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Traditionally, high-level synthesis (HLS) has been a fully automatic process over which the user has had 
little or no control. To make HLS an acceptable methodology for expert designers, we need to allow for 
more interactivity during synthesis. Since the scheduling step in HLS often determines the scope and quality 
of the ensuing synthesis tasks, we describe behavior-preserving transformations for manual rescheduling of 
behavior. We present the Structured Finite State Machine (SFSM) design model for scheduled behavior, show 
its equivalence to the behavioral Control-Data Flow Graph (CDFG), define primitive behavior-preserving 
transformations and indicate the utility of these transformations. The manual rescheduling capability we 
describe allows expert designers to alter an automatically generated schedule to overcome simplifications 
and assumptions made by automatic scheduling algorithms. 
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1 Introduction 

Traditionally, high-level synthesis has been a fully automatic process over which the user has had little or 
no control, particularly in the selection of transformations and in the modification of synthesized designs. 
To make high-level synthesis an acceptable methodology for expert designers, we need to allow for more 
interactivity during synthesis. This paper describes behavior-preserving transformations that permit manual 
rescheduling of behavior, given the original behavior and a complete schedule. 

The original behavior, typically written in an imperative HDL, is represented as a Control/Data Flow 
Graph (CDFG). After the scheduling step of high-level synthesis, the scheduled behavior corresponds to an 
abstract finite state machine, in a model we call the Structured Finite State Machine (SFSM). In order to 
preserve behavior during manual rescheduling, we need to maintain consistency between the rescheduled 
design (i.e., the SFSM) and the original behavior (i.e., the CDFG). We show the equivalence of the SFSM 
and scheduled CDFG models by providing a construction mechanism to go between these two models. 

We then describe manual rescheduling transformations on the SFSM model. Since the initial schedule 
.often determines the scope and quality of the ensuing high-level synthesis tasks, it is imperative to allow for 
user input after scheduling. Manual rescheduling may be useful for the following reasons: 

1. HLS tools (including schedulers) often make simplified assumptions about functional units (e.g., delays, 
types, features such as pipelining). 

2. HLS algorithms may use very abstract or unrealistic cost functions for scheduling. For instance, delays 
of operations, effects of physical design (placement, routing) on costs of scheduling, etc. 

3. We may not know a priori the input data distribution which affects branching probabilities for each 
design, hence assumptions made by schedulers on input data may not model actual use. 

4. Expert designers may have useful knowledge and "design tricks" that are specific to certain types of 
designs, and are thus often not encoded into a scheduler. 

The manual rescheduling capability we describe in this report allows expert designers to alter an au­
tomatically generated schedule to overcome the simplifications and assumptions made by the scheduling 
algorithms, and also gives the designer freedom to alter automatically generated schedules to his/her liking. 

2 Design Models and Notation 

In order to lay the foundation for the behavior preserving transformations, we need to define the basic design 
models for the original (unscheduled) behavior and the behavior after scheduling. 

2.1 Control/Data Flow Graph (CDFG) 

A behavioral description in a hardware description language (HDL) is typically compiled into a variant of 
a Control-Data Flow Graph (CDFG) (OrGa86] (CaRo89] (CaTa89] [RuGa90] (DeJo91] . The CDFG is a 
representation that encapsulates information about the flow of control through a design description as well 
the flow of data for individual assignments in the description. It is derived from the flow graph concept 
popular in software compilers (AhSU86]. We define a CDFG as a directed graph, where: 
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CDFG = (C, E, t, D, I, 0, o) 

C: a set of control flow nodes. 
E: a set of directed edges that connect the control flow nodes. 
t: a transition function which maintains sequencing of the control flow nodes. 
D: sets of data flow graphs. 
I: a set of design inputs. 
0: a set of design outputs. 
o: an output function for the design. 

These sets and functions are further defined below. 

2.1.1 Control Flow Graph 

We begin by defining the Control Flow Graph. 
For the following let: 

C; be a node in the control flow graph. 
D(C;) be the set of data flow graphs associated with node Ci. 
indegree( C;) be the number of edges connected to Ci that are directed toward C;. 
out degree( Ci) be the number of edges connected to Ci that are directed away from C;. 
successor(C 1 , C 2) test that C 2 is a successor of C 1 , i.e., whether there exists a set of edges which form 

a path from C 1 to C2. 
succ( C;) be the set of control flow nodes that are immediate successors of Ci. 

A path from a node, C 1 , to a successor node, C 2 , is a set of edges and nodes that leads to C 2 such that 
each edge is traversed once. Transitions and the output generated by a control flow node is determined by 
the current inputs and the data flow graphs associated with that CF node: 

( t : C x D x I,_. E) 
(o:CxDxlt-tO) 

A control flow node, C;, can be one of four types: 

YC; IC; E c, C; E { 

Cblock } 
Cte•t 

Cjoin 

Ctoop 

Block : corresponds to a "basic block" of code. The set of actions in the block are performed sequentially 
without interruption of the flow of control, i.e., D(Ci) is an ordered list. For this type of node, 
in degree( C;) = 1 and out degree( C;) = l. Transitioning to the next node occurs after execution of all 
actions for the node. 

VC; IC; E cblock,D(C;) f:. 0, 
t(C;) ,_. E; 
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Test : these perform conditional branching. The transition function for these nodes depends upon the 
conditional expression associated with each node. Each edge from a Test node will have a value 
associated with it. The edge with the value equal to the result of the condition expression for the Test 
node indicates the next transition. For this type of node, in degree( C;) = 1 and out degree( C;) >= 2. 

VC; I C; E C 1-.1 , D(Ci) is the condition expression, 
t(C;, D(C;)) ,........ E; 

Join : these complement the Test nodes. No actions or conditional expressions are associated with these 
nodes. For this type of node, indegree(C;) >= 2 and outdegree(C;) = 1. 

VC; IC; E Cjoin 1 t(C;) ,__. E; 

Loop : this is a special case of a conditional branching node to indicate the entry /exit point of a cycle in 
the control flow graph. It is a combination Test/Join node. The transition function for these nodes 
depends upon the conditional expression associated with each node. For this type of node, indegree(C;) 
= 2 and outdegree(Ci) = 2. One of the edges to the node is for initial entry into the loop, while the 
other edge to the node is for reiteration of the loop. One of the edges from the node is for exiting the 
loop and the other edge from the node transitions to the nodes within the loop. 

VC; I C; E C1oop, D( C;) is the condition for the loop. 
t(C;, D(C;)) ,........ E; 

Exceptions to the above are the designated start node and an optional stop node. Both of these nodes 
may be of any of the above types. The start node is the first node in the control flow graph according to the 
order of evaluation. On beginning the evaluation of the control flow graph, the starting transition goes to 
this node. For a start node, C, 1art, indegree(Cotart) may be zero. A stop node is a node with no outgoing 
edges, i.e., outdegree(C,top) = 0. 

In addition, CDFGs possess an important property of well-structuredness, that make various kinds of 
global data analyses possible. For every Test node there is a corresponding successor Join node. 

Test-Join pairs must be properly nested. That is, let C 1 and C2 be test nodes with corresponding join nodes 
J1 and J2, respectively. If C2 is on a path from C 1 to J1, J 2 must also be on the same path. 

Let C;, Cj E Cte•ti Cx, Cy E Cjoini where (C;, Cx) and (Cj, Cy) are test/join pairs. 
If successor(C;, Cj), then successor(Cy, Cx) 

For loops, any node within a cycle, except the Loop node, will have no edges that transition to a node outside 
of the cycle. 

Let Ccyc/e be the set of CF nodes within a cycle in a CDFG. 
'r/C; I C; E Ccyc/e, C; </. C1oop 
VCj J Cj E succ(C;), Cj E Ccyc/e· 
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A loop node is the only entry and exit point for a cycle. If a Test node, Ci, is in a cycle, its corresponding 
Join node, Ci, must be also be in that cycle. Conversely, if C; is a successor to a node C1 and Ci is not in 
a cycle, then Cj, the Join node for C;, must be a successor of Ci and C1 and not be in a cycls. 

To simulate the behavior described by a CDFG, control flow through the graph proceeds sequentially, 
i.e., only one node is under evaluation at any time. Upon encountering a node during evaluation, if there 
are any actions or conditions associated with the node, they are evaluated. After evaluation of actions or 
conditions, the transition function is called to indicate which edge from the current node should be followed 
to arrive at the next node for evaluation. The structure of the control flow graph determines the evaluation 
order of the nodes. The control flow graph structure along with the actions and conditions of nodes are the 
representation of a desired sequential behavior. 

2.1.2 Data Flow Graph 

Each control flow node Ci may have an associated data flow graph. A single data flow graph is a directed 
acyclic graph defined as: 

DFG = (D, E) 
D: a set of data flow nodes. 
E: a set of directed edges that connect the nodes. 

For the following let: 
D; be a node in the data flow graph. 
indegree(D;) be the number of edges connected to D; that are directed toward D;. 
outdegree(D;) be the number of edges connected to D; that are directed away from D;. 

There are two basic types of data flow nodes: 

wD I D D D { D data_acceu } v i ;E , ;E D 
operation 

Data Access : we associate the name of a variable or data carrier with this type of node. The value of 
this variable or data carrier is accessed by this node. If an edge is directed towards this type of node, 
the variable is being assigned a value, i.e., "write" to the node. If an edge is directed from this type 
of node, the value of the variable is made available to the node directed towards, i.e., "read" from the 
node. 

'VD· ID· ED D· E { Dread I indegree(D;) = 0, outdegree(D;) > O } 
I • data_acce .. , I Dwrite I indegree(D;) = 1, outdegree(D;) = 0 

Operation : we associate an operation with this type of node, e.g., arithmetic, logical and relational. The 
operation node receives data values from edges directed towards it, and passes on resulting data values 
via edges directed away from it. This type of node takes the values given to it, performs its associated 
operation on the values, and outputs the resulting value. The number of input values required, i.e., 
edges directed towards the node, depends upon the operation associated with the node. 
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A data flow graph can be used to represent an assignment statement found in a typical programming 
languages, e.g., a +--- b + 1. During the evaluation of a data flow graph, data can be considered to "flow" 
from the read nodes of the graph, through the operation nodes, and into the write nodes. 

2.2 Structured Finite State Machine (SFSM) 

After scheduling, we can represent a design by a finite state machine (FSM) with associated datapath 
operations: in each state of the FSM, certain data path operations are performed. FSMs are practical for 
logic and register-transfer synthesis because methods to implement them are well established. However, the 
original behavior comes from an imperative, well-structured HDL, which is compiled into a well-structured 
CDFG. We use a form of finite state machine, which we call a Structured Finite State Machine (SFSM), to 
bridge differences between the previously described CDFG model and traditional finite state machine models. 
The SFSM model is used to maintain the control flow structure of a scheduled CDFG within a finite state 
machine model. We show rules for constructing an SFSM from a scheduled CDFG and vice-versa, thereby 
establishing their equivalence. This gives us the advantage of performing data analyses on well-structured 
CDFGs, while using the SFSM for subsequent high-level synthesis tasks such as component allocation and 
bindings. 

SFSMs are a subset of FSMs with datapath (FSMD) [GDWL92). Briefly, FSMDs are finite state machines 
defined on abstract variables and their semantics to describe conditions for transitions, and assignments 
for transformation of inputs to outputs. FSMDs use data abstraction to avoid explicitly describing the 
binary /boolean encoding of data. An FSMD is thus equivalent to a scheduled behavior derived from an 
imperative HDL, where operations on abstract variables are performed in each state. An FSMD consists of: 

FSMD = (S, I U STAT, 0 U A, f, h), where 

S: a set of states. 
I: a set of inputs. 
STAT: a set of status signals each consisting of a logical relational expression. 
0: a set of outputs. 
A: a set of assignments. 
f transition function. (!: S x I U STAT 1--+ S) 
h: output function. ( h : S x I U STAT 1--+ 0 U A) 

An SFSM is a well-structured form of FSi\ID. In an SFSM, there can be four type of states: Action, 
Condition, Join, and Loop Test. 

VS; I S; E S, S; E SS~o~dition 
{ 

Saction } 

)Oln 

Stoopte•t 

The semantics and usage of SFSM constructs can be best described in terms of the CDFG. An SFSM can 
be constructed from a scheduled CDFG in the following manner: 

For each Test, Join or Loop node in the control flow graph of the CDFG, construct a corresponding state 
in the SFSM. If there is a condition expression associated with a Test or Loop node, construct an identical 
condition expression for the corresponding state. 
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For each Block node in the control flow graph of the CDFG, a corresponding series of states will be 
constructed in the SFSM. A Block node in a CDFG has of a sequence of actions associated with it. Data 
dependencies between the actions may require that some actions be evaluated before others. This means 
that the actions may have to be performed in a series of steps. Actions with no data dependencies between 
them may be performed in the same step. 

Assigning actions to control steps so as to best meet the clock cycle time is called "scheduling". The 
number of states needed in the SFSM to model a Block node from the CDFG is equal to the number steps 
required for the actions in the Block node. That is, for each state scheduled to a CDFG Block node, there 
is a corresponding state in the SFSM. For each state in a scheduled Block node, the actions for that state 
are copied to the corresponding SFSM state. Since only actions with no data dependencies between them 
may be scheduled to the same state, the actions in a state of the SFSM can be considered as occurring 
concurrently. 

For each edge in the CDFG, a corresponding transition is constructed in the SFSM. For CDFG nodes 
Ci and Cj with corresponding SFSM states S; and Sj, respectively, if there is an edge from C; to Ci , a 

·transition from Si to Sj is constructed. If a condition value is associated with the CDFG edge, an identical 
value is associated with the SFSM transition. Transitions to and from Block nodes are special cases since 
they map to a series of Action states in the SFSM. An edge to a Block node in a CDFG is modeled as a 
transition to the first state of a series of Action states. Likewise, an edge from a Block node is modeled as 
a transition from the last state of a series of Action states. 

Let 
STAT(S;) be the set of condition expressions associated with state Si. 
A(Si) be the set of assignments associated with state S;. 

Given a CDFG, X 0 a1 9 = (C, E, t, D, I, 0, o), 
construct an SFSM, Xsfsm = (S, I U STAT, 0 U A, f, h), 
such that Xcdfg ~ Xsfsm 1 i.e., 

't/Ci IC; EC, C; E Ctest, JS; IS; ES, Si E Scondition,STAT(S;) ~ D(Ci) 

't/C; JC; EC, C; E Cjoin 1 ]Si IS; ES, S; E Sjoin 

't/C; I Ci EC, Ci E cblock I 3{Si, ... , Sj} ~ s I {S;, ... I Sj} ~ Saction, {A(S;) u ... UA(Sj)} ~ D(C;) 
where the number of states S;, · · ·, Sj is equal to the number of steps (control) needed to evaluate D(C;), 
and S;, · · ·, Sj is an ordered sequence of states. 

VE; IE; EE, Ei is directed from C; to Cj, /(S;,IU STAT(S;)) ........ Si 

Exceptions: 

• transitions to and from block nodes 
. 't/Cx I Cx E cblock I Cx ~ {Sx, ... , Sy}, succ(Sx) = Sx+l1 ... , succ(Sy_i) =Sy 
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if 3E; IE; EE that is directed from node C; to node C,,, then J(S;,IU STAT(S;)) 1--+ S,, IC;~ S; 

if 3E; IE; EE that is directed from node C,, to node Cj, then J(Sy,IU STAT(Sy)) I--+ Sj I cj ~ Sj 

• stop state 
if C; is a stop node with a corresponding state in an SFSM, S; I C; ~ S;, 
then J(S;, IU STAT(Si)) 1--+ S; 

From this construction, we see that the well-structuredness property for control flow nodes of a CDFG 
also apply to the states of an SFSM: Condition-Join pairs must be properly nested, cycles (loops) in an 
SFSM must be closed, and there is a "start" state and optional "stop" states. In a similar fashion, a reverse 
construction can be used to derive a CDFG design from an SFSM description. This proves the equivalence 
of the CDFG and SFSM models. 

Note that, while a scheduled CDFG is modeled by an SFSM, states in the SFSM do not correspond 
directly to the scheduled states of the CDFG. That is, a state in the SFSM is not semantically the same as 
a control step in the CDFG since each control flow node in the CDFG is modeled by one or more states in 
the SFSM. While scheduling a CDFG, several control flow nodes can be assigned to the same control step 
(state). 

We now show that the CDFG model is contained within the FSMD model. Since we proved the equiv­
alence of the CDFG and SFSM models, we only need to describe the construction rules for converting an 
arbitrary SFSM to an FSMD, such that the states of the FSMD correspond directly to the states of the 
scheduled CDFG. The steps used in the construction of an FSMD from an SFSM are, in principle, similar to 
rules used in scheduling a CDFG. The construction of an FSMD from an SFSM consists of two basic steps: 

1. Merge Condition/Loop Test and Action States: if a Condition (or Loop Test) state has immediate 
successors that are Action states, merge the action states with the Condition/Loop Test state. This 
is done by moving the actions to the Condition/Loop Test state and associating the condition for the 
transition to the Action state with the moved actions. 

Let Ti be a Condition or Loop Test state. 

for each Si in succ(Ti) 
if Si is an Action state then 

{ 

move actions in Si to Ti 
associate stat(Ti) with actions where 
f(Ti, I U stat(Ti)) -> Si 

} 

2. Eliminate Join States: Join states are artifacts of the original CDFG description which serve no purpose 
as far as behavior is concerned. They can be eliminated by "skipping" them in the FSMD model: 

Let Ji be a Join state. 

for each Si in pred(Ji) 
change edge to Ji to edge to succ(Ji) 

remove Ji and edges connected to it. 
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Consequently, given a SFSM model, a user can derive both a CDFG and an FSMD model that are closely 
related and behaviorally identical. Furthermore, we have proved the equivalence of scheduled CDFG and 
SFSM models, and showed that the scheduled CDFG (and hence the SFSM) model is contained within the 
FSMD design model. 

Several advantages arise from using the CDFG and SFSM models. First, we formally defined the concepts 
of CDFG and SFSM and showed their equivalence. Hence, any changes made to the SFSM can be correlated 
to the behavioral CDFG to test for violations. Second, since a scheduled CDFG and SFSM are behaviorally 
equivalent, we can translate between the two representations for tasks appropriate to each design model. 
Third, by using a hybrid of flow graphs and FSMs, we are able to use both flow graph and FSM analysis. 

3 Related Work 

Similar application of compiler optimizations to tasks in high-level synthesis has been done before [BhLe90] 
[Camp90] [Walk82], but differ from this work in the design models and approach. Interactive use of sim­
ilar transformations for sequential circuit behavior, retiming, has been done by [PoRa91] and [MSBS91]. 
However, retiming differs fundamentally from rescheduling in the underlying data being transformed. 
Retiming tools manipulate register-transfer (RT) level descriptions of circuits. Typically for retiming, the 
connectivity of registers to operational units is manipulated so that the functionality of the circuit is not al­
tered while other characteristics, such as resource utilization, minimum cycle time, etc., are explored. While 
these tools allow changing the usage and number of registers in a circuit, they will not change the usage 
or number of operational units. Rescheduling performs transformations on the design prior to allocation, 
binding, and connecting of functional units. It allows manipulation of abstract operations in a behavioral 
description of a circuit. Consequently, rescheduling influences the usage and number of RT units (registers 
and operational) for a circuit synthesized from a transformed behavioral description. 

[LeWo91] and [WaTh91] have explored interactive transformation of behavioral descriptions similar to this 
work. However, the system [LeWo91] developed is based entirely on FSMs. A given behavioral description is 
a nondeterministic FSM(BFSM) which is translated to a deterministic FSM(RTFSM). This RTFSM could 
in turn be transformed into other RTFSMs representing alternate schedules for the original behavior. An 
admitted shortcoming of this approach is that describing behaviors as state transition graphs is inconvenient. 
Translation of behaviors to BFSM from other formats, such as HD Ls, introduces the problem of verification 
of equivalence of between the BFSM and HDL descriptions, which at this time has not been solved. We 
avoid this problem by using established compiler techniques to accurately map a VHDL description to a 
CDFG, and formulating an SFSM that is structurally equivalent and can be easily translated to and from a 
scheduled CDFG. 

[WaTh91] have developed a system to manipulate value trace (VT) [McFa78] representations derived 
from ISPS. Their system· performs code motion and condition merging transformations similar to the trans­
formations described in this paper. However, we also propose a subexpression factoring transformation, 
which can greatly impact the scheduling and component allocation of a design. Also, the VT representation 
model differs from the CDFG. In VT, control constructs in the original ISPS description are translated into 
data flow equivalents, e.g. conditional execution of an action (if-then). Therefore, there is no distinction of 
whether this is a control branch or a data selection. For our system, we derive the CDFG of a design from a 
subset of VHDL, where conditional branching and data selection can each be described in a distinct manner. 
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4 Primitive Operations 

A. The behavior-preserving transformations used for our rescheduling scheme can be accomplished using a 
small set of primitive operations. By using these primitive operations in proper sequence, the transforma­
tions can manipulate the behavioral description while ensuring that the sequential behavior of the design is 
preserved. An essential primitive operation that will need to be performed by most of the transformations 
is a check of data dependencies. Given an action and a specified state, this primitive operation will indicate 
if placing the action within that state would violate the constraints of the data-dependency graph. Every 
action in a state must be independent of the other actions, so no data-dependencies can exist between any 
actions in a state. Consequently, the actions in a state can be performed concurrently. In the example 
below, if the definition of x in action the action x <---- y + 1 reaches the first action in state S1 (b <---- x), 
the data-dependency check would return that a conflict exists. In a transformation, this would abort the 
attempted change and the user would be notified that this transformation is not allowed. 

dcheck_action( x <---- y + 1, Si) 

X<-y+l 

B. A primitive operation that changes the description is the copying of an action to a state. This 
primitive operation is given an action and a specified state to copy the action to. It returns the specified 
state with the action inserted into it. In the transformations, this copy operation is only attempted when the 
previously described dependency check indicates no conflicts exist between the action and the state. Thus, 
the data-dependency graph, defined by the sequential behavior of the design, would not be violated and the 
functionality of the description is not altered. 

copy_action(x <---- y + 1, Si) 

b <---- x 
a<---- 3 

x<-y+l 

C. Another primitive operation that alters the behavioral description is the deletion of an action from 
a state. This operation is given an action and a specified state to remove the action from. It returns the 
specified state with the action removed from it (see figure below). This operation should only be performed 
in conjunction with the copy operation to effect the movement of an action from one state to another. When 
used in this manner, this operation only removes a redundant action and no change is made to the sequential 
behavior of the design. 

So= 

delete_action(x <---- y + 1, So) 

Z<-y-2 
X<-y+l 

==> So = I z <---- y - 2 I 
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D. In order to effect the moving of an action or subexpression, the detection of an action or subexpression is 
necessary. Given a state and an action/subexpression, this operation determines if the action/subexpression 
exists within the state. If so, it returns "handle(s)" to the occurrences of the action/subexpression. Ac­
tion/subexpression detection is a form of pattern matching on a tree which was done in [Keut87]. In the 
model we use, expressions are represented as binary trees where internal nodes are operators and leaves are 
operands. In the case when the detection operation is searching for an action, the search involves matching 
both the variable that will get the resulting value and the expression tree for the right hand side expression. 
Matching of expression trees can be greatly simplified by applying a few rules to the construction of the 
trees, such as all trees will be right-derivations of an expression and operands will be ordered lexically. In 
the case of detecting a subexpression, a possible subtree must be matched. A brute force approach would 
be to search all permutations of an expression tree. However, the number of possible expression trees for 
an expression with N operators is on the order of O(N!). An alternative approach is to limit the search to 
the two or three levels of the expression trees closest to the root, i.e. permutation of the tree is done only 
on the first few applicable operations in the order of evaluation. This would mean, in the worst case, the 
search would go through only several dozen trees. While this search will find a common subexpression in an 
expression with 3 operators or less, it may not find subexpressions for expressions with 4 or more operators. 
This is a reasonable and practical approach, since we are dealing with expressions within a scheduled state, 
and scheduled states in a behavioral description typically do not have more than 3 chained operators. In 
practice, chaining more than 3 operators within a state leads to excessively long clock cycles and possibly 
poor resource utilization, as observed by Marwedel [Marw86]. 

E. After the occurrences of a subexpression have been found, the subexpression must be "factored" out 
of the "parent" actions before movement is possible. This factoring operation is illustrated below, where 
b + x is the subexpression being factored out. This primitive operation is given an expression, an action, 
and an expression tree for the action. It returns two actions, one for the factored subexpression and one 
for the optimized parent action. In the transformations, this operation is used in conjunction with the copy 
and delete operations to move the new action containing the specified subexpression to a previous state, 
thus avoiding data-dependency conflicts. This operation updates the data-dependency graph, but from an 
external I/O view of the design, the sequential behavior is not altered. 

factor(_b + x, a+--- b + x - c) 

b 
tmp +- b + x 

a+- +x-c===> 
a+- tmp- c 

F. The number of states in the design can be changed by the insertion or deletion of empty states. Only 
action states can be added or deleted by this primitive operation. For the insertion operation, the location 
of where to insert the new state must be specified, i.e. between what states should the new state be inserted. 
For deletion, the specified state must have no actions and no condition tests. These operations will produce 
a design with an empty state added or removed. Since only empty states are inserted or deleted, these 
operations add no actions to the design nor change the order of actions. Consequently, these operations do 
not alter the sequential behavior of the design. 
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insert_state(S 1, S2) remove_state(S1, S2) 

~ 
~ ~ 

~ ! ! 
! ===> ~ ~ ===> ! 
~ ! ! ~ 

~ ~ 
G. A single primitive operation will perform the merging of conditions. A requirement for merging 

conditions is that the conditions must be nested with no intervening states. There must be no states between 
the branching states and the joining state (see Figure 1). The operation is given two adjacent condition 
states. It merges the conditions into a single condition state and, likewise, merge the join states. Conditions 
·are limited to testing the value or particular bits of a variable. Since the test variables are set prior to testing 
and the tests have no side effects on any variables, merging conditions amounts to scheduling the tests of 
both conditions to a single state instead of two adjacent states. The variable values under which the various 
condition branches are performed are not changed. Therefore, the sequential behavior of a description is not 
altered by this operation. 
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Figure 1: merge(C1, C2) 

12 



5 Behavior-Preserving Rescheduling Transformations 

Using the primitive operations from the previous section, we now describe the behavior-preserving reschedul­
ing transformations. We use the following notation and functions. 

(for the following i is an optional integer) 
Ai: an action, such as a +- b + 1 
SEi: a subexpression, such as b + x 
Si: a state 
ASi: an action state 
Ci: a condition state 
Ji: a join state 

Primitive operations 
dcheck....action(A, S), dcheck...subex(SE, S) 
copy....action(A, AS) 
rernove....action(A, AS) 
detect....action(A, AS), detect...subex(SE, AS) 
factor...subex(SE, A) 
insert...state(S, S) 
delete...state(AS) 
rnerge_conds(C, C) 

Functions 
pred ( S): the set of states that are immediate predecessors of state S 
succ(S): the set of states that are immediate successors of state S 

Knowledge of the data-dependencies between actions in the description is crucial to preserving the func­
tionality of the design. For an individual data carrier, such as a variable, the functionality of the data carrier 
is preserved as long as the order in which data is assigned and used is not altered. The concept of definition­
use chaining (du-chaining) [AhSU86] is used to maintain this ordering. In the example, x +- a+ b, the 
variable x is "defined" by the action and variables a and b are "used." In du-chaining, links are maintained 
between each use of a variable and the definitions that may apply to it. The test variables in condition states 
are considered as "uses" of those variables. A data-dependency conflict occurs in the following cases: 

1. a "use" and a "definition" that applies to it are in the same state. 

2. more than one definition of a variable in a state are evaluated under the same condition. 

3. a use of a variable is moved beyond the scope of an applicable definition, e.g. into or before the state 
of a definition that applies to it, or into a state after a definition that does not apply to it. 

4. a definition of a variable is moved into the scope of another definition, e.g. into a state before a use 
that the definition does not apply to, or into or after a state of use that the definition applies to. 

13 



The simplest transformation to perform on the design is the addition or deletion of an empty state. 
These transformations are the same as the primitive operations described in the previous section. The user 
specifies where a new state should be inserted, or which empty state to remove. Addition of an empty state 
will allow greater flexibility in re-ordering the existing actions. Though there is an increase in the number of 
states in the design, the re-ordering may make it possible to have a shorter clock cycle or a fewer number of 
functional units. The deletion of an empty state simply reduces the number of states in the design in hopes 
of reducing the number of clock cycles for the design, and consequently, improve its performance. 

insert_state(S1, S2) 
{ 

if S1 is in pred(S2) then { 
Prev_State = S1 
Next_State = S2 

} 

else 
if S2 is in pred(S1) then { 

Prev State = S2 
Next_State = S1 

} 

else abort transformation, specified states are not adjacent 

create new state S' 
make S' a next state for Prev_State 
make Next_State the next state for S' 

} 

delete_state(S1) 
{ 

} 

if S1 has any actions or a condition then 
abort transformation, state not empty 

/* S1 should be an empty action state */ 

find pred(S1) 
find succ(S1) 
make succ(S1) the next state for pred(S1) 
remove S1 

Most of the other rescheduling transformations deal with the various cases of action movement. These 
transformations allow the user to re-order actions to change the states they are performed in. In these 
transformations the user specifies an action (or subexpression) in a particular state, and the destination 
state for the action (or subexpression). 

The simplest form of action movement is moving an action/subexpression across other action states, i.e. 
movement does not go through a condition or join state. This is analogous to rearranging "straight-line 
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code" in the behavioral description. This transformation is permitted if, for any state moved through or 
into, there are no data-dependency conflict between the action/subexpression and a state. A subexpression 
may only be moved "up" to a previous state. The steps involved in this transformation are outlined below: 

1. check for data-dependency conflicts in each state along the path of movement 

2. if moving a subexpression "up", for each state along the path of movement, including the source state 
but excluding the destination state: 

a. detect occurrences of the subexpression in the state 

b. if there is an occurrence, factor out the subexpression The new action containing the subexpression 
is the action being moved. 

3. copy the action to the destination state. 

4. if not moving a subexpression delete the action from the source state. 

move_action_straight(AS1, AS2, A1) 
{ /* AS1 is the source state, AS2 is the destination state •/ 

for each state Si from AS1 to AS2 { 

} 

} 

if Si is not an action state then 
abort transformation 

else 
if dcheck_action(A1, Si) returns a conflict then 

abort transformation 

copy_action(A1, AS2) 
remove_action(A1, AS1) 

move_subex_straight(AS1, AS2, SE1) 
{ /* AS1 is the source state, AS2 is the destination state •/ 

if AS2 is not a predecessor of AS1 then 
abort transformation, subexpressions can only be moved up 

for each state Si from AS1 to AS2 { 
if Si is not an action state then 

abort transformation 
else 

if dcheck_subex(SE1, Si) returns a conflict then 
abort transformation 

} 
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} 

for each state ASi from AS1 to AS2 
for each Ai in detect_subex(SE1, ASi) /*occurrences of SE1 •/ 

factor_subex(SE1, Ai) 

create a new action A2 for SE1 
copy_action(A2, AS2) 

When this transformation is combined with the addition and deletion of empty states, the combination 
performs the equivalent of state merging and splitting. 

How an action is moved across a condition state depends on the direction of movement. For these 
transformations action states must immediately precede and succeed the condition state. When an action is 
moved "down" across a condition state, i.e. an action is moved across a successor state which is a condition 
state, the steps to accomplish this transformation are similar to the ones for simple straight-line movement. 
This transformation moves an action from the action state immediately preceding a condition state to the 
action states immediately succeeding that condition. Since it would not make sense, subexpressions cannot 
be moved in this way, i.e. subexpression cannot be propagated downwards. The algorithm is given below. 

move_action_xcond_down(AS1, AS2, A1) 
{ /* AS1 is the source state, AS2 is one of the destination states •/ 

if succ(S1) and pred(S2) are not the same condition state, C1, then 
abort transformation 

} 

if dcheck_action(A1, C1) indicates a conflict then 
abort transformation 

for each state ASi in succ(C1) { 

} 

if dcheck_action(A1, ASi) indicates a conflict then 
abort transformation 

for each state ASi in succ(C1) 
copy_action(A1, ASi) 

remove_action(A1, AS1) 

Movement of an action or subexpression "up" across a condition state has different steps than downward 
movement. This transformation moves an action from the action states immediately succeeding a condition 
state to the action state preceding the condition. As implied by the previous statement, the action being 
moved must exist in every action state immediately succeeding the condition. However, this is not the case 
when moving a subexpression, which need only exist in any of the action states immediately succeeding the 
condition. This transformation is similar to code hoisting in compiler optimization. 
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move_action_xcond_up(AS1, AS2, Al) 
{ /• AS1 is the source state, AS2 is the destination state */ 

if succ(AS2) and pred(AS1) are not the same condition state, Cl, then 
abort transformation 

for each state ASi in succ(C1) 
if detect_action(A1, ASi) fail to find Ai then 

abort transformation 

if dcheck_action(A1, Cl) or 
dcheck_action(Al, AS2) indicates a conflict then 

abort transformation 

copy_action(Al, AS1) 
for each state ASi in succ(Cl) 

remove_action(A1, ASi) 
} 

move_subex_xcond_up(AS1, AS2, SE1) 
{ /* AS1 is the source state, AS2 is the destination state •/ 

} 

if succ(AS2) and pred(AS1) are not the same condition state, Cl, then 
abort transformation 

for each state ASi in succ(C1) { 

} 

for each Ai in detect_subex(SE1, ASi) 
factor_subex(SE1, Ai) 

if SE1 was not found in any state the 
abort transformation, no subexpression to move 

if dcheck_subex(SE1, Cl) or 
dcheck_action(SE1, S2) indicates a conflict then 

abort transformation 

create new action A2 for SE1 
copy_action(A2, AS1) 

The transformations for action movement across join states are complementary to the ones for conditions. 
For these transformations action states must immediately precede and succeed the join state. Movement 
of an action or subexpression up across a join state is similar to movement down across a condition. This 
transformation moves an action or subexpression from the action state immediately succeeding the join state 
to the action states immediately preceding the join. 
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move_action_xjoin_up(AS1, AS2, Ai) 
{ /* AS1 is the source state, AS2 is one of the destination states */ 

if pred(AS1) and succ(AS2) are not the same join state, Ji, then 
abort transformation 

for each ASi in pred(Ji) 
if dcheck_action(Ai, ASi) indicates a conflict 

abort transformation 

for each ASi in pred(Ji) 
copy_action(A1, ASi) 

remove_action(Ai, ASi) 
} 

move_subex_xjoin_up(AS1, AS2, SE1) 
{ /* ASi is the source state, AS2 is one of the destination states */ 

if pred(ASi) and succ(AS2) are not the same join state, Ji, then 
abort transformation 

} 

for each ASi in pred(Ji) 
if ASi is not an action state or 

dcheck_action(A1, ASi) indicates a conflict 
abort transformation 

if detect_subex(SEi, AS1) fails to find occurrences of SEi then 
abort transformation 

else 
for each Ai in detect_subex(SE1, AS1) 

factor_subex(SEi, Ai) 

create a new action A2 for SEi 
for each ASi in pred(J1) 

copy_action(A2, ASi) 

Movement of an action down across a join state is similar to movement up across a condition. This 
transformation moves an action from the action states immediately preceding a join state to the action state 
succeeding the join. 

move_action_xjoin_down(ASi, AS2, Ai) 
{ /* ASi is the source state, AS2 is the destination state */ 

if succ(AS1) and pred(AS2) are not the same join state, Ji, then 
abort transformation 

for each ASi in pred(Ji) 
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} 

if detect_action(A1, AS!) fails then 
abort transformation 

if dcheck_action(A1, AS2) indicates conflict then 
abort transformation 

copy_action(A1, AS2) 
for each ASi in pred(J1) 

remove_action(A1, ASi) 

When used in conjunction, these movement transformations should enable a user to move an action to any 
valid point in the description without altering the designs functionality. 

The last transformation we will describe deals with the merging of condition states. Merging conditions 
capitalizes on the inherent parallelism that is possible when one conditional branch immediately follows 
another conditional branch. In the semantics of the model we use, no arithmetic or relational operations 
need be performed to evaluate the condition. Condition are test for particular values of variables and will 
typically be implemented as sets of logic gates within the control unit. Merging conditions changes the 
control of the design such that the results of the two sets of condition tests are considered together in a 
single state rather than in two separate states. A precondition of the condition merge is that the condition 
states and their corresponding join states be nested with no intervening state. 

merge_conditions(C1, C2) 
{ /* C2 is assumed to be nested inside Ci */ 

} 

find join state, Ji, for C1 
find join state, J2, for C2 

if succ(C1) is not C2 or 
succ(J2) is not in J1 then 

abort transformation 

merge_conds(C1, C2) 

6 Status and Future Work 

The behavior-preserving transformations described in this paper have been implemented in C on Sun work­
stations, and are currently working in the BIF design environment [DuHG90] (HaGa91]. A graphical user 
interface, XBIF [DuCH91], allows the designer to interactively select and apply these transformations to 
a scheduled behavior represented as an BIF Operations-Based State Table (OBST). This is an attractive 
interface for applying these types of transformations, since the designer can view the scheduled behavior in 
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a form that preserves the original HDL flavor, yet provides a clear picture of the state sequencing and con­
ditions. An attempt to apply a transformation incorrectly is aborted, and the user is notified via a message 
on the screen that the original behavior may not be preserved. 

To complement the rescheduling transformations, we intend to enhance the XBIF environment to display 
design metrics similar to those described in (BrGa90) and (WRJF91). Inclusion of component allocation in­
formation will be necessary to derive design characteristics such as the number and type of functional units 
needed, utilization of registers and functional units, estimated area of design, estimated time length of states, 
etc. Such information will give the designer direct feedback on the impact of the rescheduling transforma­
tions on the implementation that may be synthesized from the specification Initially, component allocation 
information will be generated by automatic tools. But potentially, the environment can be enhanced to allow 
simultaneous manipulation of a design's scheduling and component allocation. 
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8 Summary 

In this paper, we first formally defined the original behavior from an imperative HDL as represented by a 
well-structured CDFG. We formally defined the SFSM, a well-structured, abstract FSM that is appropriate 
for capturing the behavior after scheduling in high-level synthesis. We proved the equivalence of the scheduled 
CDFG and the SFSM by describing construction rules to go between these design models. We explained 
the advantages of maintaining both design models. Furthermore, we showed that the SFSM (and hence 
the scheduled CDFG) is a subset of the general FSMD design model used in high-level synthesis. We then 
outlined primitive transformations and user-applicable behavior preserving transformations for interactive 
rescheduling in high-level synthesis. Since Automatic schedulers may use specific (and sometimes simplified) 
design models, there is a need to provide a manual rescheduling capability for users. This permits designers to 
incorporate additional knowledge, such as floorplanning and layout information, early in the design process. 
Our current work attempts to find good metrics to help designers apply these transformations effectively. 
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