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Abstract
Motivation: Protein–protein interaction (PPI) networks provide valuable insights into the function of biological systems. Aligning multiple PPI 
networks may expose relationships beyond those observable by pairwise comparisons. However, assessing the biological quality of multiple 
network alignments is a challenging problem.
Results: We propose two new measures to evaluate the quality of multiple network alignments using functional information from Gene 
Ontology (GO) terms. When aligning multiple real PPI networks across species, we observe that both measures are highly correlated with 
objective quality indicators, such as common orthologs. Additionally, our measures strongly correlate with an alignment’s ability to predict novel 
GO annotations, which is a unique advantage over existing GO-based measures.
Availability and implementation: The scripts and the links to the raw and alignment data can be accessed at https://github.com/kimiayazdani/ 
GO_Measures.git

1 Introduction
1.1 Motivation
Proteins perform their role in the biological system by physically 
interacting with each other in the cell. A protein–protein interac
tion (PPI) network highlights the functions of the proteins in the 
cell by representing the interactions between its proteins. Gene 
Ontology (GO) provides biological annotations for proteins 
across different species (Gene Ontology Consortium 2008). 
Aligning multiple PPI networks of multiple species can allow us 
to discover functions of human proteins by using the informa
tion of the aligned proteins in other networks.

The shape of a protein determines its surface and as a result, 
determines the set of other proteins that it can physically inter
act with. Two proteins with no sequence similarity can have a 
close similarity in these surfaces and have a similar function as 
well (Furuse et al. 1998, Schlicker et al. 2006). Additionally, 
two proteins with very close sequences can have a completely 
different shape structure and completely different functions 
(Kabsch and Sander 1984, Morrone et al. 2011). Moreover, 
sometimes a small change in the sequence can result in a 
completely different set of interaction partners and therefore a 
completely different functionality (Kimchi-Sarfaty et al. 2007; 
Zhao et al. 2014). Thus, while sequence is clearly correlated 
with protein function, the relation is neither direct nor immuta
ble. Since physical PPI interactions can be directly measured, 
these can provide a more direct path than sequence to inferring 
functions implied by network topology (Br€uckner et al. 2009). 
Therefore, PPI networks directly represent the interactions and 
they can be used to predict the functionality of proteins in a 
way that sequence similarity cannot (Wang et al. 2022a). 
Additionally, the PPI networks of different species are deeply 

connected to each other. For instance, 80% of human genes 
have a direct ortholog in mouse genes (Pennacchio 2003). As 
proteins are the products of genes, we can use network 
alignments to discover regions of similar PPI network topology 
between different species and transfer functional information 
between the protein with more available functional information 
to one that is less studied.

However, these networks are often noisy and incomplete 
(Kuchaiev et al. 2009), which can limit their utility (Wang et al. 
2022b). Multiple network alignment may help boost the signal- 
to-noise ratio by allowing the correlation between more than 
two networks (Wang et al. 2022a). Given that network align
ment is a hard problem (NP-complete) even in the absence of 
noise, the fact that they are significantly noisy makes the prob
lem even more difficult. Therefore, it is important to assess the 
quality of all solutions in a careful and biologically relevant 
way. There are many sources of information available that 
could be used to guide a network alignment, including graph- 
theoretic topology measuring common interactions between the 
networks, sequence similarity of aligned proteins, and func
tional similarity as described by GO terms or KEGG pathways. 
Most network alignments use one or both of the first two 
(Kalaev et al. 2008, Trung et al. 2020).

Clearly, any information used to guide an alignment can
not be used to judge its quality after-the-fact, as that would 
induce circular reasoning. Instead, we can evaluate the align
ment using measures independent of those used to guide its 
construction. It has been shown that common topology 
relates closely to common function (Pr�zulj et al. 2004, 
Milenkovi�c and Pr�zulj 2008, Davis et al. 2015, Wang et al. 
2022a). As a result, in biological network alignment, it is cru
cial to consider the functional information exposed by 

Received: 20 February 2024; Revised: 11 June 2024; Editorial Decision: 22 July 2024; Accepted: 30 July 2024 
© The Author(s) 2024. Published by Oxford University Press.  
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which 
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. 

Bioinformatics, 2024, 40(8), btae476 
https://doi.org/10.1093/bioinformatics/btae476 
Advance Access Publication Date: 31 July 2024 
Original Paper 

https://orcid.org/0009-0009-2922-9945
https://orcid.org/0000-0002-3310-6042
https://github.com/kimiayazdani/GO_Measures.git
https://github.com/kimiayazdani/GO_Measures.git


topologically driven network alignments. Functional infor
mation can be garnered from many sources, including post 
hoc sequence analysis, analysis of the fraction of common 
orthologs aligned, as well as direct functional information 
encoded in databases such as KEGG, CORUM, and the GO 
(Ashburner et al. 2000, Kanehisa and Goto 2000, Ruepp 
et al. 2008). Here, we focus on the latter.

1.2 Gene ontology
The Gene Ontology Consortium (2008) has a hierarchical 
structure and includes a large number of descriptive terms to 
describe BP, Cellular Components (CC), and Molecular 
Functions (MF) that occur in a cell. Some proteins are highly 
studied and are annotated by many GO terms while others 
are less studied and have few or no GO annotations. Near 
the top of the GO term hierarchy, the terms are very general 
and many proteins can be annotated by those terms. Lower 
in the hierarchy, the terms are more specific and annotate 
fewer proteins.

Like PPI networks, GO annotations are noisy and incom
plete—an issue we must keep in mind though we do not di
rectly address it in this article. However, even disregarding 
this noise, there are many possible ways to use GO annota
tions to measure the quality of a multiple network alignment. 
To our knowledge, all existing measures such as Semantic 
Similarity of Proteins work on an isolated set of proteins 
without regard to a wider context, such as how (Kazemi and 
Grossglauser 2020) evaluated each cluster of aligned proteins 
independently. There is evidence suggesting that the existing 
GO-based measures in pairwise network alignment do not 
have predictive value. In the context of multiple network 
alignment, existing methods measure the GO-based func
tional similarity within a cluster of aligned proteins (Hayes 
2024). In these measures, the final score of the measure is the 
mean of the score for across all clusters. However, an align
ment is more than the isolated sets of its aligned proteins. 
The alignment itself is built in a global way and the aligned 
sets are dependent on each other. In an alignment, each clus
ter of aligned proteins might have a shared GO term that is 
very specific and therefore would receive a high score based 
on its information content by protein semantic similarity. 
The same GO term might be aligned randomly in the rest of 
the alignment but since we are looking at each cluster of pro
teins in an isolated way, we would score the alignment high. 
On the other hand, assume we have a network that does not 
share GO terms with the other networks. The best possible 
alignment that we can create would still receive a low score 
from protein semantic similarity since the clusters cannot 
have high information content.

Additionally, there are two measures, GO correctness (GC) 
(Vijayan and Milenkovi�c 2018) and GO specificity (GS) 
(Gligorijevi�c et al. 2016), that only analyze whether each 
cluster of aligned proteins have at least one common GO 
term or not, and then score the alignment based on the frac
tion of those aligned proteins. The difference between the 
two measures is that GC first breaks down the cluster of 
aligned proteins to aligned protein pairs and then calculates 
the same equation on the resulting pairs. One problem with 
this approach is that it does not distinguish between sharing a 
very common GO term—which can happen merely by 
chance—versus sharing a highly specific GO term, which is 
significant. If we have a random alignment and a common 
GO term, it will be shared in many clusters and receive a very 

high score. As confirmed by the results of this article, this 
leads to early saturation of these measures. The only provided 
solution to this is to use an arbitrary cutoff to consider only 
the more specific GO terms in scoring. The problem with this 
approach is that the GO terms at the same depth do not nec
essarily have the same specificity. Sometimes, a GO term at a 
higher level might be even more specific (Resnik 1999). There 
is no clear criteria by which one can choose the arbitrary cut
off. These measures are also not global in the sense that they 
consider GO terms only within each cluster of aligned protein 
with no regard to its context across the whole alignment. In 
contrast, our measure uses the frequency of a GO term across 
the entire PPI network of one species as a direct measure of 
specificity, and weights it as such without any cutoffs.

For demonstrating the functional relevance of the meas
ures, we used both BioGRID networks and IID networks 
(Wang et al. 2022a). The BioGRID database (Chatr- 
Aryamontri et al. 2017) is an extensive resource for PPI net
works which is released monthly and thus constantly updated 
and therefore we have used it as a part of our validation. 
However, due to the skewed sample derived from the litera
ture for different species (Gillis et al. 2014), we have also 
used IID for another part of our validation. The IID networks 
comprise PPI networks for 11 mammalian species, where the 
networks with fewer documented interactions have been aug
mented with edges based on known common interactions be
tween the nodes in different species, such as interologs. Thus, 
even though they are partly synthetic, the IID networks are 
an ideal test-bed for multiple network alignment due to their 
having high topological similarity by construction—a con
struction with plausible biological backing.

Our measures provide a practical framework for evaluat
ing the quality of multiple network alignments, which has po
tential application in helping researchers to identify the most 
biologically relevant aligned regions. Our work addresses the 
above challenges by proposing two function-based quality 
measures for assessing the biological quality of multiple net
work alignment based on a single GO term. The information 
from multiple GO terms can then be combined in a second 
step using mean. Additionally, through extensive experiments 
on both synthetic and real biological networks, we demon
strate that Squared G score (SGS) and Exposed G Score 
(EGS) are highly correlated with the number of recovered 
orthologs, an objective evidence of alignment quality. We 
also demonstrate that our measures can work with different 
filters such as using thresholds on frequency or GO terms of 
specific category of GO terms such as exclusively including 
BP GO terms. Moreover, we show that our proposed meas
ures can improve the precision of cross-species GO term pre
diction, highlighting their functional relevance.

2 Materials and methods
2.1 Definitions
We define cluster as a group of proteins that are aligned to
gether across different networks. We look at multiple net
work alignment in a 1–1 context which means every node is 
aligned to exactly one cluster, and a cluster can contain at 
most one node from each network. While this is a slight sim
plification from biological reality (e.g. it neglects paralogs) 
two proteins from the same network that are nearly identi
cal—it is a decent approximation and a good starting point. 
Additionally, from each network, at most one node is 
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allowed in a cluster. We refer to a single GO term denoted by 
g and use the term g-annotated for the nodes that are anno
tated with GO term g and the term un-annotated for the 
nodes that are not annotated with g. Later, we combine the 
scores for all of the GO terms.

To provide a visual analogy of multiple network alignment, 
we schematically view an alignment as a set of “levels,” with 
each network occupying one level, with its proteins arranged on 
a grid with each gridpoint occupied by at most one protein 
from each network. A cluster of aligned proteins consists the set 
of proteins—at most one from each network—occupying the 
same gridpoint at different levels; we call such a cluster a 
“tower” of proteins. Given tower T, we use aT for the number 
of proteins in T that are annotated by g. For k undirected graphs 
Gi; i¼ 1; . . . ;k, let Gi have ni nodes, λi of which are annotated 
with g. We also use n0 to indicate the number of grids that we 
can match proteins to, which can be equal or greater than the 
size of the biggest network. Without loss of generality, we as
sume two conventions for sorting the networks: node-sorted, 
where the networks are sorted by number of nodes: 
n1≥n2≥ . . . ≥nk; and lambda-sorted, where λ1≥λ2≥ ; . . . ≥λk.

2.2 Equations
2.2.1 Preliminaries
Recall that, for now, we are working with a single GO term 
g. Thus, each protein in a cluster (tower) is either annotated 
by g, or not.

We introduce two measures below that are used after-the- 
fact, never to guide an alignment. Since the goal of network 
alignment is to cluster together proteins with similar func
tion, we consider an alignment that “concentrates” more 
g-annotations into fewer towers is better than spreading 
g-annotations around many towers. We propose two ways to 
measure this concentration: we can either reward towers that 
have more g-annotations than average (the SGS score below), 
or we can reward the entire alignment if all the g-annotations 
are concentrated into fewer towers [the Exposed G (EG) 
value below]. Thus, better alignments have a larger SGS 
score, but a smaller EG value. EG is subtracted from the max
imum EG value in the numerator, so the EGS is also higher if 
we have a better alignment.

We have normalized both of these measures in a way that 
they output exactly zero for the worst-case multiple network 
alignment between a certain set of networks, and exactly 1 
for the best-case.

2.2.2 Squared G score
We assume the networks are lambda-sorted for this section. 
This measure computes the sum of the squared number of 
g-annotated nodes in each tower. Another simpler approach 
that might come to mind is to just add the number of aligned 
g-annotated nodes without squaring them. However, the 
weakness of this approach is demonstrated in Fig. 1. Using 
this approach would give a score of 4 to both alignments 
whereas Alignment 2 is a better one. Using SGS would give a 
score of 22þ22 ¼ 8 to Alignment 1 and 42 ¼ 16 to 
Alignment 2. Therefore, SGS offers a better differentiation 
for the quality of alignments.

An alignment F is the set of k 1-to-1 mappings from the 
nodes of each network to the gridpoint. We define SGS for 
tower T as jaTj

2, the square of the number of annotated pro
teins. Then, the global score of F is 

SGðFÞ ¼
X

T

jaTj
2
: (1) 

To normalize the SGS score between 0 and 1, we use its 
minimum and maximum possible value, which is computed 
as follows: 

MinðSGÞ ¼
Xk

i¼1

λi (2) 

MaxðSGÞ ¼ k2λkþΣk− 1
i¼1 i2ðλi −λiþ 1Þ (3) 

SGS ¼
SG−MinðSGÞ

MaxðSGÞ−MinðSGÞ
(4) 

where k is the number of networks in the alignment. It is im
portant to note that by subtracting the minimum possible 
value for SG, we are giving no score to the towers that only 
have one g-annotated node. We can obtain a lower bound for 
a situation where all the GO terms remain unaligned by add
ing all the λi values for different networks. Conversely, we 
can calculate an upper bound for the maximum value for SG 
by maximizing the number of aligned g-annotated nodes in 
the towers. To do this, we first align all the GO terms in the 
network with the smallest lambda (λk) with λk g-annotated 
nodes from all the other k—1 networks. Then we match the 
remaining g-annotated nodes in the network with the second 
smallest λi with the same number of g-annotated nodes in the 
k—2 other networks. We continue this process until only 
λ1−λ2 nodes remain unaligned.

2.2.3 Exposed G score
Our second proposed measure is the EGS. Here, we want to 
reward alignments where all the g-annotations are concen
trated into a smaller number of towers. We imagine that 
g-annotations in a tower are aligned vertically, and the upper
most g-annotation in the tower is “exposed,” while the ones 
“below” it are not. Thus, a better alignment is one that has a 
smaller number of exposed GO terms. A lower EGS indicates 
that more g-annotated nodes are aligned together and fewer 
annotated nodes are “exposed,” resulting in a better align
ment. An example of using EG can be seen in Fig. 1, where 

Figure 1. The figures show two different alignments. The black circles 
represent the g-annotated nodes and the white circles represent 
unannotated nodes. Each row represents a network and each column 
represents a tower or a cluster of aligned nodes. Alignment 2 has 
concentrated all g-annotated nodes in the same tower which means it is a 
better alignment than Alignment 1
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exposed G would give a score of 2 to Alignment 1 and a score 
of 1 to Alignment 2. For this score too, the components are 
lambda-sorted. 

Exposed G ¼ jfTjaT ≥1gj (5) 

The calculation of EG involves the number of towers with at 
least one g-annotated node. The minimum value of EG is λ1 

where all of the g-annotated nodes are concentrated in λ1 tow
ers. An upper bound for the maximum value of EG is the sum 
of λi values for all the networks which is the same worst-case 
value as in SG. The EGS is then calculated using these 2 values. 

MinðExposed GÞ ¼ λ1 (6) 

MaxðExposed GÞ ¼ min n0;
Xk

i¼1

λi

0

@

1

A (7) 

Exposed G Score ¼
MaxðExposed GÞ � Exposed G

MaxðExposed GÞ � MinðExposed GÞ
(8) 

To incorporate EGS into the final alignment score, it is 
subtracted from the worst-case maximum value in the numer
ator. This transforms this measure from a cost measure into a 
score between 0 and 1. So after the normalization, a higher 
EGS indicates a better alignment.

To better understand EGS intuitively, consider a library 
where each book represents a protein and is categorized by spe
cific genres, analogous to GO terms, and these genres are orga
nized into different sections, representing towers. Here, we 
want to score the organization of the books in the library. If 
books of a particular genre are scattered across numerous sec
tions, finding a book becomes challenging. Conversely, if books 
of the same genre are concentrated in just a few sections, readers 
will know exactly where to go. With the same intuition, EGS 
rewards the alignment that concentrate each GO term into as 
few columns as possible and penalizes the reverse. To under
stand SGS, consider that in the same library analogy, when the 
reader is exploring a section known to contain books with their 
genre of interest, if there are only a few books of that genre, the 
reader must sift through many irrelevant options. Conversely, if 
the section is densely populated with books from the sought- 
after genre, the reader’s search becomes much more straightfor
ward. In the same way, SGS scores the alignment based on how 
densely each tower contains proteins with a specific GO term.

2.3 Experiments
Two experiments were used to compare objective evidences 
against the functionality of the measures to assess their quality.

2.3.1 Perfect self-alignment with controlled error rate
Our goal in this section was to produce controlled noise using 
self-alignment. For a species, we aligned each network with k 
instances of itself and started with a perfect self-alignment, 
meaning that every cluster has either all k copies of the same 
node, or is empty. Next, we swapped a specific fraction of 
random node pairs, choosing a network and a node randomly 
to reach the value of the predetermined error. Starting with a 
perfect self-alignment and permuting a fraction of the nodes, 
allowed us to know exactly what percentage of the nodes 
were mismatched at every step. Therefore, we were able to 

use this knowledge to evaluate our measures. We generated 
30 alignments for each combination of k from 3, 5, or 7, er
ror rates from 0 to 1, and species from human, mouse, rat, 
and fruit fly, resulting in a total of 3600 self-alignments. 
We used March 2023 BioGRID networks and the GO data
base for the same month and year for the first experiment 
(Chatr-Aryamontri et al. 2017). A summary of the BioGRID 
networks used in this article is demonstrated in the Table 1.

2.3.2 Using SANA multiple network alignment on 
IID networks
In the next experiment, SANA network aligner was used to pro
duce multiple network alignments (Rong et al. 2022). SANA is 
an iterative aligner driven to maximize common topology. We 
expected the quality of the alignments to increase with the num
ber of iterations. We wanted to see how the measures assess the 
quality of alignments in different SANA iterations. IID mamma
lian networks were used for this experiment (Kotlyar et al. 
2019). BioGRID networks are highly uneven in network cover
age and so we cannot expect good alignments to come from to
pology alone (Wang et al. 2022b). Therefore, we specifically 
used IID mammalian networks because, although partly syn
thetic, they have a substantial (though not perfect) topological 
similarity by construction. To ensure meaningful results from 
the iterations, we selected all the GO term annotated species 
within the IID mammalian networks, which included human, 
mouse, rat, dog, and cow. Within these networks, we created 
30 topology-driven alignments for each combination of k¼ 3, 
and k¼ 5 species. The summary of the information of the uti
lized IID mammalian networks is shown in the Table 2.

The measures were also validated in comparison to the 
number of recovered orthologs within species. An ortholog 
pair is a pair of proteins p1 and p2, one from two different 
species s1 and s2, respectively, which have a common ances
tor protein p in the species s which is the most recent com
mon ancestor of s1 and s2. Thus, the proteins are expected to 
be highly similar in both structure and function (Fitch 1970). 
The definition can be extended to multiple proteins from 
multiple species all of whom have a common ancestor. Thus, 
from a functional point of view, a tower that aligns a set of 
orthologs all of whom have a common ancestor is “good,” 
and it is better the greater the number of common orthologs. 
Thus we can use the squared number of orthologs in a tower 
as a known, gold-standard surrogate for alignment quality. 
We looked at the midway alignments on different iterations 
of SANA and we counted the number of recovered orthologs, 
the orthologs that were correctly aligned together, in these 
iterations. The number of recovered orthologs provides addi
tional objective evidence for the quality of the alignment. We 
then compared the trend of SGS, EGS, and the existing meas
ures with the trend of the recovered ortholog counts.

Next, we compared existing measures and our proposed 
measures against the recovered ortholog fraction as a gold stan
dard in the midway alignments on different iterations of SANA. 

Table 1. A summary of BioGRID networks.

Nodes Edges Common name Official name Abbr

19 767 784 351 Human H. Sapiens HS
9165 55 797 Fruit fly D. Melanogaster DM
10 926 62 645 Mouse M. Musculus MM
3025 5773 Rat R. Norvegicus RN
6033 134 605 Yeast S. Cerevisiae SC
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The recovered ortholog fraction was calculated as the division 
of the number of recovered ortholog pairs by the total number 
of recovered ortholog pairs across any two species in the multi
ple network alignment. Recovered ortholog fraction provides 
an objective gold standard to measure the quality of the align
ment. We compared our measures with GC, GS, and protein 
Semantic Similarity. GC is defined as the fraction of protein 
pairs with at least one shared GO annotation (Vijayan and 
Milenkovi�c 2018). GS is defined as the fraction of consistent 
towers which are the towers with at least a shared GO annota
tion (Gligorijevi�c et al. 2016). Semantic Similarity of a tower of 
proteins is defined as the maximum information content of the 
lowest common ancestor of its proteins and it is averaged for all 
the aligned towers in the multiple network alignment (Kazemi 
and Grossglauser 2020).

Additionally, we filtered GO terms with different λ1 values 
and calculated SGS and EGS using only the GO terms that had 
a λ1 value below specified thresholds. We used this experiment 
to show whether the measures are successful in looking at each 
GO term in its own context with regard to its frequency. This 
experiment was done using all five IID mammalian networks.

3 Results
3.1 Perfect self-alignment with controlled error rate
Figure 2 displays the results of the perfect self-alignment with a 
controlled error rate for both EGS and SGS. Each circle in the 
right figures represents an individual data point. As evident 
from the figures, the data points exhibit a very high level of 
proximity to each other, indicating a high degree of clustering 
for every value of k and error rate. This low variance shows 
that the measures consistently distinguished the quality of 
alignments for different states.

Additionally, both SGS and EGS measures are monotonically 
decreasing with the error rate. There is a strong parabolic 
relationship between the variables, with a quadratic model’s 
R-squared value of 0.996 for EGS and 0.983 for SGS as would 
be expected since our measures increase with the square of the 
correct (non-error) rates. The reason that higher values of 
k cause the score of the measures to decrease is that introducing 
the same error rate for a larger number of networks causes a 
higher percentage of perfect towers to be misaligned.

3.2 Using SANA multiple network alignment on 
IID networks
Figure 3 shows the result of SGS and EGS for SANA multiple 
network aligner on IID networks. Whereas in Fig. 2 the hori
zontal axis was noise level with higher noise to the right, in  
Fig. 3 the horizontal axis is effectively reversed, since it repre
sents time during simulated annealing, with the time¼ 0 rep
resenting random alignments, and the alignments improving 
(i.e. becoming less noisy) to the right. The curves for both 
SGS and EGS show a monotonically increasing pattern with 
iterations, as illustrated in the figures. The curves for SGS 

and EGS produce very close absolute values, as shown in the 
first figure. For k¼ 3, different sets of species were picked 
from the five IID mammalian networks. The randomness in 
the simulated annealing process of the aligner causes more 
variance in the quality when we are aligning 5 networks 
rather than 3 networks. At the final iterations on the other 
hand, the alignment for 3 networks has a higher quality vari
ance which is due to having 10 different sets of network for 
alignment. Further analysis revealed that when the alignment 
happened between species with more complete networks, 
such as mouse, rat, and human, the alignment had better 
scores. This shows that more complete networks allow 
SANA to produce alignments that better expose functionally 
similar regions.

Figure 4 shows the result of comparing the existing meas
ures and our proposed measures against the recovered ortho
log fraction. We summarized the Spearman rank correlation, 

Table 2. A summary of IID mammalian networks.

Nodes Common name Official name Abbr TaxID

18 079 Human H. Sapiens HS 9606
17 529 Mouse M. Musculus MM 10 090
15 740 Rat R. Norvegicus RN 10 116
14 512 Dog C. Familiaris CF 9615
14 783 Cow B. Taurus BT 9913

Figure 2. The figures show the result of the self-alignment experiment 
for BioGRID networks. The plot is generated using the human network 
and the result is similar for other species. The upper curve shows the 
trend of EGS and the lower curve shows the trend of SGS. The related 
data points are shown using same-color triangles (for k¼3), pentagons 
(for k¼ 5), and circles (for k¼7)

Figure 3. The plots show the result of exposed G and SGS, after running 
SANA for 1000 iterations on IID mammalian networks for 3 and 5 
networks. The first figure is the result of EGS and the second one is 
for SGS
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its P-value, and mean absolute error in Tables 3 and 4 for 
three and five networks. Semantic Similarity is not bounded 
and we used the maximum value to normalize it below one. 
This does not affect its Spearman rank correlation and 
P-value but enables us to calculate its mean absolute error. 
SGS, EGS, and recovered orthologs were also normalized 
only using their maximum possible values. However, the 
Spearman’s rank correlation showed a weak correlation with 
the gold standard in comparison to EGS and SGS. Although, 

GC and GO specificity both showed positive correlation; the 
correlation was less stronger than Semantic Similarity, EGS, 
and SGS. As explained in the introduction, GC and GS are 
prone to early saturation as they only check if there is a com
mon GO term between the aligned proteins. Therefore, it is 
no surprise that the ratio between the score for the last itera
tion and the first was less than 1.05, making them useless for 
actual quality measurement. On the other hand, if we have a 
correctly aligned tower of orthologs, this would increase SSp 

significantly as the information content of such a tower 
would be high. However, even if one of the orthologs are not 
correctly aligned and instead we have one irrelevant protein 
in that tower, the whole SSp score for that tower would be 
very low. This is why although SSp shows positive correlation 
with recovered Ortholog fraction, it has worse correlation, 
P-value, and mean absolute error and fails to fully capture 
the quality of the alignment.

Additionally, EGS and SGS had a very low mean absolute 
error when compared to the recovered ortholog fraction 
which shows they are good indicators of the quality of 
the alignment.

Our measures work one GO term at a time, and the user 
can use any filter they want. Using frequency thresholds as 
demonstrated in the Fig. 5, is an example of these filters. This 
figure shows the result of calculating scores using a threshold 
value for λ1. It is important to note that we only normalized 
these values by their maximum since we wanted to compare 
the raw scores. The results show that both measures were ca
pable of scoring the alignments using all the different thresh
old values. More interestingly, using 1 as a threshold for λ1 

gave the best results, as it was lower than the other thresholds 

Figure 4. The plots show a comparison between different multiple 
network alignment quality measures and the fraction of recovered 
orthologous as the gold standard. The recovered orthologs fraction is 
computed in each iteration as the division of the number of recovered 
ortholog pairs by the total number of ortholog pairs. The first figure is the 
result of this experiment on three networks and the second one, on five 
networks. SGS, EGS, GC, GS, and protein semantic similarity (SSp) are 
compared against the recovered ortholog fraction. GC and GS are almost 
flat and provide no information on the quality

Table 3. Comparison of measures with recovered ortholog 
fraction (k¼5).

Spearman’s ρ P-value Mean absolute error

SGS 0.99 9.5 × 10–19 0.04
EGS 0.99 9.5 × 10–19 0.07
GC 0.75 1.4× 10–4 0.78
GS 0.74 1.7× 10–4 0.74
SSp 0.98 3.5× 10–15 0.13

Bold values represent the best results for each column.

Table 4. Comparison of measures with recovered ortholog 
fraction (k¼3).

Spearman’s ρ P-value Mean absolute error

SGS 0.99 9.5 × 10–19 0.04
EGS 0.99 9.5 × 10–19 0.07
GC 0.70 7.3× 10–4 0.77
GS 0.66 1.5× 10–3 0.76
SSp 0.95 6.2× 10–11 0.42

Bold values represent the best results for each column.

Figure 5. The plots show the result of using different λ1 threshold values 
for GO terms using 5 IID Mammalian networks. The first figure is the 
result for EGS and the second figure is the result for SGS. The values 1, 
10, 100, and 1000 were used as threshold values. Using 10 as a threshold 
value means calculating the scores using only the GO terms that had a λ1 

value equal to or less than 10
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in the initial iterations and higher in the last ones. The reason 
for this is that the GO terms that have smaller λ1 are the more 
specific GO terms. Before running EGS and SGS, we always 
add the ancestors of all the GO terms to the proteins, ie if a 
protein is annotated by GO term, we also annotate it by its 
parent recursively. This ensures two things; if the proteins in 
the tower do not share any GO terms but the GO terms have 
shared ancestors, the ancestors are considered in the score. 
Second, we are giving a higher weight to the more specific 
GO terms as their ancestors would also be enforcing the score 
of those GO terms. For this reason, our measures perform 
well even when we consider different frequency threshold val
ues. As another example of using filters, we can exclusively 
use the GO terms of a specific category, BP, MF, or CC to 
only score the alignment based on one of them. As demon
strated in the Fig. 6, all three categories have close positive 
correlation with SANA iterations and a small difference in 
their trends.

3.3 Functional relevance
3.3.1 Scaling prediction precision of GO annotations with 
EGS and SGS
In this section, we show the application of EGS and SGS in 
annotating the missing GO terms of a species using multiple 
network alignment. To begin with, we adapted a method sim
ilar to the one used for GO term prediction and annotation in 
pairwise network alignment (Wang et al. 2022a). For this 
purpose, we created a hundred multiple network alignments 
using the five BioGRID networks summarized in Table 1: hu
man, fruit fly, mouse, rat, and yeast. We used BioGRID 
v3.0.064, released in April 2010, as well as annotations from 
the GO database released the same month to predict missing 
protein-GO term pairs for the human network using the pro
teins of other species. We then used the GO database of 
March 2023 to validate each predicted annotation by check
ing whether the protein has been later annotated with the GO 
term by March 2023. An annotation prediction from April 
2010 was considered validated if the annotation appeared in 
the GO database release of March 2023. We divided the 
number of validated predictions by the number of all predic
tions to find the precision of the predictions.

We extended the definition of Network Alignment 
Frequency from pairwise networks (Wang et al. 2022a) to 
multiple networks. We counted the occurrences of shared 
GO annotations in aligned triplets within each tower. The 

reason we considered combinations of 3 was that by consid
ering 4 or 5 proteins at the time, we would lose valuable in
formation. For instance, if we had a single random network 
in the alignment we get no predictions by requiring all 4 or 5 
proteins to align together in different alignments. We first 
demonstrated the correlation of the prediction precision with 
NAF as can be viewed in Fig. 7. As expected, the prediction 
precision is positively correlated with NAF threshold. 
Additionally, it is important to note that we have results with 
an NAF value of 47. The chance of these results being ran
dom is 3:5×10−248. This number is calculated using 

99
46

 !

× ð10−6Þ
46× 999

1000

� �2
� �63 

as the probability of having 

exactly 47 occurrences of a specific triplet in 100 indepen
dently generated alignments. This is a loose upper bound on 
P-value as we are assuming only 1000 nodes in each network 
which in the case of human network is less than a 10th of the 
actual number of nodes.

Then we plotted the average of all measures for different 
NAF thresholds in Fig. 8. We used each threshold to filter the 
protein-GO term pairs and calculated the average of the 
measures for the GO terms in these pairs. The measures as
sess the quality of the alignment of a GO term across the mul
tiple network alignment. Therefore, while NAF provides a 
valuable tool in assessing the protein-GO term pair, the meas
ures allow us to see how well the GO term has been aligned 

Figure 6. The plots demonstrate the result of only using a single category 
of GO terms using 5 IID Mammalian networks and SANA Iterations. The 
first figure is the result for EGS and the second is the result for SGS. BP, 
MF, and CC are represented by blue, orange, and green curve in the plots

Figure 7. This plot shows the correlation between the prediction 
precision and different NAF thresholds. Each point of NAF on the plot is a 
threshold on NAF, meaning we only considered the pairs with NAF higher 
than the value as our predictions. The Pearson correlation of the 
prediction precision in this plot is 0.99

Figure 8. The plots show the average of different scores for all the 
predictions with a NAF above different thresholds. The scores shown are 
Protein Semantic Similarity, GC, GS, and EGS and SGS. The first plot 
shows the results for only the correct predictions while the second plot 
shows the result for all predictions. The scores are multiplied by 100
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and how likely it is that they were aligned correctly in this 
case too. The strong correlation for EGS and SGS shows that 
the GO terms that are present in predictions with higher NAF 
thresholds have better scores as well. GC and GS are both 
saturated very early. Semantic Similarity has a negative corre
lation. Additionally, for Semantic Similarity the score for the 
correct predictions is lower than the average scores for all the 
predictions. However, for EGS (%) the score for the correct 
predictions is higher on average 7 points and SGS is higher 
on average 4 points than the all prediction EGS and 
SGS scores.

We used this idea to see how we can apply these measures 
to increase the precision of the predictions. For this part, we 
first used NAF to generate the predictions and used the pairs 
predicted by the highest NAF threshold, as they had the best 
precision and we could not reach a better precision for these 
networks using NAF alone. Then we filtered the predictions 
using different threshold values on the measures and only 
considered the predictions with a GO term SGS of EGS score 
of equal or above the threshold. The demonstrated results 
can be viewed in Fig. 9. This plot shows how using the meas
ures has significantly increased the prediction precision. For 
both SGS and EGS, the precision has increased to more than 
the double of its value when we kept the GO terms with high 
EGS or SGS scores. The results are close in absolute values 
for both SGS and EGS.

4 Discussion
We observed a strong correlation between our scores and both 
alignment quality, and recovered orthologs. Additionally, we 
applied different thresholds on λ1 values and showed that the 
measures were able to produce correct results even when we use 
thresholds as low as λ1 ¼ 1. This experiment also demonstrated 
that even GO terms with lower frequency provided useful infor
mation about the quality of an alignment.

Lastly, we assessed the application of the measures in pro
viding a more precise cross-species prediction of annotations. 
We used NAF to predict missing annotations for human pro
teins using April 2010 data, validated using March 2023 GO 
database. We demonstrated that using EGS and SGS to fur
ther filter the predictions can increase the precision from 
6.5% to 14.3%. We also found a strong correlation between 
NAF and prediction precision, in addition to NAF and the 
measures, which further demonstrated the application of the 
measures in GO term annotation.

4.1 Limitations
Despite these promising results, it is essential to acknowledge an 
important limitation. Although each GO term is normalized us
ing the data of its own frequency, we combined scores for differ
ent GO terms using averaging, which may have overlooked the 
inter-dependencies between the GO terms. A GO term g and its 
descendants, have co-occurrences in the proteins they label. 
Generally, g is a less specific GO term and we account for it 
when we consider the frequencies. However, in an extreme case 
where g and its descendants are all highly specific and very co- 
occurring, by using average in the second step, g and its descen
dant have a larger impact in the final score in comparison with 
other GO terms. This is not inherently bad, but if we are look
ing for a measure that accounts for these interdependencies, our 
measures should be combined with a tool that removes the ex
tra weight based on the correlations instead of averaging.

4.2 Future work
In the future, we plan to further enhance our approach by 
computing the statistical significance of creating a multiple 
network alignment with a specific value for these measures at 
random. Additionally, the measures presented in this study 
have the potential to be applied to other types of multiple net
work alignments that are annotated with a certain ontology. 
Therefore, we plan to extend their usage to other types of net
works such as social networks to see how they work in 
those settings.

5 Conclusion
In conclusion, our proposed measures have shown promise in 
assessing the quality of multiple network alignment in PPI 
networks. Our work has applications in predicting gene func
tion and understanding the functional relationships between 
proteins. SGS offers a detailed analysis of GO terms in each 
tower while EGS provides a simple and effective way to eval
uate the alignment as a whole. Both measures work with a 
single GO term while accounting for its frequency in 
the network.
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