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A B S T R A C T   

Background and Objective: The growing impact of the COVID-19 pandemic has heightened the urgency of iden-
tifying individuals most at risk of infection. Per- and poly-fluoroalkyl substances (PFASs) are manufactured 
fluorinated chemicals widely used in many industrial and household products. The objective of this case-control 
study was to assess the association between PFASs exposure and COVID-19 susceptibility and to elucidate the 
metabolic dysregulation associated with PFASs exposure in COVID-19 patients. 
Methods: Total 160 subjects (80 COVID-19 patients and 80 symptom-free controls) were recruited from Shanxi 
and Shandong provinces, two regions heavily polluted by PFASs in China. Twelve common PFASs were quan-
tified in both urine and serum. Urine metabolome profiling was performed by liquid chromatography coupled 
with tandem mass spectrometry (LC-MS/MS). 
Results: In unadjusted models, the risk of COVID-19 infection was positively associated with urinary levels of 
perfluorooctanesulfonic acid (PFOS) (Odds ratio: 2.29 [95% CI: 1.52–3.22]), perfluorooctanoic acid (PFOA) 
(2.91, [1.95–4.83], and total PFASs (

∑
(12) PFASs) (3.31, [2.05–4.65]). After controlling for age, sex, body mass 

index (BMI), comorbidities, and urine albumin-to-creatinine ratio (UACR), the associations remained statistically 
significant (Adjusted odds ratio of 1.94 [95% CI: 1.39–2.96] for PFOS, 2.73 [1.71–4.55] for PFOA, and 2.82 
[1.97–3.51] for 

∑
(12) PFASs). Urine metabolome-PFASs association analysis revealed that 59% of PFASs- 

associated urinary endogenous metabolites in COVID-19 patients were identified to be produced or largely 
regulated by mitochondrial function. In addition, the increase of PFASs exposure was associated with the 
accumulation of key metabolites in kynurenine metabolism, which are involved in immune responses (Combined 
β coefficient of 0.60 [95% CI: 0.25–0.95, P = 0.001]). Moreover, alternations in PFASs-associated metabolites in 
mitochondrial and kynurenine metabolism were also correlated with clinical lab biomarkers for mitochondrial 
function (serum growth/differentiation factor-15) and immune activity (lymphocyte percentage), respectively. 
Conclusion: Elevated exposure to PFASs was independently associated with an increased risk of COVID-19 
infection. PFASs-associated metabolites were implicated in mitochondrial function and immune activity. 
Larger studies are needed to confirm our findings and further understand the underlying mechanisms of PFASs 
exposure in the pathogenesis of SARS-CoV2 infection.  
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1. Introduction 

The coronavirus disease 2019 (COVID-19) caused by severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly evolved 
into a global pandemic after its first report in Wuhan, China, in 
December 2019 (Zhu et al., 2020). There is clear evidence of high het-
erogeneity in COVID-19 susceptibility (probability of being infected) 
(Viner et al., 2020). The growing impact of the pandemic intensifies the 
need for identifying individuals most at risk of infection. Such infor-
mation will not only be useful for public health experts, but also for 
individuals seeking to assess their own personalized risk. Prior studies 
have hypothesized that differences in COVID-19 susceptibility are 
associated with age (Liu et al., 2020), sex (Haitao et al., 2020), BMI 
(Jung et al., 2020), genetic factors (Anastassopoulou et al., 2020) and 
certain comorbidities such as obesity, type 2 diabetes, cardiovascular 
diseases (CVDs) (Aung et al., 2020). However, COVID-19 is a new dis-
ease, and more work is urgently needed to determine if there are other 
factors that increase a person’s risk to contract the infection. Little in-
formation is available regarding the impact of environmental exposures 
on COVID-19 susceptibility. 

Per- and poly-fluoroalkyl substances (PFASs) are synthetic chemicals 
containing fluorinated carbon chains with different functional groups. 
Due to their excellent thermal and chemical stability, hydrophobic and 
oleophobic properties, PFASs have been widely used as coatings in many 
consumer products such as disposable food packaging, cookware, car-
pets, furniture, and more (Susmann et al., 2019). The widespread use of 
PFASs has resulted in the ubiquitous detection of these chemicals in 
various environments, including drinking water, air, soil, crops, seafood, 
and wildlife (Li et al., 2019; Liu et al., 2019; Wang et al., 2020). 
Depending on the perfluoroalkyl chain length and trophic position, 
some PFASs species such as perfluorooctanoic acid (PFOA) and per-
fluorooctanesulfonic acid (PFOS) have long biological half-lives (3.5 
years for PFOA and 4.8 years for PFOS in humans) (Perez et al., 2013). It 
was reported that over 85% of people in the United States and China 
have detectable PFOS and PFOA in their blood (Li et al., 2013; Pan et al., 
2010; Pelch et al., 2019; Tian et al., 2018). 

Epidemiological studies have indicated that PFASs exposure is linked 
to the increased risks of cancer, liver damage, and diabetes (McGlinchey 
et al., 2020; Pelch et al., 2019). Additionally, toxicological studies un-
derscore the immunotoxic potential of PFASs, which may adversely 
affect the immune responses to infectious diseases and vaccination 
(Chang et al., 2016; DeWitt et al., 2019; Zeng et al., 2019). For instance, 
several studies found that exposure to PFASs was associated with 
increased risks of respiratory tract infections, otitis media, respiratory 
syncytial virus (RSV), and pneumonia (Ait Bamai et al., 2020; Granum 
et al., 2013; Impinen et al., 2018). Decreased antibody responses to 
booster, measles, mumps, and rubella (MMR) vaccination had also been 
observed in individuals exposed to PFASs (Grandjean et al., 2012; 
Kielsen et al., 2016; Timmermann et al., 2017). 

Metabolites in biological fluids are the intermediate or end products 
of metabolism, which may reflect the final consequences of the func-
tional changes in response to external exposures (Oresic et al., 2020). 
Identifying these metabolic changes by next-generation metabolomics 
might provide insights into the mechanisms underlying exposure-related 
diseases (Han et al., 2018). Regarding PFASs, the recent metabolomic 
analysis revealed that PFASs exposure might cause metabolic pertur-
bations in phospholipid and amino acid metabolism, thereby contrib-
uting to increased risk and pathogenesis of diabetes and other metabolic 
disorders (Alderete et al., 2019; Kingsley et al., 2019; McGlinchey et al., 
2020). In addition, metabolites play important roles in the pathogenesis 
of infectious diseases and host immune responses. On the one hand, 
small molecules from the host metabolism are essential for viral infec-
tion and replication because they provide building blocks that a rapidly 
proliferating virus requires to assemble its nucleic acids, proteins 
(including capsid proteins), and membrane (Gonzalez Plaza et al., 2016; 
Thomas et al., 2020). Dysregulation of amino acid metabolism, 

tricarboxylic acid cycle (TCA) and fatty acid oxidation had been char-
acterized in patients with RSV and dengue virus infection (Shahfiza 
et al., 2017; Turi et al., 2018). In a recent study, COVID-19 infection was 
reported to be associated with increased tryptophan catabolism 
(Thomas et al., 2020). On the other hand, metabolites such as organic 
acids, short-chain fatty acids, bile acids, and tryptophan metabolites fuel 
and regulate the maturation of immune responses (Ganeshan and 
Chawla 2014; Michaudel and Sokol 2020). Collectively, results from 
these studies suggested that PFASs exposure might be associated with 
perturbations in metabolic pathways which are implicated in viral 
infection. 

In this cohort study of 160 participants from two regions with high 
PFASs pollution in China, we, (i) quantified urinary levels of PFASs in 
these subjects and examined the associations between PFASs exposure 
and COVID-19 infection, (ii) conducted metabolomic analysis to 
examine the metabolic differences in urine metabolome between 
symptom-free controls, and COVID-19 patients, (iii) performed a 
metabolome-wide association study coupled with pathway enrichment 
analysis to find out the metabolic abnormities in COVID-19 patients 
associated with urinary PFASs concentrations (Fig. 1a for the experi-
ment design). We hypothesized that PFASs exposure would be associ-
ated with alternations in key metabolic pathways involved in 
mitochondrial metabolism and immune responses, which may be asso-
ciated with increased COVID-19 risk. 

2. Materials and methods 

The brief methods were described below, and the details can be 
found in the supplemental materials. 

2.1. Subjects recruitment 

COVID-19 patients were recruited from January 7, 2020 to March 5, 
2020 in Shanxi and Shandong, two provinces with high PFASs exposure 
and incidence of COVID-19 in China (Liu et al., 2019; Xie et al., 2013; 
Zhang et al., 2020a). Details regarding PFASs and incidence of COVID- 
19 in Shandong and Shanxi provinces were described in Supplemental 
Methods. The diagnosis of COVID-19 was made by SARS-CoV-2 nucleic 
acid testing of nasopharyngeal swabs in the COVID-19 testing centers at 
Heping Hospital Affiliated to Changzhi Medical College, Shanxi, and 
Yantai Yuhuangding Hospital, Shandong. COVID-19 disease severity 
was judged according to the guidelines for the diagnosis and manage-
ment of COVID-19 patients (7th edition) by the National Health Com-
mission of China. All COVID-19 patients in our study had mild clinical 
symptoms such as fever, fatigue, dry cough, muscle pain, and sore 
throat, and no signs of pneumonia on chest CT imaging. They were 
quarantined and given general supportive treatment including bed rest, 
adequate nutrition, water and electrolyte balance, and intensively 
monitoring of vital signs. 

SARS-CoV-2 negative controls were recruited from the aggressive 
contact tracing for all potential contacts of the confirmed COVID-19 
patients, which is part of the authorities’ COVID-19 surveillance (Xing 
et al., 2020). The selected controls were age, sex, and location matched 
with the COVID-19 patients. None of the controls had COVID-19-related 
symptoms. 

Finally, 160 participants were recruited, including 80 (40 COVID-19 
patients and 40 controls) from Shanxi and 80 subjects from Shandong 
(40 COVID-19 patients and 40 controls). The baseline characteristics of 
the subjects are listed in Table 1. The study protocol was approved by 
the Institutional Review Boards (IRBs) of Changzhi Medical College 
(IRB#: CZMC20200231) and Yantai Yuhuangding Hospital (Approved 
No. 202011). Written informed consent was obtained from all the 
subjects. 

J. Ji et al.                                                                                                                                                                                                                                         
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Fig. 1. Elevated exposure of perfluorinated alkyl substances (PFASs) is significantly associated with higher risks of SARS-CoV-2 infection. (a) An illustration of the 
experimental design. Total 160 subjects were enrolled including 80 infected healthy controls (HC), and 80 COVID-19 patients. All CVOD-19 patients in our analysis 
had mild clinical symptoms such as fever, fatigue, dry cough, muscle pain and sore throat and no signs of pneumonia on chest CT imaging. (b-d) The urinary 
concentration (ng/g creatinine) of PFOS (b), PFOA (c), and total PFASs (d) in HC (n = 80), and COVID-19 patients (n = 80). The box-whisker plots show the medians 
(middle line) and the first and third quartiles (boxes), whereas the whiskers are the maximum and minimum values. Mann-Whitney U test was performed. *P < 0.05. 
(e) PFOA levels in urine were significantly correlated with levels in serum. Data were log 2 transformed, and Spearman’s rank correlation was performed. (f) PFOS 
levels in urine correlated with levels in serum. Data were log 2 transformed, and Spearman’s rank correlation was performed. (g) Correlation plot of PFASs and 
clinical characteristics. Spearman’s rank-order correlation was conducted, and Spearman’s correlation coefficients were plotted. (h) The associations between PFASs 
exposure and COVID-19 infection using unadjusted and multivariable adjusted models. PFASs values were log 2 transformed before regression analysis. Odds ratios 
represent the risks of COVID-19 infection per log 2 standard deviation (SD) of urinary PFASs increment. Log 2 SD was 1.02, 0.93, and 0.62 ng/g urinary creatinine, 
for PFOS, PFOA, and total PFASs, respectively. The multiple logistic models were adjusted for potential covariates including age, gender, body mass index (BMI), 
diabetes, cardiovascular diseases (CVDs), and urine albumin-to-creatinine ratio (UACR). Abbreviations: PFASs: Perfluorinated alkyl substances; 95% CI: 95% con-
fidence interval. 
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2.2. Biofluid sample collection 

Paired blood and morning urine samples were collected after the 
subjects were tested positive or negative for SARS-CoV-2. Urine samples 
were collected and centrifuged at 1500g for 10 min to remove any 
cellular debris. Whole blood samples were drawn in lithium heparin 
tubes. Additionally, blood samples were collected into 4 mL BD vacu-
tainer serum separator tubes (SSTs) for serum. Serum was obtained by 
allowing whole blood to coagulate for 30 min at room temperature 
before centrifugation at 1500g for 10 min at 4 ◦C. All whole blood 
samples were refrigerated until analyzed. Urine and sera samples were 
aliquoted into screw-capped cryovials and stored at − 80 ◦C before 
analysis. 

2.3. Routine blood and urine analysis 

Lymphocyte percentage (LYP, %) in whole blood samples was 
analyzed using an automated hematology analyzer XE-5000 (Sysmex, 
Japan). Serum growth and differentiation factor 15 (GDF-15) was 
quantified using human GDF-15 ELISA kits (Abcam, CA, USA) according 
to the manufacturer’s instructions. Urinary creatinine was measured 
based on a modified Jaffe reaction using urinary creatinine assay kits 
obtained from Cayman Chemical (MI, USA). Urinary albumin was 
determined by the immunoturbidimetry method using human albumin 
ELISA kits (Abcam, CA, USA). The value of the albumin-to-creatinine 
ratio (UACR) was obtained by calculating the ratio of urinary albumin 
(mg) to urinary creatinine (g). 

2.4. Determination of PFASs in urine and serum 

Samples from Shandong were shipped to Changzhi Medical College 
in Shanxi province for PFASs quantification and metabolomic analysis. 
Sample extraction and analysis for PFASs were performed as described 
previously (McGlinchey et al., 2020). Briefly, PFASs in urine and serum 
was extracted with methanol-acetonitrile (1:1, v/v) containing isotopi-
cally labeled internal standards (Table S1). The extract was analyzed on 
a Shimadzu LC-20A ultra-high-performance liquid chromatography 
coupled with SCIEX QTRAP 6500+ triple quadrupole mass spectrometer 
(LC-MS/MS) according to U.S. EPA method 537.1 with modifications. In 
total, 12 common PFASs were targeted by scheduled multiple reaction 
monitoring (sMRM) (Table S1). The concentrations of PFASs were 
calculated by peak area ratios between the analytes and internal stan-
dards. The total PFASs in urine and serum was calculated using the 
molar sum method. Urine PFASs were further normalized using the 
urinary creatinine (expressed as ng/g creatinine). Serum PFASs were 
expressed as ng/mL. We had only 52 serum samples for the controls and 
these samples were used to analyze the correlations between serum 
PFASs and urinary PFASs. 

2.5. Urine metabolomic analysis 

The extraction and metabolomic profiling of urine endogenous me-
tabolites were performed as described before with minor modifications 
for the column length (Yuan et al., 2012). Method details were described 
in the supplemental materials. Briefly, metabolites in urine were extract 
with four volumes of prechilled (− 20 ◦C) extraction buffer containing 
methanol and acetonitrile (50:50, v/v). Metabolomic analysis of 462 
metabolites from 63 metabolic pathways was performed by LC-MS/MS. 
Chromatographic separation was conducted on a 100 mm × 4.6 mm, 
3.5 µm XBridge amide column (Waters, USA) held at 25 ◦C. A total of 
330 of the 462 targeted metabolites were measurable in all urine sam-
ples. Metabolomic data were normalized using urinary creatinine con-
centration for comparative analysis (Khamis et al., 2018). The quality 
control and analytical performance were described in the supplemental 
materials. 

2.6. Statistical analysis 

The continuous variables are mean ± standard deviation (SD) or as 
the median and interquartile range (IQR) (Skewed data). The categorical 
characteristics are described as numbers (%). PFASs levels were log2 
transformed prior to statistical analysis. Missing data due to lower limit 
of detection (LLOD) were estimated using multiple imputation (m = 5) 
in IVEware v0.3 and replaced with random values between 0 and LLOD 
with the same probabilistic distribution of the observed PFASs concen-
trations (Table 2 for the detection rate of PFASs) (Harel et al., 2014; 
Lubin et al., 2004). Differences for continuous variables between con-
trols, and COVID-19 patients were analyzed using either Student’s t test 
or Mann–Whitney U test (Skewed data). The categorical data were 
analyzed using chi-square test. P < 0.05 was statistically significant. The 
relationship between PFASs in serum and the matched urine samples 
was calculated using Spearman’s rank order correlation. 

PFASs levels were log 2 transformed and standardized by z-scores 
before regression analysis. The logistic regression analyses were per-
formed on COVID-19 patients (all mild cases) and controls to examine 
the associations between urinary PFASs and COVID-19 susceptibility. 
Both univariate and multivariate models were used to calculate odds 
ratios and 95% confidence intervals (CIs) of COVID-19 susceptibility 
associated with a 1-SD increment in PFASs levels (ng/g creatinine). 
Confounding factors for inclusion in multivariable models were selected 
based on univariable logistic regression analysis (P < 0.1), correlations 
with PFASs or the evidence from the literature (Liu et al., 2020). Finally, 
age, gender, body mass index (BMI), diabetes, cardiovascular diseases 
(CVDs), and kidney health biomarker UACR were included in the 

Table 1 
Summary of characteristics of the study participants.  

Characteristic HC (n =
80) 

COVID-19 (n 
= 80) 

P 
value 

Age, years 50.3 ±
9.65 

53.4 ± 8.99 0.251 

Gender   1.00 
Female, n (%) 38 

(47.5%) 
38 (47.5%)  

Male, n (%) 42 
(52.5%) 

42 (52.5%)  

BMI (kg/m2) 24.0 ±
4.20 

24.4 ± 4.10 0.778 

COVID-19 symptoms before sample 
collection (Days) 

N/A 2 (0–4) N/A 

Comorbidities, n (%)    
Diabetes 8 (10.0%) 9 (11.3%) 0.999 
Cancer 0 (0%) 0 (0%) 1.00 
Chronic kidney disease 0 (0%) 0 (0%) 1.00 
Cardiovascular diseases (CVDs) 7 (8.75%) 8 (10.0%) 0.999 

SARS-CoV-2 RNA in urine, n (%) 0 (0%) 0 (0%) 1.00 
Urine WBC, n (%)   0.999 
<5/hpf 77 

(96.3%) 
76 (95.0%)  

≥5/hpf 3 (3.75%) 4 (5.00%)  
Urine RBC, n (%)   0.999 
<5/hpf 78 

(97.5%) 
79 (98.8%)  

≥5/hpf 2 (2.50%) 1 (1.25%)  
UACR (mg/g)   0.999 
<30 77 

(96.3%) 
76 (95.0%)  

≥30 3 (3.75%) 4 (5.00%)  

The continuous variables are mean and standard deviations (mean ± SD) or 
median and interquartile range (IQR). The categorical characteristics are 
described as numbers (%). Differences between groups were analyzed by Stu-
dent’s t test, Mann-Whitney U test or chi-square test (compare the proportions). 
All CVOD-19 patients had mild clinical symptoms such as fever, fatigue, dry 
cough, muscle pain and sore throat and no signs of pneumonia on chest CT 
imaging. Abbreviations: HC: Healthy control; BMI: Body mass index; WBC: 
White blood cell; hpf: High power field; RBC: Red blood cell; UACR: urine 
albumin-to-creatinine ratio. 
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multivariable model. 
Metabolomic data were log2 transformed before metabolomic anal-

ysis. Partial least squares discriminant analysis (PLS-DA) was performed 
in MetaboAnalyst 5.0. The validation of the PLS-DA model was per-
formed via the leave-one-out cross-validation (LOOCV) method. Me-
tabolites with PLS-DA variable importance in projection (VIP) scores 
>1.5 were statistically significant. Metabolic pathway analysis was 
performed using a custom Python script with an in-house library for 
human metabolism. The associations between PFASs and urinary 
endogenous metabolites were evaluated using correlation network 
analysis with Spearman’s rank correlation in Cytoscape 3.8.2. The cor-
relation threshold was set as 0.2, P value <0.05 and false discovery rate 
(FDR) <20%. We also performed the multiple linear regression analysis 
to further confirm the associations between the exposure of PFASs and 
changes in metabolism. The effect sizes (Beta) and P values were 
adjusted for confounders described in the multivariate logistic regres-
sion model. The summary effect of PFASs exposure on a metabolic 
pathway was meta-analyzed using the random-effects model. Spear-
man’s rank correlation was conducted to determine the correlations 
between metabolite levels and clinical laboratory markers of mito-
chondrial metabolism (serum GDF-15) and immune function (lympho-
cyte percentage, %). 

All general statistical analyses were performed in GraphPad Prism 
9.0 (San Diego, CA) unless specified in the methods and legends. 

3. Results 

3.1. PFASs concentrations in urine of COVID-19 patients and symptom- 
free controls 

All the participants in this study are Chinese from Shanxi (n = 80) 
and Shandong (n = 80) provinces. None of them worked in higher-risk 
COVID-19 occupations such as frontline workers or occupational 
workers in fluorochemical plants. The urinary PFASs levels in the sub-
jects from Shandong were not statistically different from those in the 
subjects from Shanxi (Fig. S1). The characteristics of the participants for 
symptom-free healthy controls (n = 80) and COVID-19 patients (n = 80) 
are shown in Table 1. The average (±SD) age was 50.3 (±9.65) for HC 
and 53.4 (±8.99) for COVID-19 patients. We did not observe significant 
differences in age, gender, and BMI between HC and COVID-19 patients. 
The proportions of subjects with diabetes, and CVDs in HC did not differ 
from those in COVID-19 patients. The median time with mild COVID-19 
symptoms before COVID-19 testing and sample collection was 2 days 
(IQR: 0–4). The brief experiment design for this study is shown in 
Fig. 1a. 

We first quantified the urinary levels of PFASs in all the samples by 
LC-MS/MS. The targeted PFASs compounds, their retention times (RTs), 
and MS/MS parameters are listed in Table S1. Out of 12 PFASs 
measured, perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic 
acid (PFOA) were detected in the urine samples of all participants 
(Table 2). Other PFASs were detected in 5.00%− 86.3% of HC samples, 
and the detection frequency was not statistically different between HC 
and COVID-19 groups (all P > 0.05) (Table 2). 

The urinary levels of PFASs and total PFASs (
∑

(12) PFASs) in HC 
and COVID-19 patients are shown in Fig. 1b− d and Table 2. PFOS and 
PFOA are the dominant PFASs in the urine samples of our cohort. Among 
the detected PFASs, PFOS showed the highest urinary concentration, 
with a median level of 42.4 ng/g creatinine (IQR: 25.5–61.3 ng/g 
creatinine) in controls and 67.6 ng/g creatinine (IQR: 42.5–103.7) in 
COVID-19 patients (P < 0.05) (Fig. 1b). Similarly, COVID-19 patients 
had significantly higher median levels of PFOA and total PFASs in urine 
than those in symptom-free controls (P < 0.05) (Fig. 1c and d). 

3.2. Correlations between urinary and serum PFASs, and baseline clinical 
characteristics 

Correlations between urinary and serum PFOS and PFOA levels: 
Previous animal studies have demonstrated that urine was the primary 
elimination route for PFOA and PFOS in rats (Cui et al., 2010). We then 
analyzed the correlations between urinary levels of PFOS and PFOA and 
their corresponding serum concentrations. The median serum PFOS was 
19.1 ng/mL (IQR: 14.4–26.1) and the median serum PFOA was 3.87 ng/ 
mL (IQR: 2.97–5.32) A good correlation was observed for PFOA between 
urine and serum concentrations (Spearman’s correlation coefficient r =
0.51, P < 0.001) (Fig. 1e). PFOS levels in urine were also significantly 
correlated with concentrations in serum (Spearman’s correlation coef-
ficient r = 0.67, P < 0.001) (Fig. 1f). These results suggested that urinary 
PFASs might be good indicators of the internal dose and used for eval-
uating human exposure to PFASs. 

Correlations between urinary PFASs and baseline clinical charac-
teristics: Different urinary PFASs showed moderate to strong pairwise 
correlations, with the strongest correlation observed between PFOA and 
PFOS (Spearman’s correlation coefficient r = 0.73) (Fig. 1g). We also 
found a weak correlation between PFOA and gender (Spearman r =
− 0.22, P < 0.05) (Fig. 1f). Females tend to have lower levels of PFOA 
and PFOS than those in males. In addition, the number of subjects with 
diabetes was positively correlated with urinary PFOS and PFOA levels. 

Table 2 
The detection frequency and concentrations of PFASs in urine.  

PFASs Acronym Detection rate, n (%) Urinary levels (median and IQR) (ng/g creatinine) 

HC (n = 80) COVID-19 (n = 80) P value HC (n = 80) COVID-19 (n = 80) P value 

Perfluorooctanesulfonic acid PFOS 80 (100%) 80 (100%) 1.00 42.4 (25.5–61.3) 67.6 (41.0–96.5) <0.05 
Perfluorooctanoic acid PFOA 80 (100%) 80 (100%) 1.00 24.8 (16.9–36.3) 39.6 (27.5–48.9) <0.05 
Perfluorobutane sulfonic acid PFBS 35 (43.8%) 34 (42.5%) 0.90 5.11 (4.40–6.50) 5.51 (4.21–6.93) 0.51 
Perfluorohexanoic acid PFHxA 4 (5.00%) 3 (3.75%) 1.00 0.366 (0.29–0.41) 0.344 (0.259–0.403) 0.86 
Perfluoroheptanoic acid PFHpA 10 (12.5%) 11 (13.8%) 1.00 2.56 (1.85–5.31) 4.3 (2.45–6.64) 0.43 
Perfluorohexane sulfonic acid PFHxS 69 (86.3%) 65 (81.3%) 0.52 12.8 (18.6–42.9) 22.1 (15.0–37.7) 0.18 
Perfluorononanoic acid PFNA 41 (51.3%) 39 (48.8%) 0.88 8.19 (7.14–9.08) 8.57 (7.45–10.6) 0.21 
Perfluorodecanoic acid PFDA 46 (57.5%) 44 (55.0%) 0.87 9.23 (7.52–12.0) 11.7 (8.64–14.0) 0.051 
Perfluoroundecanoic acid PFUnA 33 (41.2%) 31 (38.8%) 0.87 3.91 (3.28–5.25) 4.60 (3.90–6.10) 0.069 
Perfluorododecanoic acid PFDoA 7 (8.75%) 6 (7.50%) 1.00 0.873 (0.831–1.10) 0.945 (0.845–1.05) 0.98 
Perfluorotridecanoic acid PFTrDA 6 (7.50%) 7 (8.75%) 1.00 0.721 (0.546–0.791) 0.831 (0.653–1.00) 0.37 
Perfluorotetradecanoic acid PFTeDA 5 (6.25%) 4 (5.00%) 1.00 0.061 (0.047–0.074) 0.077 (0.053–0.089) 0.35 

Detection frequencies are presented as n (%). The levels of PFASs in urine are listed as median and interquartile range (IQR). Chi-square analysis was performed for 
group differences of detection frequencies. Urinary levels of PFASs between HC and COVID-19 were compared using Mann–Whitney U tests. All CVOD-19 patients had 
mild clinical symptoms such as fever, fatigue, dry cough, muscle pain and sore throat and no signs of pneumonia on chest CT imaging. The lower limit of detection 
(LLOD) levels of PFOS, PFOA, PFBS and PFHxA were 0.01 ng/g creatinine in urine. Other PFASs had LLOD levels of 0.02 ng/g creatinine in urine. Abbreviations: PFASs: 
Perfluorinated alkyl substances; HC: Healthy controls. 
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3.3. Associations between urinary PFASs and COVID-19 susceptibility 

We next evaluated the associations between PFASs exposure and 
COVID-19 infection using both unadjusted and multivariate adjusted 
models. 

Unadjusted models: In unadjusted analyses, PFOS, PFOA, and 
∑

(12) 
PFASs were generally associated with COVID-19 susceptibility [odds 
ratio of 2.29 (95% CI: 1.52–3.22) for PFOS, 2.91 (1.95–4.83) for PFOA, 
and 3.31 (2.05–4.65) for 

∑
(12) PFASs] (Fig. 1h). 

Adjusted models: Confounding factors including age, gender, BMI, 
and diabetes were selected for adjusted models based on univariate lo-
gistic regression analysis (P < 0.1), or Spearman’s rank correlations with 
urinary PFASs (P < 0.05). Urine albumin-to-creatinine ratio (UACR) is a 
well-documented biomarker for renal function (Lopez-Giacoman and 
Madero 2015). Since renal function may affect the excretion of PFASs 
(Lin et al., 2021), we also added UACR in the adjusted models. The 
adjusted associations of PFASs exposure with COVID-19 susceptibility 
are presented in Fig. 1h and Table 3. After controlling for age, sex, BMI, 
diabetes, CVDs and UACR, the associations between PFOS, PFOA and 

∑

(12) PFASs and risk of COVID-19 infection remained statistically sig-
nificant [Adjusted odds ratio of 1.94 (95% CI: 1.39–2.96) for PFOS, 2.73 
(95% CI: 1.71–4.55) for PFOA, and 2.82 (95% CI: 1.97–3.51) for 

∑
(12) 

PFASs] (Fig. 1h). Other PFASs were not significantly associated with 
COVID-19 susceptibility after adjustment for confounders (Table 3). 

3.4. Identification of differential metabolites in urine between control and 
COVID-19 patients 

We then performed metabolomic analysis to explore the differences 
in urine metabolome between control and COVID-19 patients. Out of 
462 metabolites targeted, 335 were detected in all samples. The median 
intra-day and inter-day coefficient of variation (CVs) of metabolomics 
quality control (QC) samples were 10.2% and 11.5%, respectively, 
which indicated excellent reproducibility for the measured metabolites 
(Supplemental materials and methods). 

Metabolomic profiling, followed by multivariate PLS-DA, revealed 
dramatic metabolic differences in urine metabolome between HC and 

COVID-19 patients (Fig. 2a). Since PLS-DA is a supervised model, we 
further verified the reliability of the PLS-DA model using the leave-one- 
out cross-validation (LOOCV) method (Fig. S2). Variable importance in 
projection (VIP) analysis showed the significant discriminating urinary 
metabolites between the control and COVID-19 group. The top 25 
discriminating metabolites are shown in Fig. 2, and the full list of 54 
differential metabolites between the two groups is in Table S2. For 
example, urinary metabolites of prostaglandins (PGF2 alpha, tetranor- 
PGEM, and 11-dTxB2) from eicosanoid metabolism were significantly 
increased in COVID-19 patients. In addition, patients with COVID-19 
had higher levels of indolelactic acid, succinic acid, aconitic acid, and 
itaconic acid than those in controls, which are intermediates in mito-
chondrial metabolism. Urinary ceramides and metabolites in kynur-
enine pathways (L-Kynurenine and hydroxykynurenine) were also 
increased in COVID-19 patients. However, sphingomyelins (SM(d18:1/ 
12:0) and nucleotide-related metabolites (Cyclic AMP) decreased 
dramatically in COVID-19 patients. Metabolomic characterization of 
sera and plasma identified similar metabolic abnormalities in COVID-19 
patients (Shen et al., 2020; Thomas et al., 2020). 

3.5. Urine metabolic signatures associated with PFASs exposure in 
COVID-19 patients 

Correlation network analysis was then conducted to identify what 
metabolic alterations in urine metabolome of COVID-19 patients were 
associated with PFASs exposure. Out of 54 differential urinary metab-
olites in COVID-19 patients (HC versus COVID-19) (Table S2), 49 were 
significantly correlated with urine concentrations of PFOA, PFOS, and 
∑

(12) PFASs at coefficient r > 0.2 or <− 0.2, FDR ≤ 20%, and P < 0.05 
(Fig. 3a). Pathway enrichment analysis revealed that the metabolites 
correlated with PFASs exposure were primarily from mitochondrial 
metabolism, kynurenine, eicosanoid, glycolysis, niacin, bioamine and 
neurotransmitter metabolism (Fig. S3). 

We next used multiple linear regression models to further confirm 
the relationship between PFASs exposure and metabolic disturbances in 
COVID-19 patients. After controlling for the confounding variables, the 
associations between 

∑
(12) PFASs and urine endogenous metabolites 

from the metabolic pathways of kynurenine and eicosanoid and mito-
chondrial metabolism remained statistically significant (Fig. 3b). 
Similar associations were observed for PFOS and PFOA with urine me-
tabolites in COVID-19 patients (Figs. S3 and S4). In detail, we observed 
three major patterns: (i) 13 PFASs-associated urine metabolites were 
identified to be produced or largely regulated by mitochondrial function 
(Fig. 3b); (ii) We identified novel positive associations between urinary 
PFASs and multiple key metabolites in kynurenine metabolism 
including kynurenine, 3-hydroxyanthranilic acid, hydroxykynurenine, 
and N-formylkynurenine with the combined β coefficient of 0.60 [95% 
CI: 0.25–0.95, P = 0.001] after adjusting for confounding variables 
(Fig. 3b); and (iii) PFOS, PFOA and 

∑
(12) PFASs were all positively 

correlated with eicosanoids, which are bioactive lipid mediators 
involved in immune and inflammatory responses (combined β coeffi-
cient of 0.24 [95% CI: 0.16–0.32, P < 0.001] for total PFASs after 
confounders adjustment) (Fig. 3b, Figs. S4 and S5). The interconnections 
of metabolites and their metabolic pathways associated with PFASs 
exposure in COVID-19 patients are summarized in Fig. 3c. Interestingly, 
metabolic dysregulation of PFASs-associated metabolites and biochem-
ical pathways were also reported to be connected to disease pathogen-
esis and the host defense response to COVID-19 infection (Ayres 2020). 

3.6. The relationship between PFASs-associated urinary metabolites and 
clinical biomarkers of mitochondrial function and immune activity in 
COVID-19 patients 

We next analyzed whether urinary metabolites associated with 
PFASs were also correlated with lab biomarkers for mitochondrial 
function and immune activity. Serum GDF-15 is a known biomarker of 

Table 3 
The adjusted associations between urinary PFASs other than PFOS and PFOA 
with COVID-19 susceptibility.    

COVID-19 susceptibility 

PFASs Acronym Adjusted odds ratio (95% 
CI) 

P value 

Perfluorobutane sulfonic 
acid 

PFBS 1.00 (0.523–1.939) 0.983 

Perfluorohexanoic acid PFHxA 0.605 (0.107–3.059) 0.543 
Perfluoroheptanoic acid PFHpA 1.123 (0.431–2.955) 0.811 
Perfluorohexane sulfonic 

acid 
PFHxS 1.071 (0.866–1.322) 0.548 

Perfluorononanoic acid PFNA 0.916(0.479–1.747) 0.791 
Perfluorodecanoic acid PFDA 0.938(0.485–1.811) 0.848 
Perfluoroundecanoic acid PFUnA 0.936(0.479–1.820) 0.844 
Perfluorododecanoic acid PFDoA 0.941(0.272–3.192) 0.921 
Perfluorotridecanoic acid PFTrDA 1.095(0.333–3.677) 0.881 
Perfluorotetradecanoic acid PFTeDA 0.817 (0.196–3.093) 0.767 

PFASs with detection rate ≤ 50% were treated as categorical/binary exposure 
variable (Detected or non-detected) in the multiple logistic regression models 
(PFBS, PFHxA, PFHpA, PFNA, PFDA, PFUnA, PFDoA, PFTrDA, and PFTeDA. 
PFHxS (Detection rate ≥ 80%) was treated as continuous variable for logistic 
regression analysis. The level of PFHxS was log2 transformed and z score was 
then calculated using log2 transformed values before logistic regression. Odds 
ratios and 95% confidence intervals (CIs) for PFHxS represent the risks of SARS- 
CoV-2 infection (susceptibility) per standard deviation (SD) of PFHxS increment 
(ng/g urinary creatinine).The multiple logistic regression models were adjusted 
for potential covariates including age, gender, body mass index (BMI), diabetes, 
cardiovascular diseases (CVDs), and urine albumin-to-creatinine ratio (UACR). 
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mitochondrial function (Montero et al., 2016). We found that the levels 
of urinary metabolites in mitochondrial metabolism such as L-Ace-
tylcarnitine, Aconitic acid, and hydroxypropionic acid correlated well 
with the concentration of serum GDF-15 (Spearman’s rank correlation, 
all P values < 0.01 or 0.05) (Fig. 4a− c). Lymphocyte percentage (LYP, 
%) in whole blood is one of the indicators for the changes in immune 
function in COVID-19 patients (Tan et al., 2020). There were significant 
negative correlations between urinary metabolites from kynurenine 
pathway and LYP (Fig. 4d− f). 

4. Discussion 

The potential interactions between environmental toxicants expo-
sure and COVID-19 remain largely unknown. This study represented the 
first attempt to explore the associations between PFASs in urine and 
COVID-19 susceptibility. Our results indicate increased risks for COVID- 
19 infection with high urinary PFASs after adjusting for potential con-
founding factors including age, gender, number of diabetes, CVDs, and 
urine albumin-to-creatinine ratio. Using metabolome-wide association 
analysis, we found that urinary endogenous metabolites associated with 
PFASs are involved in essential metabolic pathways underlying the 
pathophysiology of COVID-19 infection including mitochondrial meta-
bolism, eicosanoids, and kynurenine pathways (Fig. 3c). 

Since 2014, China has become the exclusive producer and supplier of 
PFOS globally, and the largest producer of PFOA in the world. Both 
Shandong and Shanxi provinces had relatively high industrial emission 
of PFASs in China. It is not a surprise that we detected PFOS and PFOA in 
the urine of all subjects. There is no previously published data for PFASs 
exposure from the same regions. However, the urinary levels of PFOS 
and PFOA we measured in our study were dramatically higher than the 
values reported in 2014 in the general population of Tianjin (Zhang 
et al., 2015). Out of 12 common PFASs measured in our study, the as-
sociations with COVID-19 infection are significant for PFOS, PFOA, and 
total PFASs after adjustment for confounders. Urinary PFOS and PFOA 
are highly correlated, which could likely lead to the positive associations 
observed for both PFOS and PFOA on COVID susceptibility. This 
observation highlighted the needs to treat PFASs as a class of chemicals 
rather than individual chemical (Cousins et al., 2020; Kwiatkowski 
et al., 2020). 

Urine is the biological fluid of choice in our study because of the ease 

of collection, and unlike blood, it contains rich information on the 
functionality of organs at the metabolic level and provides an integrated 
estimate of exposure overtime, making it valuable for a broad range of 
biological investigations (Miller et al., 2019). Regarding PFASs, ac-
cording to the outcomes of animal studies, urine is the major excretion 
route for PFOA and PFOS in rats (Cui et al., 2010). A human study re-
ported that for all PFASs except PFUnA, levels in urine correlated 
positively with levels in the blood (Zhang et al., 2013). Consistent with 
the previous study, we also identified significant correlations between 
serum and the corresponding urine PFOS and PFOA concentrations in 
our cohort. Together, these findings suggest that urinary concentrations 
might be good indicators of the internal dose for PFASs, and this less 
invasive strategy can therefore be used in future epidemiological and 
biomonitoring studies. However, it is worth mentioning that urinary 
PFASs might be influenced by kidney function. Those who had higher 
and longer exposure might have impaired kidney function and thus 
cause larger variation in urinary PFASs levels than those in serum (Lin 
et al., 2021). Our urine metabolomics, in combination with 
metabolome-wide association analysis, identified a strong urine meta-
bolic signature associated with PFASs exposure in COVID-19 patients, 
which can be traced to altered mitochondrial regulation of cellular 
redox, signaling, and energy. Mitochondria have been considered as a 
nexus point for the convergence of environmental stress signaling (Youle 
and van der Bliek 2012). In our study, we found that both Krebs cycle- 
related metabolites (succinic acid, pyruvic acid, and aconitic acid) 
produced by mitochondria and acylcarnitines (acetylcarnitine and 
butyrylcarnitine) involved in fatty acid oxidation in mitochondria were 
positively associated with PFASs exposure. Similarly, the urinary levels 
of these intermediate metabolites in mitochondrial metabolism were 
also found to be associated with other environmental stressors, 
including fine particulate matter air pollution (PM2.5) (Chen et al., 
2019), heavy metals (Al-Madani et al., 2010), and respiratory syncytial 
virus infection (Turi et al., 2018). The accumulation of succinic acid and 
acylcarnitines may induce mitochondrial reactive oxygen species (ROS) 
generation and cause tissue injury (Muoio and Neufer 2012; Zhang et al., 
2020b). 

Our study demonstrated positive associations between PFASs expo-
sure and several key metabolites (L-Kynurenine, 3-hydroxyanthranilic 
acid, hydroxykynurenine, and N-formylkynurenine) in the kynurenine 
pathway, independent of confounders. The kynurenine pathway is 

Fig. 2. Metabolomic analysis revealed distinct urinary metabolic profiles between symptom-free healthy controls (HC) and COVID-19 patients. (a) Partial least 
squares discriminant analysis (PLS-DA) plot showed the separation of urine metabolome between HC (n = 80) and COVID-19 patients (n = 80). (b) The top 25 
differential metabolites between HC and COVID-19 revealed by variable importance in projection (VIP). Metabolites with VIP scores >1.5 were considered as 
significant towards the classification model. 
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Fig. 3. Altered mitochondrial metabolism and increased urinary metabolites in the pathways of kynurenine and eicosanoids metabolism are associated with elevated 
PFASs in COVID-19 patients. (a) Urinary endogenous metabolites-PFASs association analysis. The metabolites that are significantly different between unhealthy 
controls (HC) and COVID-19 patients (VIP scores > 1.5 in PLS-DA) were used for the analysis. Data were log 2 transformed, and Spearman’s rank correlation was 
performed. The correlation threshold was set as 0.2 and P value ≤ 0.05. Edge color indicates a positive (red) or inverse (blue) correlation. (b) Multiple linear 
regression models were used to confirm the adjusted associations between PFASs exposure and altered urinary metabolites in COVID-19 patients. Z scores of Σ (12) 
PFASs were calculated, and urinary endogenous metabolites were log 2 transformed before analysis. The effect sizes (Beta) and P values were adjusted for age, 
gender, body mass index (BMI), diabetes, cardiovascular diseases (CVDs), and urine albumin-to-creatinine ratio (UACR). The combined effect of PFASs exposure on a 
metabolic pathway was meta-analyzed using the random-effects model. (c) The summary of metabolic dysregulations associated with PFASs exposure in COVID-19 
patients. The red dots indicate the metabolites with significant positive associations with total PFASs in adjusted multiple linear regression models, while the pink 
dots were the metabolites without significant associations with PFASs. The gray dots are the metabolites that were not detected or targeted. Abbreviations: PFOS: 
Perfluorooctanesulfonic acid; PFOA: Perfluorooctanoic acid; 3-HAA: 3-Hydroxyanthranilic acid; N-MNA: N-Methylnicotinamide; 4-AHA: 4-Aminohippuric acid; 
VMA: Vanillylmandelic acid; Xao: Xanthosine; Xan: Xanthine; m7G: 7-Methylguanosine; Cer: Ceramide; BMI: body mass index; CVD: cardiovascular disease; WBC: 
white blood cells; RBCs: red blood cells; ROS: reactive oxygen species; TCA: tricarboxylic acid cycle; FAO: fatty acid oxidation. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.) 
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highly regulated in the immune system, where it promotes immuno-
suppression in response to inflammation or infection (Cervenka et al., 
2017). For example, the accumulation of kynurenine and hydrox-
ykynurenine inhibits T-cell proliferation at G1 phase and induces nat-
ural killer cells apoptosis (Wu et al., 2018). The immunotoxic effects of 
PFASs had been previously implicated in several epidemiological studies 
of childhood immunization (Grandjean et al., 2012; Grandjean et al., 
2017), in which high PFASs exposure was correlated with decreased 
immune responses to childhood vaccines. Importantly, alteration of 
kynurenine metabolism was also observed in a recent serum metab-
olomic analysis of COVID-19 patients (Thomas et al., 2020). Eicosa-
noids, including prostaglandins, thromboxanes, and isoprostanes, are 
bioactive lipid mediators derived from polyunsaturated fatty acids 
(PUFAs). Eicosanoid signaling, similar to cytokine signaling, regulates a 
diverse set of inflammatory processes, primarily as a pro-inflammatory 
component of the innate immune responses (Dennis and Norris 2015). 
Here, we observed, for the first time, that increased levels of eicosanoids 
were associated with elevated PFASs exposure. 

Our study has several limitations. First, our study is limited by the 
small sample size. Future studies are warranted to confirm the findings 
in large cohorts. Second, even though the controls were tested negative 
for SARS-CoV-2 through nasopharyngeal swab nucleic acid amplifica-
tion, we can not completely exclude the potential false negative results 
of PCR testing. Third, the observational nature of the study precludes 
inferences of causality. PFAS-associated metabolic signatures in urine 
should be interpreted as potential biomarkers rather than causal 

mechanisms of PFASs exposure. Finally, COVID-19 is a new public 
concern. The possibility of residual confounding from unknown vari-
ables cannot be excluded. 

In summary, we observed significantly higher risks of SARS-CoV-2 
infection in the subjects with increased urinary PFOS, PFOA, and total 
PFASs. PFASs exposure in COVID-19 patients are associated with the 
metabolic disturbances in biochemical pathways involved in mito-
chondria stress signaling and the regulation of immune function, 
including fatty acid oxidation, TCA cycle, eicosanoid, and kynurenine 
pathways. Our study suggests a new risk factor for susceptibility to 
COVID-19, in addition to older age, male sex and the presence of car-
diometabolic/vascular comorbidities. Further research should integrate 
experimental and epidemiological approaches to elucidate the under-
lying mechanisms of PFASs exposure in COVID-19 infection. 
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Fig. 4. Metabolites correlated to clinical biomarkers for mitochondrial function and immune responses. (a–c) Urinary metabolites levels in mitochondrial meta-
bolism were correlated with serum growth differentiation factor-15 (GDF-15), a biomarker for mitochondrial function. (d–f) Kynurenine pathway metabolites had 
significant correlations with measurements of immune response biomarker, lymphocyte percentage (LYP). Data were log 2 transformed and Spearman’s rank cor-
relation was conducted. Spearman’s correlation coefficient r and P values were reported. 
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