
interactivity during synthesis. This paper describes behavior-preserving transformations that permit manual
rescheduling of behavior, given the original behavior and a complete schedule.

The original behavior, typically written in an imperative HDL, is represented as a Control/Data Flow
Graph (CDFG). After the scheduling step of high-level synthesis, the scheduled behavior corresponds to an
abstract finite state machine, in a model we call the Structured Finite State Machine (SFSM). In order to
preserve behavior during manual rescheduling, we need to maintain consistency between the rescheduled
design (i.e., the SFSM) and the original behavior (i.e., the CDFG). We show the equivalence of the SFSM
and scheduled CDFG models by providing a construction mechanism to go between these two models.

We then describe manual rescheduling transformations on the SFSM model. Since the initial schedule
.often determines the scope and quality of the ensuing high-level synthesis tasks, it is imperative to allow for
user input after scheduling. Manual rescheduling may be useful for the following reasons:

1. HLS tools (including schedulers) often make simplified assumptions about functional units (e.g., delays,
types, features such as pipelining).

2. HLS algorithms may use very abstract or unrealistic cost functions for scheduling. For instance, delays
of operations, effects of physical design (placement, routing) on costs of scheduling, etc.

3. We may not know a priori the input data distribution which affects branching probabilities for each
design, hence assumptions made by schedulers on input data may not model actual use.

4. Expert designers may have useful knowledge and "design tricks" that are specific to certain types of
designs, and are thus often not encoded into a scheduler.

The manual rescheduling capability we describe in this report allows expert designers to alter an au­
tomatically generated schedule to overcome the simplifications and assumptions made by the scheduling
algorithms, and also gives the designer freedom to alter automatically generated schedules to his/her liking.

2 Design Models and Notation

In order to lay the foundation for the behavior preserving transformations, we need to define the basic design
models for the original (unscheduled) behavior and the behavior after scheduling.

2.1 Control/Data Flow Graph (CDFG)

A behavioral description in a hardware description language (HDL) is typically compiled into a variant of
a Control-Data Flow Graph (CDFG) (OrGa86] (CaRo89] (CaTa89] [RuGa90] (DeJo91] . The CDFG is a
representation that encapsulates information about the flow of control through a design description as well
the flow of data for individual assignments in the description. It is derived from the flow graph concept
popular in software compilers (AhSU86]. We define a CDFG as a directed graph, where:

2

CDFG = (C, E, t, D, I, 0, o)

C: a set of control flow nodes.
E: a set of directed edges that connect the control flow nodes.
t: a transition function which maintains sequencing of the control flow nodes.
D: sets of data flow graphs.
I: a set of design inputs.
0: a set of design outputs.
o: an output function for the design.

These sets and functions are further defined below.

2.1.1 Control Flow Graph

We begin by defining the Control Flow Graph.
For the following let:

C; be a node in the control flow graph.
D(C;) be the set of data flow graphs associated with node Ci.
indegree(C;) be the number of edges connected to Ci that are directed toward C;.
out degree(Ci) be the number of edges connected to Ci that are directed away from C;.
successor(C 1 , C 2) test that C 2 is a successor of C 1 , i.e., whether there exists a set of edges which form

a path from C 1 to C2.
succ(C;) be the set of control flow nodes that are immediate successors of Ci.

A path from a node, C 1 , to a successor node, C 2 , is a set of edges and nodes that leads to C 2 such that
each edge is traversed once. Transitions and the output generated by a control flow node is determined by
the current inputs and the data flow graphs associated with that CF node:

(t : C x D x I,_. E)
(o:CxDxlt-tO)

A control flow node, C;, can be one of four types:

YC; IC; E c, C; E {

Cblock }
Cte•t

Cjoin

Ctoop

Block : corresponds to a "basic block" of code. The set of actions in the block are performed sequentially
without interruption of the flow of control, i.e., D(Ci) is an ordered list. For this type of node,
in degree(C;) = 1 and out degree(C;) = l. Transitioning to the next node occurs after execution of all
actions for the node.

VC; IC; E cblock,D(C;) f:. 0,
t(C;) ,_. E;

3

Test : these perform conditional branching. The transition function for these nodes depends upon the
conditional expression associated with each node. Each edge from a Test node will have a value
associated with it. The edge with the value equal to the result of the condition expression for the Test
node indicates the next transition. For this type of node, in degree(C;) = 1 and out degree(C;) >= 2.

VC; I C; E C 1-.1 , D(Ci) is the condition expression,
t(C;, D(C;)) ,........ E;

Join : these complement the Test nodes. No actions or conditional expressions are associated with these
nodes. For this type of node, indegree(C;) >= 2 and outdegree(C;) = 1.

VC; IC; E Cjoin 1 t(C;) ,__. E;

Loop : this is a special case of a conditional branching node to indicate the entry /exit point of a cycle in
the control flow graph. It is a combination Test/Join node. The transition function for these nodes
depends upon the conditional expression associated with each node. For this type of node, indegree(C;)
= 2 and outdegree(Ci) = 2. One of the edges to the node is for initial entry into the loop, while the
other edge to the node is for reiteration of the loop. One of the edges from the node is for exiting the
loop and the other edge from the node transitions to the nodes within the loop.

VC; I C; E C1oop, D(C;) is the condition for the loop.
t(C;, D(C;)) ,........ E;

Exceptions to the above are the designated start node and an optional stop node. Both of these nodes
may be of any of the above types. The start node is the first node in the control flow graph according to the
order of evaluation. On beginning the evaluation of the control flow graph, the starting transition goes to
this node. For a start node, C, 1art, indegree(Cotart) may be zero. A stop node is a node with no outgoing
edges, i.e., outdegree(C,top) = 0.

In addition, CDFGs possess an important property of well-structuredness, that make various kinds of
global data analyses possible. For every Test node there is a corresponding successor Join node.

Test-Join pairs must be properly nested. That is, let C 1 and C2 be test nodes with corresponding join nodes
J1 and J2, respectively. If C2 is on a path from C 1 to J1, J 2 must also be on the same path.

Let C;, Cj E Cte•ti Cx, Cy E Cjoini where (C;, Cx) and (Cj, Cy) are test/join pairs.
If successor(C;, Cj), then successor(Cy, Cx)

For loops, any node within a cycle, except the Loop node, will have no edges that transition to a node outside
of the cycle.

Let Ccyc/e be the set of CF nodes within a cycle in a CDFG.
'r/C; I C; E Ccyc/e, C; </. C1oop
VCj J Cj E succ(C;), Cj E Ccyc/e·

4

A loop node is the only entry and exit point for a cycle. If a Test node, Ci, is in a cycle, its corresponding
Join node, Ci, must be also be in that cycle. Conversely, if C; is a successor to a node C1 and Ci is not in
a cycle, then Cj, the Join node for C;, must be a successor of Ci and C1 and not be in a cycls.

To simulate the behavior described by a CDFG, control flow through the graph proceeds sequentially,
i.e., only one node is under evaluation at any time. Upon encountering a node during evaluation, if there
are any actions or conditions associated with the node, they are evaluated. After evaluation of actions or
conditions, the transition function is called to indicate which edge from the current node should be followed
to arrive at the next node for evaluation. The structure of the control flow graph determines the evaluation
order of the nodes. The control flow graph structure along with the actions and conditions of nodes are the
representation of a desired sequential behavior.

2.1.2 Data Flow Graph

Each control flow node Ci may have an associated data flow graph. A single data flow graph is a directed
acyclic graph defined as:

DFG = (D, E)
D: a set of data flow nodes.
E: a set of directed edges that connect the nodes.

For the following let:
D; be a node in the data flow graph.
indegree(D;) be the number of edges connected to D; that are directed toward D;.
outdegree(D;) be the number of edges connected to D; that are directed away from D;.

There are two basic types of data flow nodes:

wD I D D D { D data_acceu } v i ;E , ;E D
operation

Data Access : we associate the name of a variable or data carrier with this type of node. The value of
this variable or data carrier is accessed by this node. If an edge is directed towards this type of node,
the variable is being assigned a value, i.e., "write" to the node. If an edge is directed from this type
of node, the value of the variable is made available to the node directed towards, i.e., "read" from the
node.

'VD· ID· ED D· E { Dread I indegree(D;) = 0, outdegree(D;) > O }
I • data_acce .. , I Dwrite I indegree(D;) = 1, outdegree(D;) = 0

Operation : we associate an operation with this type of node, e.g., arithmetic, logical and relational. The
operation node receives data values from edges directed towards it, and passes on resulting data values
via edges directed away from it. This type of node takes the values given to it, performs its associated
operation on the values, and outputs the resulting value. The number of input values required, i.e.,
edges directed towards the node, depends upon the operation associated with the node.

5

A data flow graph can be used to represent an assignment statement found in a typical programming
languages, e.g., a +--- b + 1. During the evaluation of a data flow graph, data can be considered to "flow"
from the read nodes of the graph, through the operation nodes, and into the write nodes.

2.2 Structured Finite State Machine (SFSM)

After scheduling, we can represent a design by a finite state machine (FSM) with associated datapath
operations: in each state of the FSM, certain data path operations are performed. FSMs are practical for
logic and register-transfer synthesis because methods to implement them are well established. However, the
original behavior comes from an imperative, well-structured HDL, which is compiled into a well-structured
CDFG. We use a form of finite state machine, which we call a Structured Finite State Machine (SFSM), to
bridge differences between the previously described CDFG model and traditional finite state machine models.
The SFSM model is used to maintain the control flow structure of a scheduled CDFG within a finite state
machine model. We show rules for constructing an SFSM from a scheduled CDFG and vice-versa, thereby
establishing their equivalence. This gives us the advantage of performing data analyses on well-structured
CDFGs, while using the SFSM for subsequent high-level synthesis tasks such as component allocation and
bindings.

SFSMs are a subset of FSMs with datapath (FSMD) [GDWL92). Briefly, FSMDs are finite state machines
defined on abstract variables and their semantics to describe conditions for transitions, and assignments
for transformation of inputs to outputs. FSMDs use data abstraction to avoid explicitly describing the
binary /boolean encoding of data. An FSMD is thus equivalent to a scheduled behavior derived from an
imperative HDL, where operations on abstract variables are performed in each state. An FSMD consists of:

FSMD = (S, I U STAT, 0 U A, f, h), where

S: a set of states.
I: a set of inputs.
STAT: a set of status signals each consisting of a logical relational expression.
0: a set of outputs.
A: a set of assignments.
f transition function. (!: S x I U STAT 1--+ S)
h: output function. (h : S x I U STAT 1--+ 0 U A)

An SFSM is a well-structured form of FSi\ID. In an SFSM, there can be four type of states: Action,
Condition, Join, and Loop Test.

VS; I S; E S, S; E SS~o~dition
{

Saction }

)Oln

Stoopte•t

The semantics and usage of SFSM constructs can be best described in terms of the CDFG. An SFSM can
be constructed from a scheduled CDFG in the following manner:

For each Test, Join or Loop node in the control flow graph of the CDFG, construct a corresponding state
in the SFSM. If there is a condition expression associated with a Test or Loop node, construct an identical
condition expression for the corresponding state.

6

For each Block node in the control flow graph of the CDFG, a corresponding series of states will be
constructed in the SFSM. A Block node in a CDFG has of a sequence of actions associated with it. Data
dependencies between the actions may require that some actions be evaluated before others. This means
that the actions may have to be performed in a series of steps. Actions with no data dependencies between
them may be performed in the same step.

Assigning actions to control steps so as to best meet the clock cycle time is called "scheduling". The
number of states needed in the SFSM to model a Block node from the CDFG is equal to the number steps
required for the actions in the Block node. That is, for each state scheduled to a CDFG Block node, there
is a corresponding state in the SFSM. For each state in a scheduled Block node, the actions for that state
are copied to the corresponding SFSM state. Since only actions with no data dependencies between them
may be scheduled to the same state, the actions in a state of the SFSM can be considered as occurring
concurrently.

For each edge in the CDFG, a corresponding transition is constructed in the SFSM. For CDFG nodes
Ci and Cj with corresponding SFSM states S; and Sj, respectively, if there is an edge from C; to Ci , a

·transition from Si to Sj is constructed. If a condition value is associated with the CDFG edge, an identical
value is associated with the SFSM transition. Transitions to and from Block nodes are special cases since
they map to a series of Action states in the SFSM. An edge to a Block node in a CDFG is modeled as a
transition to the first state of a series of Action states. Likewise, an edge from a Block node is modeled as
a transition from the last state of a series of Action states.

Let
STAT(S;) be the set of condition expressions associated with state Si.
A(Si) be the set of assignments associated with state S;.

Given a CDFG, X 0 a1 9 = (C, E, t, D, I, 0, o),
construct an SFSM, Xsfsm = (S, I U STAT, 0 U A, f, h),
such that Xcdfg ~ Xsfsm 1 i.e.,

't/Ci IC; EC, C; E Ctest, JS; IS; ES, Si E Scondition,STAT(S;) ~ D(Ci)

't/C; JC; EC, C; E Cjoin 1]Si IS; ES, S; E Sjoin

't/C; I Ci EC, Ci E cblock I 3{Si, ... , Sj} ~ s I {S;, ... I Sj} ~ Saction, {A(S;) u ... UA(Sj)} ~ D(C;)
where the number of states S;, · · ·, Sj is equal to the number of steps (control) needed to evaluate D(C;),
and S;, · · ·, Sj is an ordered sequence of states.

VE; IE; EE, Ei is directed from C; to Cj, /(S;,IU STAT(S;)) Si

Exceptions:

• transitions to and from block nodes
. 't/Cx I Cx E cblock I Cx ~ {Sx, ... , Sy}, succ(Sx) = Sx+l1 ... , succ(Sy_i) =Sy

7

if 3E; IE; EE that is directed from node C; to node C,,, then J(S;,IU STAT(S;)) 1--+ S,, IC;~ S;

if 3E; IE; EE that is directed from node C,, to node Cj, then J(Sy,IU STAT(Sy)) I--+ Sj I cj ~ Sj

• stop state
if C; is a stop node with a corresponding state in an SFSM, S; I C; ~ S;,
then J(S;, IU STAT(Si)) 1--+ S;

From this construction, we see that the well-structuredness property for control flow nodes of a CDFG
also apply to the states of an SFSM: Condition-Join pairs must be properly nested, cycles (loops) in an
SFSM must be closed, and there is a "start" state and optional "stop" states. In a similar fashion, a reverse
construction can be used to derive a CDFG design from an SFSM description. This proves the equivalence
of the CDFG and SFSM models.

Note that, while a scheduled CDFG is modeled by an SFSM, states in the SFSM do not correspond
directly to the scheduled states of the CDFG. That is, a state in the SFSM is not semantically the same as
a control step in the CDFG since each control flow node in the CDFG is modeled by one or more states in
the SFSM. While scheduling a CDFG, several control flow nodes can be assigned to the same control step
(state).

We now show that the CDFG model is contained within the FSMD model. Since we proved the equiv­
alence of the CDFG and SFSM models, we only need to describe the construction rules for converting an
arbitrary SFSM to an FSMD, such that the states of the FSMD correspond directly to the states of the
scheduled CDFG. The steps used in the construction of an FSMD from an SFSM are, in principle, similar to
rules used in scheduling a CDFG. The construction of an FSMD from an SFSM consists of two basic steps:

1. Merge Condition/Loop Test and Action States: if a Condition (or Loop Test) state has immediate
successors that are Action states, merge the action states with the Condition/Loop Test state. This
is done by moving the actions to the Condition/Loop Test state and associating the condition for the
transition to the Action state with the moved actions.

Let Ti be a Condition or Loop Test state.

for each Si in succ(Ti)
if Si is an Action state then

{

move actions in Si to Ti
associate stat(Ti) with actions where
f(Ti, I U stat(Ti)) -> Si

}

2. Eliminate Join States: Join states are artifacts of the original CDFG description which serve no purpose
as far as behavior is concerned. They can be eliminated by "skipping" them in the FSMD model:

Let Ji be a Join state.

for each Si in pred(Ji)
change edge to Ji to edge to succ(Ji)

remove Ji and edges connected to it.

8

Consequently, given a SFSM model, a user can derive both a CDFG and an FSMD model that are closely
related and behaviorally identical. Furthermore, we have proved the equivalence of scheduled CDFG and
SFSM models, and showed that the scheduled CDFG (and hence the SFSM) model is contained within the
FSMD design model.

Several advantages arise from using the CDFG and SFSM models. First, we formally defined the concepts
of CDFG and SFSM and showed their equivalence. Hence, any changes made to the SFSM can be correlated
to the behavioral CDFG to test for violations. Second, since a scheduled CDFG and SFSM are behaviorally
equivalent, we can translate between the two representations for tasks appropriate to each design model.
Third, by using a hybrid of flow graphs and FSMs, we are able to use both flow graph and FSM analysis.

3 Related Work

Similar application of compiler optimizations to tasks in high-level synthesis has been done before [BhLe90]
[Camp90] [Walk82], but differ from this work in the design models and approach. Interactive use of sim­
ilar transformations for sequential circuit behavior, retiming, has been done by [PoRa91] and [MSBS91].
However, retiming differs fundamentally from rescheduling in the underlying data being transformed.
Retiming tools manipulate register-transfer (RT) level descriptions of circuits. Typically for retiming, the
connectivity of registers to operational units is manipulated so that the functionality of the circuit is not al­
tered while other characteristics, such as resource utilization, minimum cycle time, etc., are explored. While
these tools allow changing the usage and number of registers in a circuit, they will not change the usage
or number of operational units. Rescheduling performs transformations on the design prior to allocation,
binding, and connecting of functional units. It allows manipulation of abstract operations in a behavioral
description of a circuit. Consequently, rescheduling influences the usage and number of RT units (registers
and operational) for a circuit synthesized from a transformed behavioral description.

[LeWo91] and [WaTh91] have explored interactive transformation of behavioral descriptions similar to this
work. However, the system [LeWo91] developed is based entirely on FSMs. A given behavioral description is
a nondeterministic FSM(BFSM) which is translated to a deterministic FSM(RTFSM). This RTFSM could
in turn be transformed into other RTFSMs representing alternate schedules for the original behavior. An
admitted shortcoming of this approach is that describing behaviors as state transition graphs is inconvenient.
Translation of behaviors to BFSM from other formats, such as HD Ls, introduces the problem of verification
of equivalence of between the BFSM and HDL descriptions, which at this time has not been solved. We
avoid this problem by using established compiler techniques to accurately map a VHDL description to a
CDFG, and formulating an SFSM that is structurally equivalent and can be easily translated to and from a
scheduled CDFG.

[WaTh91] have developed a system to manipulate value trace (VT) [McFa78] representations derived
from ISPS. Their system· performs code motion and condition merging transformations similar to the trans­
formations described in this paper. However, we also propose a subexpression factoring transformation,
which can greatly impact the scheduling and component allocation of a design. Also, the VT representation
model differs from the CDFG. In VT, control constructs in the original ISPS description are translated into
data flow equivalents, e.g. conditional execution of an action (if-then). Therefore, there is no distinction of
whether this is a control branch or a data selection. For our system, we derive the CDFG of a design from a
subset of VHDL, where conditional branching and data selection can each be described in a distinct manner.

g

4 Primitive Operations

A. The behavior-preserving transformations used for our rescheduling scheme can be accomplished using a
small set of primitive operations. By using these primitive operations in proper sequence, the transforma­
tions can manipulate the behavioral description while ensuring that the sequential behavior of the design is
preserved. An essential primitive operation that will need to be performed by most of the transformations
is a check of data dependencies. Given an action and a specified state, this primitive operation will indicate
if placing the action within that state would violate the constraints of the data-dependency graph. Every
action in a state must be independent of the other actions, so no data-dependencies can exist between any
actions in a state. Consequently, the actions in a state can be performed concurrently. In the example
below, if the definition of x in action the action x <---- y + 1 reaches the first action in state S1 (b <---- x),
the data-dependency check would return that a conflict exists. In a transformation, this would abort the
attempted change and the user would be notified that this transformation is not allowed.

dcheck_action(x <---- y + 1, Si)

X<-y+l

B. A primitive operation that changes the description is the copying of an action to a state. This
primitive operation is given an action and a specified state to copy the action to. It returns the specified
state with the action inserted into it. In the transformations, this copy operation is only attempted when the
previously described dependency check indicates no conflicts exist between the action and the state. Thus,
the data-dependency graph, defined by the sequential behavior of the design, would not be violated and the
functionality of the description is not altered.

copy_action(x <---- y + 1, Si)

b <---- x
a<---- 3

x<-y+l

C. Another primitive operation that alters the behavioral description is the deletion of an action from
a state. This operation is given an action and a specified state to remove the action from. It returns the
specified state with the action removed from it (see figure below). This operation should only be performed
in conjunction with the copy operation to effect the movement of an action from one state to another. When
used in this manner, this operation only removes a redundant action and no change is made to the sequential
behavior of the design.

So=

delete_action(x <---- y + 1, So)

Z<-y-2
X<-y+l

==> So = I z <---- y - 2 I

10

D. In order to effect the moving of an action or subexpression, the detection of an action or subexpression is
necessary. Given a state and an action/subexpression, this operation determines if the action/subexpression
exists within the state. If so, it returns "handle(s)" to the occurrences of the action/subexpression. Ac­
tion/subexpression detection is a form of pattern matching on a tree which was done in [Keut87]. In the
model we use, expressions are represented as binary trees where internal nodes are operators and leaves are
operands. In the case when the detection operation is searching for an action, the search involves matching
both the variable that will get the resulting value and the expression tree for the right hand side expression.
Matching of expression trees can be greatly simplified by applying a few rules to the construction of the
trees, such as all trees will be right-derivations of an expression and operands will be ordered lexically. In
the case of detecting a subexpression, a possible subtree must be matched. A brute force approach would
be to search all permutations of an expression tree. However, the number of possible expression trees for
an expression with N operators is on the order of O(N!). An alternative approach is to limit the search to
the two or three levels of the expression trees closest to the root, i.e. permutation of the tree is done only
on the first few applicable operations in the order of evaluation. This would mean, in the worst case, the
search would go through only several dozen trees. While this search will find a common subexpression in an
expression with 3 operators or less, it may not find subexpressions for expressions with 4 or more operators.
This is a reasonable and practical approach, since we are dealing with expressions within a scheduled state,
and scheduled states in a behavioral description typically do not have more than 3 chained operators. In
practice, chaining more than 3 operators within a state leads to excessively long clock cycles and possibly
poor resource utilization, as observed by Marwedel [Marw86].

E. After the occurrences of a subexpression have been found, the subexpression must be "factored" out
of the "parent" actions before movement is possible. This factoring operation is illustrated below, where
b + x is the subexpression being factored out. This primitive operation is given an expression, an action,
and an expression tree for the action. It returns two actions, one for the factored subexpression and one
for the optimized parent action. In the transformations, this operation is used in conjunction with the copy
and delete operations to move the new action containing the specified subexpression to a previous state,
thus avoiding data-dependency conflicts. This operation updates the data-dependency graph, but from an
external I/O view of the design, the sequential behavior is not altered.

factor(_b + x, a+--- b + x - c)

b
tmp +- b + x

a+- +x-c===>
a+- tmp- c

F. The number of states in the design can be changed by the insertion or deletion of empty states. Only
action states can be added or deleted by this primitive operation. For the insertion operation, the location
of where to insert the new state must be specified, i.e. between what states should the new state be inserted.
For deletion, the specified state must have no actions and no condition tests. These operations will produce
a design with an empty state added or removed. Since only empty states are inserted or deleted, these
operations add no actions to the design nor change the order of actions. Consequently, these operations do
not alter the sequential behavior of the design.

11

insert_state(S 1, S2) remove_state(S1, S2)

~
~ ~

~ ! !
! ===> ~ ~ ===> !
~ ! ! ~

~ ~
G. A single primitive operation will perform the merging of conditions. A requirement for merging

conditions is that the conditions must be nested with no intervening states. There must be no states between
the branching states and the joining state (see Figure 1). The operation is given two adjacent condition
states. It merges the conditions into a single condition state and, likewise, merge the join states. Conditions
·are limited to testing the value or particular bits of a variable. Since the test variables are set prior to testing
and the tests have no side effects on any variables, merging conditions amounts to scheduling the tests of
both conditions to a single state instead of two adjacent states. The variable values under which the various
condition branches are performed are not changed. Therefore, the sequential behavior of a description is not
altered by this operation.

c
x 0 1

~
I I

~ 1x0100

I I I
I I I
I I I
I I I

~

Figure 1: merge(C1, C2)

12

5 Behavior-Preserving Rescheduling Transformations

Using the primitive operations from the previous section, we now describe the behavior-preserving reschedul­
ing transformations. We use the following notation and functions.

(for the following i is an optional integer)
Ai: an action, such as a +- b + 1
SEi: a subexpression, such as b + x
Si: a state
ASi: an action state
Ci: a condition state
Ji: a join state

Primitive operations
dcheck....action(A, S), dcheck...subex(SE, S)
copy....action(A, AS)
rernove....action(A, AS)
detect....action(A, AS), detect...subex(SE, AS)
factor...subex(SE, A)
insert...state(S, S)
delete...state(AS)
rnerge_conds(C, C)

Functions
pred (S): the set of states that are immediate predecessors of state S
succ(S): the set of states that are immediate successors of state S

Knowledge of the data-dependencies between actions in the description is crucial to preserving the func­
tionality of the design. For an individual data carrier, such as a variable, the functionality of the data carrier
is preserved as long as the order in which data is assigned and used is not altered. The concept of definition­
use chaining (du-chaining) [AhSU86] is used to maintain this ordering. In the example, x +- a+ b, the
variable x is "defined" by the action and variables a and b are "used." In du-chaining, links are maintained
between each use of a variable and the definitions that may apply to it. The test variables in condition states
are considered as "uses" of those variables. A data-dependency conflict occurs in the following cases:

1. a "use" and a "definition" that applies to it are in the same state.

2. more than one definition of a variable in a state are evaluated under the same condition.

3. a use of a variable is moved beyond the scope of an applicable definition, e.g. into or before the state
of a definition that applies to it, or into a state after a definition that does not apply to it.

4. a definition of a variable is moved into the scope of another definition, e.g. into a state before a use
that the definition does not apply to, or into or after a state of use that the definition applies to.

13

The simplest transformation to perform on the design is the addition or deletion of an empty state.
These transformations are the same as the primitive operations described in the previous section. The user
specifies where a new state should be inserted, or which empty state to remove. Addition of an empty state
will allow greater flexibility in re-ordering the existing actions. Though there is an increase in the number of
states in the design, the re-ordering may make it possible to have a shorter clock cycle or a fewer number of
functional units. The deletion of an empty state simply reduces the number of states in the design in hopes
of reducing the number of clock cycles for the design, and consequently, improve its performance.

insert_state(S1, S2)
{

if S1 is in pred(S2) then {
Prev_State = S1
Next_State = S2

}

else
if S2 is in pred(S1) then {

Prev State = S2
Next_State = S1

}

else abort transformation, specified states are not adjacent

create new state S'
make S' a next state for Prev_State
make Next_State the next state for S'

}

delete_state(S1)
{

}

if S1 has any actions or a condition then
abort transformation, state not empty

/* S1 should be an empty action state */

find pred(S1)
find succ(S1)
make succ(S1) the next state for pred(S1)
remove S1

Most of the other rescheduling transformations deal with the various cases of action movement. These
transformations allow the user to re-order actions to change the states they are performed in. In these
transformations the user specifies an action (or subexpression) in a particular state, and the destination
state for the action (or subexpression).

The simplest form of action movement is moving an action/subexpression across other action states, i.e.
movement does not go through a condition or join state. This is analogous to rearranging "straight-line

14

code" in the behavioral description. This transformation is permitted if, for any state moved through or
into, there are no data-dependency conflict between the action/subexpression and a state. A subexpression
may only be moved "up" to a previous state. The steps involved in this transformation are outlined below:

1. check for data-dependency conflicts in each state along the path of movement

2. if moving a subexpression "up", for each state along the path of movement, including the source state
but excluding the destination state:

a. detect occurrences of the subexpression in the state

b. if there is an occurrence, factor out the subexpression The new action containing the subexpression
is the action being moved.

3. copy the action to the destination state.

4. if not moving a subexpression delete the action from the source state.

move_action_straight(AS1, AS2, A1)
{ /* AS1 is the source state, AS2 is the destination state •/

for each state Si from AS1 to AS2 {

}

}

if Si is not an action state then
abort transformation

else
if dcheck_action(A1, Si) returns a conflict then

abort transformation

copy_action(A1, AS2)
remove_action(A1, AS1)

move_subex_straight(AS1, AS2, SE1)
{ /* AS1 is the source state, AS2 is the destination state •/

if AS2 is not a predecessor of AS1 then
abort transformation, subexpressions can only be moved up

for each state Si from AS1 to AS2 {
if Si is not an action state then

abort transformation
else

if dcheck_subex(SE1, Si) returns a conflict then
abort transformation

}

15

}

for each state ASi from AS1 to AS2
for each Ai in detect_subex(SE1, ASi) /*occurrences of SE1 •/

factor_subex(SE1, Ai)

create a new action A2 for SE1
copy_action(A2, AS2)

When this transformation is combined with the addition and deletion of empty states, the combination
performs the equivalent of state merging and splitting.

How an action is moved across a condition state depends on the direction of movement. For these
transformations action states must immediately precede and succeed the condition state. When an action is
moved "down" across a condition state, i.e. an action is moved across a successor state which is a condition
state, the steps to accomplish this transformation are similar to the ones for simple straight-line movement.
This transformation moves an action from the action state immediately preceding a condition state to the
action states immediately succeeding that condition. Since it would not make sense, subexpressions cannot
be moved in this way, i.e. subexpression cannot be propagated downwards. The algorithm is given below.

move_action_xcond_down(AS1, AS2, A1)
{ /* AS1 is the source state, AS2 is one of the destination states •/

if succ(S1) and pred(S2) are not the same condition state, C1, then
abort transformation

}

if dcheck_action(A1, C1) indicates a conflict then
abort transformation

for each state ASi in succ(C1) {

}

if dcheck_action(A1, ASi) indicates a conflict then
abort transformation

for each state ASi in succ(C1)
copy_action(A1, ASi)

remove_action(A1, AS1)

Movement of an action or subexpression "up" across a condition state has different steps than downward
movement. This transformation moves an action from the action states immediately succeeding a condition
state to the action state preceding the condition. As implied by the previous statement, the action being
moved must exist in every action state immediately succeeding the condition. However, this is not the case
when moving a subexpression, which need only exist in any of the action states immediately succeeding the
condition. This transformation is similar to code hoisting in compiler optimization.

16

move_action_xcond_up(AS1, AS2, Al)
{ /• AS1 is the source state, AS2 is the destination state */

if succ(AS2) and pred(AS1) are not the same condition state, Cl, then
abort transformation

for each state ASi in succ(C1)
if detect_action(A1, ASi) fail to find Ai then

abort transformation

if dcheck_action(A1, Cl) or
dcheck_action(Al, AS2) indicates a conflict then

abort transformation

copy_action(Al, AS1)
for each state ASi in succ(Cl)

remove_action(A1, ASi)
}

move_subex_xcond_up(AS1, AS2, SE1)
{ /* AS1 is the source state, AS2 is the destination state •/

}

if succ(AS2) and pred(AS1) are not the same condition state, Cl, then
abort transformation

for each state ASi in succ(C1) {

}

for each Ai in detect_subex(SE1, ASi)
factor_subex(SE1, Ai)

if SE1 was not found in any state the
abort transformation, no subexpression to move

if dcheck_subex(SE1, Cl) or
dcheck_action(SE1, S2) indicates a conflict then

abort transformation

create new action A2 for SE1
copy_action(A2, AS1)

The transformations for action movement across join states are complementary to the ones for conditions.
For these transformations action states must immediately precede and succeed the join state. Movement
of an action or subexpression up across a join state is similar to movement down across a condition. This
transformation moves an action or subexpression from the action state immediately succeeding the join state
to the action states immediately preceding the join.

17

move_action_xjoin_up(AS1, AS2, Ai)
{ /* AS1 is the source state, AS2 is one of the destination states */

if pred(AS1) and succ(AS2) are not the same join state, Ji, then
abort transformation

for each ASi in pred(Ji)
if dcheck_action(Ai, ASi) indicates a conflict

abort transformation

for each ASi in pred(Ji)
copy_action(A1, ASi)

remove_action(Ai, ASi)
}

move_subex_xjoin_up(AS1, AS2, SE1)
{ /* ASi is the source state, AS2 is one of the destination states */

if pred(ASi) and succ(AS2) are not the same join state, Ji, then
abort transformation

}

for each ASi in pred(Ji)
if ASi is not an action state or

dcheck_action(A1, ASi) indicates a conflict
abort transformation

if detect_subex(SEi, AS1) fails to find occurrences of SEi then
abort transformation

else
for each Ai in detect_subex(SE1, AS1)

factor_subex(SEi, Ai)

create a new action A2 for SEi
for each ASi in pred(J1)

copy_action(A2, ASi)

Movement of an action down across a join state is similar to movement up across a condition. This
transformation moves an action from the action states immediately preceding a join state to the action state
succeeding the join.

move_action_xjoin_down(ASi, AS2, Ai)
{ /* ASi is the source state, AS2 is the destination state */

if succ(AS1) and pred(AS2) are not the same join state, Ji, then
abort transformation

for each ASi in pred(Ji)

18

}

if detect_action(A1, AS!) fails then
abort transformation

if dcheck_action(A1, AS2) indicates conflict then
abort transformation

copy_action(A1, AS2)
for each ASi in pred(J1)

remove_action(A1, ASi)

When used in conjunction, these movement transformations should enable a user to move an action to any
valid point in the description without altering the designs functionality.

The last transformation we will describe deals with the merging of condition states. Merging conditions
capitalizes on the inherent parallelism that is possible when one conditional branch immediately follows
another conditional branch. In the semantics of the model we use, no arithmetic or relational operations
need be performed to evaluate the condition. Condition are test for particular values of variables and will
typically be implemented as sets of logic gates within the control unit. Merging conditions changes the
control of the design such that the results of the two sets of condition tests are considered together in a
single state rather than in two separate states. A precondition of the condition merge is that the condition
states and their corresponding join states be nested with no intervening state.

merge_conditions(C1, C2)
{ /* C2 is assumed to be nested inside Ci */

}

find join state, Ji, for C1
find join state, J2, for C2

if succ(C1) is not C2 or
succ(J2) is not in J1 then

abort transformation

merge_conds(C1, C2)

6 Status and Future Work

The behavior-preserving transformations described in this paper have been implemented in C on Sun work­
stations, and are currently working in the BIF design environment [DuHG90] (HaGa91]. A graphical user
interface, XBIF [DuCH91], allows the designer to interactively select and apply these transformations to
a scheduled behavior represented as an BIF Operations-Based State Table (OBST). This is an attractive
interface for applying these types of transformations, since the designer can view the scheduled behavior in

19

a form that preserves the original HDL flavor, yet provides a clear picture of the state sequencing and con­
ditions. An attempt to apply a transformation incorrectly is aborted, and the user is notified via a message
on the screen that the original behavior may not be preserved.

To complement the rescheduling transformations, we intend to enhance the XBIF environment to display
design metrics similar to those described in (BrGa90) and (WRJF91). Inclusion of component allocation in­
formation will be necessary to derive design characteristics such as the number and type of functional units
needed, utilization of registers and functional units, estimated area of design, estimated time length of states,
etc. Such information will give the designer direct feedback on the impact of the rescheduling transforma­
tions on the implementation that may be synthesized from the specification Initially, component allocation
information will be generated by automatic tools. But potentially, the environment can be enhanced to allow
simultaneous manipulation of a design's scheduling and component allocation.

7 Acknowledgements

This research was supported in part by NSF grant MIP-9009239 and SRC contract 91-05-146. We are
grateful for their support.

8 Summary

In this paper, we first formally defined the original behavior from an imperative HDL as represented by a
well-structured CDFG. We formally defined the SFSM, a well-structured, abstract FSM that is appropriate
for capturing the behavior after scheduling in high-level synthesis. We proved the equivalence of the scheduled
CDFG and the SFSM by describing construction rules to go between these design models. We explained
the advantages of maintaining both design models. Furthermore, we showed that the SFSM (and hence
the scheduled CDFG) is a subset of the general FSMD design model used in high-level synthesis. We then
outlined primitive transformations and user-applicable behavior preserving transformations for interactive
rescheduling in high-level synthesis. Since Automatic schedulers may use specific (and sometimes simplified)
design models, there is a need to provide a manual rescheduling capability for users. This permits designers to
incorporate additional knowledge, such as floorplanning and layout information, early in the design process.
Our current work attempts to find good metrics to help designers apply these transformations effectively.

9 References

References

(AhSU86) Aho, A., Sethi, R., Ullman, J. Compilers: Principles, Techniques and Tools, Addison-Wesley,
1986.

(BhLe90) Bhasker, J. and Lee, H. "An Optimizer for Hardware Synthesis," IEEE Design and Test of
Computers, pp. 20-36, October 1990.

(BrGa90) Brewer, F. and Gajski, D., "Chippe: A System for Constraint Driven Behavioral Synthesis,"
IEEE Transactions on Computer-Aided Design, Vol. 9, no. 7, pp. 681-695, July 1990.

20

(Camp90] Camposano, R., "Behavior-preserving Transformations for High-Level Synthesis," Proceedings
of the MS! Workshop on Hardware Specification, Verification, and Synthesis: Mathematica/
Aspects, pp. 106-128, Springer Verlag, 1990.

(CaRo89] Camposano, R. and Rosenstiel, W., "Synthesizing Circuits from Behavioral Descriptions", IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 8, no. 2, pp.
171-180, February 1989.

(CaTa89] Camposano, R. and Tabet R. "Design Representation for the Synthesis of Behavioral VHDL
Models," in J .A. Darringer, F .J. Rammig, Editors, Proceedings of the 9th International Sympo­
sium on Computer Hardware Description Languages and their Applications, 1989.

(DeJo91] DeJong, G. "Data Flow Graphs: System Specification with the Most Unrestricted Semantics,"
Proceedings of the European Design Automation Conference, 1991.

(DuCH91] Dutt, N., Cho, J. and Hadley, T. "A User Interface for VHDL Behavioral Modeling," Proceedings
of the 10th International Symposium on Computer Hardware Description Languages and their
Applications, 1991.

(DuHG90] Dutt, N., Hadley, T. and Gajski, D., "An Intermediate Representation for Behavioral Synthesis,"
Proceedings of the 27th Design Automation Conference, pp. 14-19, 1990.

(GDWL92] Gajski, D., Dutt, N., Wu, A., Lin, S., High-Level Synthesis: Introduction to Chip and System
Design, Kluwer, 1992.

(HaGa91] Hadley, T. and Gajski, D., "A Decision Support Environment for Behavioral Synthesis", Tech­
nical Report 91-17, University of California at Irvine, Aug. 1991.

[Keut87] Keutzer, K., "DAGON: Technology Binding and Logic Optimization by DAG Matching," Pro­
ceeding of the 24th Design Automation Conference, pp. 341-347, 1987.

(LeWo91] Leeser, 1vI. and Wolf, W., "Preserving Design Behavior without Register-Transfer Equivalence",
High Level Synthesis Workshop, 1991.

[MSBS91] Malik, S., Sentovich, E., Brayton, R., Sangiovanni-Vincentelli, A., "Retiming and Resynthesis:
Optimizing Sequential Networks with Combinational Techniques", IEEE Transactions on CAD,
Vol. 10, No. 1, pp. 74-84, Jan. 1991.

(Marw86] Marwedel, P., "A New Synthesis Algorithm for the MIMOLA Software System" Proceedings of
the 23rd Design Automation Conference, 1986.

[McFa78] McFarland, M., "The Value Trace: A Data Base for Automated Digital Design", Technical
Report DRC-01-04-80, Carnegie ~Iellon University, Dec. 1978.

(OrGa86] Orailogulu, A. and Gajski, D., "Flow Graph Representation," Proceedings of the 23rd Design
Automation Conference, pp. 503-509, 1986.

[PoRa91] Potkonjak, M. and Rabaey, J., "Optimizing Resource Utilization using Transformations", Pro­
ceedings of the IEEE Conference on Computer-Aided Design, pp. 88-91, 1991. 1991.

21

[Rose86] Rosenstiel, W., "Optimizations in High Level Synthesis,'' Microprocessing and Microprogram­
ming {18}, pp. 543-549, 1986.

[RuGa90] Rundensteiner, E. and Gajski, D., "A Design Representation for High-Level Synthesis", Tech­
nical Report 90-27, UCI, Sep. 1990.

[Walk82] Walker, R., "A Transformation Package for the Behavioral Level of the CMU-DA System",
Master's Project Report DRC-01-14-82, Carnegie Mellon University, Dec. 1982.

[WaTh91] Walker, R. and Thomas, D., "Behavioral Transformation for Algorithmic Level IC Design",
IEEE Transactions on CAD, Vol. 8, No. 10, pp. 1115-1128, Oct. 1989.

[WRJF91] Walker, R., Ramabadran, S., Joshi, R., and Flatland, S., "Increasing User Interaction During
High-Level Synthesis," 24th International Symposium on Microarchitecture, pp. 1-10, Dec. 1991.

22

