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Abstract

Humans are capable of generalizing and learning new concepts
after very little experience. They have the ability to create se-
mantic structures from concepts they acquire, they can learn
appropriate inductive biases that are later used as priors for dif-
ferent tasks, and they can learn novel categories from very few
examples. While recent advances in neural networks and other
machine learning methods are beginning to approach human-
level capabilities in several tasks, building computational mod-
els that replicate these abilities has proven difficult. We pro-
pose a model that combines powerful features extracted from
a deep neural network with a semantic structure inferred using
probabilistic Hierarchical Bayes. We test and demonstrate the
capabilities of our model in three different tasks: learning a
new concept from a single example of a novel category, learn-
ing new categories from few examples of different categories,
and learning the semantic tree from an unlabeled set of novel
objects.
Keywords: hierarchical bayes; one-shot learning; inductive
bias; neural networks; unsupervised learning

Introduction
Recent advances in neural networks and other machine learn-
ing methods have led to computer vision object-recognition
systems that are beginning to approach human-level perfor-
mance. Trained on thousands of object categories, with thou-
sands of labeled examples for each, deep convolutional net-
works can tell if a new image contains a familiar category al-
most as well as human adults can in a brief glance. Yet, even
young children have abilities to learn and generalize that go
beyond what current machine vision systems can do. Here
we focus on three such abilities:

(1) By age 3, children can learn new object categories from
just a single example. Furthermore, children generalize in dif-
ferent ways as appropriate for different kinds of categories:
labels for artifacts with functionally relevant shapes are pref-
erentially generalized according to those shapes, while labels
for non solid substances or arbitrarily shaped objects are more
likely to be generalized according to material properties.

(2) Children can learn to learn appropriate inductive biases,
such as the shape and material biases described above, from
experience with just a few examples each of a small number
of categories that exemplify these biases in a consistent way.
The shape-bias training studies of Smith and colleagues are
the best known examples (Smith, Jones, Landau, Gershkoff-
Stowe, & Samuelson, 2002).

(3) Children can, in a completely unsupervised way, sort
novel objects into categories and supercategories in a mean-
ingful way, and then use these hierarchical category structures

as strong constraints to learn and generalize names for objects
from just one or a few examples.

Previous attempts to capture these abilities in computa-
tional models have had some success, but not with mod-
els that are “image-computable” on the same stimuli that
people see. These earlier models have used either adult
similarity judgments (Xu & Tenenbaum, 2007) or highly
simplified, idealized feature representations (Kemp, Perfors,
& Tenenbaum, 2007) to build their category hierarchies.
Here we show that a computational framework can come
close to capturing abilities (1-3) by combining two powerful
representation-learning techniques: deep learning for feature
construction and Hierarchical Bayes for unsupervised taxon-
omy construction.

We build on work by Salakhutdinov, Tenenbaum, and Tor-
ralba (2012) who build a Hierarchical Bayesian model that
“learns to learn” by incorporating information from past ex-
perience into a prior when inferring statistical properties of a
novel category. In particular, when presented with a few im-
age examples of a new category, the model infers a supercat-
egory and uses the higher-order knowledge abstracted from
previous categories to identify the relevant features and allow
generalization (Figure 1).

Figure 1: Learning a similarity metric for a new category. The
goal is to identify the correct supercategory and estimate an
appropriate similarity metric.

That work was extended by the same authors, who har-
nessed a two layer Deep-Boltzmann Machine to generate low
level feature representations of the images while learning a
prior using a hierarchical Dirichlet process. (Salakhutdinov,
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Tenenbaum, & Torralba, 2013). Their experimental data
showed that using this prior in combination with more pow-
erful features gave them a distinct advantage over other meth-
ods of classification. This progression of work suggests that
building a model that combines complex feature spaces with
a hierarchical semantic structure may lead to further increases
in performance.

Building on this line of work, we contribute a model that
combines the two components: powerful image represen-
tations extracted from Deep Neural Networks (DNNs) and
a Hierarchical semantic structure that works as a Bayesian
prior. We show how the combination of these two compo-
nents can “learn to learn” in ways that resemble some aspects
of child cognition. Additionally, we explore how this model’s
performance is affected as we vary different aspects of the
model architecture and the structure of the training data.

Other approaches to combine probabilistic graphical mod-
els and DNNs have recently been proposed that focus on
building unsupervised clustering algorithms (Dilokthanakul
et al., 2016; Johnson et al. 2016). Instead, the focus of our
model is to capture certain aspects of human cognition. This
leads to some notable differences. First, representations in
our model are a fixed set of visual relevant features instead
of being learned for the inference task at hand. In addition,
our model’s generative component is limited to a hierarchical
structure that aims to recover the semantic relations between
concepts in a useful and meaningful way while other models
are fully generative but tend to have graphs with simpler se-
mantic structures. We therefore propose a relatively simple
model that is not intended for general unsupervised learning
but that instead focuses on traits of human object and cate-
gory learning.

More specifically, we test our model’s capacity to capture
the previously discussed human abilities (1-3) in an image
recognition framework. First, we evaluate the ability of our
model to learn novel categories from only one or a few ex-
amples. To address this we allow the model to construct a se-
mantic structure from labeled examples in a data set and then
judge the model’s performance on a one-shot learning task.
Second, we assess the models capability to construct induc-
tive biases in low data environments. We test this ability by
repeating the first task but limiting the training data available
to the model when it constructs the semantic tree. Finally, in
a third task, we test the model’s ability to learn a hierarchi-
cal semantic structure of novel objects in a completely unsu-
pervised manner. Results suggest that this approach may be
suitable for modeling certain aspects of cognition.

Model and Learning to Learn
Our model combines two Machine Learning approaches that
have recently been successful at a range of differing tasks. On
one hand, powerful deep networks construct feature spaces
that enable rapid and accurate classification. On the other,
Hierarchical Bayesian Models have proven successful in cre-
ating taxonomies of the different concepts learned from pre-

vious experience. These taxonomies can then be used as a
prior to identify the relevant features for learning a new cat-
egory from one or a few examples based on the distribution
of other similar categories. We create various versions of our
model to compare combinations of feature spaces extracted
from different architectures with variants of the Hierarchical
Bayesian component.

Learning begins by constructing a 2-level tree of categories
and supercategories that best explains the training observa-
tions under a Bayesian framework. The model learns struc-
ture in the observations by first generating useful general fea-
tures from a DNN and then developing hierarchical priors that
allow previous similar experiences to bias the learning of new
concepts and categories. The priors are constructed by infer-
ring the means and variances that define the most relevant
dimensions from the DNN feature representations for each
category and supercategory (Figure 1).

Deep Network Features
We use features extracted from DNNs pretrained for object
classification on ImageNet. We obtain a representation from
each image by passing it through a network and extracting the
response from the penultimate layer consisting of 4096 real-
valued dimensions. In the regular deep network classification
scheme, this response is then passed through a linear weight-
ing and a generalized logistic regression layer. This layer
maps this representation onto probabilities for each class in
the specific classification task for which the network was
trained.

We compare the performance of the different versions of
our model on features extracted from two different DNN
architectures: Alexnet (Krizhevsky, Sutskever, & Hinton,
2012), which was the first implemented Deep Learning
Model that significantly improved object classification on im-
ages; and VGG-16 (Simonyan & Zisserman, 2014), a more
recent architecture with 16 layers that achieves above 90%
top 5 classification performance on ImageNet.

Generative Semantic Organization
After obtaining a useful general image representation from
the DNN, the Hierarchical Bayesian Model’s parameters are
inferred by approximating the posterior via Markov Chain
Monte Carlo methods in the following way.

Consider a two-level hierarchy where N observed inputs
are partitioned into C basic-level categories, these categories
are in turn partitioned into K supercategories. In this hier-
archy of observations, categories, and supercategories, the
higher levels determine a prior over the distribution of the
lower levels. In particular, the distribution over observations
(feature vector representations of images in our case) of each
of the different basic level categories are assumed to be multi-
variate Gaussian with a category specific mean Mc and with
precision terms τd

c that are assumed to be independent across
the D dimensions of the feature space. These precision terms
constitute a similarity metric by determining the relative im-
portance of each of the features. In turn, we place a conjugate
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Table 1: Performance results using the area under the ROC curve (AUROC) on the MSR dataset in the one-shot learning task

# Examples from Withheld Class
Alexnet VGG

1ex 2ex 4ex 20ex 1ex 2ex 4ex 20ex
Oracle .99 1 1 1

HB-Full .91 .96 .98 .99 .92 .97 .98 .99
One Supercategory .87 .94 .97 .99 .88 .95 .98 .99

NearestN .84 .86 .87 .90 .89 .90 .92 .95
T of T* .76 .80 .84 .87

Normal-Gamma prior over {Mc,τc}, this prior is determined
by the supercategory specific level-2 parameters Mk,τk,αk,
where Mk and τk constitute the expected values of the lower
level parameters and αk controls the variability of τc around
its mean. Finally, for the conjugate priors over the level-2 pa-
rameters, we respectively assume Normal, Exponential and
Inverse-Gamma distributions that are further shaped by pa-
rameters α0 and γ0. The full generative model is given in
Figure 2 (Salakhutdinov et al., 2012).

Figure 2: Hierarchical Model

Given a set of observations, the model iteratively performs
Bayesian inference by alternating between sampling the pa-
rameters and inferring the category assignments. When learn-
ing the distributions at each step of the iteration, the supercat-
egory membership is fixed and the parameters are sampled
from posteriors that are analytically computed using the con-
jugate priors1. The supercategory membership for each cate-
gory is learned in a similar way by fixing the currrent param-
eters and the rest of the hierarchical structure. Every category
can be assigned to any of the existing supercategories or to a
newly created one. The posterior probability of belonging to
a supercategory is computed as a combination the likelihood
that the parameters of the category come from the parame-
ters of the supercategory and a Chinese Restaurant Process
(CRP) prior (Griffiths & Tenenbaum, 2004). This nonpara-
metric prior is a distribution over a partition on integers in
which the nth number is assigned to set k with probability:

1For the case of αk, the conditional posterior cannot be com-
puted analytically and the parameter is sampled with the Metropolis-
Hastings rule (Yildirim, 2012).

P(zn = k|z1,z2...,zn−1) =

{
nk

n−1+γ
if nk > 0

γ

n−1+γ
if k is new

Where nk is the number of previous integers assigned to
set k and γ is a concentration parameter sampled from a
Gamma(1,1) distribution.

In an unsupervised setting where the categories of the ob-
servations are also unknown, the model utilizes a similar
strategy to assign observations to categories as is used when
assigning categories to supercategories. The model iterates
through the observations and assigns each either to an exist-
ing or to a newly created category based on the prior and like-
lihood. By utilizing the CRP prior, the model can create an
unbounded number of categories and supercategories. This
entire process constitutes a Gibbs sampling procedure where
both the tree structure and all of the parameters are simulta-
neously learned.

Tests and Results
We test the model in scenarios that attempt to capture aspects
of human cognition related to learning from limited data.
First we measure the model’s ability to generalize previous
knowledge to learn novel categories from only a few exam-
ples. Next, we assess the model on this task when the training
data for all of the categories is also limited to only a few ex-
amples. Finally, we exploit the model’s full hierarchy in a
completely unsupervised setting by exploring how the model
recovers the underlying semantic structure.

One-Shot Learning on MSR
In the first task, we test the model’s ability to learn new cate-
gories form one or a few examples. First, we select a category
that will be held-out for testing. Labeled observations for
all other basic-level categories are provided for training. The
model learns the semantic structure of the training set by clus-
tering the basic categories into supercategories and inferring
the relevant parameters at all levels of the Bayesian Hierar-
chy. The challenge is then to generalize the learned structure
to the held-out category from only one or a few examples.

To do this, the model first infers the best supercategory
from one or a few examples of the withheld category by
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Table 2: Performance results using the area under the ROC curve (AUROC) on the MSR dataset with limited training data.

# Examples from Withheld Class
Alexnet VGG

1 ex 2 ex 4 ex 20 ex 1 ex 2 ex 4 ex 20 ex
# Training Examples

1 ex .87 .87 .88 .89 .90 .90 .90 .92
4 ex .92 .96 .99 .99 .93 .97 .98 .99

10 ex .92 .96 .99 .99 .92 .96 .98 .99
18 ex .92 .95 .98 .99 .91 .96 .98 .99

All examples .91 .96 .98 .99 .92 .97 .98 .99

marginalizing over the category level parameters. Next, the
model uses the supercategory priors and training examples
to estimate the category similarity metric and mean for each
dimension in the feature space.

We evaluate different versions of our model on the MSR
Cambridge dataset (Kohli et al., 2005), which consists of 24
categories with varying numbers of images in each category.
In total this dataset contains roughly 800 images. Figure 3
shows a typical partition over all the categories discovered by
the full model. To quantify the models accuracy, a testset with
unlabeled data from all categories is classified.

We repeatedly trained the model withholding one of the
categories at a time and then inferred the withheld category
parameters and supercategory membership using one or a
few images. Next, we calculated the posterior probability for
each testset image belonging to each category and variated a
threshold to classify images as belonging to the heldout cat-
egory or to any of the other categories. This created true and
false positive rates for each point along our threshold which
traced out a Receiver Operating Characteristic curve (ROC)
for classifying objects from the withheld vs. all the other cat-
egories. The reported results are calculated by averaging the
Area Under the ROC curve (AUROC) for the model trained
with each of the 24 categories withheld (Table 1).

Performance is compared for each combination of an Infer-
ence Model and a Network Architecture. HB-Full is the full
version of the model described above. One Supercategory
places all the categories in the same single supercategory.
NearestN classifies new points with the label of the nearest
neighbor of its feature vector in euclidean distance. Texture
of Textures (T of T)∗ replaces our DNN features with the set
of responses from a three layer convolutional neural network
that uses precomputed weights that resemble Gabor filters2.
Finally, the Oracle is the same than our full model, but uses
the true empirical mean and variances from the whole pop-
ulation (including testset). Table 1 shows the results for the
two different feature spaces used.

2Taken from Salakhutdinov et al. (2012)

Figure 3: MSR semantic tree discovered by the Full Model

The results show that the model performs best when using
the full hierarchy in combination with the feature space ex-
tracted from VGG. HB-Full considerably outperforms alter-
natives under both feature spaces, particularly for trials with
one example from the withheld dataset. As more examples
become available, the performance difference decreases re-
flecting the importance of the prior when little data is avail-
able. The importance of the learned features is highlighted
when comparing with the T of T∗ feature space where per-
formance is considerably lower. It is interesting to note that
the VGG representation improves most over Alexnet when in
combination with NearestN, but the effect is mitigated when
the hierarchy is used.

Limited training data regimes
In a second task, we test the capability of our model to extract
inductive biases from experience with just a few examples.
To evaluative this capability, our full model was limited to
only 1, 4, 10 or 18 examples of each category used for train-
ing. The number of examples from the withheld category was
varied separately. Table 2 shows the average AUROC for the
same “one vs. all” metric used in the previous task3. For com-
parison, the full model performance from the previous table
is included and labeled as “All examples”4.

We can see that the largest jump in performance happens
when moving from 1 to 4 training examples. This likely
reflects the fact that a single example provides information
about the mean of the category but not about the variance or
similarity metric, which has to be inferred completely from

3Averages across 10 random repetitions and all categories are
reported.

4Each category contains a varying number of examples
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the prior. However, 4 examples provide adequate information
about the variance to allow the model to appropriately infer
the parameters for new categories. As the number of training
examples continues to increase, there are no further gains in
performance. This is consistent with literature showing that
children need at least two examples to learn inductive biases
in certain contexts (Smith et al., 2002).

Unsupervised Learning on Gazoobian Objects
Humans and children can sort new objects into categories and
supercategories in a semantically meaningful way. While our
model is also able to of recover meaningful structure from la-
beled examples (Figure 3), real situations often demand learn-
ing where labels are completely absent. Schmidt (2009) ex-
plores this human capability with a dataset composed of 45
novel objects that were generated using a modeling software
to simulate a specific taxonomic structure. The dataset con-
sists of three supercategories supposed to be alien equivalents
of plants, tools and snails from the planet “Gazoob”. The ob-
jects in each supercategory are further organized into a struc-
ture that can be approximated by basic-level categories (gray
box in Figure 4).

Our model has the ability to infer both categories and su-
percategories in an unsupervised manner from observations.
Schmidt (2009) shows that a model based on agglomerative
clustering that uses adult similarity judgments is able to re-
cover the taxonomic tree (Figure 4). Here our model is tested
with the harder task of recovering the taxonomic tree directly
from the same images that people saw. The model accom-
plishes this task in a fully unsupervised manner using a single
image of each object.

This “image-computable” model is able, although with
some mistakes, to recover the three supercategories and most
of the basic-level category structure (Figure 5). Other un-
supervised clustering algorithms were also able to capture
some of the semantic structure, but the hierarchy between cat-
egories and supercategories was not evident.

Discussion
One can think of the task of concept learning as consisting of
two elements. The first involves obtaining relevant features
to represent the objects and categories commonly observed in
the world. The second involves constructing a semantic hier-
archical structure with links between categories that humans
can use to navigate and perform tasks. While recent results
demonstrate the capabilities of DNNs to classify categories
provided a large number of training examples, they strug-
gle to perform tasks that require understanding the seman-
tic relationships between classes. The ability of Hierarchical
Bayesian Models to build these semantic structures can fur-
ther help with understanding and classifying new categories.

We demonstrate how these two approaches can comple-
ment one another by combining them in a computational
model. We tested the model’s abilities tasks designed to
approximate human capabilities that are currently difficult
for computer vision systems such as concept generalization,

learning inductive biases, and constructing semantic struc-
tures. We show results for three tasks involving limited data
availability. The model is able to learn relevant semantic
structures from just a few examples of novel objects and ef-
fectively transfer appropriate similarity metrics from learned
categories in the form of a prior. In all tasks, the compu-
tational framework comes close to capturing human abilities
that other, more complex, machine vision systems struggle to
reproduce.
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Figure 4: Ground Truth Tree of Gazoobian Objects as Generated from Human Similarity Judgments. Each of the three branches
at the top of the tree denotes a supercategoy. The gray box in the lower left hand of the figure denotes a basic-level category.

Figure 5: Model’s Inferred Semantic Hierarchy of Gazoobian Objects. Outer boxes denote supercategories inferred by the
model. Dashed lines separate model generated categories within each supercategory. Colored boxes around each object denote
the ground truth supercategories as shown above.
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