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Abstract

Big data and spectral graph theory

by

Andrew Stolman

Network data arises naturally in many domains - from protein-protein interaction networks in

biology to social networks. Modern storage and collection technology make it possible to collect

and analyze networks of unprecedented size. At the same time, the proliferation of machine

learning techniques increase the amount of analysis tasks practitioners want to perform. With

bigger data and more demands on it, there is a need for faster algorithms tailored to modern

datasets.

In this dissertation, we present several new results on algorithms for sparse graphs

based on spectral graph theory. From biology to social networks, the networks we encounter in

practice are often contain very sparse. Spectral graph theory provides a toolkit which allows

us to come up with local procedures for sparse graphs which have desirable global properties,

enabling new advances in the field.

In Chapter 2, Chapter 3, and Chapter 4 of this dissertation, new upper bounds in the

field of sparse graph property testing are presented. We consider the problem of testing for

H-minor-freeness. A near-optimal one-sided tester is presented, as well as a two-sided tester.

We also present a polynomial-time algorithm for the related problem of graph partition oracles.

In Chapter 5, Chapter 6, Chapter 7, we examine embeddings of sparse graphs. A

popular machine learning tool is to compute geometric embeddings of the vertices of a graph.

There has been little principled investigation of the power of these methods. We present several

impossibility results which question the efficacy of these embedding methods and follow these

up with an empirical investigation.
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Chapter 1

Designing algorithms for complex

networks

Understanding the behavior of complex networks is of growing social and economic

importance - whether its the rate of diffusion of COVID-19 across the network of human

interactions, or the pattern of posts which distinguish a bot account from a genuine one on

a social network. Fortunately, the body of work comprising graph algorithms and graph theory

provide a formidable toolset. We are (in theory) able to isolate the minimum number of people

needed to contain an outbreak or identify spammers with a high degree of accuracy. However,

solving these problems efficiently often requires a nuanced understanding of the underlying

network data.

Fundamental to dealing with network data is the graph data structure. A graph,

G = (V,E), consists of a vertex set, V , and edge set, E, which consists of pairs from V . (We

will use the terms vertex and node interchangeably, as well as edge and link.) Graph algorithms

have always been a central topic to computer science. Of Karp’s 21 NP-complete problems, at

least 10 are graph problems. The asymptotic complexity of many natural graph problems are

well understood, however the modern rapid increase in size of network datasets and emphasis

on fast approximate algorithms for use in machine learning opens new frontiers in the field.

There are essentially two ways to represent a graph: as an adjacency matrix or as an

adjacency list. In the adjacency matrix representation, we store an n×n matrix in memory with

an indicator variable in entry (i, j) indicating the presence of edge (vi, vj). For the adjacency

list model, we store n lists in memory, the ith containing the neighbors of vi. The memory

requirement of the former model is O(n2) while that of the latter is O(m). Graphs where

m = o(n2) are called sparse and adjacency lists are the preferred data structure. Meanwhile

graphs which are not sparse are dense, and it is usually suggested to use an adjacency matrix

1



to represent them. While it is possible to convert between the two representations in O(n2)

time, modern datasets are so large that even quadratic time operations can be intolerable. For

sublinear algorithms, changing representations is completely out of the question. In this big

data world, the two underlying graph representations can suggest totally different algorithmic

paradigms.

The speed of edge and neighbor lookups varies across the two graph representations.

In an adjacency matrix, answering a query of the form “Is u a neighbor of v?” can be done

in constant time - one only need to consult the relevant entry in the array. Whereas in an

adjacency list, to answer such a query involves searching for u in v’s adjacency list and so has

time complexity dependent on dv. A neighbor query: “what are v’s neighbors?” - is O(dv) in

the adjacency list model, but O(n) for adjacency matrices. When there are many edges in the

graph and many vertices of degree Θ(n), the tradeoffs clearly favor the adjacency matrix model

since neighbor queries are not much slower than in the adjacency list model and edge queries

are much faster. When many vertices have constant degree, the situation is reversed and it

makes sense to use the adjacency list model. This tradeoff has deep implications for modern

algorithmic design.

The choice of representation goes deeper than polynomial runtime factors when we

consider approximation algorithms and notions of distance between graphs. Given two n-vertex

graphs, G and H, intuitively, we would like to say that G and H are close when few edge

deletion/insertions are required to transform G into H. For G and H with Θ(n2) edges, a

change of Θ(n) edges is trivial. If G is any sparse graph, and H is the empty graph, then

still only Θ(n) edge changes are needed to make G isomorphic to H. If we are dealing with

mainly sparse graphs, saying that they are all well-approximated by the empty graph is probably

not very helpful. Dense and sparse graphs often require completely different frameworks and

approaches.

In this thesis, we shall examine several recent results concerning sparse graphs in two

very different subfields. In each of these cases, the analogous problem in dense graphs was

already solved using well established methods, but sparse graphs present unique challenges

requiring new methods. The theme uniting these results is the successful application of spectral

graph theory (the name given to the marriage of linear algebra and graph theory). In the first

half, we shall see how spectral graph theory can be used to answer problems in property testing,

and in the latter half, we apply it in the world of unsupervised machine learning.

1.1 Related work: sparse graphs and local computation

Graph partitioning is an important algorithmic tool Algorithms to provide partitions

of graphs with desirable properties can be used as part of a divide-and-conquer style algorithm,
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or the partition is useful on its own, such as the partition of a social network into communities,

or an electrical network into low capacitance clusters. There are a wide variety of methods and

objectives to graph partitioning (see [BMS+16] for a modern survey of uses and techniques).

We will focus on a line of graph clustering work which comes from spectral graph theory and

see how it unlocks efficient algorithms for sparse networks.

1.1.1 Cheeger’s inequality

The following discussion first requires a few definitions. We will always assume that

G = (V,E) is a simple undirected graph. For subsets of vertices S, T , E(S, T ) denotes the set

of edges with endpoint in S and the other in T . For a vertex, v, dv denotes the degree of v and

vol(S) is the sum of degrees of vertices in the set S.

Definition 1.1.1 (conductance). Define the conductance of S ⊆ V , Φ(S) for to be the ratio

of edges leaving S over the sums of the degrees of vertices in S, i.e.

Φ(S) =
|E(S, S̄)|

min{vol(S), vol(S̄)}
(1.1)

Define the conductance of a graph, Φ(G) = minS⊆V Φ(S) to be the minimum conductance of any

subset among all subsets of vertices of the graph.

When comparing S and T , if the conductance of S is less than the conductance of T , we

say that S is sparser than T . SPARSEST-CUT is the problem of identifying the minimum

conductance cluster in G. It is known to be an NP-hard problem, however Theorem 1.1.3

provides a polynomial time quadratic approximation.

Definition 1.1.2 (sweep set). Suppose v̂ is a real-valued vector with entries indexed by V . Let

u1, . . . , un be elements of V listed in decreasing value assigned by v̂. Call St(v̂) = {u1, . . . , ut}
the tth sweep set of v̂.

Theorem 1.1.3 (Cheeger’s Inequality). Let λ1, . . . , λn be the eigenvalues of the random walk

matrix for a simple undirected graph G = (V,E). Then the following equation holds

1− λ2 ≤ Φ(G) ≤
√

4(1− λ2) (1.2)

Moreover, this conductance is achieved by some sweep set of the eigenvector associated with λ2.

Originating from work on Riemannian geometry, Theorem 1.1.3 is the foundational

result in spectral graph theory. It allows us to extract relatively dense clusters from graphs

quickly. If a graph, G, has conductance φ, Theorem 1.1.3 gives us a polynomial time algorithm

to produce a set S such that Φ(S) ≤ 4
√
φ. One need only compute the eigenvector associated

with λ2, and then output the minimum conductance sweep set among its n sweep sets.
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Theorem 1.1.3 also has important consequences for random walks on graphs. Every

ergodic Markov chain (such as a lazy random walk on an undirected graph) has a stationary

distribution, π. Moreover, π is also an eigenvector associated with λ1 = 1, the largest eigenvalue

of the transition matrix (or random walk matrix in this case), W . No matter the starting

distribution, all walks eventually converge to this distribution. The rate at which this happens is

called the mixing time. Theorem 1.1.3 allows us to derive a relationship between the conductance

of a graph and the mixing time of that graph.

Suppose G is a d-regular graph (i.e. all vertices have degree d), then a well-known

fact is that π is uniform over V . Among all probability vectors over V , π has the smallest

euclidean 2-norm with ‖π‖22 = 1/n. Given a starting distribution, p, since all walks converge

to the stationary distribution lim t→ +∞‖W tp‖22 = 1/n. Since W is symmetric, it has a set of

orthornmal eigenvectors, w1, . . . ,wn associated with the eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn, and

we can write W tp =
∑n
i=1(p · wi)λ

t
iwi. This makes it easy to track the 2-norm of the t-step

probability vector W tp.

∥∥W tp
∥∥2
2

=

n∑
i=1

(λtip ·wi)
2

≤
(
p · π

‖π‖2

)2

+ λ2t2

n∑
i=2

(p ·wi)
2

≤ 1

n
+ λ2t2

Thus in t = O
(

ln(1/λ2)
ln(1/ε)

)
steps, the 2-norm from any start distribution is within

ε additive error of stationary. By rearranging Theorem 1.1.3, we can directly relate the

conductance of G with its mixing time by replacing λ2 with the upper bound 1− φ2

4 .

The power of Theorem 1.1.3 is it relates three seemingly far-flung concepts: a combi-

natorial property of graphs (conductance), a spectral property of matrices and the evolution of

Markov processes. The ability to quickly switch between these frames of references has profound

algorithmic consequences.

1.1.2 Local clustering

Cheeger’s inequality implies an algorithm for partitioning graphs into low conductance

clusters: iteratively compute the second eigenvector and remove the minimum conductance

cluster. The time complexity of this algorithm is polynomial in n. A natural question to ask is

can this bound be improved to linear in n?

It turns out the answer is affirmative for sparse graphs. Local clustering algorithms

produce clusters in time proportional to the number of edges touched by the cluster. In sparse
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graphs, with O(n) edges, this leads to linear algorithms for clustering the whole graph. For a

reference see Chapter 22 of [Spib].

The ideas of local clustering heavily influence the algorithms of Chapter 2, Chapter 3,

and Chapter 4 of this thesis, and are later used to provide competitive ML models in the

remaining chapters. In the remainder of this section, we give an overview of the state-of-the-art

in local clustering algorithms.

Local clustering was first introduced in [ST04, ST13] as a part of near linear time

approximation algorithm for solving certain classes of linear equations. Inspired by the work

in [LS90a, LS93] on analyzing the mixing rate of random walks, [ST04] gives an algorithm for

extracting low conductance cuts by using random walks in time that depends polynomially on

the cut size, and only logarthmically in the size of the graph. Since then, there have been various

improvements by refining certain methods used [ACL06, AGPT16].

The local partitioning results are obtained by a familiar pattern we call the Lovász-

Simonovits curve technique. This technique involves studying the value of a certain potential

function of random walk vectors as the random walk vector evolves over time.

Definition 1.1.4. For a probability vector over V , p, an integer k ∈ [0, n], and positive integer

t, let Stk denote the kth sweep set of W tp. The Lovász-Simonovits potential function is defined

for integer values of k as follows:

ht(x,p) =
∑
v∈Sx

p(v)

When p is clear from context (it is often just an indicator vector for the random walk start

point), we will omit the second argument. For non-integral x, ht is linearly interpolated from

ht(bxc, dxe).

This potential function has several important properties. It is a monotone increasing

curve such that ht(0) = 0 and ht(n) = 1. Moreover, ht must be concave in the first argument

since by definition ht(x) − ht(x − 1) ≤ ht(x − 1) − ht(x − 2) for all x. When p = 1v, ht(x,p)

sharply rises from (0, 0) to (1, 1), and then is flat until (n, 1). As t increases, and the walk

approaches the stationary distribution, ht(x) converges to the straight line connecting (0, 0)

to (n, 1). Lemma 2.5.6 states the rate at which this convergence happens in terms of the

conductance of the sweep sets of the random walk vector.

Lemma 1.1.5. For some start distributionm, p, let Lk,t denote the kth sweep set of the vector

W tp, and let k∗ = min {k, n− k}. The following holds for all k and all t.

ht(k) ≤ 1

2
[ht−1(k − 2k∗Φ(Lk,t)) + ht−1(k + 2k∗Φ(Lk,t))]

Fig. 1.1 illustrates Lemma 1.1.5. It says that every point on the curve ht(x) lies below

some chord drawn on the curve ht−1. The length of that chord in the horizontal dimension is
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Figure 1.1: Illustration of Lemma 1.1.5

proportional to the conductance of the level sets of the random walk vectors. Therefore, if the

conductances of all level sets are large, the chords are wide, and because of convexity, ht+1(x)

approaches stationarity relatively quickly. Thus Lemma 1.1.5 was used originally to bound the

mixing time of graphs which do not have any low conductance cuts.

Local partitioning, as pioneered in [ST04], draws on the contra-positive of Lemma 1.1.5:

if the curves h1, h2, . . . , ht do not approach the stationary distribution quickly, then there must

exist some t′ ≤ t for which W tp has a sparse sweep set.

Lemma 1.1.6. If ht(k) >
√
k
(
1− φ2/2

)t
+pk for some φ, p ∈ [0,1], then there must exist some

t′ ≤ t such that some sweep cut of W t′p has conductance at most φ and minimum probability at

least p.

So long as we can quickly simulate random walks, Lemma 1.1.6 implies a local

partitioning algorithm. If ht(k) is sufficiently large for some k, we need only consider the t
p

eligible sweep sets of Wp,W 2p, . . .W tp, and we are guaranteed to find a low conductance cut.

Assuming we have oracle access to Wp,W 2p, . . .W tp, this takes time O( tp
d
p ) in a d-bounded

degree graph to consider all t
p subsets of volume at most d

p .

In order to actually produce a low conductance cut, a local partitioning algorithm needs

a good seed, i.e. a vertex such that ht(k, 1v) >
√
k
(
1− φ2/2

)t
+ pk for some p and (preferably

small) t. For a vertex, v, let Wtv be the t-step random walk vector for walks starting from v.

Then ht(1) = ‖Wtv‖∞, and we can see the tight relationship between the spectral properties of

W as a linear operator and the presence of small, easily detectable sparse cuts.

Besides a good seed from which to start, a local partitioning algorithm also needs an
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efficient way to simulate random walks. Since computing the matrix vector product W tp takes

time which depends on n, doing so would make the algorithm no longer “local.” Much of the

work in local partitioning comes down to constructing new approximation methods and showing

that the resulting vectors still follow a Lovász-Simonovits-style property. [ST04] use random

walks where small entries in the vector are ignored, while [ACL06] use approximate personal

pagerank vectors, and [AGPT16] use a more exotic construction.

1.2 Graph embeddings

Networks pose a challenge to many machine learning methods. The “classical” machine

learning setting assumes a fixed number of features per observation, and the goal is to learn some

function with domain in this feature space. Network data, however, usually does not have this

structure. Instead of taking a fixed number of features per observation, in network data, we

observe interactions between objects. For a sample of n nodes, there are n possible interactions

for each node. With the number of features growing linearly with n, the well known “curse of

dimensionality” rules out many off-the-shelf machine learning methods.

One of the most popular attempts to circumnavigate the curse of dimensionality has

been unsupervised feature learning. This approach, also called feature extraction or graph

embedding, seeks to learn a function, f : V → Rd, such that distances in Rd somehow reflect

distances in the graph and d << n. (See [HYL18, CAEHP+20] for surveys). There are myriad

methods employed toward low-dimensional embeddings, however there is limited principled

understanding of the power of low-dimensional embeddings in general.

We commence a study of graph embeddings. In order to carry out a principled analysis,

we focus on one popular class of embeddings based on matrix factorization. This class of

embeddings is characterized by trying to learn some n × d embedding matrix, E, such that

L(M,EET ) is minimized for some loss function, L and n×n matrix, M , derived from the graph

structure. Prominent examples of such methods are the various SVD-based methods, DeepWalk

[PARS14], Node2Vec [GL16a] and NetMF [QDM+18].

The idea behind matrix factorization methods (MFM) is to choose some matrix, M

which is meant to capture node similarity, i.e. Mu,v is some similarity measure of the vertex pair

(u, v). Common choices of M include the adjacency matrix, matrices derived from the graph

laplacian and low powers of the random walk matrix. The hope is that these matrices accurately

represent the adjacency information and/or community structure of the graph.

We can divide the class of matrix factorization embedding methods based on the loss

function, L. When L(M,EET ) = ‖M−EET ‖2, the MFM is called a direct factorization method.

Analyzing such methods is relatively straightforward since a singular value decomposition of M

is known to be an optimal solution. In Chapter 5, we explore the limitations of this class. The
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other loss function which appears in the literature is based on cross entropy. In cross entropy

embeddings, M is a stochastic matrix and the goal is to minimize H(M,f(EET )) where H is

the average cross entropy between rows and f is some function that maps the rows of EET to

probability vectors. Chapter 6 explores some limitations of this class.

1.3 Contributions

Here we will briefly summarize the contributions and outline the structure of this thesis.

In Chapter 2, Chapter 3 and Chapter 4, we present a series of three papers that answer

a series of related open problems in bounded-degree graph property testing [KSS18, KSS19b,

KSS21]. This work applies local clustering to algorithms for deciding graph planarity. Planarity

is the property of being “planar” and is characterized by graphs which can be drawn on the plane

without crossing edges. It is a known fact that all dense graphs are non-planar, however there are

also many sparse graphs which are not. In Chapter 2, we present the first sublinear algorithm for

distinguishing non-planar sparse graphs from planar ones and also provide a certificate of non-

planarity. This algorithm operates in time O(
√
n). In Chapter 3, we show that this bound can

be improved to lose the dependence on n if we foregoe the requirement to produce a certificate

of non-planarity and allow two-sided error. We are even able to extend the methods slightly

beyond planarity to cover the property of hyperfinite graphs. In Chapter 4, we show how to

further generalize the method and provide the first ever partition oracle with runtime polynomial

in the distance parameter.

In Chapter 5, Chapter 6 and Chapter 7, we turn our attention to other frontiers

in sparse graph algorithms. In particular, we examine the effectiveness of geometric graph

embeddings [SSSG20a]. These algorithms, often framed as unsupervised learning or feature

extraction algorithms, seek to represent the graph as a point cloud in some low dimensional

space with the distance between two vertices correlating with their distance in the graph. Here

we find a rich field to apply linear algebra in novel ways. In Chapter 5, we show that a popular

class of embedding methods is incapable of representing the sparse, yet triangle-rich structure

that we observe in many real world complex networks. In Chapter 6, we show that a popular

extension of these embedding methods still is unlikely to succeed to capture these networks. In

both chapters, the focus is as much on the real world empirical evidence of these limitations as

it is on the theoretical statements.
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Chapter 2

A near optimal one-sided tester

for minor-freeness

Deciding if an n-vertex graph G is planar is a classic algorithmic problem solvable in

linear time [HT74]. The Kuratowski-Wagner theorem asserts that any non-planar graph must

contain a K5 or K3,3-minor [Kur30, Wag37]. Thus, certifying non-planarity is equivalent to

producing such a minor, which can be done in linear time. Can we beat the linear time bound

if we knew that G was “sufficiently” non-planar?

Assume random access to an adjacency list representation of a bounded degree graph,

G. Suppose, for some constant ε > 0, one had to remove εn edges from G to make it planar. Can

one find a forbidden (K5 or K3,3) minor in o(n) time? It is natural to ask this question for any

property expressible through forbidden minors. By the famous Robertson-Seymour graph minor

theorem [RS04], any graph property P that is closed under taking minors can be expressed by

a finite list of forbidden minors. We desire sublinear time algorithms to find a forbidden minor

in any G that requires εn edge deletions to make it have P.

This problem was first posed by Benjamini-Schramm-Shapira [BSS10] in the context

of property testing on bounded degree graphs. We follow the model of property testing on

bounded degree graphs as defined by Goldreich-Ron [GR02]. Fix a degree bound d. Consider

G = (V,E), where V = [n], and G is represented by an adjacency list. We have random access

to the list through neighbor queries. There is an oracle that, given v ∈ V and i ∈ [d], returns

the ith neighbor of v (if no neighbor exists, it returns ⊥).

Given any property P of graphs with degree bound d, the distance of G to P is defined

as the minimum number of edge additions/removals required to make G have P divided by dn.

This ensures that the distance is in [0, 1]. We say that G is ε-far from P if the distance to P is

more than ε.
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A property tester for P is a randomized procedure that takes as input (query access

to) G and a proximity parameter ε > 0. If G ∈ P, the tester must accept with probability at

least 2/3. If G is ε-far from P, the tester must reject with probability at least 2/3. A one-sided

tester must accept G ∈ P with probability 1, and thus must provide a certificate of rejection.

We are interested in properties expressible through forbidden minors. Fix a finite graph

H. The property PH of H-minor-freeness is the set of graphs that do not contain H as a minor.

Observe that one-sided testers for PH have a special significance since they must produce an

H-minor whenever they reject. One can cast one-sided property testers for PH as sublinear time

procedures that find forbidden minors. Our main theorem follows.

Theorem 2.0.1. Fix a finite graph H with |V (H)| = r and arbitrarily small δ > 0. Let PH be

the property of H-minor-freeness. There is a randomized algorithm that takes as input (oracle

access to) a graph G with maximum degree d, and a parameter ε > 0. Its running time is

dn1/2+O(δr2) +dε−2 exp(2/δ)/δ. If G is ε-far from PH , then, with probability > 2/3, the algorithm

outputs an H-minor in G.

Equivalently, there exists a one-sided property tester for PH with the above running

time.

The graph minor theorem of Robertson and Seymour [RS04] asserts the following.

Consider any property Q that is closed under taking minors. There is a finite list H of graphs

such that G ∈ Q iff G is H-minor-free for all H ∈ H. If G is ε-far from Q, then G is Ω(ε)-far

from PH for some H ∈H. Thus, a direct corollary of Theorem 2.0.1 is the following.

Corollary 2.0.2. Let Q be any minor-closed property of graphs with degree bound d. For any

δ > 0, there is a one-sided property tester for Q with running time O(dn1/2+δ + dε−2 exp(2/δ)/δ).

In the following discussion, we suppress dependences on ε and nδ by O∗(·). Previously,

the only graphs H for which an analogue of Theorem 2.0.1 was known are the following: O∗(1)

time for H being a forest, O∗(
√
n) for H being a cycle [CGR+14], and O∗(n2/3) for H being

K2,k, the (k × 2)-grid, and the k-circus [FLVW17, FLVW18]. No sublinear time bound was

known for planarity.

Corollary 2.0.2 implies that properties such as planarity, series-parallel graphs, embed-

dability in bounded genus surfaces, and bounded treewidth are all one-sided testable in O∗(
√
n)

time.

We note a particularly pleasing application of Theorem 2.0.1. Suppose a bounded

degree graph, G, has more than (3 + ε)n edges. Then it is guaranteed to be ε-far from being

planar, and thus, there is an algorithm to find a forbidden minor in G in O∗(
√
n) time. Since

all minor-closed properties have constant average degree bounds, analogous statements can be

made for all such properties.
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2.0.1 Related work

Graph minor theory is a deep topic, and we refer the reader to Chapter 12 of Diestel’s

book [Die10] and Lovász’s survey [Lov06]. For our purposes, we use as a black-box a polynomial

time algorithm that finds fixed minors in a graph. A result of Kawarabayashi-Kobayashi-Reed

provides an O(n2) time algorithm [KKR12].

Property testing on graphs is an immensely rich area of study, and we refer the reader

to Goldreich’s recent textbook for more details [Gol17]. There is a significant difference between

the theory of property testing for dense graphs and that of bounded degree graphs. For the

former, there is a complete characterization of properties (one-sided, non-adaptive) testable in

query complexity independent of graph size. There is a deep connection between property testing

and the Szemeredi regularity lemma [AFNS06]. Property testing for bounded degree graphs is

much less understood. This study was initiated by Goldreich-Ron, and the first results focused

on connectivity properties [GR02]. Czumaj-Sohler-Shapira proved that hereditary properties

of non-expanding graphs are testable [CSS09]. A breakthrough result of Benjamini-Schramm-

Shapira (henceforth BSS) proved that all minor-closed (more generally, hyperfinite) properties

are two-sided testable in constant time. The dependence on ε was subsequently improved by

Hassidim et al., using the concept of local partitioning oracles [HKNO09]. A result of Levi-Ron

[LR15] significantly simplified and improved this analysis, to get a final query complexity quasi-

polynomial in 1/ε. Indeed, it is a major open question to get polynomial dependence on 1/ε for

two-sided planarity testers. Towards this goal, Ito and Yoshida give such a bound for testing

outerplanarity [YI15], or Edelman et al. generalize for bounded treewidth graphs [EHNO11].

In contrast to dense graph testing, there is a significant jump in complexity for one-sided

testers. BSS first raised the question of one-sided testers for minor-closed properties (especially

planarity) and conjectured that the bound is O(
√
n). Czumaj et al. [CGR+14] made the first

step by giving an Õ(
√
n) one-sided tester for the property of being Ck-minor-free [CGR+14]. For

k = 3, this is precisely the class of forests. This tester is obtained by a reduction to a much older

result of Goldreich-Ron for one-sided bipartiteness testing for bounded degree graphs [GR99]

(the results in Czumaj et al. are obtained by black-box applications of this result). Czumaj et

al. adapt the one-sided Ω(
√
n) lower bound for bipartiteness and show an Ω(

√
n) lower bound

for one-sided testers for H-minor-freeness when H has a cycle [CGR+14]. This is complemented

with a constant time tester for H-minor-freeness when H is a forest.

Recently, Fichtenberger-Levi-Vasudev-Wötzel give an Õ(n2/3) tester for H-minor-

freeness when H is one of the following graphs: K2,k, the (k × 2)-grid or the k-circus graph

(a wheel where spokes have two edges) [FLVW17, FLVW18]. This subsumes the properties of

outerplanarity and cactus graphs. This result uses a different, more combinatorial (as opposed

to random walk based) approach than Czumaj et al. A one step random walk in a graph G that

begins at a vertex v consists of picking a neighbor u ∼ N(v) u.a.r and going to that vertex.
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The use of random walks in property testing was pioneered by Goldreich-Ron [GR99]

and was then (naturally) used in testing expansion properties and clustering structure [GR11,

CS10, KS08, NS10, KPS13, CPS15]. Our approach is inspired by the Goldreich-Ron analysis,

and we discuss more in the next section. A number of previous results have used random walks for

routing in expanders [BFU99, KR96]. We use techniques from Kale-Seshadhri-Peres to analyze

random walks on projected Markov Chains [KPS13]. We also employ the local partitioning

methods of Spielman-Teng [ST12], which is in turn derived from the Lovász-Simonovits analysis

technique [LS90a].

2.1 Main Ideas

We give an overview of the proof strategy and discuss the various moving parts of

the proof. Assume that G is a d-regular graph. It is instructive to understand the method

of Goldreich-Ron (henceforth GR) for one-side bipartiteness testing [GR99]. The basic idea to

perform O(
√
n) lazy random walks of poly(logn) length from a u.a.r vertex s. Recall that a lazy

random walk stays at the current vertex with probability 1/2, and moves to a uniform random

neighbor (since we assume d-regularity) with probability 1/2. An odd cycle is discovered when

two walks end at the same vertex v, through path of differing parity (of length).

The GR analysis first considers the case when G is an expander (and ε-far from

bipartite). In this case, the walks from s reach the stationary distribution. One can use a

standard collision argument to show that O(
√
n) suffice to hit the same vertex v twice, with

different parity paths. The deep insight is that any graph G can be decomposed into pieces

where the algorithm works, and each piece P has a small cut to P . This has connections with

decomposing a graph into expander-like pieces [Tre05, AGPT16]. Famously, the Arora-Barak-

Steurer algorithm [ABS15] for unique games basically proves such a statement. We note that

GR does not decompose into expanders, but rather into pieces where the expander analysis

goes through. So, one might hope to analyze the algorithm by its behavior on each component.

Unfortunately, the algorithm cannot produce the decomposition; it can only walk in G and hope

that performing random walks in G suffice to simulate the procedure within P . This is extremely

challenging, and is precisely what GR achieve (this is the bulk of the analysis). The main lemma

produces a decomposition into such pieces, such that for each piece P , there exists s ∈ P wherein

short random walks (in G) from s reach all vertices in P with sufficient probability. One can

think of this as a simulation argument: we would like to simulate the random walk algorithm

running only on P , through random walks in G.

The challenge of general minors: With planarity in mind, let us focus on finding

K5 minors. It is highly unlikely that random walks from a single vertex will find a such a minor.

Intuitively, we would need to find 5 different vertices, launch random walks from all of them
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and hope these walks will produce a minor. Thus, we would need to simulate a much more

complex procedure than the (odd) cycle finder of GR. Most significantly, we need to understand

the random walks behavior from multiple sources within P simultaneously. The GR analysis

actually constructs the pieces P by a local partitioning looking at the random walk distribution

from a single vertex. There is no guarantee on random walk behavior from other vertices in P .

There is a more significant challenge from arbitrary minors. The simulation does

not say anything about the specific structure of the paths generated. It only deals with the

probability of reaching v from s by a random walk in G when v and s are in the same piece. For

bipartiteness, as long as we find two paths of differing parity, we are done. They may intersect

each other arbitrarily. For finding a K5 minor, the actual intersection matter. We would need

paths between all pairs of 5 seed vertices to be “disjoint enough” to give a K5 minor. This

appears extremely difficult using the GR analysis. Even if we did understand the random walk

behavior (in G) from all vertices in P , we have little control over their behavior when they leave

P . (Based on the parameters, the walks leave P with high probability.) They may intersect

arbitrarily, and thus destroy any minor structure.

2.1.1 When do random walks find minors?

Inspired by GR, let us start with an algorithm to find a K5 minor in an expander G

(variants of these ideas were present in a result of Kleinberg-Rubinfeld that expanders contain

an H-minor for any H with n/poly(log n) edges [KR96]). Let ` denote the mixing time. Pick

u.a.r. a vertex, s, and launch 5 random walks each of length ` to reach v1, v2, . . . , v5. From

each vi, launch
√
n random walks each of length `. With high probability, a walk from vi and a

walk from vj will “collide” (end at the same vertex). We can collect these collisions to get paths

between all vi, vj , and one can, with some effort, show that these form a K5-minor.

Our main insight is to show that this algorithm, with minor modifications, works even

when random walks have extremely slow mixing properties. When the random walks mix even

more slowly than the requisite bound, we can essentially perform local partitioning to pull out

very small (nδ for arbitrarily small δ > 0) pieces that have low conductance cuts. We can simply

query all edges in this piece and run a planarity test.

There is a parameter δ > 0 that can be set to an arbitrarily small constant. Let us set

the random walk length ` to nδ, and let ps,` be the random walk distribution after ` steps from

s. Our proof splits into two cases, where α = cδ for explicit constant c > 1:

• Case 1 (the leaky case): For at least εn vertices s, ‖ps,`‖22 ≤ 1/nα.

• Case 2 (the trapped case): For at least (1− ε)n vertices s,‖ps,`‖22 > 1/nα.

In the leaky case, the upper bounds is too weak to argue about convergence of the random walk.

We merely have the property that a random walk of length nδ (roughly speaking) spreads to a
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set of size ncδ.

We prove that, in the leaky case, the procedure described in the first paragraph succeeds

in finding a K5 with high probability. We give an outline of this proof strategy.

Let us assume that pv,`/2 = pv,` (so `/2-length walks have “stabilized”). Let us make

a slight modification to the algorithm. We pick v1, . . . , v5 as before, with `-length random walks

from s. We will perform O(
√
n) `/2 length random walks from each vi to produce the K5

minor. By symmetry of the random walks, the probability that a single walk from vi and one

from vj collide (to produce a path) is exactly pvi,`/2 · pvj ,`/2. Thus, we would like these dot

products to be large. By the symmetry of the random walk, the probability of an `-length

random walk starting from s and ending at v is ps,`/2 ·pv,`/2. In other words, the entries of ps,`

are precisely these dot products, and ‖ps,`‖22 =
∑
v∈V (ps,`/2 ·pv,`/2)2 = Ev∼ps,`/2 [ps,`/2 ·pv,`/2].

Since ps,`/2 = ps,`, we rewrite to get ps,`/2 · ps,`/2 = Ev∼ps,`/2 [ps,`/2 · pv,`/2].

Think of the dot products as correlations between distributions. We are saying that the

average correlation (over some distribution on vertices) of pv,`/2 with ps,`/2 is exactly the self-

correlation of ps,`/2. If the distributions mostly had low `2-norm (as in the leaky case), we might

hope that these distributions are reasonably correlated with each other. Indeed, this is what

we prove in Lemma 2.3.11. Under some conditions, we show that Evi,vj∼ps,`/2 [pvi,`/2 · pvj ,`/2]

can be lower bounded, where ps,`/2 is exactly the distribution the algorithm picks the vi and vj

from. This is evidence that `/2-length random walks will connect the vi’s through collisions.

There are four difficulties in increasing order of worry.

1. We only have a lower bound of the average pvi,`/2 · pvj ,`/2. We would need bounds for all

(or most) pairs to produce a minor.

2. pv,` might be very different from pv,`/2.

3. The expected number of collisions between walks from vi and vj is controlled by the

dot product above, but the variance (which really controls the probability of getting a

collision) can be large. There are instances where the dot product is high, but the collision

probability is extremely low.

4. There is no guarantee that these paths will produce a minor since we do not have any

obvious constraints on the intermediate vertices in the path.

The first problem is surmounted by a technical trick. It turns out to be cleaner to

analyze the probability of getting a biclique minor. Observe that Kr,r has Kr as a minor.

(Contract all the edges in any perfect matching of Kr,r to obtain Kr.) So, we perform 10

random walks from s to get sets A = {a1, a2, . . . , a5} and an analogous B. We launch `/2-length

14



random walks from each vertex in A ∪B. The average lower bound on the dot product suffices

to get a lower bound on the probability of getting a K5,5-minor, which contains a K5-minor.

For the second problem, it turns out that the weaker bound of ‖pv,`‖2 = Ω(n−δ‖pv,`/2‖2)

suffices. We could try to search for some value of ` where this happens. If there was no (small)

value of ` where this bound held, then it suggest that ‖pv,nδ‖2 is extremely small (say Θ(1/n)).

This kind of reasoning is detailed more in the next subsection.

The third problem requires bounds on the variance, or higher norms, of pv,`/2.

Unfortunately, there appears be no handle on these. At a high level, our idea is to truncate

pv,`/2 by ignoring large entries. This truncated vector is not a probability vector any more, but

we can hope to redo the analysis for such vectors.

Now for the fourth problem. Naturally, if the vertices v1, . . . , v5 are close to each other,

we do not expect to get a minor by connecting them. Suppose they were sufficiently “spread

out”, One could hope that the paths connecting the vi, vj pairs would only intersect “near” the

vi. The portion of the paths nears the vi’s could be contracted to get a K5-minor. We can

roughly quantify how far the vi’s will be by the variance of pv,`/2. Thus, the third and fourth

problem are coupled.

2.1.2 Returning walks

The main technical contribution of our work is in defining R-returning walks. These

are walks that periodically return to a given set of vertices, R. A careful analysis of these walks

provides the tools to handle the various problems discussed above.

Fix ` as before. Formally, an R-returning walk of length j` (for j ∈ N) is a walk that

encounters R at every i` step ∀i ∈ [j]. While random walk distributions can have poor variance,

we can carefully choose R to ensure that the distribution of R-returning walks is well-behaved.

We will quantify this as approximate “support uniformity” (being approximatedly uniform on

the support).

In the leaky case, there is some (large) set, R, such that ∀s ∈ R, ‖ps,`/2‖22 ≤ 1/nα.

Let p[R],s,` be the random walk distribution restricted to R. Suppose for some s ∈ R,

‖p[R],s,`‖22 ≥ 1/nα+δ. Observe that each entry in p[R],s,` is ps,`/2 · pv,`/2, for s, v ∈ R. By

Cauchy-Schwartz, this is at most 1/nα. For any distribution v, the condition ‖v‖22 = ‖v‖∞
is equivalent to support uniformity. While p[R],s,` is not a distribution, if one assumes that

‖p[R],s,`‖1 is sufficiently large, we deduce that p[R],s,` is approximately support uniform. (When

R is sufficiently large, one can prove that ‖p[R],s,`‖1 is large.) The math discussed in the previous

section goes through for any such s ∈ R. In other words, if the random walk algorithm started

from s, it succeeds in finding a K5 minor.

Suppose only a negligible fraction of vertices satisfied this condition, and so our

algorithm would not actually find such a vertex. Let us remove all these vertices from R
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(abusing notation, let R be the resulting set). Now, ∀s ∈ R, ‖p[R],s,`‖22 ≤ 1/nα+δ. So, the

bound on the l2-norm has fallen by an nδ factor. What does p[R],s,` · p[R],v,` signify? This is

the probability of a 2`-length random walk starting from s, ending at v, and encountering R at

the `-th step. This is an R-returning walk of length 2`. Let q[R],s,2` denote the vector of R-

returning walk probabilities. Suppose for some s, ‖q[R],s,2`‖22 ≥ 1/nα+2δ. By Cauchy-Schwartz,

‖q[R],s,2`‖∞ ≤ 1/nα+δ, implying that q[R],s,2` is approximately support uniform. Again, the

math of the previous section goes through for such an s.

We remove all vertices that have this property, and end up with R such that ∀s ∈ R,

‖q[R],s,2`‖22 ≤ 1/nα+2δ. Observe that q[R],s,2` ·q[R],v,2` is a probability of a 4` R-returning walk.

We then iterate this argument.

In general, this argument goes through phases. In the ith phase, we find all s ∈ R that

satisfy ‖q[R],s,2i`‖22 ≥ 1/nα+iδ. We show that the random walk procedure of the previous section

(with some modifications) finds a K5-minor starting from such vertices. We remove all such

vertices from R, increment i and continue the argument. The vertices removed at the ith phase

are called the ith stratum, and we refer to this entire process as stratification. Intuitively, for

vertices in the ith stratum, the R-returning (for the setting of R at that phase) walk probabilities

roughly form a uniform distribution of support nα+iδ. Thus, for vertices in higher strata, the

random walks are spreading to larger sets.

There is a major problem. The q vectors are not distributions, and the vast majority

of walks are not R-returning. Indeed, the reduction in norm as we increase strata might simply

be an artifact of the lower probability of a longer R-returning walk (note that the walks lengths

are increasing exponentially in the phase number). We prove a spectral lemma asserting that

this is not the case. As long as R is sufficiently large, the probabilities of R-returning walks are

sufficiently high. Unfortunately, these probabilities (must) decrease exponentially in the number

of returns. In the ith phase, the walk length is 2i` and it must return to R 2i times. Here is

where the nδ decay in l2-norm condition saves us. After 1/δ phases, the ‖q[R],s,2i`‖22 is basically

1/n. The spectral lemma tells us that if R is still large, the probability that a 21/δ` length walk

is R-returning is sufficiently large. Thus, the norm cannot decrease, and almost all vertices end

up in the very next stratum. If R was small, then there is an earlier stratum containing Ω(δεn)

vertices. Regardless of the case, there exists a i ≤ 1/δ+O(1) such that the ith stratum contains

Ω(δεn) vertices. For all these vertices, the random walk algorithm to find minors succeeds with

non-trivial probability.

2.1.3 The trapped case: local partitioning to the rescue

In this case, for almost all vertices ‖ps,`‖22 ≥ 1/nα. The proofs of the (contrapositive

of the) Cheeger inequality basically imply the existence of a set of low condutance cut Ps

“around” s. By local partitioning methods such as those of Spielman-Teng and Anderson-
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Chung-Lang [ST12, ACL06], we can actually find Ps in roughly nα time. We expect our graph to

basically decompose into O(nα) sized components with few edges between them. Our algorithm

can simply find these pieces Ps and run a planarity test on them. We refer to this as the local

search procedure.

While the intuition is correct, the analysis is difficult. The main problem is that

actual partitioning of the graph (into small components connected by low conductance cuts)

is fundamentally iterative. It starts by finding a low conductance set Ps1 , then finding a low

conductance set Ps2 in Ps1 , then Ps3 in Ps1 ∪ Ps2 , and so on. In general, this requires conditions

on the random walk behavior inside
⋃
j<i Psj . On the other hand, our algorithm and the trapped

case condition only refer to random walk behavior in all of G. Furthermore,
⋃
j<i Psj can be as

small as Θ(εn), and so we do expect the random walk behavior to be quite different.

The GR bipartiteness analysis surmounts this problem and performs such a decompo-

sition, but their parameters do not work for us. Starting from a source vertex s, their analysis

discovers Ps such that probabilities of reaching any vertex in Ps (from s) is roughly uniform and

smaller than 1/
√
n. On the other hand, we would like to discover all of Ps in nO(δ) time so that

we can run a full planarity test.

We employ a collection of tools, and use the methods of Kale-Peres-Seshadhri to analyze

“projected” Markov Chains [KPS13]. In the analysis above, we have some set S (
⋃
j<i Psj ) and

want to find a low conductance set P completely contained in S. Moreover, we wish to discover

P using random walks in G. We construct a Markov chain, MS , with vertex set S, and include

new transitions that correspond to walks in G whose intermediate vertices are not in S. Each

such transition has an associated “cost,” corresponding to the actual length in G. (GR also have

a similar idea, although their Markov chain introduces extra vertices to track the length of the

walk in G. This makes the analysis somewhat unwieldy, since low conductance cuts in MS may

include these extra vertices.)

Using bounds on the return time of random walks, we have relationships between the

average length of a walk in G whose endpoints are in S and the corresponding length when

“projected” to MS . On average, an `-length walk in G with endpoints in S corresponds to an

`|S|/n-length walk in MS . Roughly speaking, we hope that for many vertices s, an `|S|/n-length

walk in MS is trapped in a set of size nα.

We employ the Lovász-Simonovits curve technique to produce a low conductance cut

Ps in MS [LS90a]. We can guarantee that all vertices in Ps are reachable with roughly n−α

probability from s through `|S|/n-length random walks in MS . Using the average length

correspondence between walks in MS to G, we can make a similar statement in G - albeit with

a longer length. We basically iterate over this entire argument to produce the decomposition

into low conductance pieces.

In our analysis, we use the stratification itself to (implicitly) distinguish between the

17



leaky and trapped case. Stratification peels the graph into 1/δ +O(1) strata. If a vertex s lies

in a stratum numbered at least some fixed constant b, we can show that the algorithm finds a

Kr-minor with s as the starting vertex. Thus, if at least (say) n1−δ vertices lie in stratum b or

higher, we are done. If s is in a low stratum, we have a lower bound on the random walks norm.

This allows for local partitioning around s.

2.2 The algorithm

We are given a bounded degree graph G = (V,E), with max degree d. We assume that

V = [n]. We follow the standard adjacency list model of Goldreich-Ron for (random) access to

the graph. This model allows an algorithm to sample u.a.r. vertices and perform edge queries.

Given a pair (v, i) ∈ [n]× [d], the output of an edge query is the ith neighbor of v according to

the adjacency list ordering. If the degree of v is smaller than i, the output is ⊥.

In the algorithm, the phrase “random walk” refers to a lazy random walk on G. Given

a current vertex, v, with probability 1/2, the walk remains at v. With probability 1/2, the

procedure generates u.a.r. i ∈ [d]. It performs the edge query for (v, i). If the output is ⊥, the

walk remains at v, otherwise the walk visits the output vertex. This is a symmetric, ergodic

Markov chain with a uniform stationary distribution.

Our main procedure FindMinor(G, ε,H), tries to find a H-minor in G. We prove

that it succeeds with high probability if G is ε-far from being H-minor-free. There are three

subroutines:

• LocalSearch(s): This procedure perform a small number of short random walks to

find the piece described in §2.1.3. This produces a small subgraph of G, where an exact H-minor

finding algorithm is used.

• FindPath(u, v, k, i): This procedure tries to find a path from u to v. The parameter

i decides the length of the walk, and the procedure performs k walks from u and v. If any pair

of these walks collide, this path is output.

• FindBiclique(s): This is the main procedure mostly as described in §2.1.1. It

attempts to find a sufficiently large biclique minor. First, it generates seed sets A and B by

performing random walks from s. Then, it calls FindPath on all pairs in A×B.

We fix a collection of parameters.

• δ: An arbitrarily small constant.

• r: The number of vertices in H.

• `: The random walk length. This will be n5δ.

• εCUTOFF: εCUTOFF = n
−δ

exp(2/δ) . If ε < εCUTOFF, the algorithm just queries the whole

graph.
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• KKR(F,H): This refers to an exact H-minor finding process (in F ). For concreteness,

we use O(|V (G)|2) procedure of Kawarabayashi-Kobayashi-Reed [KKR12].

FindMinor(G, ε,H)

1. If ε < εCUTOFF, query all of G, and output KKR(G,H)

2. Else

(a) Repeat ε−2n35δr
2

times:

i. Pick u.a.r s ∈ V
ii. Call LocalSearch(s) and FindBiclique(s).

LocalSearch(s)

1. Initialize set B = ∅.
2. For h = 1, . . . , n7δr2 :

(a) Perform ε−1n30δr
2

independent random walks of length h from s. Add all

destination vertices to B.

3. Determine G[B], the subgraph induced by B.

4. Run KKR(G[B], H). If it returns an H-minor, output that and terminate.

FindBiclique(s)

1. For i = 5r2, . . . , 1/δ + 4:

(a) Perform 2r independent random walks of length 2i+1` from s. Let the

destinations of the first r walks be multiset A, and the destinations of the

remaining walks be B.

(b) For each a ∈ A, b ∈ B:

i. Run FindPath(a, b, nδ(i+18)/2, i)

(c) If all calls to FindPath return a path, then let the collection of paths be

the subgraph F . Run KKR(F,H). If it returns an H-minor, output that and

terminate.

FindPath(u, v, k, i)

1. Perform k random walks of length 2i` from u and v.

2. If a walk from u and v terminate at the same vertex, return these paths.

(Otherwise, return nothing.)

Theorem 2.2.1. If G is ε-far from being H-minor-free, FindMinor(G, ε,H) finds an H-

minor of G with probability at least 2/3. Furthermore, FindMinor has a running time of

dn1/2+O(δr2) + dε−2 exp(2/δ)/δ.

The query complexity is fairly easy to compute. The total queries made in the Local-

Search calls is dnO(δr2). The main work happens in the calls of FindPath, within FindBiclique.

Observe that k is set to nδ(i+18)/2, where i≤ 1/δ+4. This leads to the
√
n in the final complexity.

(In general, a setting of δ < 1/ log(ε−1 log log n) suffices for an n1/2+o(1) running time.)
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Outline: There are a number of moving parts in the proof, which we relegate to their

own subsections. We first develop the notion of R-returning walks and the stratification process

in §2.3. In §2.4, we use these techniques to prove that FindBiclique discovers a sufficiently

large biclique-minor in the leaky case. In §2.5, we prove a local partitioning lemma that will

be used to handle the trapped case. Finally, in §2.6, we put the tools together to complete the

proof of Theorem 2.2.1.

2.3 Returning walks and stratification

We introduce the concept of R-returning random walks for any R ⊆ V . These

definitions are with respect to a fixed length `.

Notation Meaning Where defined

q
(i)
[R],s R-returning probability vector §2.3, Def 2.3.1

q
(i)
[R],s(u) Probability of R-returning walk ending at u ∈ R §2.3, Def 2.3.1

q̂
(i)
[Ri],s

(u) Distribution on Ri induced by q
(i)
[Ri],s

Def 2.3.10

Table 2.1: Stratification notation

Definition 2.3.1. For any set of vertices R, s ∈R, u ∈R, and i ∈ N, we define the R-returning

probability as follows. We denote by q
(i)
[R],s(u) the probability that a 2i`-length random walk from

s ends at u, and encounters a vertex in R at every j`th step, for all 1 ≤ j ≤ 2i. The R-returning

probability vector, denoted by q
(i)
[R],s, is the |R|-dimensional vector of returning probabilities.

Proposition 2.3.2. q
(i+1)
[R],s (u) = q

(i)
[R],s · q

(i)
[R],u

Proof. We use the symmetry of (returning) random walks in G.

q
(i+1)
[R],s (u) =

∑
w∈S

q
(i)
[R],s(w)q

(i)
[R],w(u) =

∑
w∈R

q
(i)
[R],s(w)q

(i)
[R],u(w) = q

(i)
[R],s · q

(i)
[R],u

Let M be the transition matrix of the lazy random walk on G. Let PR be the n× |R|
matrix on R, where each column is the unit vector for some s ∈ R. For any set U , we use 1U for

the indicator vector on U . If no subscript is given, it is the all ones vector, for the appropriate

dimension.

Proposition 2.3.3. q
(i)
[R],s = (PTRM `PR)2

i

1s

Now for a critical lemma. We can lower bound the total probability of an R-returning random

walk. If R contains at least a β-fraction of vertices, the average R-returning walk probability,

for t returns, is at least βt.
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Lemma 2.3.4. |R|−1
∑
s∈R ‖q

(i)
[R],s‖1 ≥ (|R|/n)2

i

Proof. We will express
∑
s∈R ‖q

(i)
[R],s‖1 = 1T (PTRM `PR)2

i

1. Let us first prove the lemma for

i = 0. Observe that∑
s∈R
‖q(0)[R],s‖1 = 1TRM

`1R = ((MT )`/21R)T (M `/21R) = ‖M `/21R‖22.

Since M `/2 is a stochastic matrix, ‖M `/21R‖1 = ‖1R‖1 = |R|. By a standard norm inequality,

‖M `/21R‖22 ≥ ‖M `/21R‖21/n = |R|2/n. This completes the proof for i = 0.

Let N = PTRM `PR, which is a symmetric matrix. We have just proven that

1TN1 ≥ |R|2/n. Let the eigenvalues of N be 1 ≥ λ1 ≥ λ2 . . . λ|R|, with corresponding

eigenvectors u1,u2, . . . ,us. We can express 1 =
∑
k≤|R| αkuk, where

∑
k α

2
k = |R|. Observe

that N2i1 =
∑
k≤|R| αkλ

2i

k uk

Let µk = α2
k/
∑
j α

2
j , noting that

∑
k µk = 1. We apply Jensen’s inequality below.

1TN2i1

|R|
=

∑
k α

2
kλ

2i

k∑
j α

2
j

=
∑
k

µkλ
2i

k ≥ (
∑
k

µkλk)2
i

For i = 0, we already proved that 1TN1/|R| =
∑
k µkλk ≥ |R|/n. We plug this bound

to complete the proof for general i.

2.3.1 Stratification

Stratification results in a collection of disjoint sets of vertices denoted by S0, S1, . . .

which are called strata. The corresponding residue sets denoted by R0, R1, . . .. The zeroth

residue R0 is initialized before stratification and subsequent residues are defined by the

recurrence Ri = R0 \
⋃
j<i Sj . The definitions and claims may seem technical, and the proofs

are mostly norm manipulations. But these provide the tools to analyze our main algorithm.

Definition 2.3.5. Suppose Ri has been constructed. A vertex s ∈ Ri is placed in Si if

‖q(i+1)
[Ri],s

‖22 ≥ 1/nδi.

We have an upper bound for the length of Ri-returning walk vectors.

Claim 2.3.6. For all s ∈ Ri and 1 ≤ j ≤ i, ‖q(j)[Ri],s
‖22 ≤ 1/nδ(j−1).

Proof. Suppose ∃j ≤ i, ‖q(j)[Ri],s
‖22 > 1/nδ(j−1). By assumption, s ∈ Ri ⊆ Rj−1. An Ri-returning

walk from s is also an Rj−1-returning walk. Thus, every entry of q
(j)
[Rj−1],s

is at least that of

q
(j)
[Ri],s

. So ‖q(j)[Rj−1],s
‖22 ≥ ‖q

(j)
[Ri],s

‖22 > 1/nδ(j−1). This implies that s ∈ Sj−1 or an earlier stratum,

contradicting the assumption that s ∈ Ri.

We prove an `∞ bound on the returning probability vectors. Note that we allow j to

be i+ 1 in the following bound.
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Claim 2.3.7. For all s ∈ Ri and 2 ≤ j ≤ i+ 1, ‖q(j)[Ri],s
‖∞ ≤ 1/nδ(j−2).

Proof. By Prop. 2.3.2, for any v ∈ Ri, q(j)[Ri],s
(v) = q

(j−1)
[Ri],s

· q(j−1)[Ri],v
. Note that 1 ≤ j − 1 ≤ i. By

Cauchy-Schwartz and Claim 2.3.6, q
(j)
[Ri],s

(v) ≤ 1/nδ(j−2).

As a consequence of these bounds, we are able to bound the amount of probability

mass retained by Ri-returning walks.

Claim 2.3.8. For all s ∈ Si, ||q(i+1)
[Ri],s

||1 ≥ n−δ.

Proof. Since s ∈ Si, ||q(i+1)
[Ri],s

||22 ≥ n−iδ, and by Claim 2.3.7, ||q(i+1)
[Ri],s

||∞ ≤ n−δ(i−1). Since,

||q(i+1)
[Ri],s

||22 ≤ ||q
(i+1)
[Ri],s

||1||q(i+1)
[Ri],s

||∞, we conclude ||q(i+1)
[Ri],s

||1 ≥ n−iδnδ(i−1) = n−δ.

We prove that most vertices lie in “early” strata.

Lemma 2.3.9. Suppose ε ≥ εCUTOFF. At most εn/log n vertices are in R1/δ+3.

Proof. We prove by contradiction. Suppose that R1/δ+3 has at least εn/ log n vertices. The

previous residue, R1/δ+2, is only bigger and thus |R1/δ+2| ≥ εn/ logn as well. By Lemma 2.3.4,

|R1/δ+2|−1
∑

s∈R1/δ+2

‖q(1/δ+3)
[R1/δ+2],s

‖1 ≥
(

ε

log n

)21/δ+3

. (2.1)

By averaging and Cauchy-Schwartz (to relate l1 and l2 norms),

||q(1/δ+3)
[R1/δ+2],s

‖22 ≥ n−1
(

ε

log n

)21/δ+4

. (2.2)

By assumption, ε ≥ εCUTOFF ≥ n−δ/ exp(1/δ). For sufficiently small δ,

δ/ exp(1/δ) < 2δ/21/δ+4

Thus, ε ≥ (logn)n−2δ/(2
1/δ+4). Plugging into the RHS of the previous equation, ||q(1/δ+3)

[R1/δ+2],s
‖22 ≥

1/n1+2δ = 1/nδ(1/δ+2). This implies that v ∈ S1/δ+2 - a contradiction.

2.3.2 The correlation lemma

The following lemma is an important tool in our analysis. Here is an intuitive

explanation. Fix some s ∈ Si. By Prop. 2.3.2, the probability q
(i+1)
[Ri],s

(v) is the correlation

between the vectors q
(i)
[Ri],s

and q
(i)
[Ri],v

. If many of these probabilities are large, then there are

many v such that q
(i)
[Ri],v

is correlated with q
(i)
[Ri],s

. We then expect many of these vectors are

correlated among themselves.

Definition 2.3.10. For s ∈ Ri, the distribution Ds,i has support Ri, and the probability of

u ∈ Ri is q̂
(i+1)
[Ri],s

(v) = q
(i+1)
[Ri],s

(v)/‖q(i+1)
[Ri],s

‖1.
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Lemma 2.3.11. Fix arbitrary s ∈ Ri.

Eu1,u2∼Ds,i [q
(i)
[Ri],u1

· q(i)[Ri],u2
] ≥ 1

‖q(i+1)
[Ri],s

‖21
·
‖q(i+1)

[Ri],s
‖42

‖q(i)[Ri],s
‖22

Proof.

Eu1,u2∼Ds,i [q
(i)
[Ri],u1

· q(i)[Ri],u2
]

=
∑

u1,u2∈Ri

‖q(i+1)
[Ri],s

‖−21 q
(i+1)
[Ri],s

(u1)q
(i+1)
[Ri],s

(u2)q
(i)
[Ri],u1

· q(i)[Ri],u2

= ‖q(i+1)
[Ri],s

‖−21

∑
u1,u2∈Ri

(q
(i)
[Ri],s

· q(i)[Ri],u1
)(q

(i)
[Ri],s

· q(i)[Ri],u2
)(q

(i)
[Ri],u1

· q(i)[Ri],u2
)

= ‖q(i+1)
[Ri],s

‖−21

∑
u1,u2∈Ri

(q
(i)
[Ri],s

· q(i)[Ri],u1
)(q

(i)
[Ri],s

· q(i)[Ri],u2
)
∑
w∈Ri

q
(i)
[Ri],u1

(w)q
(i)
[Ri],u2

(w))

= ‖q(i+1)
[Ri],s

‖−21

∑
w∈Ri

u1,u2∈Ri

[(q
(i)
[Ri],s

· q(i)[Ri],u1
)q

(i)
[Ri],u1

(w)][(q
(i)
[Ri],s

· q(i)[Ri],u2
)q

(i)
[Ri],u2

(w)]

= ‖q(i+1)
[Ri],s

‖−21

∑
w∈Ri

[∑
u∈Ri

(q
(i)
[Ri],s

· q(i)[Ri],u
)q

(i)
[Ri],u

(w)

]2
(2.3)

We now write out ‖q(i+1)
[Ri],s

‖22 =
∑
u∈Ri q

(i+1)
[Ri],s

(u)2 =
∑
u∈Ri(q

(i)
[Ri],s

· q(i)[Ri],u
)2, by

Prop. 2.3.2. We expand further below. The only inequality is Cauchy-Schwartz.

‖q(i+1)
[Ri],s

‖22 =
∑
u∈Ri

(q
(i)
[Ri],s

· q(i)[Ri],u
)
∑
w∈Ri

q
(i)
[Ri],s

(w)q
(i)
[Ri],u

(w)

=
∑
w∈Ri

q
(i)
[Ri],s

(w)
[ ∑
u∈Ri

(q
(i)
[Ri],s

· q(i)[Ri],u
)q

(i)
[Ri],u

(w)
]

≤
√∑
w∈Ri

q
(i)
[Ri],s

(w)2
√∑
w∈Ri

[ ∑
u∈Ri

(q
(i)
[Ri],s

· q(i)[Ri],u
)q

(i)
[Ri],u

(w)
]2

= ‖q(i)[Ri],s
‖2‖q(i+1)

[Ri],s
‖1
√

Eu1,u2∼Dsi [q
(i)
[Ri],u1

· q(i)[Ri],u2
]

The last line is because of (2.3). We rearrange and take squares to complete the proof.

We can apply previous norm bounds to get an explicit lower bound. To see the

significance of the following lemma, note that by Claim 2.3.6 and Cauchy-Schwartz, ∀u1,u2 ∈Ri,
q
(i)
[Ri],u1

· q(i)[Ri],u2
≤ 1/nδ(i−1) (fairly close to the lower bound below).

Lemma 2.3.12. Fix arbitrary s ∈ Si.

Eu1,u2∼Ds,i [q
(i)
[Ri],u1

· q(i)[Ri],u2
] ≥ 1/nδ(i+1)

Proof. By Lemma 2.3.11, the LHS is at least 1

‖q(i+1)

[Ri],s
‖21
·
‖q(i+1)

[Ri],s
‖42

‖q(i)

[Ri],s
‖22

. Note that ‖q(i+1)
[Ri],s

‖1 ≤ 1. By

Def 2.3.5, ‖q(i+1)
[Ri],s

‖22 ≥ 1/nδi. Since s ∈ Si ⊆ Ri, by Claim 2.3.6, ‖q(i)[Ri],s
‖22 ≤ 1/nδ(i−1).
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2.4 Analysis of FindBiclique

This is the central theorem of our analysis. It shows that the FindBiclique(s)

procedure discovers a Kr,r minor with non-trivial probability when s is in a sufficiently high

stratum.

Theorem 2.4.1. Suppose s ∈ Si, for 5r2 ≤ i≤ 1/δ+3. The probability that the paths discovered

in FindBiclique(s) contain a Kr,r minor is at least n−4δr
2

.

Theorem 2.4.1 is proved in §2.4.5. Towards the proof, we will need multiple tools.

In §2.4.1, we perform a standard calculation to bound the success probability of FindPath.

In §2.4.2, we use this bound to show that the sets A and B sampled by FindBiclique are

successfully connected by paths as discovered by FindPath. In §2.4.3, we argue that the

intersections between these paths are “well-behaved” enough to induce a Kr,r minor.

We note that the
√
n in the final running time comes from the calls to FindPath in

FindBiclique.

2.4.1 The procedure FindPath

For convenience, we reproduce the procedure FindPath. It is a relatively straightfor-

ward application of a birthday paradox argument for bidirectional path finding.

FindPath(u, v, k, i)

1. Perform k random walks of length 2i` from u and v.

2. If a walk from u and v terminate at the same vertex, return these paths.

Lemma 2.4.2. Let c be a sufficiently large constant. Consider u, v ∈ Ri. Suppose there

exist α ≤ β such that max(‖q(i)[Ri],u
‖22, ‖q

(i)
[Ri],v

‖22) ≤ 1/nα and q
(i)
[Ri],u

· q(i)[Ri],v
≥ 1/2nβ. Then,

with k ≥ cnβ/2+4(β−α), FindPath(u, v, k, i) returns an Ri-returning path of length 2i+1` with

probability ≥ 2/3.

Proof. First, define W = {w|q(i)[Ri],u
(w)/q

(i)
[Ri],v

(w) ∈ [1/(8nβ−α), 8nβ−α]}.∑
w/∈W

q
(i)
[Ri],u

(w)q
(i)
[Ri],v

(w) ≤ (8nβ−α)−1
∑
w/∈W

max(q
(i)
[Ri],u

(w), q
(i)
[Ri],v

(w))2

≤(8nβ−α)−1(‖q(i)[Ri],u
‖22 + ‖q(i)[Ri],v

‖22) ≤ 1/4nβ

Therefore,
∑
w∈W q

(i)
[Ri],u

(w)q
(i)
[Ri],v

(w) ≥ 1/4nβ .

For a, b≤ k, let Xa,b be the indicator for the following event: the ath 2i`-length random

walk from u is an Ri-returning walk that ends at some w ∈W , and the bth random walk from v

is also Ri-returning, ending at the same w. Let X =
∑
a,b≤kXa,b. Observe that the probability

that FindPath(u, v, k, i) returns a path is at least Pr[X > 0].
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We can bound

E[
∑
a,b≤k

Xa,b] = k2
∑
w∈W

q
(i)
[Ri],u

(w)q
(i)
[Ri],v

(w) ≥ k2/4nβ ≥ (c2/4)n8(β−α).

Let us now bound the variance. First, let us expand out the expected square.

E[(
∑
a,b

Xa,b)
2]

=
∑
a,b

E[X2
a,b] + 2

∑
a 6=a′,b

E[Xa,bXa′,b] + 2
∑
a,b6=b′

E[Xa,bXa′,b] + 2
∑

a 6=a′,b6=b′
E[Xa,bXa′,b′ ] (2.4)

Observe that X2
a,b = Xa,b. Furthermore, for a 6= a′, b 6= b′, by independence of the walks,

E[Xa,bXa′,b′ ] = E[Xa,b]E[Xa′,b′ ]. (This term will cancel out in the variance.) By symmetry,∑
a 6=a′,b E[Xa,bXa′,b] ≤ k3E[X1,1X2,1] (and analogously for the third term in (2.4)). Plugging

these in and expanding out the E[X]2,

var[X] ≤ E[X] + 2k3E[X1,1X2,1] + 2k3E[X1,1X1,2]

Note that X1,1X2,1 = 1 when the first and second walks from u end at the same vertex where

the first walk from v ends. Thus, E[X1,1X2,1] =
∑
w∈W q

(i)
[Ri],u

(w)2q
(i)
[Ri],v

(w). Since w ∈ W , we

have q
(i)
[Ri],u

(w)/8nβ−α ≤ q(i)[Ri],v
(w) ≤ 8nβ−αq

(i)
[Ri],u

(w). Plugging this bound in,

2k3E[X1,1X2,1] ≤ 16k3nβ−α
∑
w∈W

q
(i)
[Ri],u

(w)3

≤ 16k3nβ−α[
∑
w∈W

q
(i)
[Ri],u

(w)2]3/2 (l2-l3 norm inequality)

= 16nβ−α[k2
∑
w∈W

q
(i)
[Ri],u

(w)2]3/2

We can apply the bound q
(i)
[Ri],u

(w) ≤ 8nβ−αq
(i)
[Ri],v

(w).

2k3E[X1,1X2,1] ≤ 16nβ−α[k2
∑
w∈W

q
(i)
[Ri],u

(w)q
(i)
[Ri],v

(w) · 8nβ−α]3/2

≤ 512n5(β−α)/2[k2
∑
w∈W

q
(i)
[Ri],u

(w)q
(i)
[Ri],v

(w)]3/2 (2.5)

Note that k2
∑
w∈W q

(i)
[Ri],u

(w)q
(i)
[Ri],v

(w)]3/2 is exactly E[X]. We have previously

bounded E[X] ≥ (c2/4)n8(β−α). Thus, 512n5(β−α)/2 ≤ E[X]1/2/(c/100). Applying the bounds

in (2.5), we deduce that

2k3E[X1,1X2,1] ≤ (E[X]1/2/(c/100))(E[X]3/2) = E[X]2/(c/100)

We get an identical bound for 2k3E[X1,1X1,2]. Putting it all together, we can prove that

var[X]≤ 4E[X]2/c′, for c′= Θ(c). An application of Chebyshev proves that Pr[X > 0]> 2/3.
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2.4.2 The procedure IdealFindBiClique

We describe an “ideal” variant of FindBiclique below. It is not possible to directly

implement IdealFindBiClique. On the other hand, we can directly analyze the probability

that it produces a Kr,r-minor. We will eventually prove that the FindBiclique procedure can

efficiently simulate IdealFindBiClique.

IdealFindBiClique(s)

1. For i = 5r2, . . . , 1/δ + 4:

(a) Perform 2r independent draws from the distribution Ds,i (Def 2.3.10). Let

the first r draws be multiset A, and the remaining draws be B.

(b) For each a ∈ A, b ∈ B:

i. Run FindPath(a, b, nδ(i+18)/2, i)

(c) If all calls to FindPath return a path, then let the collection of paths be

the subgraph F . Run KKR(F,H). If it returns an H-minor, output that and

terminate.

The next lemma asserts that IdealFindBiClique finds (with non-trivial probability)

paths between all pairs of vertices between two sets of r vertices. Ignoring the gnarly problem

of the paths intersecting internally, this structure looks like a Kr,r-minor. Lemma 2.4.2 gives

bounds on finding a single path between one pair of vertices, whose truncated random walk

vectors satisfy some technical conditions. Somewhat naively, we could hope to find two sets of

vertices A,B where all pairs in A×B satisfied these conditions. Then, on applying Lemma 2.4.2

for each pair, we could find a subgraph that looks like a Kr,r minor.

It turns out that if A and B are themselves generated by performing random walks

from a fixed vertex, the probability conditions of Lemma 2.4.2 hold “on average” for the pairs in

A × B. This crucially uses the correlation lemma. The proof of the next lemma further shows

that this average condition suffices to lower bound the success probability of FindBiclique. We

can basically assume that each call of FindPath within IdealFindBiClique has an independent

success probability.

Lemma 2.4.3. Suppose s ∈ Si, for some i ≤ 1/δ + 4. With probability (4n2δ)−r
2

, the calls to

FindPath in IdealFindBiClique(s) output paths from every a ∈ A to every b ∈ B, where each

path is an Ri-returning walk of length 2i+1`.

Proof. Recall that each element in A ∪B is drawn according to q̂
(i+1)
[Ri],s

(u). For any a, b ∈ V , let

τa,b be the probability that FindPath(a, b, nδ(i+18)/2, i) succeeds in finding an Ri-returning walk

between a and b (of length 2i+1`). The probability of success for FindBiclique(s) conditioned
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on A,B ⊆ Ri is at least∑
A∈Rri

∑
B∈Rri

∏
a∈A

q̂
(i+1)
[Ri],s

(a)
∏
b∈B

q̂
(i+1)
[Ri],s

(b)τa,b

=
∑
A∈Rri

∑
B∈Rri

∏
a∈A

q̂
(i+1)
[Ri],s

(a)
( ∏
b∈B

q̂
(i+1)
[Ri],s

(b)
)( ∏

b∈B

τa,b

)
=
∑
B∈Rri

( ∏
b∈B

q̂
(i+1)
[Ri],s

(b)
) ∑
A∈Rri

∏
a∈A

[
q̂
(i+1)
[Ri],s

(a)
( ∏
b∈B

τa,b

)]
=
∑
B∈Rri

∏
b∈B

q̂
(i+1)
[Ri],s

(b)
( ∑
a∈Ri

q̂
(i+1)
[Ri],s

(a)
∏
b∈B

τa,b

)r
.

Observe that
∏
b∈B q̂

(i+1)
[Ri],s

(b) is a probability distribution over Rri . By Jensen, we lower bound.

∑
B∈Rri

∏
b∈B

q̂
(i+1)
[Ri],s

(b)
(∑
a∈Ri

q̂
(i+1)
[Ri],s

(a)
∏
b∈B

τa,b

)r
≥
[∑
B∈Rri

(∏
b∈B

q̂
(i+1)
[Ri],s

(b)
)∑
a∈Ri

q̂
(i+1)
[Ri],s

(a)
∏
b∈B

τa,b

]r
(2.6)

We manipulate and expand the right hand side of (2.6) further.

RHS of (2.6) =
[ ∑
a∈Ri

∑
B∈Rri

q̂
(i+1)
[Ri],s

(a)
( ∏
b∈B

q̂
(i+1)
[Ri],s

(b)
)( ∏

b∈B

τa,b

)]r
=
[ ∑
a∈Ri

q̂
(i+1)
[Ri],s

(a)
∑
B∈Rri

∏
b∈B

q̂
(i+1)
[Ri],s

(b)τa,b

]r
=
[ ∑
a∈Ri

q̂
(i+1)
[Ri],s

(a)
( ∑
b∈Ri

q̂
(i+1)
[Ri],s

(b)τa,b
)r]r

≥
[ ∑
a∈Ri

∑
b∈Ri

q̂
(i+1)
[Ri],s

(a)q̂
(i+1)
[Ri],s

(b)τa,b

]r2
(Jensen)

=
[
Ea,b∼Ds,i [τa,b]

]r2
. (2.7)

Towards lower bounding τa,b, we first lower bound q
(i)
[Ri],a

· q(i)[Ri],b
. By Lemma 2.3.12,

Ea,b[q
(i)
[Ri],a

· q(i)[Ri],b
] ≥ 1/nδ(i+1). Claim 2.3.6 states that ‖q(i)[Ri],a

‖22 ≤ 1/nδ(i−1) and ‖q(i)[Ri],b
‖22 ≤

1/nδ(i−1). By Cauchy-Schwartz, q
(i)
[Ri],a

· q(i)[Ri],b
≤ 1/nδ(i−1). Let p be the probability (over a, b)

that q
(i)
[Ri],a

· q(i)[Ri],b
≥ 1/2nδ(i+1).

1/nδ(i+1) ≤ Ea,b[q
(i)
[Ri],a

· q(i)[Ri],b
] ≤ (1− p)/2nδ(i+1) + p/nδ(i−1)

Thus, p ≥ 1/2n2δ.

By Claim 2.3.6, for every a ∈ Ri, ‖q(i)[Ri],a
‖22 ≤ 1/nδ(i−1) (similarly for b ∈ Ri). Suppose

q
(i)
[Ri],a

· q(i)[Ri],b
≥ 1/2nδ(i+1). Let us apply Lemma 2.4.2, with α = δ(i − 1) and β = δ(i + 1).

The number of walks performed in calls made to FindPath by the FindBiclique procedure,

(the value of k) is nδ(i+18)/2. Note that δ(i + 18)/2 > δ(i + 1)/2 + 8δ = β/2 + 4(α − β). By
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Lemma 2.4.2, τa,b ≥ 1/2. As argued in the previous paragraph, this will happen with probability

1/2n2δ (over the choice of a, b ∼ Ds,i). We plug in (2.7) and deduce that the probability of

success is at least (1/4n2δ)r
2

.

2.4.3 Criteria for IdealFindBiClique to reveal a minor

Fix s ∈ Si, as in Lemma 2.4.3. This lemma only asserts that all pairs in A × B are

connected by IdealFindBiClique (with non-trivial probability). We need to argue that these

paths will actually induce a Kr,r-minor.

The overall proof is highly technical, and we provide Tab. 2.2 for reference.

As in Lemma 2.4.3, let us focus on the ith iteration within IdealFindBiClique. For

every a ∈ A, b ∈ B, there is a call to FindPath(a, b, nδ(i+18)/2, i). Within each such call, a set of

walks is performed from both a and b, with the hope of connecting a to b. We use a, a′ (resp.

b, b′) to refer to elements in A (resp. B).

Notation Meaning Where defined

W b
a Ri-returning walks from a in FindPath(a, b, ·, ·) Def 2.4.4

W a

⋃
b∈BW

b
a Def 2.4.4

Pa,b A path from a to b discovered in FindPath Def 2.4.4

τ Middle step of the walks in W a or W b Def 2.4.5

σs,S,t Prob. vector of S-returning t-length walk from s §2.4.4, Def 2.4.7

Table 2.2: Bad Intersections notation

Definition 2.4.4. • Let W b
a denote the set of Ri-returning walks from a performed

in the call to FindPath(a, b, nδ(i+18)/2, i).

• Let W a denote the set of all vertices in
⋃
b∈BW

b
a.

• Let Pa,b be a single path from a to b discovered by FindPath (a, b, nδ(i+18)/2, i), that

consists of a walk in W b
a and a walk W a

b that end at the same vertex. If there are many possible

such paths, pick the lexicographically smallest.

We stress that walks in W b
a do not necessarily end at b, and come from a distribution

independent of b (but we wish to track the specific call of FindPath where these walks were

performed). Note that W a
b is the set of Ri-returning walks starting from b performed in the

same call.

Note that any of the paths/sets described above could be empty. We will think of paths

as sequences, rather than sets, since the order in which the path is constructed is relevant. For

any path, P , we use P (t) to denote the t-th element in the sequence. We use P (≥ t) to denote
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the sequence of elements with index at least t. When we refer to intersections of paths being

empty/non-empty, we refer to sets induced by the corresponding sequences.

For s ∈ Si, conditioned on A,B ⊆ Ri, Lemma 2.4.3 gives a lower bound on

Pr[∀a ∈ A, b ∈ B, (Pa,b 6= ∅)]. We will now define some bad events that interfere with minor

structure.

Recall that A and B are multisets (it is convenient to think of them as sequences). The

same vertex may appear multiple times in A ∪B, but we think of each occurrence as a distinct

multiset element. Therefore, when we speak of equality of vertices, we refer to vertices at the

same index in A (or B). By definition, elements in A are disjoint from B.

Definition 2.4.5. The following events are referred to as bad events of Type 1, 2, or 3. We

set τ = 2i−1`.

1. ∃a, b, c ∈ A ∪B, c /∈ {a, b}, such that W c ∩ Pa,b 6= ∅.

2. ∃a, b, b′ (all distinct) such that ∃W ∈W b
a where W (≥ τ)∩Pa,b′ 6= ∅. (Or, ∃a,a′ ∈A,b ∈B,

all distinct, such that ∃W ∈W a
b where W (≥ τ) ∩ Pa′,b 6= ∅.)

3. ∃a, b,Wa ∈W b
a,Wb ∈W a

b such that Wa,Wb end at the same vertex and ∃t1, t2 such that

min(t1, t2) ≤ τ and Wa(t1) = Wb(t2).

For clarity, let us express the above bad events in plain English. Note that τ is the

index of the midpoint of the walks, so it splits walks into halves.

1. A walk from c ∈ A ∪B intersects Pa,b, where c 6= a, b.

2. The second half of a walk in W b
a, which starts from a, intersects Pa,b′ for b 6= b′. Or, the

second half of a walk in W a
b , which starts at b, intersects Pa′,b for a 6= a′.

3. A walk in W b
a and a walk in W a

b intersect at least twice. Note that this is a pair of walks,

one from a and the other from b. The first intersection is in the first half of either of the

walks. The walks also end at the same vertex.

Claim 2.4.6. If all Pa,b sets are non-empty and there is no bad event, then
⋃
a,b Pa,b contains

a Kr,r-minor.

Proof. Each Pa,b is formed by Wa ∈ W b
a and Wb ∈ W a

b that end at the same vertex. Since

there is no Type 3 bad event, Wa(≤ τ) is disjoint from Wb (and vice versa). Since Pa,b is not

necessarily a simple path, let us remove all self-intersections to form a simple path P ′a,b. We

construct three vertex disjoint contiguous subpaths of P ′a,b (also refer to Fig. ??).

1. Qa,b is the contiguous subpath of P ′a,b contained in Wa(≤ τ). This is the “first half”

of the walk from a that forms Pa,b.
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Pa;b P 0

a;b

a

b
Qa;b

Qb;a

cPa;b

Wa(≤ τ)

Wb(≤ τ)

Figure 2.1: This figure shows the various subpaths defined in the proof of Claim 2.4.6. The

simple path P ′a,b (the thick path) from a to b induced by Pa,b (in light gray). This path is

broken into three contiguous subpaths: the portion “close to” a, the portion close to b, and the

remainder.

2. Qb,a is the contiguous subpath of P ′a,b contained in Wb(≤ τ). This is the “first half”

of the walk from b that forms Pa,b.

3. P̂a,b is the contiguous subpath of P ′a,b formed by removing vertices of Qa,b ∪ Qb,a.

Note that P̂a,b ⊆Wa(> τ) ∪Wb(> τ).

In each bullets below, we state a disjointness condition on all the paths defined above.

Each statement is followed by its corresponding proof. Subsequently, we will show how these

disjointness conditions imply the existence of the desired minor.

We consider a, a′ ∈ A and b, b′ ∈ B, where the elements in A (or B) might be equal. In

what follows, when we say paths intersect, we mean that they share a common vertex. (Thus,

disjoint paths always means vertex disjoint paths.) The idea is to show that whenever the

disjointness condition fails, a bad intersection must occur.

• If a 6= a′, Qa,b ∩Qa′,b′ = ∅. If b 6= b′, Qb,a ∩Qb′,a′ = ∅.

Consider the first statement. (Note that we allow b = b′.) Suppose Qa,b ∩ Qa′,b′ 6= ∅.
Observe that Qa,b ⊆W a and Qa′,b′ ⊆ Pa′,b′ . So W a ∩ Pa′,b′ 6= ∅, implying a Type 1 bad

event. Contradiction. The second statement follows analogously.

• Qa,b ∩Qb′,a′ = ∅.

First, suppose that a = a′ and b = b′. As argued in the beginning of the proof, Qa,b

and Qb,a are vertex disjoint. Now, consider the case a 6= a′. As before, Qa,b ⊆ W a and

Qb′,a′ ⊆ Pa′,b′ .

Since no Type 1 bad events occur, W a ∩ Pa′,b′ = ∅. The case b 6= b′ is analogous.
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• If a 6= a′ or b 6= b′, P̂a,b ∩Pa′,b′ = ∅. For contradiction’s sake, suppose P̂a,b ∩Pa′,b′ 6= ∅. We

will show that some bad intersection occurs. Wlog, assume a 6= a′ (and b may or not be

the same as b′). Note that P̂a,b ⊆ Wa(> τ) ∪Wb(> τ), where Wa ∈W b
a and Wb ∈W a

b .

Either Wa(> τ) or Wb(> τ) intersects Pa′,b′ , leading to two cases.

– If Wa(> τ) ∩ Pa′,b′ 6= ∅, then W a ∩ Pa′,b′ 6= ∅. This is a Type 1 bad event.

– If Wb(> τ) ∩ Pa′,b′ 6= ∅: If b 6= b′, then W b ∩ Pa′,b′ 6= ∅. This is a Type 1 bad event. If

b = b′, then we have Wb(> τ) ∩ Pa′,b 6= ∅. Since Wb ∈ W a
b (for a 6= a′), W b ∩ Pa′b 6= ∅.

This is a Type 2 bad event.

We construct the minor. Let C(a) =
⋃
b∈BQa,b and C(b) =

⋃
a∈AQb,a. Each C(a),C(b)

forms a connected subgraph. By the disjointness properties of the Qa,b sets, all the C(a), C(b)

sets/subgraphs are vertex disjoint. Note that P̂a,b is disjoint from all other Pa′,b′ paths and all

the C(a), C(b) sets. (We construct P̂a,b to be disjoint from Qa,b and Qb,a in the first paragraph.

Every other Qa′,b′ is contained in Pa′,b′ .) Moreover, each P̂a,b has an edge to C(a) and C(b),

since it is contained in Pa,b. Thus, we have disjoint paths from each C(a) to C(b), which gives

a Kr,r-minor.

2.4.4 The probabilities of bad events

In this section, we bound the probability of bad events, as detailed in Def 2.4.5. As

before, we fix s ∈ Si.
We require some technical definitions of random walk probabilities.

Definition 2.4.7. Let σs,S,t(v) be the probability of a walk from s to v of length t being S-

returning. (We allow ` - t 1, and require that the walk encounters S at every j`-th step, for

j ≤ bt/`c.)
We use σs,S,t to denote the vector of these probabilities. More generally, given any

distribution vector x on V , σx,S,t denotes the vector of S-returning walk probabilities at time t.

We stress that this is not a conditional probability. Note that if t = 2i`, then

σs,S,t = q
(i)
[S],s. We show some simple propositions on these vectors. Let IS denote the n × n

matrix that preserves all coordinates in S and zeroes out other coordinates.

Proposition 2.4.8. The vector σx,S,t evolves according to the following recurrence. Firstly,

σx,S,0 = x. For t ≥ 1 such that ` - t, σx,S,t = Mσx,S,t−1. For t ≥ 1 such that ` | t,
σx,S,t = ISMσx,S,t−1

Proposition 2.4.9. For all x and all t ≥ 1, ‖σx,S,t‖∞ ≤ ‖σx,S,t−1‖∞.

1this means ` does not divide t.
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Proof. Since M is a symmetric random walk matrix, it computes the “new” value at a vertex by

averaging the values of the neighbors (and itself). This can never increase the maximum value.

Furthermore, IS only zeroes out some coordinates. This proves the proposition.

In what follows, we fix the walk length to 2i`. To reduce clutter, we drop notational

dependencies on this length.

Definition 2.4.10. The distribution of 2i`-length walks from u is denoted Wu. For any walk

W , Wu(t) denotes the t-th vertex of the walk. The Boolean predicate ρ(Wu) is true if Wu is

Ri-returning.

Recall that Ds,i is the distribution with support Ri, where the probability of u ∈ Ri is

q̂
(i+1)
[Ri],s

(v) (Def 2.3.10). This is the distribution that A,B are drawn from in IdealFindBiClique.

We set i to be such that s ∈ Ri. Since i is fixed, we will simply write this as Ds.

Claim 2.4.11. For any F ⊆ V :

1.

Pr
a∼Ds,Wa∼Wa

[ρ(Wa) ∧Wa ∩ F 6= ∅] ≤ 2i`|F |/(nδ(i−1)‖q(i+1)
[Ri],s

‖1).

2. For any a ∈ Ri,

Pr
Wa∼Wa

[∃t ≥ τ | ρ(Wa) ∧Wa(t) ∈ F ] ≤ 2i`|F |/nδ(i−2)

Proof. We prove the first part. Let x = σs,Ri,i+1 be the probability vector corresponding to Ds.
So ‖x‖∞ = ‖q(i+1)

[Ri],s
‖∞/‖q(i+1)

[Ri],s
‖1. We proceed with a union bound over F and the walk length

and write.

Pr
a∼Ds,Wa∼Wa

[ρ(Wa) ∧Wa ∩ F 6= ∅] ≤
∑
t≤2i`

∑
v∈F

Pr
a∼Ds,Wa∼Wa

[ρ(Wa) ∧Wa(t) = v] (2.8)

Note that for any v ∈ V and t ≤ 2i`, we can write

Pr
a∼Ds,Wa∼Wa

[ρ(Wa) ∧Wa(t) = v] =
∑
u∈Ri

Pr
a∼Ds

[a = u] Pr
Wa∼Wa

[ρ(Wa) ∧Wa(t) = v|a = u]

(1)

≤
∑
u∈Ri

σs,Ri,2i+1`(u) · σu,Ri,t(v)

(2)
= σs,Ri,2i+1`+t(v)

(3)

≤ ‖x‖∞

The first inequality, (1) above follows because we can upperbound the probability that a 2i`

length walk from a random a is Ri-returning and hits v at the t-th step by the probability that
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just the t-step “prefix” of the walk from a that ends at v was Ri-returning. The last equality,

(2), is immediate from the defintion of Ds, and σs,Ri,t. For (3), note that by Prop. 2.4.9, ∀t≥ 1,

‖σx,Ri,t‖∞ ≤ ‖x‖∞. Further, using Claim 2.3.7, this is at most 1/(nδ(i−1)‖q(i+1)
[Ri],s

‖1). Together

with (2.8), this gives

Pr
a∼Ds,Wa∼Wa

[ρ(Wa) ∧Wa ∩ F 6= ∅] ≤
∑
t≤2i`

∑
v∈F
‖x‖∞

≤ 2i`|F |/(nδ(i−1)‖q(i+1)
[Ri],s

‖1)

Now for the second part. By the union bound, the probability is bounded above by∑
t≥2i−1`

∑
u∈F

Pr
Wa∼Wa

[ρ(Wa) ∧Wa(t) = u] ≤
∑

t≥2i−1`

∑
u∈F
‖σa,Ri,t‖∞ (2.9)

By Prop. 2.4.9, the infinity norm is bounded above by ‖σa,Ri,2i−1`‖∞ = ‖q(i−1)[Ri],a
‖∞. By

Claim 2.3.7, the latter is at most 1/nδ(i−2). Plugging in (2.9), we get an upper bound of

2i−1`|F |/nδ(i−2).

Claim 2.4.12. For any a ∈ Ri, we have the following.

Pr
[
ρ(Wa) ∧ ρ(Wb) ∧Wa(2i`) = Wb(2

i`)∧

∃ta, tb,min(ta, tb) ≤ τ,Wa(ta) = Wb(tb))] ≤ 22i`2

(nδ(2i−2)‖q(i+1)
[Ri],s

‖1)

Here, the probability is taken over the following joint distribution: b ∼ Ds,Wa ∼
Wa,Wb ∼ Wb

Proof. Let us write out the main event in English. We fix an arbitrary a, and pick b ∼ Ds.
We perform walks of length 2i` from both a and b. We are bounding the probability that these

walks are Ri-returning, and that the “initial half” (less than 2i−1` steps) of one of the walks

intersects with the other. Subsequently, both walks end at the same vertex(and both of these

walks happen to be Ri-returning).

To that end, let us define two vertices w1, w2. We want to bound the probability of

that both walks first encounter w1, and then end at w2. It will be very useful to treat the latter

part simply as two walks from w1, where one of them is at least of length 2i−1`. Note that w1

might not be in Ri.

Let Za,t be the random variable denoting the t-th vertex of a random walk from a.

Let us also define Ri-returning walks with an offset g, starting from w1. Basically, such a walk

starts from w (that may not be in Ri) and performs g steps to end up in Ri. Subsequently, it

behaves as an Ri-returning walk. Observe that the second parts of the walks are Ri-returning

33



walks from w1, with offsets of `− [ta(mod `)], `− [tb(mod `)]. Let Yw,t be the random variable

denoting the t-th vertex of an Ri-returning walk from w, with the offset `− [t(mod `)]. We use

primed notation (e.g, something like Y ′w,t) for an independent copy of such variables.

Let us fix values for ta, tb such that min(ta, tb) ≤ τ = 2i−1`. (We will eventually

union bound over all such values.) The probability we wish to bound is the following. We use

independence of the walks to split the probabilities. There are four independent walks under

consideration: one from a, one from b, and two from w.∑
w1∈V

∑
w2∈V

Pr
b∼Ds

Wa,Wb,Ww1

[Za,ta = w1 ∧ Zb,tb = w1 ∧ Yw1,2i`−ta = w2 ∧ Y ′w1,2i`−tb = w2]

=
∑
w1∈V

∑
w2∈V

Pr
Wa

[Za,ta = w1] Pr
b∼Ds
Wb

[Zb,tb = w1] Pr
Ww1

[Yw1,2i`−ta = w2] Pr
Ww1

[Yw1,2i`−tb = w2] (2.10)

Consider Prb∼Ds,Wb
[Zb,tb = w1]. This is exactly the w1th entry in σx,Ri,tb where x is

the distribution given by Ds. By Prop. 2.4.9, this is at most ‖x‖∞, which is at most

1/(nδ(i−1)‖q(i+1)
[Ri],s

‖1) (as argued in the second pat of the proof of Claim 2.4.11).

Since min(ta, tb) ≤ τ , at least one of 2i` − ta or 2i` − tb is at least 2i−1`. Thus, one

of PrWw1
[Yw1,2i`−ta = w2] or PrWw1

[Yw1,2i`−tb = w2] refers to a walk of length at least 2i−1`.

Let us bound PrWw1
[Yw1,t = w2] for t ≥ 2i`. We can break such a walk into two parts: the first

`− [t(mod `)] steps lead to some v ∈ Ri, and the second part is an Ri-returning walk of length

at least 2i` from v to w. Recall that px,d(y) is the standard random walk probability of starting

from x and ending at y after d steps. For some t′ ≥ 2i`,

Pr
Ww1

[Yw1,t = w2] =
∑
v∈Ri

pw1,`−[t(mod `)](v)σv,Ri,t′(w2)

≤
∑
v∈Ri

pw1,`−[t(mod `)](v)‖σv,Ri,t′‖∞

≤
∑
v∈Ri

pw1,`−[t(mod `)](v)‖q(i)[Ri],v
‖∞

≤
∑
v∈Ri

pw1,`−[t(mod `)](v)n−δ(i−1)

= n−δ(i−1).

Plugging these bounds in (2.10), for fixed ta, tb, there exists t ∈ {2i`− ta,2i`− tb} such

that the probability of the main event is at most

1

nδ(i−1)‖q(i+1)
[Ri],s

‖1
· 1

nδ(i−1)

∑
w1∈V

∑
w2∈V

Pr
Wa

[Za,ta = w1] Pr
Ww1

[Yw1,t = w2]

≤ 1

nδ(2i−2)‖q(i+1)
[Ri],s

‖1

∑
w1∈V

Pr
Wa

[Za,ta = w1]
∑
w2∈V

Pr
Ww1

[Yw1,t = w2]

=
1

nδ(2i−2)‖q(i+1)
[Ri],s

‖1
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A union bound over all pairs of ta, tb completes the proof.

We now bound the total probability of bad events. Most of the technical work is already

done in the previous lemmas; we only need to perform some union bounds.

Lemma 2.4.13. Total probability of bad events (in a call to IdealFindBiClique(s)) is at most

22i+4r4n30δ

nδi/2‖q(i+1)
[Ri],s

‖1
(2.11)

Proof. We bound the bad events by type. Recall that ` = n5δ.

Type 1: ∃a, b, c ∈ A ∪B, c 6= a, b, such that W c ∩ Pa,b 6= ∅.
Fix a choice of a ∈ A, b ∈ B. Any c 6= a, b is drawn from Ds. In Claim 2.4.11, set

F = Pa,b. By the first part of Claim 2.4.11, the probability that a single walk drawn from Wc is

Ri-returning and intersects Pa,b is at most 2i`(2i+1`)/nδ(i−1)‖q(i+1)
[Ri],s

‖1. The set W c consists of

at most rnδ(i+18)/2 such walks. We union bound over all these walks, and all r2 choices of a, b,

and plug in ` = n5δ to get an upper bound of

22i+1`2r3nδ(i+18)/2

nδ(i−1)‖q(i+1)
[Ri],s

‖1
=

22i+1r3n20δ

nδi/2‖q(i+1)
[Ri],s

‖1

Type 2: ∃a, b, b′ (all distinct) such that ∃W ∈ W b
a where W (≥ τ) ∩ Pa,b′ 6= ∅. (Or,

∃a, a′ ∈ A, b ∈ B with analogous conditions.)

Fix a, b, b′. Set F = Pa,b′ in Claim 2.4.11. By the second part of Claim 2.4.11, the

probability that a single walk from Wa is Ri-returning and intersects F at step ≥ τ is at most

2i`(2i+1`)/nδ(i−2). We union bound over all the rnδ(i+18)/2 walks in W a and all r3 choices of

a, b, b′. (We also union bound over choosing b, b′ or a,a′.) The upper bound is 22i+1r3n21δ/nδi/2.

Type 3: ∃a, b,Wa ∈ W b
a,Wb ∈ W a

b such that Wa,Wb end at the same vertex and

∃t1, t2 such that min(t1, t2) ≤ τ and Wa(t1) = Wb(t2).

This case is qualitatively different. We will take a union bound over pairs of walks,

and require the stronger bound of Claim 2.4.12.

Fix a ∈ A. Observe that b ∼ Ds. For a single walk Wa ∼ Wa and a single walk

Wb ∼Wb, the probability of a Type 3 bad event is bounded by Claim 2.4.12. The upper bound

is 22i`2/(nδ(2i−2)‖q(i+1)
[Ri],s

‖1). We union bound over the r2nδ(i+18) pairs of walks from a and b,

and then over the r2 choices of a, b. The final bound is:

22ir4`2 nδ(i+18)

nδ(2i−2)‖q(i+1)
[Ri],s

‖1
=

22ir4n30δ

nδi‖q(i+1)
[Ri],s

‖1

We complete the proof by taking a union bound over the three types. Note that

‖q(i+1)
[Ri],s

‖1 ≤ 1, so we can upper bound the probability of each type of bad event by 22i+1r4n30δ

nδi/2‖q(i+1)

[Ri],s
‖1

.
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2.4.5 Proof of Theorem 2.4.1

Proof. Fix s ∈ Si. We consider a run of the FindBiclique(s) procedure, and not the procedure

IdealFindBiClique(s). Nonetheless, we can argue that the former efficiently simulates the

latter. Let C be the event that the multisets A and B generated in FindBiclique(s) come from

2r independent draws from Ds,i. In this case, FindBiclique(s) behaves exactly like Ideal-

FindBiClique(s).

Let E be the event
⋂
a∈A,b∈B Pa,b 6= ∅, and let F be the union of bad events. By

Claim 2.4.6, the probability that FindBiclique(s) find a minor is at least Pr[E ∩ F ]. We lower

bound as follows: Pr[E ∩ F ] ≥ Pr[C] Pr[E ∩ F|C] ≥ Pr[C] (Pr[E|C]− Pr[F|C]).
The probability of a single random walk from s of length 2i` being Ri-returning is

‖q(i+1)
[Ri],s

‖1. Thus, Pr[C] = ‖q(i+1)
[Ri],s

‖2r1 . By Claim 2.3.8, ‖q(i+1)
[Ri],s

‖1 ≥ n−δ, so Pr[C] ≥ n−2δr.
Lemma 2.4.3 provides a lower bound for Pr[E|C], and Lemma 2.4.13 provides an upper

bound for Pr[F|C]. We plug these bounds in below.

Pr[E|C]− Pr[F|C] ≥ 1

(4n2δ)r2
− 22i+4r4n30δ

nδi/2‖q(i+1)
[Ri],s

‖1
(2.12)

Observe how the positive term is independent of i, while the negative term decays

exponentially in i. This is crucial to argue that for a sufficiently large (constant) i, the lower

bound is non-trivial.

When i ≥ 5r2, niδ/2 ≥ n2δr
4+δr4/2 ≥ n2δr

2+40δ (note that, r, the number of

vertices in H, is at least 3). By Claim 2.3.8, ‖q(i+1)
[Ri],s

‖1 ≥ n−δ. Thus, for sufficiently large

n, Pr[F|C] ≤ 1/(2(4n2δ)r
2

). Putting it all together, the probability of finding a Kr,r-minor is at

least n−4δr
2

.

2.5 Local partitioning in the trapped case

Theorem 2.4.1 tells us that if there are Ω(n1−δ) vertices in strata numbered 5r2 and

above, then FindMinor finds a biclique minor with high probability. We deal with the case when

most vertices lie in low strata, i.e, random walks from most vertices are trapped in a very small

subset.

We will argue that (almost) all vertices in low strata can be partitioned into “pieces”,

P1, P2, . . . Pb such that each piece is a low conductance cut that is “easily discoverable”. We

mean that a superset of each piece Pi, i ∈ [b] can be found by performing short random walks

in G. If FindMinor fails to find a minor, this lemma can be iteratively applied to make G

H-minor-free by removing few edges (this argument is given in §2.6).

We use ps,t(v) to denote the probability that a t length random walk from s ends at v.
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Lemma 2.5.1. Let i ≤ 5r2 and δ < 1/20r2. Let α ≥ n−δ/2. Consider some subset S ⊆ V and

i ∈ N such that ∀s ∈ S, ‖q(i)[S],s‖
2
2 ≤ 1/nδ(i−1). Define S′ ⊆ S to be {s ∈ S | ‖q(i+1)

[S],s ‖
2
2 ≥ 1/nδi}.

Suppose |S′| ≥ αn. Then, there is a subset S̃ ⊆ S′, |S̃| ≥ αn/8 such that for ∀s ∈ S̃:

there exists a subset Ps ⊆ S where

• (Low conductance cut) |E(Ps, S \ Ps)| ≤ 2n−δ/4d|Ps|

• (Easily discoverable) ∀v ∈ Ps, ∃t ≤ 160nδ(i+7)/α s.t. ps,t(v) ≥ α/nδ(2i+14).

2.5.1 Proof overview

The rich literature on local partitioning gives tools to prove variants of the following

statement. If there is a vertex s such that short random walks from s do not “spread much”,

then there exists a low conductance cut “around s” that can be discovered by performing

random walks from s. The notion of spreading is measured by the l2-norm of the random

walk distribution.

In Lemma 2.5.1, if we set S to be V , then the lemma is exactly local partitioning. Our

aim is to iteratively apply this lemma to partition the entire graph. Suppose, starting with

the entire graph, we found low conductances pieces P1, P2, . . .. Our aim is to find the next low

conductance piece in S = V \
⋃
j Pj . If we could perform random walk restricted to S, then

one can simply apply existing local partitioning results. Therein lies the main challenge. For

our sublinear application, we need to discover the pieces by doing random walks in the original

graph. (Let us take a detour to understand why. We are analyzing the scenario where most

vertices lie in low strata, which are defined by random walk norms in the original graph. We wish

to argue that the graph can be partitioned into small pieces of low conductance, only assuming

strata conditions.)

Why is this hard? Note that we need to successfully partition at least (1−ε)n vertices.

Thus, we will have situations where |S| = Θ(εn). In this case, random walks from vertices in S

will leave S with high probability. The strata conditions only gives us norm guaratees on such

walks (that leave S); yet, we need to locally partition completely within S. There is no clear

correspondence between random walks in the original graph and random walks restricted to S.

Our main tool to address this conundrum is the projected Markov Chain MS . Consider

the Markov Chain with vertex set S, that contains transitions for all walks in G that start and

end at S, but have all internal vertices outside S. Thus, MS captures all walks in G, but focuses

only the vertices in S. Our aim is to perform local partitioning on MS .

Now for the main technical problem. Lemma 2.5.1 requires us to partition around a

vertex s with large ‖q(i+1)
[S],s ‖2 value. We need to get a lower bound for a walk norm, where

walks are done in MS . For any reasonable application of local partitioning in MS , we need

some guarantee on walks (in MS) of length at least, say, nδ (or something superconstant). Note
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that q
(i+1)
[S],s is looking at walks of length 2i+1` that return 2i+1 times to S. These walks clearly

correspond to walks in MS . But since i is set to a constant, the lower bound on ‖q(i+1)
[S],s ‖2 only

seems to give guarantees on constant length walks in MS .

We need to argue that, at least on average, walks of length 2i+1` correspond to

sufficiently long walks in MS . This is precisely what happens in the proof of Lemma 2.5.5.

This lemma asserts that for most vertices in S′ (as defined in Lemma 2.5.1), random walks

in MS of length nδ induce a fairly large norm (of the corresponding probability vector). An

important tool for proving this lemma is a classic result in random walks, called Kac’s lemma,

that bounds average return times to sets of vertices.

In §2.5.2, we give basic properties of the projected Markov Chain which we build

up on to prove Lemma 2.5.5. With Lemma 2.5.5 in hand, we can bring in the machinery of

local partitioning to find a low conductance cut. We specifically use the Lovász-Simonovits

curve technique to perform local partitioning on MS [LS90a]. Our analysis closely follows the

notation and methods used by Spielman-Teng [ST12].

2.5.2 Projected Markov chain

We define the “projection” of the random walk onto the set S. This uses a construction

of [KPS13]. We define a Markov chain MS over the set S. We retain all transitions from the

original random walk on G that are within S, and we denote these by e
(1)
u,v for every u to v

transition in the random walk on G. Additionally, for every u, v ∈ S and t ≥ 2, we add a

transition e
(t)
u,v. The probability of this transition is equal to the total probability of t-length

walks in G from u to v, where all internal vertices in the walk lie outside S.

Since G is irreducible and the stationary mass on S is non-zero, all walks eventually

reach S. Thus the outgoing transition probabilities from each v in MS sum to 1, and hence MS is

a valid Markov chain. Furthermore, by the symmetry of the original random walk, e
(t)
u,v = e

(t)
v,u.

Therefore the transition matrix of MS remains symmetric, and the stationary distribution is

uniform on S.

For a transition e
(t)
u,v in MS , we define the length of this transition to be t. For clarity,

we use “hops” to denote the length of a walk in MS , and retain “length” for walks in G. The

length of an h hop random walk in MS is defined to be the sum of the lengths of the transitions it

takes. We note that these ideas come from the work of Kale-Peres-Seshadhri to analyze random

walks in noisy expanders [KPS13].

We use τ s,h to denote the distribution of the h-hop walk from s, and τs,h(v) to denote

the corresponding probability of reaching v. We use Wh to denote the distribution of h-hop

walks starting from the uniform distribution in S.

We state Kac’s formula (Corollary 24 in Chapter 2 of [AF02], restated).
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Lemma 2.5.2. (Kac’s formula) The expected return time (in G) to S of a random walk starting

from S is reciprocal of the fractional stationary mass of S, i.e. n/|S|.

The following is a direct corollary.

Lemma 2.5.3. EW∼Wh
[length of W ] = hn/|S|

Proof. Since the walk starts at the stationary distribution, it remains in this distribution at all

hops. By linearity of expectation, it suffices to get the expected length for the first hop (and

multiply with h). This is precisely expected return time to S, if we performed random walks in

G. By Kac’s formula above, the expected return time to S equals the reciprocal of the stationary

mass of S, which is just n/|S|.

Random walks in MS do not spread

We begin with an important warmup. Using norm bounds in the premise of Lemma 2.5.1,

we show that for every vertex s∈S′, there is a large set of destination vertices that are all reached

with high probability through random walks of length 2i+1`.

Claim 2.5.4. For every s ∈ S′, there exists a set Us ⊆ S, |Us| ≥ nδ(i−2)/2, such that ∀u ∈ Us,
ps,2i+1`(u) ≥ 1/2nδi.

Proof. By Prop. 2.3.2, for any u ∈ S, q
(i+1)
[S],s (u) = q

(i)
[S],s · q

(i)
[S],u. By the property of S and

Cauchy-Schwartz, q
(i+1)
[S],s (u) ≤ 1/nδ(i−1).

Since s ∈ S′,
∑
u∈S q

(i+1)
[S],s (u)2 ≥ 1/nδi. Let us simply define Us to be {u|u ∈

S, q
(i+1)
[S],s (u) ≥ 1/(2nδi}). Note that ps,2i+1`(u) ≥ q(i+1)

[S],s (u).

1/nδi ≤
∑
u∈S

q
(i+1)
[S],s (u)2 =

∑
u∈Us

q
(i+1)
[S],s (u)2 +

∑
u/∈Us

q
(i+1)
[S],s (u)2

≤ |Us|/n2δ(i−1) + (1/2nδi)
∑
u/∈Us

q
(i+1)
[S],s (u)

≤ |Us|/n2δ(i−1) + 1/2nδi

We rearrange to bound the size of Us.

The next lemma is an analogue of the previous (Claim 2.5.4) for τ vectors – (that is

for MS). Recall that ` = n5δ.

Lemma 2.5.5. There exists a subset S′′ ⊆ S′, |S′′| ≥ |S′|/2, such that ∀s ∈ S′′, ‖τ s,nδ‖∞ ≥
1/nδ(i+6).

Proof. Define event Es,v,h as follows. The event Es,v,h occurs when an h-hop random walk from

s has length 2i+1` and ends at v. Observe that ps,2i+1`(v) =
∑
h≤2i+1` Pr[Es,v,h] (because the

number of hops is always at most the length). Since τ s,h is a random walk vector in a symmetric
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Markov Chain, the infinity norm is non-increasing in h. Thus, it suffices to find a subset S′′ ⊆ S′,
|S′′| ≥ |S′|/2 such that ∀s ∈ S′′, ∃v ∈ S, h ≥ nδ, Pr[Es,v,h] ≥ 1/nδ(i+6).

We define Us as given in Claim 2.5.4. For all v ∈Us, by Claim 2.5.4, ps,2i+1`(v)≥ 1/2nδi.

Therefore, for all v ∈ Us, ∑
h≤2i+1`

Pr[Es,v,h] ≥ 1/2nδi (2.13)

We will construct S′′ by finding s where for some v ∈ Us,
∑
h≤nδ Pr[Es,v,h] is sufficiently small.

For any h,

1

|S|
∑
s∈S′

∑
v∈Us

Pr[Es,v,h](2i+1`) ≤ EW∼Wh
[length of W ] = hn/|S|

Suppose h ≤ 2i+1`/n4δ. (This is true for all h ≤ nδ). Then
∑
s∈S′

∑
v∈Us Pr[Es,v,h] ≤ n1−4δ,

and
∑
h≤nδ

∑
s∈S′

∑
v∈Us Pr[Es,v,h] ≤ n1−3δ.

We rearrange to get ∑
s∈S′

∑
v∈Us

∑
h≤nδ

Pr[Es,v,h] ≤ n1−3δ

By the Markov bound, there is a set S′′ ⊆ S′, |S′′| ≥ |S′|/2 such that for all

s ∈ S′′,
∑
v∈Us

∑
h≤nδ Pr[Es,v,h] ≤ 2n1−3δ/|S′|. By averaging, ∀s ∈ S′′, ∃v ∈ Us, such that∑

h≤nδ Pr[Es,v,h] ≤ 2n1−3δ/(|S′| · |Us|). By the assumptions of Lemma 2.5.1, |S′| ≥ αn ≥ n1−δ/2.

Claim 2.5.4 bounds |Us| ≥ nδ(i−2)/2. Plugging these in,

∑
h≤nδ

Pr[Es,v,h] ≤ 2n1−3δ

n1−δ/2nδ(i−2)/2
≤ 4

nδ(i+1/2)

Subtracting this bound from (2.13),
∑
h∈[nδ,2i+1`] Pr[Es,v,h] ≥ 1/4nδi. By averaging,

for some h ∈ [nδ, 2i+1`], Pr[Es,v,h] ≥ 1/(2i+3nδi`) ≥ 1/nδ(i+6). This completes the proof.

Local Partitioning on MS: Obtaining the low conductance cut

We perform local partitioning on MS , starting with arbitrary s ∈ S′′. We apply

the Lovász-Simonovits curve technique. (The definitions are originally from [LS90a]. Refer to

Lecture 7 of Spielman’s notes [Spia] as well as Section 2 in Spielman-Teng [ST12].) Before

getting into the series of definitions, we give an overview of this technique.

The main idea is to represent the distribution at time t through a one-dimensional

function ht. This function is best thought of as a 2D-plot. Define ht(k) to be the sum of the

k largest probabilities at time t. Note that ht(|S|) is simply 1 (the sum of all probabilities).

Alternately, we sort the probabilities at time t in decreasing order, and consider all prefix sums.

These prefix sums are “plotted” by the function ht. We can linearly interpolate between these

values to get a piecewise linear curve, which is the function ht.
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Crucially, this curve is a concave function, since we take prefix sums of a non-increasing

list. As t increases, the curve ht flattens out into a straight line from (0, 0) to (|S|, 1) (which

represents the stationary distribution). The rate of flattening is the rate of convergence. The

remarkable insight of Lovász-Simonovits is a relation between the flattening rate, the curve

structure, and the conductance. They showed that, to upper bound ht+1(x), one can draw a

chord between (x′, ht(x
′)) and (x′′, ht(x

′′)). Here x′ < x < x′′, and these points x′, x′′ depend

on the conductances.

Now for the technical setup.

• Ordering of states at time t: At time t, let us order the vertices in MS as v
(t)
1 , v

(t)
2 , . . . such

that τs,t(v
(t)
1 ) ≥ τs,t(v(t)2 ) . . ., breaking ties by vertex id.

• The LS curve ht: We define a function ht : [0, |S|]→ [0, 1] as follows. For every k ∈ [|S|],
set ht(k) =

∑
j≤k[τs,t(v

(t)
j )− 1/|S|]. (Set ht(0) = 0.) For every x ∈ (k, k + 1), we linearly

interpolate to construct ht(x). Alternately, ht(x) = max~w∈[0,1]|S|,‖~w‖1=x
∑
v∈S [τs,t(v) −

1/|S|]wi.

• Level sets: For k ∈ [0, |S|], we define the (k, t)-level set, Lk,t to be

{v(t)1 , v
(t)
2 , . . . , v

(t)
k }.

The minimum probability of Lk,t denotes τs,t(v
(t)
k ).

• Conductance: for some T ⊆ S we define the conductance of T in MS to be

Φ(T ) =

∑
u∈T
v∈S\T

τu,1(v)

min(|T |, |S \ T |)

The main lemma of Lovász-Simonovits is the following (Lemma 1.4 of [LS90a]).

Lemma 2.5.6. For all k and all t,

ht(k) ≤ 1

2
[ht−1(k − 2 min(k, |S| − k)Φ(Lk,t)) + ht−1(k + 2 min(k, |S| − k)Φ(Lk,t))]

The typical use of the Lovász-Simonovits technique is to argue about rapid mixing when

all conductances (or conductances of sufficiently large sets) are lower bounded. We consider a

scenario in which only sets with minimum probability at least (say) p have high conductance.

In this case, we can guarantee that the largest probability will converge to p.

Lemma 2.5.7. Suppose there exists φ ∈ [0, 1] and p > 2/|S| such that for all t′ ≤ t and all

k ∈ [n] the following implication is true: if Lk,t′ has a minimum probability of at least p, then

Φ(Lk,t) ≥ φ. Then for all k ∈ [0, |S|], ht(k) ≤
√
k(1− φ2/2)t + pk.
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Proof. We will prove by induction over t. If k ≥ 1/p, then the RHS is at least 1. Thus the

bound is trivially true. Let us assume that k < 1/p < |S|/2. We split into two cases based on

the conductance of Lk,t.

First let us consider the case where Φ(Lk,t)≥φ. By Lemma 2.5.6, ht(k)≤ (1/2)[ht−1(k−
2min(k, |S|−k)Φ(Lk,t))+ht−1(k+2min(k, |S|−k)Φ(Lk,t))]. Since k < |S|/2, min(k, |S|−k) = k.

By concavity of hk, we can replace Φ(Lk,t) in the above inequality by any lower bound. (We

can always upper bound by a chord “above” the given chord.) Thus,

ht(k) ≤ 1

2

(
ht−1

(
k(1− 2φ)

)
+ ht−1

(
k(1 + 2φ)

))
(1)

≤ 1

2

(√
k(1− 2φ)(1− φ2/2)t−1 +

√
k(1 + 2φ)(1− φ2/2)t−1 + 2kp

)
(2)
=

1

2

(√
k
(
1− φ2/2

)t−1 (√
1− 2φ+

√
1 + 2φ

)
+ 2kp

)
(3)

≤
√
k
(
1− φ2/2

)t
+ kp.

Here (1) follows by the inductive hypothesis. In the end, for (3) we use the bound(√
1 + z +

√
1− z

)
/2 ≤ 1− z2/8.

Now we deal with the case when Φ(Lk,t) < φ. Lk,t must have minimum probability

less than p by assumption. Let k′ < k be the largest index such that Lk′,t has minimum

probability at least p. Note that Φ(Lk′,t) ≥ φ. Therefore, as proven in the first case,

ht(k
′) ≤
√
k′
(
1− φ2/2

)t
+ k′p. Every vertex in Lk,t \ Lk′,t has a probability at most p. By the

concavity of ht(x),

ht(k) ≤ ht(k′) + (k − k′)p (2.14)

≤
√
k′
(
1− φ2/2

)t
+ k′p+ (k − k′)p (2.15)

≤
√
k′
(
1− φ2/2

)t
+ kp (2.16)

The following lemma is a direct corollary.

Lemma 2.5.8. Consider a vertex s such that ‖τ s,nδ‖∞ ≥ 1/nδ(i+6). Then, there exists a level

set for some t ≤ nδ with minimum probability at least 1/10nδ(i+6) and conductance < n−δ/4.

Proof. Suppose not. So, for all t≤ nδ, if a level set has minimum probability at least 1/10nδ(i+6),

it has conductance at least n−δ/4. Since |S| ≥ αn ≥ n1−δ/2, by choosing δ sufficiently small

we get that the minimum probability satisifies 1/10nδ(i+6) ≥ 2/|S|. Thus, we can apply

Lemma 2.5.7. For all k ∈ [0, |S|], hnδ(k) ≤
√
k(1 − n−δ/2/2)n

δ

+ k/10nδ(i+6). Setting k = 1,

hnδ(1) ≤ exp(−nδ/2/2) + 1/10nδ(i+6) < 1/nδ(i+6). Note that hnδ(1) is the largest probability in

τ s,nδ , which by assumption is at least 1/nδ(i+6). Contradiction.

42



Wrapping up by producing S̃

Proof. (Of Lemma 2.5.1) Define S′′ as given in Lemma 2.5.5. By Lemma 2.5.8, for every s ∈ S′′,
there exists some level set for ts ≤ nδ with minimum probability at least 1/10nδ(i+6) and

conductance at most n−δ/4. Let us call this level set Ps. Note that |Ps| ≤ 10ni(δ+6) and

according to Lemma 2.5.1, we have |S| ≥ |S′| ≥ αn ≥ n1−δ/2. This implies that |Ps| < |S|/2 (for

sufficiently small δ and i ≤ 5r2). By the construction of MS , we have,

Φ(Ps) ≥

∑
x∈Ps
y∈S\Ps

τx,1(y)

min(|Ps|, |S \ Ps|)
=
E(Ps, S \ Ps)

2d|Ps|
The first inequality follows because we restrict the numerator to length one transitions in the

Markov Chain MS (which correspond to edges in G). Rearranging, we get E(Ps, S \ Ps) ≤
n−δ/4(2d|Ps|).

For all s ∈ S′′ and v ∈ Ps, τs,nδ(v) ≥ 1/10nδ(i+6). Set L = 160nδ(i+7)/α. Let S̃ be

the subset of S′′ such that ∀s ∈ S̃, Ps is such that ∀v ∈ Ps,
∑
l≤L ps,l(v) ≥ 1/20nδ(i+6). By

averaging, ∃l ≤ L such that ps,l(v) ≥ α/nδ(2i+14).

We have seen that S̃ satisfies the two desired properties: for all s ∈ S̃ E(Ps, S \ Ps) ≤
2n−δ/4d|Ps|/α and for all v ∈ Ps, ∃t≤ 160nδ(i+7) such that ps,t(v)≥ α/nδ(2i+14). It only remains

to prove an upper bound on |S′′ \ S̃|.
Consider any s ∈ S′′ \ S̃. There exists some vs ∈ Ps such that τs,nδ(vs) ≥ 1/10nδ(i+6)

but
∑
l≤L ps,l(vs) < 1/20nδ(i+6). Let us use p̂s,l(vs) to denote the probability of reaching vs

from s in an l-length walk that makes nδ hops. Observe that

τs,nδ(vs) =
∑
l≥nδ

p̂s,l(vs)

=

L∑
l=nδ

p̂s,l(vs) +
∑
l>L

p̂s,l(vs)

≤
L∑

l=nδ

ps,l(vs) +
∑
l>L

p̂s,l(vs)

< 1/20nδ(i+6) +
∑
l>L

p̂s,l(vs)

The last inequality follows from the fact that s ∈ S′′ \ S̃, and hence
∑L
l=nδ ps,l(vs)< 1/20nδ(i+6).

Since τs,nδ(vs) ≥ 1/10nδ(i+6), the above calculation shows that
∑
l>L p̂s,l(vs) > 1/20nδ(i+6).

Thus,

1

|S|
∑

s∈S′′\S̃

∑
l>L

p̂s,l(vs)L >
|S′′ \ S̃| · L
|S|20nδ(i+6)

=
160α−1nδ(i+7) · |S′′ \ S̃|

20|S|nδ(i+6)
=

8nδ|S′′ \ S̃|
α|S|

By Lemma 2.5.3,

1

|S|
∑

s∈S′′\S̃

∑
l>L

p̂s,l(vs)L ≤ EW∼Wδ
n
[length of W ] =

n1+δ

|S|
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Combining the above, |S′′ \ S̃| ≤ αn/8. By Lemma 2.5.5, |S′′| ≥ |S′|/2 ≥ αn/2, yielding the

bound |S̃| ≥ αn/4.

2.6 Wrapping it all up: the proof of the main theorem

We have all the tools required to complete the proof of Theorem 2.2.1. Our aim is

to show that whenever FindMinor(G, ε,H) outputs an H-minor with probability < 2/3, then

G is ε-close to being H-minor-free. Henceforth in this section, we will simply assume the “if”

condition.

We produce the decomposition procedure used in the proof from §2.5 again below. We

set α = ε/(50r2 log n).

Decompose(G)

1. Initialize S = V and P = ∅.
2. For i = 1, . . . , 5r2:

(a) Assign S′ :=
{
s ∈ S : ||q(i+1)

[S],s ||
2
2 ≥ 1/nδi

}
(b) While |S′| ≥ αn:

i. Let S′′ = {s ∈ S′ : ‖τ s,nδ‖∞ ≥ 1/nδ(i+6)} be as in Lemma 2.5.5.

ii. Choose arbitrary s ∈ S′′, and let Ps be as in Lemma 2.5.1.

iii. Add Ps to P and assign S := S \ Ps
iv. Assign S′ :=

{
s ∈ S : ||q(i+1)

[S],s ||
2
2 ≥ 1/nδi

}
(c) Assign S := S \ S′

(d) Assign Xi := S′

3. Let X =
⋃
iXi.

4. Output the partition P, X, S

The procedure Decompose repeatedly employs Lemma 2.5.1 for values of i ≤ 5r2. In

the ith iteration, eventually |S′| becomes too small for Lemma 2.5.1. Then, S′ is moved (from

S) to an “excess” set Xi, and the next iteration begins. Decompose ends with a partition P,X,S
where each set in P is a low conductance cut, X is fairly small, and FindBiclique succeeds

with high probability on every vertex in S.

This is formalized in the next lemma.

Lemma 2.6.1. Assume ε > εCUTOFF. Suppose FindMinor(G, ε,H) outputs an H-minor with

probability < 2/3. Then, the output of Decompose satisfies the following conditions.

• |X| ≤ εn/10.

• |S| ≤ εn/10.

44



• ∀Ps ∈ P, v ∈ Ps, ∃t ≤ 160n6δr
2

/α such that ps,t(v) ≥ α
n11δr2

.

• There are at most εn/10 edges that go between different Ps sets.

Proof. Consider the Xi’s formed by Decompose. Each of these has size at most αn =

εn/50r2 log n, and there are at most 5r2 of these. Clearly, their union has size at most εn/10.

The third condition holds directly from Lemma 2.5.1. Consider the number of edges

that go between Ps and the rest of S, when Ps was constructed (in Decompose). By Lemma 2.5.1

again, the number of these edges is at most

2n−δ/4d|Ps|/α = 100r2(log n)ε−1n−δ/4d|Ps|

Note that ε > εCUTOFF. For sufficiently small constant δ, the number of edges between Ps and

S \ Ps (at the time of removal) is at most ε|Ps|/10. The total number of such edges is at most

εn/10 (since Ps are all disjoint).

Suppose, for contradiction’s sake, that |S| > εn/10. Consider the stratification process

with R0 = S. By construction of S, ∀s ∈ S, ||q(5r
2+1)

[S],s || ≤ 1/n5δr
2

. Thus, all of these vertices will

lie in strata numbered 5r2 or above. Since ε> εCUTOFF, by Lemma 2.3.9, at most εn/ logn vertices

are in strata numbered more than 1/δ+3. By Theorem 2.4.1, for at least εn/10−εn/ logn≥ εn/20

vertices, the probability that the paths discovered by FindBiclique(s) contain a Kr,r-minor is

at least n−4δr
2

. A Kr,r-minor contains a Kr-minor (simply contract any perfect matching), and

thus, it contains an H-minor. The algorithm succeeds in finding an H-minor with probability

at least n−4δr
2

.

All in all, this implies that the probability that a single call to FindBiclique finds an

H-minor is at least n−4δr
2

. Since FindMinor makes n35δr
2

calls to FindBiclique, an H-minor

is found with probability at least 5/6. This is a contradiction, and we conclude that |S| ≤ εn/10.

And now, we can prove the correctness guarantee of FindMinor.

Claim 2.6.2. Suppose FindMinor(G, ε,H) outputs an H-minor with probability < 2/3. Then

G is ε-close to being H-minor-free.

Proof. If ε ≤ εCUTOFF, then FindMinor runs an exact procedure. So the claim is clearly true.

Henceforth, assume ε > εCUTOFF. Apply Lemma 2.6.1 to partition V into P, X, S.

Call s ∈ V bad if there is a corresponding Ps ∈ P and Ps induces an H-minor.

By Lemma 2.6.1, for all v ∈ Ps, ∃t ≤ 160n6δr
2

/α such that ps,t(v) ≥ α/n11δr
2

. Note that

160n6δr
2

/α ≤ n7δr
2

and α/n11δr
2 ≥ n−12δr

2

. Also, |Ps| ≤ 160(n6δr
2

/α) × (n11δr
2

/α) ≤ n18δr
2

.

Note that LocalSearch(s) performs walks of all lengths up to n7δr
2

, and performs n30δr
2

walks

of each length. For any v ∈ Ps, the probability that LocalSearch(s) does not add v to B (the

set of “discovered” vertices in LocalSearch(s)) is at most (1− n−12δr2)n
30δr2 ≤ 1/n2. Taking a
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union bound over Ps, the probability that Ps is not contained in B is at most 1/n. Consequently,

for bad s, LocalSearch(s) outputs an H-minor with probability > 1− 1/n.

Suppose there are more than n1−30δr
2

bad vertices. The probability that a u.a.r.

s ∈ V is bad is at least n−30δr
2

. Since FindMinor(G, ε,H) invokes LocalSearch n35δr
2

times,

the probability that LocalSearch(s) is invoked for a bad vertex is at least 1 − 1/n. Thus,

FindMinor(G, ε,H) outputs an H-minor with probability > 1 − 2/n, contradicting the claim

assumption.

We conclude that there are at most n1−30δr
2

bad vertices. Each Ps has at most n18δr
2

vertices, and |
⋃
s bad Ps| ≤ n1−12δr

4 ≤ εn/10.

We can make G H-minor-free by deleting all edges incident to X, all edges incident to

S, all edges incident to vertices in any bad Ps sets, and all edges between Ps sets. By Lemma 2.6.1

and the bound given above, the total number of edges deleted is at most 4εdn/10 < εdn.

Finally, we bound the running time.

Claim 2.6.3. The running time of FindMinor(G, ε,H) is

dn1/2+O(δr2) + dε−2 exp(2/δ)/δ

Proof. If ε < εCUTOFF, then the running time is simply O(n2). Since ε < n−δ/ exp(2/δ), this can

be expressed as ε−2 exp(2/δ)/δ.

Assume ε ≥ εCUTOFF. The total number of vertices encountered by all the Local-

Search calls is nO(δr2). There is an extra d factor to determine all incident edges through vertex

queries. Thus, the total running time is dnO(δr2), because of the quadratic overhead of KKR.

Consider a single iteration for the main loop of FindBiclique. First, FindBiclique performs

2r random walks of length 2i+1n5δ, and then for each of these, FindPath performs nδi/2+9δ

walks of length 2in5δ. Hence, the total steps (and thus queries) in all walks performed by a

single call to FindBiclique is

1/δ+3∑
i=5r2

(
2r2i+1n5δ + 2rnδi/2+9δ2in5δ

)
= rn1/2+O(δ). (2.17)

While this is the total number of vertices encountered, we note that the calls made to KKR(F,H)

are for much smaller graphs. The output of find path has size O(21/δn5δ), and the subgraph F

constructed has at most O(21/δn5δ) vertices. We incur an extra d factor to determine the induced

subgraph through vertex queries. Thus, the time for each call to KKR(F,H) is nO(δ). There are

nO(δr2) calls to FindBiclique, and we can bound the total running time by dn1/2+O(δr2).
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Chapter 3

A polynomial-time two sided

tester for hyperfinite properties

This chapter is a generalization of the results originally in [KSS19a] which showed that

all minor-closed graph properties are testable in time poly(d/ε) in the bounded-degree graph

model. Here we generalize from minor-closed families to hyperfinite families with a polynomial

hyperfiniteness function.

Definition 3.0.1. A bounded-degree graph is (α, k)-hyperfinite if there exists a set of at most

αdn edges whose removal leaves G with no connected component of size greater than k. For

a real-valued function, f(α), a property of bounded degree graphs, P, is (f(α))-hyperfinite if

G ∈ P, G is (α, f(α))-hyperfinite for all α in the unit interval. We call f the hyperfinitess

function for a property P if all graphs in P are (ε, f(ε))-hyperfinite.

Testing for minor-closed properties was first addressed by [BSS10], where they showed

that it can be accomplished in time independent of graph size. However, the bound they derive

has a super exponential dependence on the distance parameter, ε. Hyperfiniteness plays a crucial

role in their analysis and [NS13] leverages this to extend their results to all hyperfinite families.

Here we present a tester which is able to test a subset of hyperfinite properties in time

polynomial in (d/ε). The analysis does not cover all hyperfinite families however. It requires

that the hyperfiniteness function be subexponential. It still remains an open question whether

all hyperfinite properties can be tested in polynomial time.

3.1 The algorithm

Theorem 3.1.1. Let f(α) be a real-valued function defined on the unit interval and bounded

from above by 2(1/8α)
1/20

. Every monotone (f(α))-hyperfinite property of graphs is testable with
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d · poly(f(poly(1/ε))) queries.

The symbols used in the algorithm are as follows:

• ` = 1/ε40

• k = f(1/4`2) where f(·) is a function such that P is f(α)-hyperfinite.

IsHyperfinite(G, ε)

1. Pick multiset S of ε−42k2 uniform random vertices.

2. For every s ∈ S, run EstClip(s) and LocalSearch(S).

3. If any call to LocalSearch returns FOUND, REJECT.

4. If more than ε−34k2

2 calls to EstClip return LOW, REJECT.

5. ACCEPT

LocalSearch(s)

1. Perform k3`3 independent random walks of length 25600`k from s. Add all the

vertices encountered to set Bs.

2. Determine G[Bs], the subgraph induced by Bs, and explicitly check if G[Bs] ∈ P.

3. If G[Bs] 6∈ P, return FOUND.

EstClip(s)

1. Perform w = k2 walks of length 8k from s.

2. For every vertex v, let wv = number of walks that end at v.

3. Let T = {v | wv ≥ k/8}.
4. If

∑
v∈T wv ≥ w/3, output HIGH, else output LOW.

3.2 Random walks on hyperfinite graphs

We first define the clipped norm.

Definition 3.2.1. Given x ∈ (R+)|V | and parameter ξ ∈ [0, 1), the ξ-clipped vector cl(x, ξ) is

the lexicographically least vector y optimizing the program: min ‖y‖2, subject to ‖x − y‖1 ≤ ξ

and ∀v ∈ V,y(v) ≤ x(v).

The clipping operation removes “outliers” from a vector, with the intention of mini-

mizing the l2-norm. For a probability distribution p`s, a small value of ‖p`s‖22 is a measure of

the spread of the walk. But this is a crude lens. There may be one large coordinate in p`s that

determines the norm, while all other coordinates are (say) uniform. The clipped norm better

captures the notion of a random walk spreading.

We state the main result of this section. The constant 3/8 below is just for convenience,

and can be replaced by any non-zero constant (with a constant drop in the lower bound).
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Lemma 3.2.2. If G is (1/4`2, k)-hyperfinite, then for at least (1−1/`)n vertices, ‖cl(p`s,3/8)‖ ≥
1/4k.

It is convenient to think of the Markov chain on G in terms of a multigraph on G, with

2d edges from each vertex. Each edge has probability exactly 1/2d, and self-loops consist of

many such edges. Note that every edge of the original graph is a single edge in this multigraph.

For any subset of vertices C ⊆ V , let us define the random walk restricted to C. We remove

every cut edge (u, v) (where u ∈ C and v /∈ C) and add a self-loop of the same probability at

u. This produces a Markov chain on C that is symmetric. Given a subset C and v ∈ C, we

use p′v,t to denote the distribution of endpoints of t-length random walk starting from v and

restricted to C. (In our use, C will apparent from context, so we will not carry the dependence

on C in the notation.)

The following claim relates the clipped norms of the ptv and p′v,t vectors.

Claim 3.2.3. Let C ⊂ V and v ∈ C. Let η be the probability that a t-length random walk from

v (in G) leaves C. For any σ > η, ‖cl(ptv, σ − η)‖22 ≥ ‖cl(p′v,t, σ)‖22.

Proof. The random walk restricted to C is obtained by adding some self-loops that are not in

the original Markov chain. Color all these self-loops red. Let rv,t(u) be the probability of a

t-length walk from v to u that contains a red edge. Any path without a red edge is a path in G

(with the same probability), so p′v,t(u) ≤ ptv(u) + rv,t(u).

Note that
∑
u∈C rv,t(u) is the total probability of a random walk from u restricted to

C encountering a red self-loop. Red self-loops correspond to cut edges in the original graph,

and thus, this is the probability of encountering a cut edge. Hence,
∑
u∈C rv,t(u) ≤ η.

Intuitively, we can obtain a σ-clipping of p′v,t by first clipping at most η probability

mass to get ptv, and then performing a (σ − η)-clipping of ptv. We formalize this below.

Let q = cl(ptv, σ − η), and let us define the |C|-dimensional vector w by w(u) =

min
(
q(u),p′v,t(u)

)
. Since w is non-negative and w(u) ≤ q(u) for all u ∈ C, it follows that

‖w‖22 ≤ ‖q‖22 = ‖cl(ptv, σ− η)‖22. By construction, for all u ∈ C, w(u) ≤ p′v,t(u). We will prove

that ‖w − p′v,t‖1 ≤ σ, implying that ‖cl(p′v,t, σ)‖22 ≤ ‖w‖22. This will complete the argument.

Let D ⊆ C be the set of coordinates such that q(u) < p′v,t(u). Since w(u) =

min(q(u),p′v,t(u)), ‖p′v,t − w‖1 =
∑
u∈D[p′v,t(u) − q(u)]. Combining with the previous

observations and noting that q = cl(ptv, σ − η),

‖p′v,t −w‖1 ≤
∑
u∈D

[ptv(u) + rv,t(u)− q(u)] ≤ ‖ptv(u)− q‖1 +
∑
u∈C

rv,t(u)

≤ (σ − η) + η = σ

We now prove the main lemma of this section, Lemma 3.2.2.
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Proof. By assumption, there exists a subset R of at most dn
4`2 edges whose removal breaks up G

into connected components of size at most k. Refer to these as hyperfinite components. Now,

consider an `-length walk in G starting from the stationary distribution (which is uniform).

The probability that this walk encounters an edge in R at any step is exactly |R|/2dn. Let the

random variable Xv be the number of edges of R encountered in an `-length walk from v. Note

that when Xv = 0, then the walk remains in the hyperfinite component containing v. Thus,

(1/n)
∑
v

Pr[walk from v leaves hyperfinite component]

≤
∑
v∈V

E[Xv]/n = `|R|/2dn ≤ 1/8`

By the Markov bound, for at least (1 − 1/`)n vertices, the probability that an `-length walk

starting at v encounters an edge of R and thus leaves the hyperfinite piece containing v is at

most 1/8. Denote the set of these vertices by S.

Consider any s ∈ S. Suppose it is contained in the hyperfinite component C. Note

that ‖cl(p′s,`, 1/2)‖1 ≥ 1/2. Furthermore, cl(p′s,`, 1/2) has support at most k. By Jensen’s

inequality, ‖cl(p′s,`, 1/2)‖22 ≥ (4k)−1. As argued earlier, the probability that a random walk (in

G) from s leaves C is at most 1/8. Applying Claim 3.2.3 for σ = 1/2 and η = 1/8, we conclude

that ‖cl(p`s, 1/2− 1/8)‖22 ≥ 1
4k .

3.3 The existence of a discoverable decomposition

If many vertices have large clipped norms, we prove that G can be partitioned into

small low conductance cuts. Furthermore, each cut can be discovered by poly(`) `-length random

walks. The analysis follows the structure given in [KSS18].

Lemma 3.3.1. Let c > 1 be a parameter. Suppose there exists S ⊆ V such that |S| > n/`1/5

and ∀s ∈ S, ‖cl(p`s, 1/4)‖22 > `−c. Then, there exists S̃ ⊆ S with |S̃| ≥ |S|/4 such that for each

s ∈ S̃, there exists a subset Ps ⊆ S where

• ∀v ∈ Ps,
∑
t<16`c+1 pts(v) ≥ 1/8`c+1.

• |E(Ps, S \ Ps)| ≤ 4d|Ps|
√
c`−1/5 log `.

A straightforward application of this lemma leads to the main decomposition theorem.

Theorem 3.3.2. Suppose there are at least (1−1/`1/5)n vertices s such that ‖cl(p`s,1/4)‖22>`−c.
Then, there is a partition {P1, P2, . . . , Pb} of the vertices such that:

• For each Pi, there exists s ∈ V such that: ∀v ∈ Pi,
∑
t<10`c+1 pts(v) ≥ 1/8`c+1.

• The total number of edges crossing the partition is at most 8dn
√
c`−1/5 log `.
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Proof. We simply iterate over Lemma 3.3.1. Let T = {s | ‖cl(p`s,1/4)‖22 ≤ `−c}. By assumption,

|T | ≤n/`1/5. We will maintain a partition of the vertices {T,Q1,Q2, . . . ,Qa,S} with the following

properties. (1) Each Qi satisfies the first condition of the theorem. (2) The total number of

edges crossing the partition is at most 4d
√
c`−1/5 log `

∑
i≤a |Qi|+ d|T |. We initialize with the

trivial partition {T, S = V \ T}.
As long as |S| > n/`1/5, we invoke Lemma 3.3.1. We get a new set Q ⊆ S satisfying

the first condition of the theorem, and the number of edges from Q to S \ Q is at most

4d
√
c`1/5 log `|Q|. We add Q to our partition, reset S = S \Q, and iterate.

When this process terminates, |S| ≤ n/`1/5. We get the final partition by removing all

edges incident to S ∪ T . Alternately, every single vertex in S ∪ T becomes a separate set. Note

that a single vertex trivially satisfies the first condition of theorem, since for all s, ps,s(1) ≥ 1/2.

The total number of edges crossing the partition is at most 4dn
√
c`−1/5 log ` + 2dn`−1/5 ≤

8dn
√
c`−1/5 log `.

3.4 Proof of main result

Claim 3.4.1. Consider EstClip(s), and recall that T is the set of all vertices such that wv ≥ k/8.

With probability at least 1 − exp(−k/128) over the randomness in EstClip(s): all v such that

p`s(v) ≥ 1/4k are in T , and no v such that p`s(v) ≤ 1/64k is in T .

Proof. Consider v such that p`s(v)≥ 1/4k. Recall that the total number of walks is w = k2. The

expected value of wv is at least w/4k = k/4. Note that wv is a sum of Bernoulli random

variables. By a multiplicative Chernoff bound (Theorem 1.1 of [DP09]), Pr[wv ≤ k/8] ≤
Pr [wv ≤ E[wv]/2]≤ exp(−k/16). There are at most 4k such vertices. By a union bound over all

of them, the probability that some such v is not in T is at most 4k · exp(−k/16) ≤ exp(−k/32).

For the second part, consider v such that p`s(v) ≤ 1/64k. We split into two cases.

Case 1, p`s(v) ≥ exp(−k/32). The expectation of wv is at most k2 · 1
64k = k/64.

Therefore, 2eE[wv] ≤ k/8, and by a Chernoff bound (third part, Theorem 1.1 of [DP09]),

Pr[wv ≥ k/2] ≤ 2−k/8. There are at most exp(k/32) such vertices v. Taking a union bound

over all of them, the probability that any such vertex appears in T is at most exp(k/32)2−k/8 ≤
exp(k/32) exp(−k/16) ≤ exp(−k/32).

Case 2, p`s(v) < exp(−k/32). For convenience, set p = p`s(v). The probability that

wv ≤ 1 is:

(1− p)w + wp(1− p)w−1 ≥ (1− wp) + wp(1− p(w − 1)) = 1− p2w(w − 1) ≥ 1− p2w2 (3.1)

(We use the inequality (1− x)r ≥ 1− xr, for |x| ≤ 1, r ∈ N.) Thus, the probability that wv > 1

is at most p2w2. Note that k/8 (the threshold to be placed in T ) is at least 2.
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Let us take a union bound over all such vertices. We note that w = k2. The probability

that any such v is placed in T is at most∑
v:p`s(v)<exp(−k/32)

p`s(v)2w2 ≤ w2 exp(−k/32)
∑
v

p`s(v) ≤ exp(−k/64) (3.2)

where the last inequality holds for sufficiently large k (or equivalently, sufficiently small ε).

Union bounding over both errors completes the proof.

We can now argue about the main guarantee of EstClip.

Claim 3.4.2. For all vertices s, with probability at least 1 − e−k/64 over the randomness of

EstClip(s):

• If ‖cl(p`s, 1/4)‖22 < 1
2560k , then EstClip(s) outputs LOW.

• If ‖cl(p`s, 3/8)‖22 > 1
4k , then EstClip(s) outputs HIGH.

Proof. Consider the first case. Let H = {v |p`s(v) ≥ 1/64k}. We first argue that
∑
v∈H p`s(v) ≤

1/4 + 1/20. Suppose not. Then, any clipping of 1/4 of the probability mass of p`s leaves at

least 1/20 probability mass on H. The size of H is at most 64k. By Jensen’s inequality,

‖cl(p`s, 1/4)‖22 ≥ 1/2560k, contradicting the case condition.

Thus,
∑
v∈H p`s(v) ≤ 1/4 + 1/20. The expected value of

∑
v∈H wv ≤ w(1/4 + 1/20).

By an additive Chernoff bound (first part, Theorem 1.1 of [DP09]), Pr[
∑
v∈H wv ≥ w/3] ≤

exp(−2(1/3 − 1/4 − 1/20)2w) ≤ exp(−w/10000). By Claim 3.4.1, with probability at least

1− 2 exp(−k/64), every vertex in T is such that p`s(v) > 1/64k, and hence T ⊆ H. By a union

bound, with probability at least 1− 3 exp(−k/64) ≥ 1− exp(−k/128),
∑
v∈T wv ≤

∑
v∈H wv <

w/3, and the output is LOW.

Now for the second case. Let H ′ = {v |p`s(v) ≥ k−1/4}. We first argue that∑
v∈H p`s(v) ≥ 3/8. Suppose not. We can clip away all the probability mass of p`s that is

on H ′, which is at most 3/8. All remaining probability/entries of the clipped vector are at most

1/4k. Thus, the squared l2-norm is at most 1/4k, implying ‖cl(p`s,3/8)‖22 ≤ 1/4k (contradiction).

Thus,
∑
v∈H′ p

`
s(v) ≥ 3/8. By an additive Chernoff bound (first part, Theorem 1.1

of [DP09]), Pr[
∑
v∈H′ wv < w/3] ≤ exp(−2(3/8 − 1/3)2w) ≤ exp(−w/10000). By Claim 3.4.1,

with probability at least 1−2 exp(−k/64), H ′ ⊆ T . By a union bound, with probability at least

1− e−k/128,
∑
v∈T wv ≥

∑
v∈H′ wv ≥ w/3, and the output is HIGH.

We break the proof of Theorem 3.1.1 into the following three main claims.

Claim 3.4.3. With probability at least 2/3, IsHyperfinite(G, ε) rejects any G which is ε-far

from P.

Proof. We split into two cases.

Case 1: There are less than (1− 1/`1/5)n vertices such that ‖cl(p`s,1/4)‖22 > 1/2560k.
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Then, there are at least n/`1/5 vertices such that ‖cl(p`s, 1/4)‖22 ≤ 1/2560k. The

expected number of such vertices (with repetition) in the multiset S (of Step 1) is at least

|S| n
`1/5

= ε−34k2. By a multiplicative Chernoff bound, there are at least ε−34k2

2 such vertices

in S with probability at least 1 − exp( ε
−34k2

8 ). For each such vertex s, the probability that

EstClip(s) outputs LOW is at least 1− exp(−k/128) (Claim 3.4.2). By a union bound over all

vertices in S, with probability > (1 − exp(− ε
−34k2

8 ))(1 − |S| exp(−k/128)) > 5/6, there are at

least ε−34k2

2 calls to EstClip(s) that return LOW. So the tester rejects.

Case 2: There are at least (1− 1/`1/5)n vertices such that ‖cl(p`s, 1/4)‖22 > 1/2560k.

We apply the decomposition of Theorem 3.3.2 with c= log(2560k)
log(`) , and hence `−c = 1/2560k, and

so the theorem applies. There is a partition {P1, P2, . . . , Pb} of the vertices such that:

• For each Pi, there exists s ∈ V such that: ∀v ∈ Pi,
∑
t<25600`k pts(v) ≥ 1/20480`k.

Call s the anchor for Pi, noting that multiple sets may have the same anchor.

• The total number of edges crossing the partition is at most 8dn
√

log(2560k)`−1/5.

Among the sets in the partitbion, let {Q1, Q2, . . . , Qa} be the sets of vertices that

induce a graph not in P. Note that one can remove

d
∑
i≤a

|Qi|+ 8dn
√

log(2560k)`−1/5 (3.3)

edges to make G have P since P is monotone. Since ` = ε−40 and k ≤ 2`
1/10

, the number

of edges crossing the partition (the second term of (3.3)), is at most 8dn
√

log(2560k)`−1/5 ≤
1000dn`−1/20 ≤ 1000ε2dn ≤ εdn/2 (for sufficiently small ε). Note that this is where we require

the upper bound on the hyperfiniteness function, f(α). If k = f(1/8`2) were too large, we would

not be able to bound the number of edges crossing the partition. Since G is ε-far from being

H-minor free, we deduce from the above that
∑
i≤a |Qi| ≥ εn/2.

Let Z = {s |s is anchor for some Qi}. Let us lower bound |Z|. For every Qi, there is

some s ∈ Z such that ∀v ∈ Qi,
∑
t<25600`k pts(v) ≥ 1/20480`k. Thus, for every Qi, there is some

s ∈ Z such that
∑
v∈Qi

∑
t<25600`k pts(v) ≥ |Qi|/20480`k. Let us sum over all s ∈ Z (and note

that
∑
v∈V pts(v) = 1).∑

i≤a

|Qi|/20480`k ≤
∑
s∈Z

∑
v∈V

∑
t<25600`k

pts(v) ≤
∑

t<25600`k

∑
s∈Z

∑
v∈V

pts(v) ≤ 25600`k|Z| (3.4)

Since
∑
i≤a |Qi| ≥ εn/2, |Z| ≥ c1 εn

`2k2 where c1 is some small absolute constant.

Focus on the multiset S in Step 1 of IsHyperfinite. Note that S contains an element

of Z with probability ≥ 1− ( c1ε`2k2 )|S| ≥ 9/10 (recall that |S| = ε−42k2). Let us condition on this

event, and let s ∈ S∩Z. There exists some Qi such that ∀v ∈Qi,
∑
t<25600`k pts(v)≥ 1/20480`k.

By averaging over walk length, ∀v ∈ Qi, ∃t < 25600`k such that pts(v) ≥ c2/`
2k2 where c2 is a

small absolute constant.

Now, consider the call to LocalSearch(s). The set Bs in Step 1 of LocalSearch is

constructed by performing k3`3 random walks of length 25600`k. For any v ∈Qi, the probability
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that v is in Bs is at least 1 − (1 − c2
`2k2 )k

3`3 ≥ 1 − exp(−c2k`). Taking a union bound over all

v ∈ Qi, the probability that Qi ⊆ Bs is at least 1− `2k2

c2
exp(−c2k`) ≥ 9/10 for sufficiently small

ε. When Qi ⊆ Bs, then G[Bs] 6∈ P and the tester rejects. The probability of this happening is

at least (9/10)2 > 2/3.

In either case, the graph is rejected with probability at least 2/3, and hence the tester

rejects any graph that is ε-far from P.

Claim 3.4.4. With probability at least 2/3, IsHyperfinite (G, ε) accepts any G ∈ P.

Proof. Let us turn our attention to graphs which are in P. Note that since P is monotone, calls

to LocalSearch can never return FOUND, so rejection can only happen because of the output

of calls to EstClip.

By Lemma 3.2.2, since G is (1/8`2, k)-hyperfinite, there are at least (1− 1/`)n vertices

such that ‖cl(p`s, 3/8)‖22 ≥ 1/4k. Call these vertices heavy. The expected number of light

vertices in the multiset S chosen in Step 1 of IsHyperfinite is at most 1/` × |S| = ε−2`k2.

By a multiplicative Chernoff bound (Theorem 1 of [DP09]), the number of light vertices in S is

strictly less than ε−34k2

2 with probability at least 1−exp(−c2`13/5k2)> 9/10 for a large constant

c2. Let us condition on this event. The probability that any call to EstClip(s) returns HIGH

for a heavy s ∈ S is at least 1−exp(−k/128) by Claim 3.4.2. By a union bound over the at most

ε−42k2 heavy vertices in S, all calls to EstClip(s) for heavy s ∈ S return HIGH with probability

at least 1− (ε−42k2) exp(−k/128) > 9/10.

We now remove the conditioning. With probability > (9/10)2 > 2/3, there are

strictly less than ε−34k2

2 calls (for the light vertices) that return LOW. When this happens,

IsHyperfinite accepts.

Claim 3.4.5. There exist fixed polynomials, p and q, such that the query complexity of

IsHyperfinite is O (p (df (q (1/ε)))).

Proof. Note that k = f(q(1/ε)) for a polynomial, q. LocalSearch performs poly(k) walks of

length poly(k), and in order to determine the subgraph G[Bs], it requires d queries for every

vertex encountered. Therefore, each call to LocalSearch requires dpoly(k) queries. Each call of

EstClip performs 8k3 queries. Both LocalSearch and EstClip are called poly(k) times, and

hence the overall query complexity is dpoly(k).

54



Chapter 4

An efficient partition oracle

The algorithmic study of planar graphs is a fundamental direction in theoretical com-

puter science and graph theory. Classic results like the Kuratowski-Wagner characterization

[Kur30, Wag37], linear time planarity algorithms [HT74], and the Lipton-Tarjan separator the-

orem underscore the significance of planar graphs [LT80]. The celebrated theory of Robertson-

Seymour give a grand generalization of planar graphs through minor-closed families [RS95a,

RS95b, RS04]. This has led to many deep results in graph algorithms, and an important toolkit

is provided by separator theorems and associated decompositions [AST94].

Over the past decade, there have been many advances in sublinear algorithms for planar

graphs and minor-closed families. We focus on the model of random access to bounded degree

adjacency lists, introduced by Goldreich-Ron [GR02]. Let G = (V,E) be a graph with vertex

set V = [n] and degree bound d. The graph is accessed through neighbor queries: there is an

oracle that on input v ∈ V and i ∈ [d], returns the ith neighbor of v. (If none exist, it returns

⊥.)

One of the key properties of bounded-degree graphs in minor-closed families is that

they exhibit hyperfinite decompositions. A graph G is hyperfinite if ∀ 0< ε < 1, one can remove

εdn edges from G and obtain connected components of size independent of n (we refer to these

as pieces). For minor-closed families, one can remove εdn edges and get pieces of size O(ε−2).

The seminal result of Hassidim-Kelner-Nguyen-Onak (HKNO) [HKNO09] introduced

the notion of partition oracles. This is a local procedure that provides “constant-time” access to

a hyperfinite decomposition. The oracle takes a query vertex v and outputs the piece containing

v. Each piece is of size independent of n, and at most εdn edges go between pieces. Furthermore,

all the answers are consistent with a single hyperfinite decomposition, despite there being no

preprocessing or explicit coordination. (All queries uses the same random seed, to ensure

consistency.) Partition oracles are extremely powerful as they allow a constant time procedure

to directly access a hyperfinite decomposition. As observed in previous work, partition oracles
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lead to a plethora of property testing results and sublinear time approximation algorithms for

minor-closed graph families [HKNO09, NS13]. In some sense, one can think of partition oracles

as a moral analogue of Szémeredi’s regularity lemma for dense graph property testing: it is

a decomposition tool that immediately yields a litany of constant time (or constant query)

algorithms.

We give a formal definition of partition oracles. (We deviate somewhat from the

definition in Chap. 9.5 of Goldreich’s book [Gol17] by including the running time as a parameter,

instead of the set size.)

Definition 4.0.1. Let P be a family of graphs with degree bound d and T : (0, 1) → N be

a function. A procedure A is an (ε, T (ε))-partition oracle for P if it satisfies the following

properties. The deterministic procedure takes as input random access to G = (V,E) in P,

random access to a random seed r (of length polynomial in graph size), a proximity parameter

ε > 0, and a vertex v of G. (We will think of fixing G, r, ε, so we use the notation AG,r,ε. All

probabilities are with respect to r.) The procedure AG,r,ε(v) outputs a set of vertices and satisfies

the following properties.

1. (Consistency) The sets {AG,r,ε(v)}, over all v, form a partition of V . Also, these sets

AG,r,ε(v) induce connected graphs for all v ∈ V .

2. (Cut bound) With probability (over r) at least 2/3, the number of edges between the sets

AG,r,ε(v) is at most εdn.

3. (Running time) For every v, AG,r,ε(v) runs in time T (ε).

We stress that there is no explicit “coordination” or sharing of state between calls to

AG,r,ε(v) and AG,r,ε(v
′) (for v 6= v′). There is no global preprocessing step once the random

seed is fixed. The consistency guarantee holds with probability 1. Note that the running time

T (ε) is clearly an upper bound on the size of the sets AG,r,ε(v). For minor-closed families, one

can convert any partition oracle to one that output sets of size O(ε−2) with a constant factor

increase in the cut bound. (refer to the end of Sec. 9.5 in [Gol17]).

The challenge in partition oracles is to bound the running time T (ε). HKNO gave

a partition oracle with running time (dε−1)poly(dε
−1). Levi-Ron [LR15] built on the ideas

from HKNO and dramatically improved the bound to (dε−1)log(dε
−1). Yet, for all minor-closed

families, one can (in linear time) remove εdn edges to get connected components of size O(ε−2).

HKNO raise the natural open question as to whether (ε,poly(dε−1))-partition oracles exist.

In this paper, we resolve this open problem.

Theorem 4.0.2. Let P be the set of d-bounded degree graphs in a minor-closed family. There

is an (ε, poly(dε−1))-partition oracle for P.
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4.0.1 Consequences

As observed by HKNO and Newman-Sohler [NS13], partition oracles have many

consequences for property testing and sublinear algorithms.

Recall the definition of property testers. Let Q be a property of graphs with degree

bound d. The distance of G to Q is the minimum number of edge additions/removals required

to make G have Q, divided by dn. A property tester for P is a randomized procedure that takes

query access to an input graph G and a proximity parameter, ε > 0. If G ∈ P, the tester accepts

with probability at least 2/3. If the distance of G to Q is at least ε, the tester rejects with

probability at least 2/3. We often measure the query complexity as well as time complexity of

the tester.

A direct consequence of Theorem 4.0.2 is an “efficient” analogue (for monotone and

additive properties) of a theorem of Newman-Sohler stating that all properties of hyperfinite

graphs are testable. A graph property closed under vertex/edge removals is called monotone.

A graph property closed under disjoint union of graphs is called additive.

Theorem 4.0.3. Let Q be any monotone and additive property of bounded degree graphs of a

minor-closed family. There exists a poly(dε−1)-query tester for Q.

If membership in Q can be determined exactly in polynomial (in input size) time, then

Q has poly(dε−1)-time testers.

An appealing consequence of Theorem 4.0.3 is that the property of bipartite planar

graphs can be tested in poly(dε−1) time. For any fixed subgraph H, the property of H-free

planar graphs can be tested in the same time. And all of these bounds hold for any minor-closed

family.

As observed by Newman-Sohler, partition oracles give sublinear query algorithms for

any additive graph parameter that is “robust” to edge changes. Again, Theorem 4.0.2 implies

an efficient version for minor-closed families.

Theorem 4.0.4. Let f be a real-valued function on graphs that changes by O(1) on edge

addition/removals, and has the property that f(G1 ∪ G2) = f(G1) + f(G2) for graphs G1, G2

that are not connected to each other.

For any minor-closed family P, there is a randomized algorithm that, given ε > 0 and

G ∈ P, outputs an additive εn-approximation to f(G) and makes poly(dε−1) queries. If f can

be computed exactly in polynomial time, then the above algorithm runs in poly(dε−1) time.

The functions captured by Theorem 4.0.4 are quite general. Functions such as

maximum matching, minimum vertex cover, maximum independent set, minimum dominating

set, maxcut, etc. all have the robustness property. As a compelling application of Theorem 4.0.4,
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we can get (1 + ε)-approximations1 for the maximum matching in planar (or any minor-closed

family) graphs in poly(dε−1) time.

These theorems are easy consequences of Theorem 4.0.2. Using the partition oracle, an

algorithm can essentially assume that the input is a collection of connected components of size

poly(dε−1), and run an exact algorithm on a collection of randomly sampled components. We

sketch the proofs in §4.7.

4.0.2 Related work

The subject of property testing and sublinear algorithms in bounded degree graphs is

a vast topic. We refer the reader to Chapters 9 and 10 of Goldreich’s textbook [Gol17]. We

focus on the literature relevant to sublinear algorithms for minor-closed families.

The first step towards a characterization of testable properties in the bounded-

degree model was given by Czumaj-Sohler-Shapira, who showed hereditary properties in non-

expanding graphs are testable [CSS09]. This was an indication that notions like hyperfiniteness

are connected to property testing. Benjamini-Schramm-Shapira achieved a breakthrough

by showing that all minor-closed properties are testable, in time triply-exponential in dε−1

[BSS10]. Hassidim-Kelner-Nguyen-Onak introduced partition oracles, and designed one running

in time exp(dε−1). Levi-Ron improved this bound to quasipolynomial in dε−1, using a clever

analysis inspired by algorithms for minimum spanning trees [LR15]. Newman-Sohler built on

partition oracles for minor-close families to show that all properties of hyperfinite graphs are

testable [NS13]. Fichtenberger-Peng-Sohler showed any testable property contains a hyperfinite

property [?].

There are two dominant combinatorial ideas in this line of work. The first is using

subgraph frequencies in neighborhood of radius poly(ε−1) to characterize properties. This

naturally leads to exponential dependencies in poly(ε−1). The second idea is to use random edge

contractions to reduce the graph size. Recursive applications lead to hyperfinite decompositions,

and the partition oracles of HKNO and Levi-Ron simulate this recursive procedure. This is

extremely non-trivial, and leads to a recursive local procedure with a depth dependent of ε.

Levi-Ron do a careful simulation, ensuring that the recursion depth is at most log(dε−1), but this

simulation requires looking at neighborhoods of radius log(dε−1). Following this approach, there

is little hope of getting a recursion depth independent of ε, which is required for a poly(dε−1)-

time procedure.

Much of the driving force behind this work was the quest for a poly(dε−1)-time

tester for planarity. This question was resolved recently using a different approach from

spectral graph theory, which was itself developed for sublinear time algorithms for finding

1The maximum matching is Ω(n/d) for a connected bounded degree graph. One simply sets ε � 1/d in
Theorem 4.0.4.
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minors [KSS18, KSS19b]. A major inspiration is the random walk based one-sided bipartiteness

tester of Goldreich-Ron [GR99]. This paper is a continuation of that line of work, and is a

further demonstration of the power of spectral techniques for sublinear algorithms. The tools

build on local graph partitioning techniques pioneered by Spielman-Teng [ST12], which is itself

based on classic mixing time results of Lovász-Simonovits [LS90b]. In this paper, we develop

new diffusion-based local partitioning tools that form the core of partition oracles.

We also mention other key results in the context of sublinear algorithms for minor-

closed families, notably the Czumaj et al [CGR+14] upper bound of O(
√
n) for testing cycle

minor-freeness, the Fichtenberger et al [FLVW17] upper bound of O(n2/3) for testing K2,r-

minor-freeness, and poly(dε−1) testers for outerplanarity and bounded treewidth graphs [YI15,

EHNO11].

4.1 Main Ideas

The starting point for this work are the spectral methods used in [KSS18, KSS19b].

These methods discover cut properties within a neighborhood of radius poly(dε−1), without

explicitly constructing the entire neighborhood.

One of the key tools used in these results in a local partitioning algorithm, based on

techniques of Spielman-Teng [ST12]. The algorithm takes a seed vertex s, performs a diffusion

from s (equivalently, performs many random walks) of length poly(dε−1), and tracks the diffusion

vector to detect a low conductance cut around s in poly(dε−1) time. We will use the term

diffusions, instead of random walks, because we prefer the deterministic picture of a unit of

“ink” spreading through the graph. A key lemma in previous results states that, for graphs in

minor-closed families, this procedure succeeds from more than (1−ε)n seed vertices. This yields

a global algorithm to construct a hyperfinite decomposition with components of poly(dε−1) size.

Pick a vertex s at random, run the local partitioning procedure to get a low conductance cut,

remove and recurse. Can there be a local implementation of this algorithm?

Let us introduce some setup. We will think of a global algorithm that processes seed

vertices in some order. Given each seed vertex s, a local partitioning algorithm generates a low

conductance set C(s) containing s (this is called a cluster). The final output is the collection of

these clusters. For any vertex v, let the anchor of v be the vertex s such that v ∈ C(s). A local

implementation boils down to finding the anchor of query vertex v.

Observe that at any point of the global procedure, some vertices have been clustered,

while the remaining are still free. The global procedure described above seems hopeless for a

local implementation. The cluster C(s) is generated by diffusion in some subgraph G′ of G,

which was the set of free vertices when seed s was processed. Consider a local procedure trying

to discover the anchor of v. It would need to figure out the free set corresponding to every
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potential anchor s, so that it can faithfully simulate the diffusion used to cluster v. From an

implementation standpoint, it seems that the natural local algorithm is to use diffusions from v

in G to discover the anchor. But diffusion in a subgraph G′ is markedly different from G and

difficult to simulate locally. Our first goal is to design a partitioning method using diffusions

directly in G.

Finding low conductance cuts in subsets, by diffusion in supersets: Let us

now modify the global algorithm with this constraint in mind. At some stage of the global

algorithm, there is a set F of free vertices. We need to find a low conductance cut contained

in F , while running random walks in G. Note that we must be able to deal with F as small as

O(εn). Thus, random walks (even starting from F ) will leave F quite often; so how can these

walks/diffusions find cuts in F?

One of our main insights is that these challenges can be dealt with, even for diffusions

of poly(dε−1) length. We show that, for a uniform random vertex s ∈ F , a spectral partitioning

algorithm that performs diffusion from s in G can detect low conductance cuts contained in F .

Diffusion in the superset (all of V ) provides information about the subset F . This is a technical

and non-trivial result, and crucially uses the spectral properties of minor-closed families. Note

that diffusions from F can spread very rapidly in short random walks, even in planar graphs.

Consider a graph G, where F is a path on εn vertices, and there is a tree of size 1/ε rooted at

every vertex of F . Diffusions from any vertex in F will initially be dominated by the trees, and

one has to diffuse for at least 1/ε timesteps before structure within F can be detected. Thus,

the proof of our theorem has to look at average behavior over a sufficiently large time horizon

before low conductance cuts in F are “visible”. Remarkably, it suffices to look at poly(dε−1)

timesteps to find structure in F , because of the behavior of diffusions in minor-closed families.

The main technical tool used is the Lovász-Simonovits curve technique [LS90b], whose

use was pioneered by Spielman-Teng [ST12]. We also use the truncated probability vector

technique from Spielman-Teng to give cleaner implementations and proofs. A benefit of

using diffusion (instead of random walks) on truncated vectors is that the clustering becomes

deterministic.

The problem of ordering the seeds: With one technical hurdle out of the way,

we end up at another gnarly problem. The above procedure only succeeds if the seed is in F .

Quite naturally, one does not expect to get any cuts in F by diffusing from a random vertex in

G. From the perspective of the global algorithm, this means that we need some careful ordering

of the seeds, so that low conductance cuts are discovered. Unfortunately, we also need local

implementations of this ordering. The authors struggled with carrying out this approach, but

to no avail.

To rid ourselves of the ordering problem, let us consider the following, almost naive

global algorithm. First, order the vertices according to a uniform random permutation. At
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any stage, there is a free set F . We process the next seed vertex s by running some spectral

partitioning procedure, to get a low conductance cut C(s). Simply output C(s) ∩ F (instead

of C(s)) as the new cluster, and update F to F \ C(s). It is easy to locally implement this

procedure. To find the anchor of v, perform a diffusion of poly(ε−1) timesteps from v. For every

vertex s with high enough value in the diffusion vector, determine if C(s) 3 v. The vertex s

that is lowest according to the random ordering is the anchor of v. Unfortunately, there is little

hope of bounding the number of edges cut by the clustering. When s is processed, it may be

that s /∈ F , and there is no guarantee of C(s) ∩ F . Can we modify the procedure to bound the

number of cut edges, but still maintain its ease of local implementability?

The amortization argument: Consider the scenario when F = Θ(εn). Most of the

subsequent seeds processed are not in F and there is no guarantee on the cluster conductance.

But every Θ(1/ε) seeds (in expectation), we will get a “good” seed s contained in F , such that

C(s)∩F is a low conductance set. (This is promised by the diffusion algorithm that we develop

in this paper, as discussed earlier.) Our aim is to perform some amortization, to argue that

|C(s) ∩ F | is so large, that we can “charge” away the edges cut by the previous Θ(1/ε) seeds.

This amortization is possible because our spectral tools give us much flexibility in the

(low) conductances obtained. Put differently, we essentially prove that existence of many cuts

of extremely low conductance, and show that it is “easy” for a diffusion-based algorithm to

find such cuts. (This is connected to the spectral behavior of minor-closed families.) As a

consequence, we can actually pre-specify the size of the low conductance cuts obtained. We

show that as long as |F | = Ω(εn), we can find a size threshold k = poly(ε−1) such that for

at least Ω(ε2n) vertices s ∈ F , a spectral partitioning procedure seeded at s can find a cut of

size Θ(k) and conductance at most εc. Moreover, this cut is guaranteed to contain at least εc
′
k

vertices in F , despite the procedure being oblivious to F . The parameter c can be easily tuned,

so we can increase c arbitrarily while keeping c′ fixed, at the cost of polynomial increases in

running time. This tunability is crucial to our amortization argument. We also show that given

query access to F , a size threshold k can be computed in poly(dε−1) time.

So when the global algorithm processes seed s, it runs the above spectral procedure to

try to obtain a set of size Θ(k) with conductance at most εc. (If the procedure fails, the global

algorithm simply set C(s) = {s}.) Thus, we cut O(εckd) edges for each seed processed. But

after every O(1/ε) seeds, we choose a “good” seed such that |C(s)∩F |> εc
′
k. The total number

of edges cut is O(εckd × ε−1) = O(εc−1kd). The total number of new vertices clustered is at

least εc
′
k. Because we can tune parameters with much flexibility, we can set c� c′. So the total

number of edges cut is O(εc−c
′−1d) times the number of vertices clustered, where c− c′− 1 > 1.

Overall, we will cut only O(εnd) edges.

Making it work through phases: Unfortunately, as the process described above

continues, F shrinks. Thus, the original choice of k might not work, and the guarantees on
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|C(s) ∩ F | for good seeds no longer hold. So we need to periodically recompute the value of

k. In a careful analysis, we show that this recomputation is only required poly(ε−1) times.

Formally, we implement the recomputation through phases. Each vertex is independently

assigned to one of poly(ε−1) phases. (Technically, we choose the phase of a vertex by sampling

an independent geometric random variable. We heavily use the memoryless property of the

geometric distribution.)

For each phase, the value of k is fixed. The local partition oracle will compute these

size thresholds for all phases, as a poly(dε−1) time preprocessing step. The oracle (for v) runs

a diffusion from v to get a collection of candidate anchors. For each candidate s, the oracle

determines its phase, runs the spectral partitioning algorithm with correct phase parameters,

and determines if the candidate’s low conductance cut contains v. The anchor is simply such a

candidate of minimum phase, with ties broken by vertex id.

4.1.1 Outline of sections

The algorithm description and proof has many moving parts, encapsulated by different

sections. §4.2 begins by discussing the truncated diffusion process, the main algorithmic tool

for partitioning. We then describe the global partitioning algorithm globalPartition (modulo

a preprocessing step called findr), which is far more convenient to analyze. It will be readily

apparent that this global procedure outputs a partition of G into connected components; the

main challenge is to bound the number of edges cut.

Within §4.2, we discuss how to implement globalPartition by a local procedure.

By ensuring that the output of the local procedure is identical to globalPartition, we prove

the consistency property of Def 4.0.1. We then perform a fairly straightforward running time

analysis, which proves the running time property of Def 4.0.1.

The real heavy lifting begins in §4.3, where we describe the procedure findr that

computes the size thresholds. This section is devoted to proving salient properties of the

size thresholds output by findr. The analysis hinges on the diffusion and cut properties

stated in Theorem 4.3.1, which is the main tool connecting minor-freeness, diffusions, and local

partitioning. §4.4 uses all these tools to prove the cut bound of globalPartition. At this

stage, the complete description and guarantees of the partition oracle are complete, modulo the

proof of Theorem 4.3.1.

The proof of Theorem 4.3.1 is split into sections. In §4.5, we use the hyperfiniteness of

minor-closed families to prove properties of truncated diffusions on minor-free families. §4.6 has

the key spectral calculations, where the Lovász-Simonovits curve technique is used to find low

conductance cuts. This section has the crucial insights that allow for partitioning in the free

set, using diffusions in the overall graph.

§4.7 has short proofs of the applications Theorem 4.0.3 and Theorem 4.0.4. These are
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provided for completeness, since identical calculations appear in the proof of Theorem 9.28

in [Gol17].

4.2 Global partitioning and its local implementation

There are a number of parameters that are used in the algorithm. We list them out

here for reference. It is convenient to fix the value of ε in advance, so that all the values of

the following parameters are fixed. Note that all these parameters are polynomial is ε. We

will express all running times as polynomials in these parameters, ensuring all running time are

poly(ε−1).

• ρ = d−60ε3000: Minimum probability for truncation.

• ` = d6ε−30: Maximum random walk length.

• β = ε/10: Unclustered fraction cutoff.

• δ = d−70ε3100: Phase probability.

• α = ε4/3

300,000 : Heavy bucket parameter.

• φ = ε10: Conductance parameter.

4.2.1 Truncated diffusion

The main process used to find sets of the partition is a truncated diffusion. We assume

that the input graph G is connected, has n vertices, and degree bound d. Define the symmetric

random walk matrix M as follows. For every edge (u, v), Mu,v = Mv,u = 1/2d. For every

vertex v, Mv,v = 1− d(v)/2d, where d(v) is the degree of v. The matrix M is doubly stochastic,

symmetric, and the (unique) stationary distribution is the uniform distribution.

Given a vector ~x ∈ (R+)n, diffusion is the evolution M t~x. We define a truncated

version, where after every step, small values are removed. For any vector ~x, let supp(~x) denote

the support of the vector.

Definition 4.2.1. Define the operator M̂ : (R+)n → (R+)n as follows. For ~x ∈ (R+)n, the

vector M̂~x is obtained by zeroing out all coordinates in M~x whose value is at most ρ.

For t > 1, the operator M̂ t is the t-step truncated diffusion, and is recursively defined

as M̂(M̂ t−1~x).

Define p̂v,t(w) to be the coordinate corresponding to vertex w in the t-step truncated

diffusion starting from vertex v.
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We stress that the t-step truncated diffusion is obtained from a standard diffusion

by truncating low values at every step of the diffusion. Note that as the truncated diffusion

progresses, the l1-norm of the vector may decrease at each step. Importantly, for any distribution

vector ~x, supp(M̂ t~x) has size at most ρ−1. We heavily use this property in our running time

analysis.

We define level sets, a standard concept in spectral partitioning algorithms. Somewhat

abusing notation, for vertex v ∈ V , we use ~v to denote the unit vector in (R+)n corresponding

to the vertex v. (We never use to vector notation for any other kind of vectors.)

Definition 4.2.2. For vertex v ∈ V , length t, and threshold k, let Lv,t,k be the set of vertices

corresponding to the k largest coordinates in M̂ t~v (ties are broken by vertex id).

For any set S of vertices, the conductance of S is

Φ(S) := E(S, S)/[2 min(|S|, |S|)d]

where E(S, S) denotes the number of edges between S and its complement.

We describe the key subroutine that finds low conductance cuts. It performs a sweep

cut over the truncated diffusion vector.

cluster(v, t, k)

1. Determine M̂ t~v

2. For all k′ ∈ [k, 2k] calculate Φ(Lv,t,k′).

3. Find the largest k′ ∈ [k, 2k] (if any) with the following properties: Φ(Lv,t,k′ ∪
{v}) ≤ φ and Lv,t,k′ ∈ supp(M̂ t~v).

4. If such a k′ exists, set C := Lv,t,k′ ∪ {v}, else C := {v}.
5. Return C.

Claim 4.2.3. The procedure cluster(v, t, k) runs in time O(ρ−1td log(ρ−1td) + kd log k). The

output set C has the following properties. (i) v ∈C. (ii) If C is not a singleton, then |C| ∈ [k,2k],

Φ(C) ≤ φ, and C ⊆ supp(M̂ t~v).

Proof. The latter properties are apparent from the description of cluster.

We analyze the running time. The convenience of the truncated diffusion is that it can

computed exactly by a deterministic process. First, for any b≥ 1, we show that the running time

to compute M̂ b~v is O(ρ−1bd). Note that for any t, supp(M̂ b~v) has size at most ρ−1, since M is

a stochastic matrix and all non-zero entries in M̂ b~v have value at least ρ. Given the vector M̂ b~v,

the vector M̂ b+1~v can be computed by determining MM̂ b~v and then zeroing out coordinates

that are less than ρ. This process can be done in O(d| supp(M̂ b~v)|) = O(ρ−1d). By summing

this running time over all timesteps, we get that the total time is O(ρ−1bd).

Thus, M̂ t~v can be computed exactly in O(ρ−1td) time. To compute the level sets, one

can sort the coordinates of this vector (breaking ties by id), and process them in decreasing
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order. One can iteratively store Lv,t,k in a dictionary data structure. Given Φ(Lv,t,k), one can

compute Φ(Lv,t,k+1) by O(d) lookups into the dictionary. The total running time of this step is

O(kd log k).

4.2.2 The global partitioning procedure

The global partitioning procedure globalPartition will output a partition of the

vertices satisfying the conditions in Def 4.0.1. This global procedure will run in linear time. In

the next subsection, we show how the output of the global procedure can be generated locally

in poly(ε−1) time, thereby giving us the desired partition oracle. It will be significantly easier

to understand and analyze the partition properties of the global procedure.

The key ingredient in globalPartition that allows for a local implementation is a

preprocessing step. The preprocessing allows for the “coordination” required for consistency of

various local partitioning steps. All the randomness is used in the preprocessing, after which

the actual partitioning is deterministic. The job of the preprocessing is to find the following sets

of values, which are used for two goals: (i) ordering vertices, (ii) setting parameters for calls to

cluster.

The preprocessing generates, for all vertices v, the following values.

• hv: The phase of v.

• kv: The size threshold of v.

• tv: The walk length of v.

Before giving the procedure description, we explain how these values are generated.

Phases: For each v, hv is set to max(X,h), where X is independently sampled from

Geo(δ), the geometric distribution with parameter δ. Moreover h := 2δ−1 log(δ−1), so the

maximum phase value is capped.

Size thresholds: The computation of these thresholds is the most complex part of our

algorithm (and analysis), and is the “magic ingredient” that makes the partition oracle possible.

We first run a procedure findr that runs in poly(ε−1) time and outputs a set of phase size

thresholds k1, k2, . . . , kh. All the thresholds have value at most ρ−1 and kh will be zero. The

(involved) description of findr and its properties are in §4.3. For now, it suffices to say that its

running time is poly(ε−1), and that it outputs phase size thresholds. The size threshold for a

vertex v is simply khv , corresponding to the phase it belongs to.

Walk lengths: These are simply chosen independently and uniformly in [1, `].

The analysis is more transparent when we assume that all the randomness used by

the algorithm is in a random seed R, of O(n · poly(ε−1)) length. The seed R is passed as an

argument to the partitioning procedure, which uses R to generate all the values described above.

(For convenience, we will assume random access to the adjacency list of G, without passing the
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graph as a parameter.)

It is convenient to define an ordering on the vertices, given these values. For cleaner

notation, we drop the dependence on R.

Definition 4.2.4. For vertex u, v ∈ V , we say that u ≺ v if: hu < hv or if hu = hv, the id of v

is less than that of v.

globalPartition(R)

Preprocessing:

1. For every v ∈ V :

(a) Use R to set hv := max(X,h) (X ∼ Geo(δ)).
(b) Use R to set tv uniform random in [1, `].

2. Call findr(R) to generate values k1, k2, . . . , kh. For every v ∈ V , set kv = khv .

Partitioning:

1. Initialize the partition P as an empty collection. Initialize the free set F := V .

2. For all vertices in V in increasing order of ≺:

(a) Compute C = cluster(v, tv, kv).

(b) Add the connected components of C ∩ F to the partition P .

(c) Reset F = F \ C.

3. Output P .

Since all of our subsequent discussions are about globalPartition, we abuse notation

assuming that the preprocessing is fixed. We refer to cluster(v) to denote cluster(v, tv, kv).

These are the only calls to cluster that are ever discussed, so it is convenient to just parametrize

by the vertex argument. Furthermore, for ease of notation, we sometimes refer to the output of

the procedure as cluster(v).

We observe that the output P is indeed a partition of V into connected components. At

any intermediate step, the free set F is precisely the set of vertices that have not been assigned

to a cluster. Note that cluster(v) always contains v (Claim 4.2.3), so all vertices eventually

enter (the sets of) P .

We note that v might not be in F when cluster(v) is called. This may lead to new

components in P that do not involve v, which may actually not be low conductance cuts.

This may seem like an oversight: why initiate diffusion clusters from vertices that are already

partitioned? Many challenges in our analysis arise from such clusters. On the other hand, such

an “oblivious” partitioning scheme leads to a simple local implementation.

4.2.3 The local implementation

A useful definition in the local implementation is that of anchors of vertices. As

mentioned earlier, we fix the output of the preprocessing (which is equivalent to fixing R).
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Definition 4.2.5. Consider the running of globalPartition(R). The anchor of w is the

(unique) vertex w such that the component in P containing v was created by the call to

cluster(v).

Suppose we label every vertex by its anchor. We can easily determine the sets of P

locally.

Claim 4.2.6. The sets of P are exactly the maximal connected components of vertices with the

same anchor.

Proof. We prove by induction over the ≺ ordering of vertices. The base case is vacuously true.

Suppose, just before v is considered, all current sets in P are maximal connected components

with the same anchor, which cannot be v. No vertex in F can have an anchor yet; otherwise,

it would be clustered and part of (a set in) P . All the new vertices clustered have v as anchor.

Moreover, the sets added to P are precisely the maximal connected components with v as

anchor.

We come to a critical definition that allows for searching for anchors. We define the

“inverse ball” of a vertex: this is the set of all vertices that reach v through truncated diffusions.

We note that reachability is not symmetric, because the diffusion is truncated at every step.

Definition 4.2.7. For v ∈ V , let IB(v) = {w | ∃t ∈ [0, `], v ∈ supp(M̂ t ~w)}.

Claim 4.2.8. |IB(v)| ≤ `ρ−1.

Proof. All vertices w ∈ IB(v) have the property that (for some t ≤ `) p̂w,t(v) 6= 0. That implies

that pw,t(v) ≥ ρ. By the symmetry of the random walk, pv,t(w) ≥ ρ. For any fixed t, there are

at most ρ−1 such vertices w. Overall, there can be at most `ρ−1 vertices in IB(v).

Now we have a simple characterization of the anchor that allows for local implementa-

tions.

Lemma 4.2.9. The anchor of v is the smallest vertex (according to ≺) in the set {s|s ∈
IB(v) and v ∈ cluster(s)}.

Proof. Let the anchor of v be the vertex u. We first argue that u in the given set. Clearly,

v ∈ cluster(u). If u = v, then u = v ∈ IB(v) and we are done. Suppsoe u 6= v. Then

cluster(u) is not a singleton (since it contains v). By Claim 4.2.3, cluster(u) is contained

in the support of M̂ tv~u, implying that v ∈ supp(M̂ tv~u). Thus, u ∈ IB(v) and the anchor u is

present in the given set.

It remains to argue that u is the smallest such vertex. Suppose there exists u′ ≺ u in

this set. In globalPartition, cluster(u′) is called before cluster(u). At the end of this call,

v is partitioned and would have u′ as its anchor. Contradiction.
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We are set for the local implementation. For a vertex v, we compute IB(v) and run

cluster(u) for all u ∈ IB(v). By Lemma 4.2.9, we can compute the anchor of v, and by

Claim 4.2.6, we can perform a BFS to find all connected vertices with the same anchor.

We begin by a procedure that computes IB(v). Since the truncated diffusion is not

symmetric, this requires a little care. We use N(u) to denote the neighborhood of vertex u.

findIB(v)

1. Initialize S = {v}.
2. For every t = 1, . . . , `:

(a) For every w ∈ S ∪N(S), compute M̂ t ~w. If v ∈ supp(M̂ t ~w), add v to S.

3. Return S.

Claim 4.2.10. The output of findIB(v) is IB(v). The running time is O(d2`3ρ−2).

Proof. We prove by induction on t, that after t iterations of the loop, S is the set {w | ∃t′ ∈
[0, t], v ∈ supp(M̂ t′ ~w)}. The base case t = 0 holds because S is initialized to {v}. Now for the

induction. Consider some w such that v ∈ supp(M̂ t+1 ~w). This means that (1−d(w)/2d)p̂w,t(v)+

(1/2d)
∑
w′∈N(w) p̂w′,t(v) ≥ ρ. Since the LHS is an average, for some w′ ∈ N(w) ∩ {w},

p̂w′,t(v) ≥ ρ. Hence, v ∈ supp(M̂ t ~w′), and by induction w′ ∈ S at the beginning of the

(t + 1)th iteration. The inner loop will consider w (as it is either w′ or a neighbor of w′),

correctly determine that v ∈ supp(M̂ t+1 ~w), and add it to S. By construction, every (new)

vertex w added to S has the property that v ∈ supp(M̂ t+1 ~w). This completes the induction and

the output property.

For the running time, observe that for all iterations, S ⊆ IB(v). By Claim 4.2.8,

|S| ≤ `ρ−1. Hence, |S ∪N(S)| has size O(d`ρ−1). The computation of each M̂ t ~w can be done in

O(d`ρ−1) time, since the distribution vector after each step has support size at most ρ−1. The

total running time of each iteration is O(d2`2ρ−2). There are at most ` iterations, leading to a

total running time of O(d2`3ρ−2).

We can now describe the local partitioning oracle (modulo the description of findr).

findAnchor(v,R)

1. Run findr(R) to get the set K = {k1, k2, . . . , kh}.
2. Run findIB(v) to compute IB(v).

3. Initialize A = ∅.
4. For every s ∈ IB(v):

(a) Using R determine hs, ts. Using K, determine ks.

(b) Compute C = cluster(s, ts, ks).

(c) If C 3 v, then add s to A.

5. Output the smallest vertex according to ≺ in A.
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findPartition(v,R)

1. Call findAnchor(v,R) to get the anchor s.

2. Perform BFS from v. For every vertex w encountered, first call

findAnchor(w,R). If the anchor is s, add w to the BFS queue (else, ignore

w).

3. Output the set of vertices that entered the BFS queue.

The following claim is a direct consequence of Lemma 4.2.9 and Claim 4.2.10.

Claim 4.2.11. The procedure findAnchor(v,R) outputs the anchor of v and runs in time

O((d`ρ−1)3) plus the running time of findr.

Proof. Observe that findAnchor(v,R) finds IB(v), computes cluster(s) for each s ∈ IB(v),

and outputs the smallest (by ≺) s such that v ∈ cluster(s). By Lemma 4.2.9, the output is the

anchor of v.

By Claim 4.2.10, the running time of findIB(v) is O(d2`3ρ−2). The number of calls

to cluster is |IB(v)|, which is at most `ρ−1 (Claim 4.2.8). Each call to cluster runs in time

O(d`ρ−2), by Claim 4.2.3 and the fact that ks ≤ ρ−1). Ignoring the call to findr, the total

running time is O(d2`3ρ−3).

Theorem 4.2.12. The output of findPartition(v,R) is precisely the set in P containing v,

where P is the partition output by globalPartition(R). The running time of

findPartition(v,R) is O((d`ρ−1)4) plus the running time of findr.

Proof. By Claim 4.2.11, findAnchor correctly outputs the anchor. By Claim 4.2.6, the set S

in P containing v is exactly the maximal connected component of vertices sharing the same

anchor (as v). The set S in P is generated in globalPartition(R) by a call to cluster,

whose output is a set of size at most ρ−1. The total number of calls to findAnchor made by

findPartition(v,R) is at most dρ−1, since a call is made to either a vertex in the set S or a

neighbor of S. Overall, the total running time is O((d`ρ−1)5) plus the running time of findr.

(Instead of calling findr in each call to findAnchor, one can simply store its output.)

4.3 Coordination through the size thresholds: the proce-

dure findr

We now come to the heart of our algorithm; coordination through findr. This section

gives the crucial ingredient in arguing that the partitioning scheme does not cut too many edges.

The ordering of vertices (to form clusters) is chosen independent of the graph structure. It is

highly likely that, as the partitioning proceeds, newer cluster(v) sets overlap heavily with the

existing partition. Such clusters may cut many new edges, without clustering enough vertices.
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Note that cluster(v) is a low conductance cut only in the original graph; it might have high

conductance restricted to F (the current free set).

To deal with such “bad” clusters, we need to prove that every so often, cluster(v)

will successfully partition enough new vertices. Such “good” clusters allow the partitioning

scheme to suffer many bad clusters. This argument is finally carried about by a careful charging

argument. First, we need to argue that such good clusters exist. The key tool is given by

the following theorem, which is proved using spectral graph theoretic methods. We state the

theorem as an independent statement.

Theorem 4.3.1. Let G be a bounded degree graph in a minor-closed family. Let F be an

arbitrary set of vertices of size at least βn. There exists a size threshold k ≤ ρ−1 such that the

following holds. For at least (β2/ log2 β−1)n vertices s ∈ F , there are at least (β/ log2 β−1)`

timesteps t ≤ ` such that: there exists k′ ∈ [k, 2k] such that (i) Ls,t,k′ ⊆ supp(M̂ t~s), (ii)

Φ(Ls,t,k′ ∪ {s}) < φ, and (iii) |Ls,t,k′ ∩ F | ≥ β3k.

The proof of this theorem is deferred to §4.6. In this section, we apply this theorem to

complete the description of the partition oracle and prove its guarantees.

We discuss the significance of this theorem. The diffusion used to define Ls,t,k′ occurs

in G, but we are promised a low conductance cut with non-trivial intersection with F (since

φ � β3). Moreover, such cuts are obtained for a non-trivial fraction of timesteps, so we can

choice one uar. Given oracle access to membership in F , it is fairly easy to find such a size

threshold by random sampling.

The importance of phases: Recall the global partitioning procedure globalPartition.

We can think of the partitioning process as divided into phases, where the hth phase involves

calling cluster(v, tv, kv) for all vertices v whose phase value is h. Consider the free set at the

beginning of a phase h, denoting it Fh. We apply Theorem 4.3.1 to determine the size threshold

kh. Since all kv values in this phases are precisely kh, this size threshold “coordinates” all

clusters in this phase. As the phase proceeds, the free set shrinks, and the size threshold kh

stops satisfying the properties of Theorem 4.3.1. Roughly speaking, at this point, we start a

new phase h + 1, and recompute the size threshold. The frequency of recomputation is chosen

carefully to ensure that the total running time remains poly(ε−1).

We now discuss the randomness involved in selecting phases and why geometric random

variables are used. Recall that hv is independently (for all v) set to be min(X,h), where

X ∼ Geo(δ). We first introduce some notation regarding phases.

Definition 4.3.2. The phase h seeds, denoted Vh, are the vertices whose phase value is h.

Formally, Vh = {v | hv = h}. We use V<h to denote
⋃
h′<h Vh. (We analogously define

V≤h, V≥h.)

The free set at phase h, denoted Fh, is the free set F in globalPartition, just before
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the first phase h vertex is processed. Formally,

Fh = V \
⋃

v∈V<h

cluster(v)

One can think of the Vhs being generated iteratively. Assume that we have fixed the

vertices in V1, . . . , Vh−1. All other vertices are in V≥h, implying that hv ≥ h for such vertices.

By the properties of the geometric random variables, Pr[hv = h + 1|hv > h] = δ. Thus, we

can imagine that Vh+1 is generated by independently sampling each element in V≥h with δ

probability. We restate this observation as Claim 4.3.4. Claim 4.3.5 is a simple Chernoff bound

argument.

Before proceeding, we state some standard Chernoff bounds (Theorem 1.1 of [DP09]).

Theorem 4.3.3. Let X1, X2, . . . , Xr be independent variables in [0, 1]. Let µ := E[
∑
iXi].

• Pr[X ≥ 3µ/2] ≤ exp(−µ/12).

• Pr[X ≤ µ/2] ≤ exp(−µ/8).

• For t ≥ 6µ, Pr[X ≥ t] ≤ 2−t.

Claim 4.3.4. For all v ∈ V and 1 < h < h, Pr[v ∈ Vh | v ∈ V≥h] = δ.

Claim 4.3.5. Let h < h. Condition on the randomness used to specify V1, V2, . . . , Vh−1. Let S

be an arbitrary subset of V≥h. With probability at least 1 − 2 exp(−δ|S|/12) over the choice of

Vh, |S ∩ Vh| ∈ [δ|S|/2, 2δ|S|].

Proof. For every s ∈ S, let Xs be the indicator random variable for s ∈ Vh. By Claim 4.3.4

and independent phase choices for each vertex, the Xs are independent Bernoullis with δ

probability. By the Chernoff lower tail of Theorem 4.3.3, Pr[
∑
s∈SXs ≤ δ|S|/2] ≤ exp(−δ|S|/8)

and Pr[
∑
s∈S Xs ≥ 2δ|S|] ≤ exp(δ|S|/12). A union bound completes the proof.

Claim 4.3.6. With probability at least 1− 2−δn, |Vh| ≤ δn.

Proof. Recall that h is the last phase and h = 2δ−1 log(δ−1). The probability that X ∼ Geo(δ)
is at least 2δ−1 log(δ−1) is (1 − δ)2δ−1 log(δ−1)−1 < δ/6. Hence, the probability that any vertex

lies in Vh is at most δ/6 and the expectation of Vh is at most δn/6. . By the Chernoff bound of

Theorem 4.3.3, Pr[|Vh| ≥ δn] ≤ 2−δn.

With this preamble, we proceed to the description of findr and the main properties

of its output.

4.3.1 The procedure findr

It is convenient to assume that for all v, hv and tv have been chosen. These quantities

are chosen independently for each vertex using simple distributions, so we will not carry as
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arguments the randomness used to decide these quantities. Recall that the output of findr is

the set of size thresholds {k1, k2, . . . , kh}. It is convenient to use Kh to denote {k1, k2, . . . , kh}.
Before describing findr, we define a procedure that is a membership oracle for Fh.

IsFree(u, h,Kh−1)

1. If h = 1, output YES.

2. Run findIB(u) to determine IB(u). Let C be IB(u) ∩ V<h.

3. Using Kh−1, determine kv for all v ∈ C.

4. For all v ∈ C, compute cluster(v, tv, kv). If the union contains u, output NO.

Else, output YES.

Claim 4.3.7. Assume that Kh−1 is provided correctly. Then IsFree(v, h,Kh−1) outputs YES

iff v ∈ Fh. The running time is O((d`ρ−1)3).

Proof. If h = 1, then all vertices are free (this is the free set before globalPartition begins

any partitioning). Assume h > 1. So Fh = V \
⋃
v∈V<h cluster(v).

If u /∈ Fh, then there exists v ∈ V<h such that u ∈ cluster(v). By construction

cluster(v) is contained in supp(M̂ t~v) for some t ≤ `. Thus, v ∈ IB(u) and hv < h. Hence, v

will be considered in Step 4 and the union will contain u. The output is NO. For the converse,

observe that if the output is NO, then there is a v ∈ V<h such that u ∈ cluster(v). Hence,

u /∈ Fh.

Now for the running time analysis. The running time of findIB(v) is O(d2`3ρ−2)

(Claim 4.2.10) and |C| ≤ `ρ−1 (Claim 4.2.8). Each call to cluster takes O(d`ρ−2) (Claim 4.2.3).

The total running time is O((d`ρ−1)3).

We have the necessary tools to define the procedure findr. We will need the following

definition in our description and analysis of findr.

Definition 4.3.8. Assume Fh ≥ βn. A vertex s ∈ V≥h is called (h, k)-viable if C :=

cluster(s, ts, k) is not a singleton and |C ∩Fh| ≥ β3k. (If Fh < βn, no vertex is (h, k)-viable.)

Let us motivate this definition. When C := cluster(s, ts, k) is not a singleton, it is a

low conductance cut of Θ(k) vertices. The vertex s is (h, k)-viable if C contains a non-trivial

fraction of free vertices available in the hth phase. The viable vertices are those from which

clustering will make significant “progress” in the hth phase. For each h, the procedure findr

searches for values of k that lead to many (h,k)-viable vertices. In the next section, we prove that

having sufficiently many clusters come from viable vertices ensures the cut bound of Def 4.0.1.
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findr(R)

1. For h = 1 to h:

(a) Sample β−10 uar vertices independently. Let Sh be the multiset of sampled

vertices that are in phase ≥ h.

(b) If |Sh| ≤ β−9/2, set kh = 0 and continue for loop. Else, reset Sh to the

multiset of the first β−8 vertices sampled.

(c) For k ∈ [ρ−1] and for every s ∈ Sh:

i. Compute C := cluster(s, ts, k).

ii. For all u ∈ C, call IsFree(u, h,Kh−1) to determine if u ∈ Fh−1.

iii. If C is not a singleton and |C ∩ Fh−1| ≥ β3k, mark s as being (h, k)-

viable.

(d) If there exists some k such that there are at least 12β4|Sh| (h, k)-viable

vertices, assign an arbitrary such k as kh. Else, assign kh := 0.

2. Output Kh = {k1, k2, . . . , kh}.

Claim 4.3.9. The running time of findr is O((d`δ−1ρ−1)5).

Proof. There are h = 2δ−1 log(δ−1) iterations. We compute the running time of each

iteration. There are at most ρ−1β−8 calls to cluster, each of which takes O(d`ρ−2) time

by Claim 4.2.3. For each call to cluster, there are at most ρ−1 calls to IsFree. Each

call to IsFree takes O((d`ρ−1)3) time (Claim 4.3.7). The running time of each iteration is

O(β−10+d`ρ−3β−8+d3`3ρ−5β−8). By the parameter settings, since `2 ≥ ε2·30 ≥ (ε/10)−8 = β−8,

the running time of each iteration O((d`ρ−1)5). The total running time is O((d`δ−1ρ−1)5).

The following theorem gives the main guarantee of findr. The proof is a fairly

straightforward Chernoff bound on top of an application of Theorem 4.3.1. Quite simply, the

proof just says the following. Theorem 4.3.1 shows the existence of (h, k) pairs for which many

vertices are viable. The findr procedure finds such pairs by random sampling.

Theorem 4.3.10. The following property of the values Kh of findr(R) and the preprocessing

choices holds with probability at least 1−exp(−1/ε) over all the randomness in R. For all h≤ h,

if |Fh| ≥ βn, at least β5δn vertices in Vh are (h, kh)-viable.

Proof. The proof has two parts. In the first part, we argue that whp, if |Fh| ≥ βn, then a

non-zero kh is output. This part is an application of Theorem 4.3.1. In the second part, we

prove that (whp), if a non-zero kh is output, then it satisfies the desired properties. This part

is proven using a simple Chernoff bound argument.

Fix an h. Condition on any choice of V1, V2, . . . , Vh−1 such that |Fh| ≥ βn. Note that

V≥h ⊇ Fh, since all vertices in V<h are necessarily clustered by the hth phase. (Recall that

cluster(v) always contains v.) Hence, |V≥h| ≥ βn. There will be numerous low probability
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“bad” events that we need to track. We will describe these bad events, and refer to their

probabilities as “Error 1”, “Error 2”, etc.

Error 1, exp(−β−8). The probability that a uar vertex is in V≥h is at least β, and

the expected size of Sh is at least β × β−10 = β−9. By the Chernoff bound of Theorem 4.3.3,

Pr[|Sh| ≤ β−9/2]≤ exp(−β−9/12) ≤ exp(−β−8). Thus, with probability at least 1−exp(−β−8),

Step 1c is reached and Sh is a multiset of iid uar β−8 elements in V≥h.

Let us assume that Sh is such a multiset, and prove that a non-zero kh is output whp.

We bring out the main tool, Theorem 4.3.1. Since |Fh| ≥ βn, there exists a size threshold k ≤ ρ
such that the following holds. For at least (β2/ log2 β−1)n vertices s ∈ Fh, there are at least

(β/ log2 β−1)` timesteps t such that: there exists k′ ∈ [k, 2k] such that (i) Ls,t,k′ ⊆ supp(M̂ t~s),

(ii) Φ(Ls,t,k′ ∪ {s}) < φ, and (iii) |Ls,t,k′ ∩ F | ≥ β3k. For any such (s, t, k) triple, consider a

call to cluster(s, t, k). Observe that the call will output the largest level set of size in [k, 2k]

satisfying (i) and (ii). Hence, it will output (non-singleton) Ls,t,k′′ such that k′ ≤ k′′ ≤ 2k and

(i) and (ii) hold. Note that Ls,t,k′′ ⊇ Ls,t,k′ , so the third item will also hold. Thus, if ts is set

to one of these (β/ log2 β−1)` timesteps t, then s will be (h, k)-viable.

Error 2, exp(−β−1). Let us fix a size threshold k promised by Theorem 4.3.1. The

probability that a uar element on V≥h is marked as (k, h)-viable is at least the product of

probability of choosing an appropriate s with the probability that ts is chosen appropriately.

Thus, the probability of find an (h, k)-viable vertex is at least (β2/ log2 β−1)× (β/ log2 β−1) =

β3/ log4 β−1. This probability is independent for all vertices in V≥h. By the Chernoff bound in

Theorem 4.3.3, with probability at least 1− exp(−β4|Sh|/12), at least

β3|Sh|/2 log4 β−1 ≥ 12β4|Sh|

(h, k)-viable vertices are discovered in findr. In this case, in Step 1d, kh is set to a non-zero

value. The probability of this event happening is at least 1 − exp(−β−8) − exp(−β4|Sh|/8)

≥ 1 − exp(β−1). (Recall that whp Sh is a multiset of iid uar β−8 vertices. In the union

bound above, the first “bad event” is Sh not having β−8 vertices and the second “bad event”

is discovering too few viable vertices.) We have concluded that whp, if |Fh| ≥ βn, then kh is

non-zero.

We move to the second part of the proof, which asserts that (with high probability),

an output non-zero kh has the desired properties. Condition on any choice of the preprocessing.

Note that the randomness is only over the choice of Sh. Fix any k ≤ ρ−1. Suppose that the

number of (h, k)-viable vertices in V≥h is at most 2β5n. Then, the expected number of such

vertices in Sh is at most 2β5n/|V≥h|×|Sh| ≤ 2β4|Sh|. (We use the lower bound |V≥h| ≥ |Fh| ≥βn.)

Error 3, 2−12β
−4

. Let Xk denote the random variable of the number of (h, k)-viable

vertices in Sh. Since Xk is distributed as a binomial, by the Chernoff bound of Theorem 4.3.3,

Pr[Xk > 12β4|Sh|] ≤ 2−12β
4|Sh|. Note than when Xk < 12β4|Sh|, then kh cannot be k. All in

all, for any h, any choice of the tvs, and any choice of k, if Step 1c is reached and the number of
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(h, k)-viable vertices in V≥h is at most 2β5n, then kh 6= k with probability at least 1− 2−12β
−4

.

Taking the contrapositive, if kh 6= 0 (Step 1c must have been reached), then the number of

(h, kh)-viable vertices in V≥h is at least 2β5n.

Error 4, 2 exp(−δβ5n/12). Suppose the number of (h, kh)-viable vertices in V≥h is at

least 2β5n . By Claim 4.3.5 applied on the set of (h, kh)-viable vertices in V≥h, with probability

at least 1− 2 exp(−δβ5n/12), the number of such viable vertices in Vh is at least δβ5n.

We take a union bound over the 2δ−1 log(δ−1) values of h, the ρ−1 values of k,

and all errors encountered thus far. The total error probability is at most 2δ−1 log(δ−1) ·
ρ−1(exp(−β−8) + exp(β−1) + 2−12β

−4

+ 2 exp(−δβ5n/12)). Note that 2δ−1 log(δ−1), β, ρ−1 are

poly(ε−1), and thus the total error probability is at most exp(−ε−1). With the remaining

probability, the following holds. For all phases h, if |Fh| ≥ βn, a non-zero kh is output. If a

non-zero kh is output, the number of (h, kh)-viable vertices in Vh is at least δβ5n.

4.4 Proving the cut bound: the amortization argument

We come to the final piece of proving the guarantees of Theorem 4.0.2. We need to

prove that the number of edges cut by the partition of globalPartition is at most εnd. This

requires an amortization argument explained below. For the sake of exposition, we will ignore

constant factors in this high-level description. One of the important takeaways is how various

parameters are chosen to prove the cut bound.

Consider phase h where |Fh| ≥ βn. Let us upper bound the number of edges cut by

the clustering done on this phase. Roughly speaking, |Vh| = δn, so there are δn clusters created

in this phase. Each cluster in this phase has at most 2kh vertices. The number of edges cut

by each such cluster is at most 2φkhd (since cluster outputs a low conductance cut; ignore

singleton outputs). So the total number of edges cut is at most 2φδkhnd.

Let us now lower bound the number of new vertices that are partitioned in phase h;

this is the set Fh+1 \ Fh. For each (h, kh)-viable v in Vh, cluster(v) contains at least β3kh

vertices in Fh. These will be newly partitioned vertices. Here comes the primary difficulty: the

clusters for the different such v might not be disjoint. We need to lower bound the union of the

clustered vertices in Fh. An alternate description of the challenge is as follows. We are only

guaranteed that clusters from viable vertices v contains many vertices in Fh, the free set at the

beginning of phase h. What we really need is for the cluster from v to contain many free vertices

at the time that v is processed. Phases were introduced to solve this problem. By reducing δ,

we can limit the size of Vh, thereby limiting the intersection between the clusters produced in

this phase.

We now explain the math behind this argument. Consider some w ∈ Fh and let cw be

the number of vertices in V≥h that cluster v (call these seeds). Thus, cw = |{s | s ∈ V≥h, v ∈
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cluster(s)}. The vertex w is clustered in phase h iff one of these cw seeds is selected in Vh. By

Claim 4.3.4, each such seed is independently selected in Vh with probability δ. The probability

that w is clustered in this phases is precisely 1− (1− δ)cw . Crucially, cw ≤ |IB(w)| ≤ `ρ−1. We

chose δ � `ρ−1, so 1− (1− δ)cw ≈ δcw.

Thus, the expected number of newly clustered vertices is at least
∑
w∈Fh δcw. By

rearranging summations,
∑
w∈Fh cw =

∑
v∈V≥h |cluster(v)∩Fh|. For every (h,kh)-viable vertex

v in V≥h, |cluster(v) ∩ Fh| ≥ β3kh. The arguments in the proof of Theorem 4.3.10 shows that

there are β5n such vertices in V≥h whp. Hence, we can lower bound (in expectation) the new

number of newly clustered vertices as follows:∑
w∈Fh

δcw ≥ δ · (β5n) · (β3kh) = δβ8khn

We upper bounded the number of edges cut by 2φδkhnd. The ratio of edges cut to

vertices clustered is 8φβ−8d. The parameters are set to ensure that 8φβ−8 � ε, so the total

number of edges cut is εnd.

The formal analysis requires some care to deal with conditional probabilities and

dependencies between various phases. Also, Theorem 4.3.10 talks about Vh and not V≥h, which

necessitates some changes. But the essence of the argument is the same.

Our main theorem is a cut bound for globalPartition.

Theorem 4.4.1. The expected number of edges cut by the partitioning of globalPartition(R)

is at most εnd.

We will break up the proof into two technical claims. Somewhat abusing notation, we

say a vertex in V≥h is h-viable if it is (h, kh)-viable.

Claim 4.4.2.

E[# edges cut by globalPartition(R)] ≤ 32φβ−8d2
(∑
h<h

E[
∑
v∈Vh

|cluster(v) ∩ Fh|)]
)

+ 2βnd

Proof. The proof goes phase by phase. We call a phase significant if |Fh| ≥ βn. Edges cut in

a significant phase are also called significant. Observe that the total number of edges cut is at

most the number of significant edges cut plus βnd. (This contributes to the extra additive term

in the claim statement.) Below, we will bound the total number of significant edges cut.

By Claim 4.3.6, with probability at least 1− 2−δn, |Vh| ≤ δn. Note that |Fh| ≤ V≥h =

|Vh|. (The equality is because this is the last phase.) Since δn < βn, the expected number of

significant edges cut in the last phase is at most 2−δnnd < 1.

Now assume that h < h. Consider the edges cut in the hth phase. Consider any choice

of V1, V2, . . . , Vh−1 and k1, k2, . . . , kh. If |Fh| < βn, no significant edges are cut. Let us assume

that |Fh| ≥ βn. Each set cluster(v) output in this phase is either a singleton or a set of size
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at most 2kh and conductance at most φ. In either case, the number of edges cut by removing

cluster(v) ∩ F (in globalPartition) is at most 2φkhd+ d. Note that 2φkhd ≥ 1 (otherwise,

by the connectedness of G, there can never be a set of size at most 2kh of conductance ≤ φ).

Hence, the number of significant edges cut by a single cluster is at most 2φkh(d+ d2) ≤ 4φkhd
2.

Note that |V≥h| ≥ |Fh| ≥ βn and |V≥h| is obviously at most n. By Claim 4.3.5 with

S = V≥h, with probability at least 1− 2 exp(−δβn/12) over the choice of Vh, |Vh| ≤ 2δn. Hence,

the total number of significant edges cut is at most 4φkhd
2 × 2δn = 8φδkhd

2n.

By Theorem 4.3.10, with probability at least 1 − exp(ε−1), if |Fh| ≥ βn, at least

β5δn vertices in Vh are h-viable. Call this event E . For every h-viable vertex in Vh,

|cluster(v) ∩ Fh| ≥ β3kh. For convenience, let Xh :=
∑
v∈Vh |cluster(v) ∩ Fh|). Conditioned

on E , Xh ≥ β8(δkhn). Recall that with probability at least 1 − 2 exp(−δβn/12), the number

of significant edges cut in this phase is at most 8φd2(δkhn). If E occurs, we can apply the

bound β−8Xh ≥ δkhn and upper bound the number of significant edges cut in this phase by

8φβ−8d2Xh,

Thus, with probability at least 1−exp(ε−1)−2exp(−δβn/12), the number of significant

edges cut in phase h is at most (8φβ−8d2)Xh. In other words, there is an event Fh conditioned

on which the above bound happens, and Pr[Fh] ≥ 1 − exp(ε−1) − 2 exp(−δβn/12). In the

calculation below, we break into conditional expectations and use the fact that δ = poly(ε),

β = Θ(ε), and that the number of phases is at most 2δ−1 log(δ−1). We also use the fact that

Xh is non-negative.∑
h

E[# significant edges cut in phase h] ≤
∑
h

(Pr[F ]E[Xh|F ] + Pr[F ]nd) (4.1)

≤
∑
h

E[Xh] + 2δ−1 log(δ−1)(exp(ε−1) + 2 exp(−δβn/12))nd ≤
∑
h

E[Xh] + βnd/2(4.2)

To this bound, we add the expected number of edges cut in the last phase (at most 1) and the

number of non-significant edges cut (at most βn). This completes the proof.

Claim 4.4.3. ∑
h<h

E[
∑
v∈Vh

|cluster(v) ∩ Fh|)] ≤ 4n

Proof. We will apply the following charging argument. When a vertex v is processed in

globalPartition(R), we will add one unit of charge to every vertex in cluster(v)∩ Fh. Note

that the total amount of charge is exactly the quantity we wish to bound. Crucially, note that

any vertex w receives charge in at most one phase; the phase where it leaves the free set.

We will prove that the expected charge that any vertex receives is at most 4 units,

which will prove the claim. Fix a vertex w. Let χ be the random variable denoting the charge

that w receives, and Eh be the event that w receives charge in phase h. Since w receives charge
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in exactly one phase, E[χ] =
∑
hE[χ|Eh] Pr[Eh]. We will prove that, for all h, E[χ|Eh]≤ 4, which

implies that E[χ] ≤ 4 as desired.

To analyze E[χ|Eh], first condition on a setting of V1, V2, . . . , Vh−1 (such that w ∈ Fh)

and all other preprocessing for all vertices. We refer to this setting as the event C. The

randomness for specifying Vh has not been set. The event Eh occurs if there is a v ∈ Vh such that

w ∈ cluster(v). The charge χ is the number of vertices v ∈ Vh such that w ∈ cluster(v). Let

c be the number of such vertices in V≥h. Note that v ∈ IB(w), and by Claim 4.2.8, c ≤ `ρ−1.

By Claim 4.3.4, every vertex in V≥h is in Vh with probability δ. Hence, Pr[Eh|C] =

1 − (1 − δ)c. Note that δc ≤ δ`ρ−1 = (d−70+6+60ε3100 · ε30 · ε−3000 < 1/2. Hence (1 − δ)c ≤
1−δc+(δc)2 ≤ 1−δc/2 and Pr[Eh|C]≥ δc/2. Note that E[χ|C] =

∑
b>0

(
c
b

)
δb ≤

∑
b>0(δc)b ≤ 2δc.

Observe that E[(χ|Eh)|C] ≤ (2δc)/(δc/2) = 4.

Note that the event Eh can be partitioned according to the different C events. Hence

E[χ|Eh] =
∑
C E[(χ|Eh)|C] Pr[C] ≤ 4. Thus, the proof is completed.

Theorem 4.4.1 follows by a direct application of these claims and plugging in the

parameter values.

Proof. (of Theorem 4.4.1) By Claim 4.4.2 and Claim 4.4.3, the expected number of edges cut by

globalPartition(R) is at most 128φβ−8d ·nd+ 2βnd. Plugging in the parameters φ = d−1ε10,

β = ε/10, and noting that ε is sufficiently small, the expectation is at most εnd.

We can now wrap up the proof of Theorem 4.0.2, showing the existence of (ε,poly(dε−1))-

partition oracles for minor-closed families.

Proof. (of Theorem 4.0.2) The procedure for the partition oracle is findPartition(v,R). Let

us prove each property of Def 4.0.1.

Consistency: By Theorem 4.2.12, the partition created by calls to findPartition(v,R)

is precisely the same as the partition created by globalPartition(R).

Cut bound: By Theorem 4.4.1, the expected number of edges cut is at most εnd.

Running time: The running time of findPartition(v,R) is O((d`ρ−1)5) plus the

running time of findr. The running time of findr is O((d`δ−1ρ−1)5), by Claim 4.3.9.

By the parameter settings, `, δ−1, ρ−1 are all poly(dε−1). Hence, the total running time of

findPartition(v,R) is also poly(dε−1).

4.5 Diffusion Behavior on Minor-Free Families

In this section, we state and prove the main theorem about diffusions on minor-free

graph classes. This is the (only) part of the paper where the property minor-freeness makes an

appearance. Theorem 4.5.1 is used in the proof of §4.6. For convenience, we recall the parameters

involved.
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• ρ = d−60ε3000: Minimum probability for truncation.

• ` = d6ε−30: Maximum random walk length.

• β = ε/10: Unclustered fraction cutoff.

• δ = d−70ε3100: Phase probability.

• α = ε4/3

300,000 : Heavy bucket parameter.

• φ = ε10: Conductance parameter.

Theorem 4.5.1. Let G be a bounded degree graph in minor-closed family. Let F be an arbitrary

subset of at least βn vertices. There are at least β2n/8 vertices s ∈ F such that: for at least

β`/8 timesteps t ∈ [`], M̂ t~s(F ) ≥ β/16.

We note that this theorem holds for all graphs, if we replace the truncated walk M̂

by the standard random walk M . The main insight is that, for G in a minor-closed family,

“polynomial” truncation of the walk distribution does not significantly affect the behavior.

The main property of bounded degree minor-free graphs we require is hyperfiniteness,

as expressed by Proposition 4.1 of [AST90] (also used as Lemma 3.3 of [KSS19b]).

Theorem 4.5.2. There is an absolute constant γ such that the following holds. Let H be a

graph on r vertices. Suppose G is an H-minor-free graph. Then, for all b ∈ N, there exists a set

of at most γr3/2n/
√
b vertices whose removal leaves G with all connected components of size at

most k.

The key stepping stone to proving Theorem 4.5.1 is Lemma 4.5.4, which shows that

truncation does not affect walk distributions from many vertices. Let us first state a simple fact

on l1-norms.

Fact 4.5.3. Let ~x and ~y be vectors with non-negative entries, such that for all coordinates i,

~x(i) ≥ ~y(i). Then ‖~x− ~y‖1 = ‖~x‖1 − ‖~y‖1.

Proof. ‖~x− ~y‖1 ≥
∑
i |~x(i)− ~y(i)| =

∑
i(~x(i)− ~y(i)) = ‖~x‖1 − ‖~y‖1.

This fact bears relevance for us, since truncations of walk distribution vectors only

reduce coordinates.

Lemma 4.5.4. For at least (1 − ρ1/8)n vertices v, the following holds. For every t ≤ `,

‖M t~v − M̂ t~v‖1 ≤ `ρ1/9.

Proof. Let H be an arbitrary forbidden minor for the minor-closed family of interest. We first

apply Theorem 4.5.2 with k = d1/√ρe. There exists a set C of at most γr3/2ρ1/4dn edges who

removal leads to connected components of size at most d1/√ρe ≤ 2/
√
ρ. For convenience, set

the constant γ′ := γr3/2. We will need the following claim.
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Claim 4.5.5. For at least (1 − ρ1/8)n vertices v, the probability that an `-length random walk

encounters an edge of R is at most γ′`ρ1/8.

Proof. The proof is a Markov bound argument. Suppose not; so there exist strictly more than

ρ1/8n vertices v such that an `-length random walk encounters an edge of C with at least γ′`ρ1/8

probability. Consider an `-length random walk that starts from the uniform (also stationary)

distribution. The above assumption implies that the expected number of C edges encountered

is > ρ1/8 · γ′`ρ1/8 = γ′`ρ1/4. On the other hand, since the walk remains in the stationary

distribution, for all t ≤ `, the probability of encountering an edge in C at the tth step is

precisely |C|/2dn. (Recall that the lazy random walk has 1/2dn of taking any edge.) By

linearity of expectation, the expected number of C edges encountered is `|C|/2dn. By the bound

of Theorem 4.5.2, `|C|/2dn≤ γ′`ρ1/4 contradicting the bound obtained from the assumption.

Consider such a vertex v, as promised by the previous paragraph. Let S be the

connected component over vertices that contains v, after removing the edge cut C. Let qt

be the probability that the walk from v leaves S at the tth step; by the property of the previous

parameter,
∑
t≤` pt ≤ γ′`ρ1/8. Let MS be the transition matrix of the random walk M restricted

to S. Note that MS is not necessarily stochastic. We will use the truncated walk M̂S . Observe

that ‖M̂ t~v‖1 ≥ ‖M̂ t
S~v‖1.

Since all coordinates of M̂ t~v are at most those of M t~v, by Fact 4.5.3, ‖M t~v− M̂ t~v‖1 =

‖M t~v‖1 − ‖M̂ t~v‖1. Since ‖M t~v‖1 = 1 = ‖~v‖1 and ‖M̂ t~v‖1 ≥ ‖M̂ t
S~v‖1, we can upper bound as

follows by a telescoping sum.

‖M t~v − M̂ t~v‖1 ≤
t∑
l=1

(
‖M̂ l−1

S ~v‖1 − ‖M̂ l
S~v‖1

)
(4.3)

=

t∑
l=1

(
‖M̂ l−1

S ~v‖1 − ‖MSM̂
l−1
S ~v‖1 + ‖MSM̂

l−1
S ~v‖1 − ‖M̂ l

S~v‖1
)

(4.4)

The quantity ‖M̂ l−1
S ~v‖1 − ‖MSM̂

l−1
S ~v‖1 is exactly the probability that a single step

(according to M) from M̂ l−1
S ~v leaves S. Since all coordinates in M̂ l−1

S ~v are at most those of

M l−1~v, this probability is at most ql. The quantity ‖MSM̂
l−1
S ~v‖1 − ‖M̂ l

S~v‖1 is the probability

mass lost by truncation of MSM̂
l−1
S ~v. We apply the trivial bound ρ|S|. This is where the

hyperfiniteness plays a role; since |S| ≤ 2/
√
ρ, ‖M̂S~xl−1 −MS~xl−1‖1 ≤ ρ · /2

√
ρ = 2

√
ρ.

We sum all the these bounds over l≤ t, and plug into (4.4). We bound ‖M t~v−M̂ t~v‖1 ≤∑
l≤t pl + 2t

√
ρ. By the properties of v, this is at most γ′`ρ1/8 + 2`

√
ρ ≤ `ρ1/9 (for sufficiently

small ρ).

We are now ready to prove Theorem 4.5.1. We will need the following simple “reverse

Markov” inequality for bounded random variables.
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Fact 4.5.6. Let X be a random variable taking values in [0, 1] such that E[X] ≥ δ. Then

Pr[X ≥ δ/2] ≥ δ/2.

Proof. Let p be the probability that Pr[X ≥ δ/2].

δ ≤ E[X] = Pr[X ≥ δ/2]E[X|X ≥ δ/2] + Pr[X < δ/2]E[X|X < δ/2]

≤ p+ (1− p)(δ/2) ≤ p+ δ/2

Proof. (of Theorem 4.5.1) Define θs,t as follows. For s ∈ F and t ∈ [`]: if t is odd, θs,t = 0. If t

is even, then θs,t is the probability that the t-length random walk starting from s ends in F .

Let us pick a uar source vertex in s ∈ F , pick a uar length t ∈ [`]. We use the fact that

M is a symmetric matrix. We use 1F to denote the all 1s vector on F .

Es,t[θs,t] = 1TF

`/2∑
i=1

(M2i/`)(1F /|F |) = (`|F |)−1
∑
i≤`/2

1TFM
2i1F = (`|F |)−1

∑
i≤`/2

‖M i1F ‖22 (4.5)

Note that ‖M i1F ‖1 = |F |, so by Jensen’s inequality, ‖M i1F ‖22 ≥ |F |2/n. Plugging in (4.5),

Es,t[θs,t] ≥ `−1 × (`/2)|F |/n ≥ β/2. For any s, Et[θs,t] ≤ 1. By Fact 4.5.6, there are at least

β|F |/4 vertices s ∈ F such that Et[θs,t] ≥ β/4. Again applying Fact 4.5.6, for at least β|F |/4
vertices s ∈ F , there are at least β`/8 timesteps t ∈ [`] such that θs,t ≥ β/8, implying that

M t~s(F ) ≥ β/8.

By Lemma 4.5.4, there are at least (1 − ρ1/8)n vertices s such that for all t ≤ `,

‖M t~s − M̂ t~s‖1 ≤ `ρ1/9 = d6−60/9ε−30+3000/9 ≤ β/16. By the parameters settings, ρ1/8 <

ε3000/8 ≤ β|F |/8. Invoking the bound from the previous paragraph, there are at least β|F |/8
satisfying the property of Lemma 4.5.4 and the condition at the end of the previous paragraph.

For all such vertices s, for all t ≤ `, M̂ t~s(F ) ≥ M t~s(F ) − β/16. Thus, for all such s, there are

at least β`/8 timesteps t ∈ [`] such that M̂ t~s(F ) ≥ β/16.

4.6 The proof of Theorem 4.3.10: local partitioning within

F

We repeat the parameter values for convenience.

• ρ = d−60ε3000: Minimum probability for truncation.

• ` = d6ε−30: Maximum random walk length.

• β = ε/10: Unclustered fraction cutoff.
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• δ = d−70ε3100: Phase probability.

• α = ε4/3

300,000 : Heavy bucket parameter.

• φ = ε10: Conductance parameter.

Recall that Theorem 4.3.1 shows that there are many s ∈ F from which (level sets of)

diffusions in G discover low conductances cuts in F . We use the Lovász-Simonovits curve to

represent the truncated diffusion vector, and keep track of the vertices of F wrt to the curve.

This is done via a careful adaptation of Lovász-Simonovits method, as presented in Lemma 4.6.4.

The main technical tool which we will use in our analysis is the Lovász-Simonovits

method, defined in [LS90b], whose use for clustering was pioneered by [ST12].

Definition 4.6.1. For a non-negative vector p over V , the function I : Rn × [n] → [0, 1] is

defined as

I(p, x) = max
w∈[0,1]n∑
w(u)=x

∑
u∈V

p(u)w(u)

This is equivalent to summing over the x heaviest elements of p when x is an integer, and

linearly interpolating between these points otherwise.

For notational convenience, we define:

Is,t(x) = I(M̂ t~s, x).

Note that Is,t is a concave curve.

4.6.1 The Lovász-Simonovits lemma

The fundamental lemma of Lovász-Simonovits is the following (Lemma 1.4 of [LS90b],

also refer to Theorem 7.3.3 of Lecture 7 of [Spia]).

Lemma 4.6.2. Let x = min(x, n− x). Consider any non-negative vector ~p, and let Sx denote

the level set of M~p with x vertices.

I(M~p, x) ≤ (1/2)(I(~p, x− 2xΦ(Sx)) + I(~p, x− 2xΦ(Sx)))

The concavity of the curves implies monotonicity, I(M~p) ≤ I(~p). The application of

this lemma to our setting leads to the following statement.

Lemma 4.6.3. For all t ≤ ` and x ≤ 1/ρ,

Is,t(x) ≤ (1/2)(Is,t−1(x(1− Φ(Ls,t,x))) + Is,t−1(x(1 + Φ(Ls,t,x))))

Let ft,w,y be the straight line between the points (w, Is,t(w)) and (y, Is,t(y)).

82



Lemma 4.6.4. Let t0 < t1 < . . . < th be time steps. Suppose ∀i ≤ h and x ∈ [w, y]:

Ls,ti,x ⊆ supp(M̂ t~s) =⇒ Φ(Ls,ti,x) ≥ ψ. Then, ∀i ≤ h,∀x ∈ [w, y]

Is,ti(x) ≤ ft0−1,w,y(x) +
√

min(x− w, y − x)(1− ψ2/128)i

Proof. For convenience, let ∆x = min(x− w, y − x). We prove by induction over i.

For showing the base case take i = 0. Now consider the following cases.

• Suppose x = w or x = y. By monotonicity, Is,t0(x) ≤ Is,t0−1(x). Since x ∈ {w, y},
the latter is exactly ft0,w,y(x).

• Suppose x ∈ [w + 1, y − 1]. Then ∆x ≥ 1 and Is,t0(x) ≤ 1 ≤
√

∆x.

• Suppose x ∈ (w,w+1). Note that ∆x = w−x < 1. By the definition of the LS curve,

Is,t0(x) = Is,t0(w)+(w−x)(Is,t0(w+1)−Is,t0(w)) ≤ Is,t0−1(w)+
√
w − x ≤ ft0−1,w,y(x)+

√
∆x.

• Suppose x ∈ (y − 1, y). An identical argument to the above holds.

Now for the induction. Suppose the premise holds at step ti. Namely for x ∈ [w, y],

for all level sets Ls,ti,x contained inside supp(M̂ t~s), Φ(Ls,ti,x) ≥ ψ ≥ ψ. We would like to

upperbound Is,ti(x). To this end, let us consider some x ∈ [w, y]. By Lemma 4.6.3,

Is,ti(x) ≤ (1/2)[Is,ti−1(x(1− Φ(Ls,ti,x))) + Is,ti−1(x(1 + Φ(Ls,ti,x)))] (4.6)

≤ (1/2)[Is,ti−1
(x(1− Φ(Ls,ti,x))) + Is,ti−1

(x(1 + Φ(Ls,ti,x)))] (4.7)

The second inequality follows by monotonicity, since ti−1 ≤ ti − 1. Note that ∆x =

min(x− w, y − x) ≤ x for all x ∈ [w, y]. Claim 4.6.5 (which we prove after the current lemma)

shows the following.

Claim 4.6.5. For all 1 ≤ i ≤ h, for all x ∈ [w, y], the following holds

Is,ti(x) ≤ (1/2)[Is,ti−1
(x−∆xψ/4)) + Is,ti−1

(x+ ∆xψ/4))] (4.8)

Now, let xL = x−∆xψ/4 and xR = x+ ∆xψ/4. Using Claim 4.6.5 we get

Is,ti(x) ≤ (1/2)[ft0−1,w,y(xL) +
√

∆xL(1− ψ2/128)i−1

+ft0−1,w,y(xR) +
√

∆xR(1− ψ2/128)i−1] (4.9)

= (1/2)[ft0−1,w,y(xL) + ft0−1,w,y(xR)]

+(1/2)[
√

∆xL)(1− ψ2/8)i−1 +
√

∆xR(1− ψ2/128)i−1] (4.10)

Here, (4.10) follows from the induction hypothesis. Since ft0−1,w,y is a linear function, the first

term is exactly ft0−1,w,y(x). We analyze the second term.

We first assume that ∆x = x− w (instead of y − x).

∆xL = min(x− ψ∆x/4− w, y − x+ ψ∆x/4) (4.11)

= min((1− ψ/4)∆x, y − x+ ψ/4∆x) ≤ (1− ψ/4)∆x (4.12)

83



Analogously,

∆xR = min(x+ ψ∆x/4− w, y − x− ψ∆x/4) (4.13)

= min((1 + ψ/4)∆x, y − x− ψ∆x/4) ≤ (1 + ψ/4)∆x (4.14)

Thus, the second term of (4.10) is at most (1/2)(1− ψ2/128)i−1
√

∆x(
√

1− ψ/4 +
√

1 + ψ/4).

Now, we consider ∆x = y − x.

∆xL = min(x− ψ∆x/4− w, y − x+ ψ∆x/4) (4.15)

= min(x− ψ∆x/4− w, (1 + ψ/4)∆x) ≤ (1 + ψ/4)∆x (4.16)

Analogously,

∆xR = min(x+ ψ∆x/4− w, y − x− ψ∆x/4) (4.17)

= min(x+ ψ∆x/4− w, (1− ψ/4)∆x) ≤ (1− ψ/4)∆x (4.18)

In this case as well, the second term of (4.10) is at most (1/2)(1−ψ2/128)i−1
√

∆x(
√

1− ψ/4 +√
1 + ψ/4).

In both cases, we can upper bound (4.10) as follows. (We use the inequality
√
1−z+

√
1+z

2 ≤ 1− z2/8.

Is,ti(x) ≤ ft0−1,w,y(x) + (1− ψ2/128)i−1
√

∆x

√
1− ψ/4 +

√
1 + ψ/4

2

≤ ft0−1,w,y(x) + (1− ψ2/128)i
√

∆x

Now, we establish Claim 4.6.5, the missing piece in the above proof.

Proof. (of Claim 4.6.5) Suppose xmax ∈ [w, y] is the maximum value of x ∈ [w, y] for which

Ls,ti,x is still inside the support of the truncated diffusion at the ti-th step. We split into three

cases: x ≤ xmax, x ∈ (xmax, xmax + ∆xmaxψ/2], x > xmax + ∆xmaxψ/2. Note that in the latter

two cases, Ls,ti,x is not contained in supp(M̂ ti~s).

Case 1, x ≤ xmax: Note that (4.8) holds by concavity of the Lovász-Simonovits curve

when Ls,ti,x ⊆ supp(M̂ ti~s) (because then this level set has conductance at least ψ).

Case 2, x ∈ (xmax, xmax+∆xmaxψ/2]: Let S = Ls,ti,xmax and let T = Ls,ti,x. Observe

that

Φ(T ) =
|E(T, T )|
d|T |

(1)

≥ |E(S, S)| − ψ/2 · d|S|
d|S|+ ψ/2 · d|S|

(2)

≥ ψd|S|/2
2d|S|

≥ ψ

4
(4.19)

Here, (1) follows because T could contain at most ψ|S|/2 neighbors of S which could

cost us at most ψd|S|/2 edges in the cut (S, S). (2) follows by upperbounding ψ by 1. Again
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the claim in (4.8) follows by concavity of the Lovázs-Simonovits curve.

Case 3, x > xmax + ∆xmaxψ/2: Now let xr = xmax + ∆xmaxψ/2. Write x =

xmax + ∆xmaxψ/2 + s. Recall ∆x = min(x−w, y− x). We claim that x−∆xψ/4 ≥ xmax. First

let us see how to establish (4.8) assuming this claim holds. Assuming this claim, we have

Is,ti(x−∆xψ/4) = Is,ti(xmax) = Is,ti(x+ ∆xψ/4) = ‖M̂ ti~s‖1.

And therefore,

Is,ti(x) =
1

2
· [Is,ti(x−∆xψ/4) + Is,ti(x+ ∆xψ/4)]

≤ 1

2
·
[
Is,ti−1

(x−∆xψ/4) + Is,ti−1
(x+ ∆xψ/4)

]
Now, all that remains to establish (4.8) is to show x−∆xψ/4 ≥ xmax. For simplicity,

write ∆m = ∆xmax . Now consider two cases depending on the value of ∆m

1. Case 1 ∆m = xmax − w.

In this case note that

x−∆xψ/4 = xmax + ∆mψ/2 + s− (x− w)ψ/4

≥ xmax + ∆mψ/2 + s− (xmax + ∆mψ/2 + s− w)ψ/4

≥ xmax + ∆mψ/4−∆mψ
2/8 + s− sψ/4

≥ xmax + ∆mψ/8 + s(1− ψ/4) ≥ xmax

which establishes the claim above as desired.

2. Case 2 ∆m = y − xmax.

In this case note that

x−∆xψ/4 = xmax + ∆mψ/2 + s− (y − x)ψ/4

≥ xmax + ∆mψ/2 + s− (y − xmax −∆mψ/2− s)ψ/4

≥ xmax + ∆mψ/4 + ∆mψ
2/8 + s+ sψ/4

≥ xmax

Thus, in both cases, the claim from above holds. This means that (4.8) holds as long

as the premise holds for the ti-th step.
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4.6.2 From leaking timesteps to the dropping of the LS curve

We fix a source vertex s, and consider the evolution of M̂ t~s. Therefore, we drop the

dependence of s from much of the notation.

We use p̂t to denote M̂ t~s. We begin with a few definitions.

Definition 4.6.6. A timestep t is called leaking for source s if, for all k ≤ ρ−1: if Ls,t,k ⊆
supp(M̂ t~s) and |Ls,t,k ∩ F | ≥ α2k/400, then Φ(Ls,t,k) ≥ 1/d`1/3.

If timestep t is not leaking for s, there exists k ≤ ρ−1 such that Ls,t,k ⊆ supp(M̂ t~s),

|Ls,t,k ∩ F | ≥ α2k/400, and φ(Ls,t,k) < 1/d`1/3. Such a k is denoted as an (s, t)-certificate of

non-leakiness.

We set α = ε4/3/300, 000.

Following the construction of the LS curve Is,t, we will order each vector p̂t in decreasing

order, breaking ties by id. The rank of a vertex is its position in (the sorted version of) p̂t.

Definition 4.6.7. Let the bucket Bt,r denote the set of vertices whose rank in p̂t is in the range

[2r, 2r+1).

A bucket Bt,r is called heavy if
∑
v∈Bt,r∩F p̂t(v) ≥ α. (The bucket restricted to F has

large probability.)

The following lemma says that if there are many leaking timesteps, then the LS curve

drops at heavy buckets.

Lemma 4.6.8. Fix r ≥ 0. Suppose for some s ∈ F , there exist `′ ≥ β3`/8 leaking timesteps

t0 < t1 < . . . < t`′ such that for all 0≤ i≤ `′, Bti,r is heavy. Then, Is,t`′ (2
r+1)< Is,t0(2r+1)−α/4.

The main tool used in our proof is our adaptation of Lovász-Simonovits lemma done

in Lemma 4.6.4. We first make a definition.

Definition 4.6.9. Fix r ≥ 0, a source s and a timestep t. A vertex w ∈ [2r, 2r+1] is called a

balanced split for t if |Lt,w ∩ F | ≥ α2r/3 and
∑
v∈Bt,r\Lt,w p̂t(v) ≥ α/3.

We will first prove the following claim which essentially follows by averaging arguments.

Claim 4.6.10. Fix r ≥ 0 and suppose for some source vertex s ∈ F , there exist `′ leaking

timesteps t0 < t1 < . . . < t`′ such that for all 0 ≤ i ≤ `′, Bti,r is heavy. Then, there exists a

vertex w that is a balanced split for at least an α/3-fraction of timesteps in T = {t0, t1, . . . t`′}.

Proof. Since Bt0,r is heavy, Is,t0(2r) < 1. Since the support of p̂t is at most ρ−1, this implies

that 2r < ρ−1 and r ≤ − lg ρ (and this holds by the choice of parameters).

For all v ∈ Bt,r, p̂t(v) ≤ 1/2r. Since
∑
v∈Bt,r∩F p̂t(v) ≥ α, |Bt,r ∩ F | ≥ α2r.

For convenince, let T = {t0, t1, . . . t`′}. Pick w uar in [2r,2r+1). Let Xi be the indicator

for w being a balanced split for ti. Recall that |Bti,r ∩ F | ≥ α2r. Sort the vertices of Bti,r ∩ F
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by increasing rank and consider the vertices in positions α2r/3 and 2α2r/3]. Let the rank

corresponding to these vertices by u1 and u2. We first argue that any rank w ∈ [u1, u2] is a

balanced split. We have |Lt,w ∩ F | ≥ α2r/3 because w ≥ u1. For all v ∈ Bti,r, p̂ti(v) ≤ 1/2r.

Thus,
∑
v∈Lti,u2∩Bti,r

p̂ti(v) ≤ (1/2r)(2α2r/3) = 2α/3. Note that
∑
v∈Bti,r

p̂t(v) ≥ α, since the

bucket is heavy Hence, for any w ≤ u2,
∑
v∈Bt,r\Lt,w p̂t(v) ≥ α− 2α/3 = α/3.

As a consequence, for any ti, there are at least α2r/3 values of w that are balanced

splits. In other words, E[Xi] ≥ α/3. By linearity of expectation, E[
∑
i≤`′ Xi] ≥ α`′/3. Thus,

there must exist some w ∈ [2r, 2r+1) that is a balanced split for at least α`′/3 timesteps.

Next, we show the following claim which essentially uses leakiness of a timestep t ∈ T
and the balanced split vertex w promised by Claim 4.6.10 to spell out a set with enough free

vertices with large conductance.

Claim 4.6.11. Fix r ≥ 0 and let w ∈ [2r, 2r+1) be a split vertex as promised by Claim 4.6.10

and let ti1 < ti2 < . . . < tiα`′/3 denote the timesteps for which w is a balanced split. Let

y = min(2r+6+dlg(1/α)e, ρ−1). Then, for all x ∈ [w, y] and for all t ∈ {ti1 , ti2 , · · · , tiα`′/3},
whenever Lt,x ⊆ supp(M̂ t~s), then Φ(Lt,x) ≥ 1/d`1/3.

Proof. Take x ∈ [w, y] and a leaking timestep t ∈ {ti1 , ti2 , · · · , tiα`′/3}. Note that x ≤ y ≤ ρ−1

clearly holds. Now, to establish the lower bound on conductance claimed, we first unpack

what it means for t to be a leaking timestep Def 4.6.6. It says: If Lt,x ⊆ supp(M̂ t~s) and

|Lt,x ∩ F | ≥ α2k/400, then it better hold that φ(Lt,x) ≥ 1/d`1/3.

Note that y ≤ 2r+6+dlg(1/α)e ∈ [2r(64/α),2r+1(64/α)]. Since r ≤ − lg ρ, y ≤ 128(ρα)−1.

Note that for all t ∈ {ti1 , ti2 , · · · , tiα`′/3} and x ∈ [w, y], Lt,x contains at least α2r/3

vertices of F . Thus, at least a (α2r/3)/(2r+1 · 64/α) ≥ α2/400-fraction of Lt,x is in F . Now

note that since t is leaking, we see that one of the following will hold. Either

• Lt,x ⊆ supp(M̂ t~s) and Φ(Lt,x) ≥ 1/d`1/3, Or

• Lt,x 6⊆ supp(M̂ t~s).

And this establishes the claim.

Now, we have all the ingredients to prove Lemma 4.6.8. The key step which remains is

an application of Lemma 4.6.4.

Proof. (Of Lemma 4.6.8) Suppose w∈ [2r,2r+1) is a balanced split at α`′/3 timesteps as promised

by Claim 4.6.10. Let y = min(2r+6+dlg(1/α)e, ρ−1) and as observed in Claim 4.6.11, note that

for x ∈ [w, y] if Lt,x ⊆ supp(M̂ t~s), it holds that φ(Lt,x) ≥ 1/d`1/3. Now, we apply Lemma 4.6.4.

For all x ∈ [w, y], we have Is,t`′ (x) ≤ Is,ti
α`′/3

(x) ≤ fti1−1,w,y(x) +
√
x(1− 1/128d2`2/3)α`

′/3. By

the premise, `′ ≥ β3`/8 and therefore we have

(1−1/128d2`2/3)α`
′/3 ≤ (1−1/128d2`2/3)αβ

3`/3 = (1−1/128d2`2/3)128d
2`2/3·αβ

3`1/3

3·128d2 ≤ exp(−1/α)

87



which holds because, for sufficiently small ε > 0, we have

`1/3 =
d2

ε10
≥ d2 · 1020

ε7
≥ d2

α3β3
.

Further, by the monotonicity of LS curves, Is,t`′ (x) ≤ fti1−1,w,y(x) + exp(−1/α) ≤ fti0 ,w,y(x) +

exp(−1/α). Specifically, we get

Is,t`′ (2
r+1) ≤ fti0 ,w,y(2r+1) + exp(−1/α). (4.20)

Since w is a good split, Is,ti0 (2r+1) ≥ Is,ti0 (w) + α/3. Note that

fti0 ,w,y(2r+1) = Is,ti0 (w) + (2r+1 − w)

(
Is,ti0 (y)− Is,ti0 (w)

y − w

)
≤ Is,ti0 (w) + 2r+1/(y/2) (4.21)

≤ Is,ti0 (w) + 2r+1 ×
(

2α

2r · 64

)
= Is,ti0 (w) + α/16 (4.22)

The first inequality above follows by upper bounding Is,ti0 (y)−Is,ti0 (w) by 1, dropping

the negative term and noting that y − w ≥ y/2 for a sufficiently small α. Together with (4.20),

we get

Is,t`′ (2
r+1) ≤ fti0 ,w,y(2r+1) + exp(−1/α) ≤ Is,ti0 (w) + α/16 + exp(−1/α)

≤ Is,ti0 (2r+1)− α/3 + α/16 + exp(−1/α)(4.23)

By monotonicity of the LS curve, Is,t`′ (2
r+1) < Is,t0(2r+1)− α/4.

Now, we state a key lemma. It says that a fixed bucket (parameterized by r) satisfies

the following at most timesteps: (i) either it does not contain enough free vertices, or (ii) if it

contains many free vertices at a particular timestep, then most of the corresponding timesteps

are not leaky.

Lemma 4.6.12. Fix r ≥ 0 and take any s ∈ F . There are at most β3`/α leaking timesteps t

(with respect to s) where Bt,r is heavy.

Proof. We prove by contradiction. Suppose there are more than β3`/α leaking timesteps t where

Bt,r is heavy. We break these up into 4/α contiguous blocks of β3`/4 leaking timesteps. By

Lemma 4.6.8, after every such block of timesteps, Is,t(2
r+1) reduces by more than α/4. Note

that Is,0(2r+1) ≤ 1, and thus, after 4/α blocks, Is,t(2
r+1) becomes negative. Contradiction to

the non-negativity of Is,t(2
r+1).
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4.6.3 Proof of Theorem 4.3.1

We finally prove Theorem 4.3.1. In particular, recall that this theorem claims that

for an arbitrary set F ⊆ V with |F | ≥ βn, there exists a size threshold k such that one can

find enough source vertices s ∈ F such that `-step diffusions from s contain enough non-leaky

timesteps. Moreover, these non-leaky timesteps can be used to obtain a low conductance cut

restricted to F . We begin by showing that indeed many sources s ∈ F have the desired behavior.

Lemma 4.6.13. There are at least β2n/8 vertices s ∈ F , such that: there are at least β`/16

timesteps t in [`] that are not leaking for s.

Proof. We fix any vertex s satisfying the conditions of Theorem 4.5.1. Let us recall what this

means. This means that for at least β`/8 timesteps t, it holds that M̂ t~s(F ) ≥ β/16. We will

show that conclusion in Lemma 4.6.13 above holds for s which will establish the lemma. We

prove by contradiction.

To this end, let us suppose for any vertex s satisfying the conditions of Theorem 4.5.1,

there are at most β`/16 non-leaky timesteps. There are at least β`/8−β`/16 = β`/16 timesteps

t that are leaking for s, such that M̂ t~s(F ) ≥ β/16. Fix any such timestep t and consider the

buckets Bt,r. There are at most − lgρ buckets with non-zero probability mass, and by averaging,

there exists r ≤ − lg ρ such that

∑
v∈F∩Bt,r

p̂t(v) ≥ β/(−16 lg ρ) =
ε

160 · 3000 lg(1/ε)
≥ ε4/3

300, 000
= α

where the last step holds for sufficiently small ε and therefore, Bt,r is heavy.

Thus, for each of the β`/16 leaking timesteps t above, there exists some r ≤− lg ρ such

that Bt,r is heavy. By averaging, there exists some r ≤ − lg ρ such that for β`/(−16 lg ρ) leaking

timesteps t, Bt,r is heavy. However, for sufficiently small ε (ε < 2−30), we have

β`

−16 lg ρ
=

ε · `
160 · 3000 log(1/ε)

≥ 1000ε3−4/3` ≥ β3`

α

which contradicts Lemma 4.6.12.

Lemma 4.6.14. Let |F | ≥ βn. There exists a r ≤ lg(1/ρ) such that for ≥ β2n/(8 lg2(ρ−1))

vertices s ∈ F , the following holds. For at least β`/(lg2(ρ−1)) timesteps t, there exists

k ∈ [2r, 2r+1] that is an (s, t)-certificate of non-leakiness.

Proof. This is an averaging argument. Apply Lemma 4.6.13. For each of the β2n/8 vertices

s ∈ F , there are at least β`/16 timesteps t that are not leaking for s. Thus, for every such

(s, t) pair, there exists ks,t ≤ ρ−1 that is an (s, t)-certificate of non-leakiness. We basically bin

the logarithm of the certificates. Thus, to every pair (s, t) (of the above form), we associate

rs,t = blg ks,tc. By averaging, for each relevant s, there is a value rs such that for at least
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β`/(16 lg(ρ−1)) timesteps t, there is an (s, t)-certificate in [2rs ,2rs+1]. Again, by averaging there

exists r ≤ lg(ρ−1) such that there are at least β2n/(8 lg(ρ−1)) ≥ β2n/(lg2(ρ−1)) vertices s ∈ F
for which there exist at least β`/(16 lg(ρ−1)) ≥ β`/ lg2(ρ−1) timesteps t, such that there is an

(s, t)-certificate for non-leakiness in [2r, 2r+1].

Theorem 4.3.1 follows as a corollary of Lemma 4.6.14. We now present the proof.

Proof. (Of Theorem 4.3.1) As seen from Lemma 4.6.14, there exists some r ≤ − lg(ρ) such that

there are at least Ω(β2/ lg(β−1)) · n vertices s ∈ F each of which in turn has (s, t)-certificates of

non-leakiness for at least Ω(β/16 lg2(β−1)) · ` different values of t. We simply choose k = 2r.

Let S ⊆ F denote the collection of these relevant sources. And for s ∈ S, define

Cs = {t ≤ ` : there exists a (s, t)− certificate of non-leakiness}.

Take s ∈ S, t ∈ Cs. We will show that there exists k′ = k′(s, t) ∈ [k, 2k] such that the level set

Ls,t,k′ satisfies the following.

• Ls,t,k ⊆ supp(M̂ t~s).

• φ(Ls,t,k′ ∪ {s}) ≤ 1/`1/3.

• |Ls,t,k′ ∩ F | ≥ α2k′/400 ≥ β3k.

The first item above follows from the conclusion of Lemma 4.6.14, Def 4.6.6 and taking

contrapositive in Lemma 4.6.4. Unpacking, this means that since t∈Cs is a non-leaking timestep

for s, it follows that there exists k′ = k′(s, t) ∈ [k, 2k] for which Ls,t,k′ ⊆ supp(M̂ t~s). The last

item above holds for this choice of k′ from the conclusion of Lemma 4.6.14. For item 2 above,

again note that our choice of k′ and Lemma 4.6.14 imply that

φ(Ls,t,k′) ≤ 1/d`1/3 = 1/d · ε
10

d2
= ε10/d3 = φ/d3

and therefore φ(Ls,t,k′ ∪ {s}) ≤ φ also follows as by (possibly) including a single vertex in the

set, the number of cut-edges can only increase by d.

4.7 Proofs of applications

The proofs here are quite straightforward and appear (in some form) in previous work.

We sketch the proofs, and do not give out the specifics of the Chernoff bound calculations.

Specifically, we mention Theorem 9.28 and its proof in [Gol17], which contains these calculations.

Proof. (of Theorem 4.0.3) Given input graph G, we set up the partition oracle with proximity

parameter ε/8. Therefore, with probability at least 2/3 over the random seed R, the number

of cut edges is at most εdn/8. The tester repeats the following O(1) times. For a random R,

we first estimate the number of edges cut by random sampling. The tester samples Θ(1/ε) uar

vertices u, picks a uar neighbor v of u, and calls the partition oracle on u and v. If these lie in
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different components, the edge (u, v) is cut. If more that an ε/4 fraction of edges are cut, then

repeat with a new R. Otherwise, we fix the seed R and proceed to the second phase of the

tester. (If no such R is found, the tester rejects.)

In the second phase, we sample a multiset S ⊆ V of O(ε−1) uar vertices, and query the

subgraph induced by the component C(v) (of the partition given by the oracle) that each v ∈ S
belongs to. For each (poly(ε−1)-sized) component C(v), we directly determine if it belongs to

Q. (If there is an efficient algorithm, we can run that algorithm.) If any of these components

does not belong to Q, the tester rejects, otherwise it accepts.

Now, let us argue that this is a bonafide tester for Q. Recall Q is both monotone

and additive. Suppose G ∈ Q. Since Q is a subproperty of a minor-closed property, the first

phase of setting the partition oracle succeeds with high probability. Since Q is monotone and

additive, all the subgraphs induced on the connected components C(v) also satisfy Q. So the

tester accepts whp. Suppose G is ε-far from Q. If the first phase does not succeed, then the

tester rejects. So assume that the first phase succeeds. Whp, by a Chernoff bound, the number

of cut edges (of the partition) is at most εdn/2. Since Q is monotone, the graph obtained by

removing these cut edges is at least ε/2-far from Q. Since Q is additive, at least Ω(εn) vertices

participate in connected components that not in Q. Hence, by a Chernoff bound, the second

phase rejects whp.

The query complexity has at most an O(dε−1) multiplicative overhead of the time

complexity of the partition oracle, which is poly(dε−1). If Q can be decided in polynomial time,

then the second phase also runs in poly(dε−1) time.

Proof. (of Theorem 4.0.4) As with the previous proof, we set up the partition oracle with

proximity parameter εdn/c, where c is the largest amount by which an edge addition/deletion

changes f . As before, there is a first phase to determine an appropriate setting of R for the

partition oracle. We sample poly(dε−1) uar vertices and determine the component that each

vertex belongs to. For each component, we compute f exactly. We take the sum of f -values,

and rescale appropriately to get an additive εnd estimate for f .
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Chapter 5

The impossibility of low rank

representations for triangle-rich

complex networks

Complex networks (or graphs) are a fundamental object of study in modern science,

across domains as diverse as the social sciences, biology, physics, computer science, and

engineering [WF94, New03, EK10a]. Designing good models for these networks is a crucial area

of research, and also affects society at large, given the role of online social networks in modern

human interaction [BA99, WS98, CF06]. Complex networks are massive, high-dimensional,

discrete objects, and are challenging to work with in a modeling context. A common method of

dealing with this challenge is to construct a low-dimensional Euclidean embedding that tries to

capture the structure of the network (see [HYL17b] for a recent survey). Formally, we think of the

n vertices as vectors ~v1, ~v2, . . . , ~vn ∈ Rd, where d is typically constant (or very slowly growing

in n). The likelihood of an edge (i, j) is proportional to (usually a non-negative monotone

function in) ~vi ·~vj [ASN+13, CLX16]. This gives a graph distribution that the observed network

is assumed to be generated from.

The most important method to get such embeddings is the Singular Value Decompo-

sition (SVD) or other matrix factorizations of the adjacency matrix [ASN+13]. Recently, there

has also been an explosion of interest in using methods from deep neural networks to learn

such graph embeddings [PARS14, TQW+15a, CLX16, GL16b] (refer to [HYL17b] for more ref-

erences). Regardless of the specific method, a key goal in building an embedding is to keep

the dimension d small — while trying to preserve the network structure — as the embeddings

are used in a variety of downstream modeling tasks such as graph clustering, nearest neigh-

bor search, and link prediction [Twi18]. Yet a fundamental question remains unanswered: to
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what extent do such low dimensional embeddings actually capture the structure of a complex

network?

These models are often justified by treating the (few) dimensions as “interests” of

individuals, and using similarity of interests (dot product) to form edges. Contrary to the

dominant view, we argue that low-dimensional embeddings are not good representations of

complex networks. We demonstrate mathematically and empirically that they lose local

structure, one of the hallmarks of complex networks. This runs counter to the ubiquitous

use of SVD in data analysis. The weaknesses of SVD have been empirically observed in

recommendation tasks [BCG10, GGL+13, KUK17], and our result provides a mathematical

validation of these findings.

Let us define the setting formally. Consider a set of vectors ~v1,~v2, . . . ,~vn ∈ Rd (denoted

by the d × n matrix V ) used to represent the n vertices in a network. Let GV denote the

following distribution of graphs over the vertex set [n]. For each index pair i, j, independently

insert (undirected) edge (i, j) with probability max(0,min(~vi ·~vj , 1)). (If ~vi ·~vj is negative, (i, j)

is never inserted. If ~vi · ~vj ≥ 1, (i, j) is always inserted.) We will refer to this model as the

“embedding” of a graph G, and focus on this formulation in our theoretical results. This is a

standard model in the literature, and subsumes the classic Stochastic Block Model [HLL83] and

Random Dot Product Model [YS07, AFL+18]. There are alternate models that use different

functions of the dot product for the edge probability, which are discussed in Section 5.0.2. Matrix

factorization is a popular method to obtain such a vector representation: the original adjacency

matrix A is “factorized” as V TV , where the columns of V are ~v1, ~v2, . . . , ~vn.

Two hallmarks of real-world graphs are: (i) Sparsity: The average degree is typically

constant with respect to n, and (ii) Triangle density: there are many triangles incident to low

degree vertices [WS98, SCW+10, SKP12, DPKS12]. The large number of triangles is considered

a local manifestation of community structure. Triangle counts have a rich history in the analysis

and algorithmics of complex networks. Concretely, we measure these properties simultaneously

as follows.

Definition 5.0.1. For parameters c > 1 and ∆ > 0, a graph G with n vertices has a (c,∆)-

triangle foundation if there are at least ∆n triangles contained among vertices of degree at most

c. Formally, let Sc be the set of vertices of degree at most c. Then, the number of triangles in

the graph induced by Sc is at least ∆n.

Typically, we think of both c and ∆ as constants. We emphasize that n is the total

number of vertices in G, not the number of vertices in S (as defined above). Refer to real-world

graphs in Table 5.2. In Figure 5.1, we plot the value of c vs ∆. (Specifically, the y axis is the

number of triangles divided by n.) This is obtained by simply counting the number of triangles

contained in the set of vertices of degree at most c. Observe that for all graphs, for c ∈ [10, 50],

we get a value of ∆ > 1 (in many cases ∆ > 10).
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Figure 5.1: figure

Plots of degree c vs ∆: For a High Energy Physics coauthorship network, we plot c versus the total

number of triangles only involving vertices of degree at most c. We divide the latter by the total number

of vertices n, so it corresponds to ∆, as in Def. 5.0.1. We plot these both for the original graph (in thick

blue), and for a variety of embeddings (explained in Section 5.0.2). For each embedding, we plot the

maximum ∆ in a set of 100 samples from a 100-dimensional embedding. The embedding analyzed by

our main theorem (TDP) is given in thick red. Observe how the embeddings generate graphs with very

few triangles among low degree vertices. The gap in ∆ for low degree is 2-3 orders of magnitude. The

other lines correspond to alternate embeddings, using the node2vec vectors and/or different functions

of the dot product.
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Our main result is that any embedding of graphs that generates graphs with (c,∆)-

triangle foundations, with constant c,∆, must have near linear rank. This contradicts the belief

that low-dimensional embeddings capture the structure of real-world complex networks.

Theorem 5.0.2. Fix c > 4,∆ > 0. Suppose the expected number of triangles in G ∼ GV
that only involve vertices of expected degree c is at least ∆n. Then, the rank of V is at least

min(1,poly(∆/c))n/ lg2 n.

Equivalently, graphs generated from low-dimensional embeddings cannot contain many

triangles only on low-degree vertices. We point out an important implication of this theorem for

Stochastic Block Models. In this model, each vertex is modeled as a vector in [0, 1]d, where the

ith entry indicates the likelihood of being in the ith community. The probability of an edge is

exactly the dot product. In community detection applications, d is thought of as a constant, or

at least much smaller than n. On the contrary, Theorem 5.0.2 implies that d must be Ω(n/ lg2 n)

to accurately model the low-degree triangle behavior.

5.0.1 Empirical validation

We empirically validate the theory on a collection of complex networks detailed in

Table 5.2. For each real-world graph, we compute a 100-dimensional embedding through SVD

(basically, the top 100 singular vectors of the adjacency matrix). We generate 100 samples of

graphs from these embeddings, and compute their c vs ∆ plot. This is plotted with the true c

vs ∆ plot. (To account for statistical variation, we plot the maximum value of ∆ observed in

the samples, over all graphs. The variation observed was negligible.) Figure 5.1 shows such a

plot for a physics coauthorship network. More results are given in Section 5.3.

Note that this plot is significantly off the mark at low degrees for the embedding.

Around the lowest degree, the value of ∆ (for the graphs generated by the embedding) is 2-3

order of magnitude smaller than the original value. This demonstrates that the local triangle

structure is destroyed around low degree vertices. Interestingly, the total number of triangles

is preserved well, as shown towards the right side of each plot. Thus, a nuanced view of the

triangle distribution, as given in Def 5.0.1, is required to see the shortcomings of low dimensional

embeddings.

5.0.2 Alternate models

We note that several other functions of dot product have been proposed in the

literature, such as the softmax function [PARS14, GL16b] and linear models of the dot

product [HYL17b]. Theorem 5.0.2 does not have direct implications for such models, but our

empirical validation holds for them as well. The embedding in Theorem 5.0.2 uses the truncated

dot product (TDP) function max(0,min(~vi · ~vj , 1)) to model edge probabilities. We construct
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other embeddings that compute edge probabilities using machine learning models with the dot

product and Hadamard product as features. This subsumes linear models as given in [HYL17b].

Indeed, the TDP can be smoothly approximated as a logistic function. We also consider (scaled)

softmax functions, as in [PARS14], and standard machine learning models (LRDP, LRHP).

(Details about these models are given in Section 5.35.3.2.)

For each of these models (softmax, LRDP, LRHP), we perform the same experiment

described above. Figure 5.1 also shows the plots for these other models. Observe that none of

them capture the low-degree triangle structure, and their ∆ values are all 2-3 orders of magnitude

lower than the original.

In addition (to the extent possible), we compute vector embeddings from a recent

deep learning based method (node2vec [GL16b]). We again use all the edge probability models

discussed above, and perform an identical experiment (in Figure 5.1, these are denoted by

“n2v”). Again, we observe that the low-degree triangle behavior is not captured by these deep

learned embeddings.

5.0.3 Broader context

The use of geometric embeddings for graph analysis has a rich history, arguably going

back to spectral clustering [Fie73]. In recent years, the Stochastic Block Model has become quite

popular in the statistics and algorithms community [HLL83]. and the Random Dot Product

Graph model is a generalization of this notion (refer to recent surveys [Abb18, AFL+18]). As

mentioned earlier, Theorem 5.0.2 brings into question the standard uses of these methods to

model social networks. The use of vectors to represent vertices is sometimes referred to as

latent space models, where geometric proximity models the likelihood of an edge. Although

dot products are widely used, we note that some classic latent space approaches use Euclidean

distance (as opposed to dot product) to model edge probabilities [HRH02], and this may avoid

the lower bound of Theorem 5.0.2. Beyond graph analysis, the method of Latent Semantic

Indexing (LSI) also falls in the setting of Theorem 5.0.2, wherein we have a low-dimensional

embedding of “objects” (like documents) and similarity is measured by dot product [lsi19].

5.1 High-level description of the proof

In this section, we sketch the proof of Theorem 5.0.2. The sketch provides sufficient

detail for a reader who wants to understand the reasoning behind our result, but is not concerned

with technical details. We will make the simplifying assumption that all vis have the same length

L. We note that this setting is interesting in its own right, since it is often the case in practice

that all vectors are non-negative and normalized. In this case, we get a stronger rank lower bound

that is linear in n. Section 5.1.1 provides intuition on how we can remove this assumption. The
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full details of the proof are given in Section 5.2.

First, we lower bound L. By Cauchy-Schwartz, ~vi · ~vj ≤ L2. Let Xi,j be the indicator

random variable for the edge (i, j) being present. Observe that all Xi,js are independent and

E[Xi,j ] = min(~vi · ~vj , 1) ≤ L2.

The expected number of triangles in G ∼ GV is:

E[
∑
i6=j 6=k

Xi,jXj,kXi,k] (5.1)

≤
∑
i

∑
j,k

E[Xj,k]E[Xi,j ]E[Xi,k] (5.2)

≤ L2
∑
i

∑
j,k

E[Xi,j ]E[Xi,k] = L2
∑
i

(
∑
j

E[Xi,j ])
2 (5.3)

Note that
∑
j E[Xi,j ] = E[

∑
j Xi,j ] is at most the degree of i, which is at most c. (Technically,

the Xi,i term creates a self-loop, so the correct upper bound is c + 1. For the sake of cleaner

expressions, we omit the additive +1 in this sketch.)

The expected number of triangles is at least ∆n. Plugging these bounds in:

∆n ≤ L2c2n =⇒ L ≥
√

∆/c (5.4)

Thus, the vectors have length at least
√

∆/c. Now, we lower bound the rank of V . It will be

convenient to deal with the Gram matrix M = V TV , which has the same rank as V . Observe

that Mi,j = ~vi · ~vj ≤ L2. We will use the following lemma stated first by Swanapoel, but has

appeared in numerous forms previously [Swa14].

Lemma 5.1.1 (Rank lemma). Consider any square matrix M ∈ Rn×n. Then

rank(M) ≥
|
∑
iMi,i|2(∑

i

∑
j |Mi,j |2

)
Note that Mi,i = ~vi · ~vi = L2, so the numerator |

∑
iMi,i|2 = n2L4. The denominator

requires more work. We split it into two terms.∑
i,j

~vi·~vj≤1

(~vi · ~vj)2 ≤
∑
i,j

~vi·~vj≤1

~vi · ~vj ≤ cn (5.5)

If for i 6= j, ~vi ·~vj > 1, then (i, j) is an edge with probability 1. Thus, there can be at most (c−1)n

such pairs. Overall, there are at most cn pairs such that ~vi ·~vj > 1. So,
∑

i,j
~vi·~vj>1

(~vi ·~vj) ≤ cnL4.

Overall, we lower bound the denominator in the rank lemma by cn(L4 + 1).

We plug these bounds into the rank lemma. We use the fact that f(x) = x/(1 + x) is

decreasing for positive x, and that L ≥
√

∆/c.

rank(M) ≥ n2L4

cn(L4 + 1)
≥ n

c
· ∆2/c4

∆2/c4 + 1
=

∆2

c(∆2 + c4)
· n
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5.1.1 Dealing with varying lengths

The math behind (5.4) still holds with the right approximations. Intuitively, the

existence of at least ∆n triangles implies that a sufficiently large number of vectors have length

at least
√

∆/c. On the other hand, these long vectors need to be “sufficiently far away” to

ensure that the vertex degrees remain low. There are many such long vectors, and they can can

only be far away when their dimension/rank is sufficiently high.

The rank lemma is the main technical tool that formalizes this intuition. When vectors

are of varying length, the primary obstacle is the presence of extremely long vectors that create

triangles. The numerator in the rank lemma sums Mi,i, which is the length of the vectors. A

small set of extremely long vectors could dominate the sum, increasing the numerator. In that

case, we do not get a meaningful rank bound.

But, because the vectors inhabit low-dimensional space, the long vectors from different

clusters interact with each other. We prove a “packing” lemma (Lemma 5.2.5) showing that

there must be many large positive dot products among a set of extremely long vectors. Thus,

many of the corresponding vertices have large degree, and triangles incident to these vertices do

not contribute to low degree triangles. Operationally, the main proof uses the packing lemma

to show that there are few long vectors. These can be removed without affecting the low degree

structure. One can then perform a binning (or “rounding”) of the lengths of the remaining

vectors, to implement the proof described in the above section.

5.2 Proof of Theorem 5.0.2

For convenience, we restate the setting. Consider a set of vectors ~v1, ~v2, . . . , ~vn ∈ Rd,
that represent the vertices of a social network. We will also use the matrix V ∈ Rd×n for these

vectors, where each column is one of the ~vis. Abusing notation, we will use V to represent both

the set of vectors as well as the matrix. We will refer to the vertices by the index in [n].

Let GV denote the following distribution of graphs over the vertex set [n]. For each index

pair i, j, independently insert (undirected) edge (i, j) with probability max(0,min(~vi · ~vj , 1)).

5.2.1 The basic tools

We now state some results that will be used in the final proof.

Lemma 5.2.1. [Rank lemma [Swa14]] Consider any square matrix A ∈ Rn×n. Then

|
∑
i

Ai,i|2 ≤ rank(A)

∑
i

∑
j

|Ai,j |2

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Lemma 5.2.2. Consider a set of s vectors ~w1, ~w2, . . . , ~ws in Rd.∑
(i,j)∈[s]×[s]
~wi·~wj<0

|~wi · ~wj | ≤
∑

(i,j)∈[s]×[s]
~wi·~wj>0

|~wi · ~wj |

Proof. Note that (
∑
i≤s ~wi) · (

∑
i≤s ~wi) ≥ 0. Expand and rearrange to complete the proof.

Recall that an independent set is a collection of vertices that induce no edge.

Lemma 5.2.3. Any graph with h vertices and maximum degree b has an independent set of at

least h/(b+ 1).

Proof. Intuitively, one can incrementally build an independent set, by adding one vertex to the

set, and removing at most b + 1 vertices from the graph. This process can be done at least

h/(b+ 1) times.

Formally, we prove by induction on h. First we show the base case. If h ≤ b+ 1, then

the statement is trivially true. (There is always an independent set of size 1.) For the induction

step, let us construct an independent set of the desired size. Pick an arbitrary vertex x and add

it to the independent set. Remove x and all of its neighbors. By the induction hypothesis, the

remaining graph has an independent set of size at least (h− b− 1)/(b+ 1) = h/(b+ 1)− 1.

Claim 5.2.4. Consider the distribution GV . Let Di denote the degree of vertex i ∈ [n].

E[D2
i ] ≤ E[Di] + E[Di]

2.

Proof. (of Claim 5.2.4) Fix any vertex i ∈ [n]. Observe that Di =
∑
j 6=iXj , where Xj is the

indicator random variable for edge (i, j) being present. Furthermore, all the Xjs are independent.

E[D2
i ] = E[(

∑
j 6=i

Xj)
2] = E[

∑
j 6=i

X2
j + 2

∑
j 6=j′

XjXj′ ]

= E[
∑
j 6=i

Xj ] + 2
∑
j 6=j′

E[Xj ]E[Xj′ ]

≤ E[Di] + (
∑
j 6=i

E[Xj ])
2 = E[Di] + E[Di]

2

A key component of dealing with arbitrary length vectors is the following dot product

lemma. This is inspired by results of Alon [Alo03] and Tao [Tao13], who get a stronger lower

bound of 1/
√
d for absolute values of the dot products.

Lemma 5.2.5. Consider any set of 4d unit vectors ~u1, ~u2, . . . , ~u4d in Rd. There exists some

i 6= j such that ~ui · ~uj ≥ 1/4d.

Proof. (of Lemma 5.2.5) We prove by contradiction, so assume ∀i 6= j,~ui ·~uj < 1/4d. We partition

the set [4d] × [4d] into N = {(i, j)|~ui · ~uj < 0} and P = {(i, j)|~ui · ~uj ≥ 0}. The proof goes by
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providing (inconsistent) upper and lower bounds for
∑

(i,j)∈N |~ui · ~uj |2. First, we upper bound∑
(i,j)∈N |~ui · ~uj |2 by:

≤
∑

(i,j)∈N

|~ui · ~uj | (~uis are unit vectors)

≤
∑
i≤4d

‖~ui‖22 +
∑

1≤i6=j≤4d
(i,j)∈P

|~ui · ~uj | (Lemma 5.2.2)

< 4d+ 16d2/4d = 8d (since ~ui · ~uj < 1/4d) (5.6)

For the lower bound, we invoke the rank bound of Lemma 5.2.1 on the 4d× 4d Gram

matrix M of ~u1, . . . , ~u4d. Note that rank(M) ≤ d, Mi,i = 1, and Mi,j = ~ui ·~uj . By Lemma 5.2.1,∑
(i,j)∈[4d]×[4d] |~ui · ~uj |2 ≥ (4d)2/d = 16d. We bound∑

(i,j)∈P

|~ui · ~uj |2 =
∑
i≤4d

‖~ui‖22 +
∑

(i,j)∈P,i6=j

|~ui · ~uj |2

≤ 4d+ (4d)2/(4d)2 ≤ 5d (5.7)

Thus,
∑

(i,j)∈N |~ui · ~uj |2 ≥ 16d− 5d = 11d. This contradicts the bound of (5.6).

5.2.2 The main argument

We prove by contradiction. We assume that the expected number of triangles contained

in the set of vertices of expected degree at most c, is at least ∆n. We remind the reader that

n is the total number of vertices. For convenience, we simply remove the vectors corresponding

to vertices with expected degree at least c. Let V̂ be the matrix of the remaining vectors, and

we focus on GV̂ . The expected number of triangles in G ∼ GV̂ is at least ∆n.

The overall proof can be thought of in three parts.

Part 1, remove extremely long vectors: Our final aim is to use the rank lemma

(Lemma 5.2.1) to lower bound the rank of V . The first problem we encounter is that extremely

long vectors can dominate the expressions in the rank lemma, and we do not get useful bounds.

We show that the number of such long vectors is extremely small, and they can removed without

affecting too many triangles. In addition, we can also remove extremely small vectors, since they

cannot participate in many triangles.

Part 2, find a “core” of sufficiently long vectors that contains enough triangles: The

previous step gets a “cleaned” set of vectors. Now, we bucket these vectors by length. We show

that there is a large bucket, with vectors that are sufficiently long, such that there are enough

triangle contained in this bucket.

Part 3, apply the rank lemma to the “core”: We now focus on this core of vectors,

where the rank lemma can be applied. At this stage, the mathematics shown in Section 5.1 can

be carried out almost directly.
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Now for the formal proof. For the sake of contradiction, we assume that d= rank(V̂ )<

α(∆4/c9) · n/ lg2 n (for some sufficiently small constant α > 0).

Part 1: Removing extremely long (and extremely short) vectors

We begin by showing that there cannot be many long vectors in V̂ .

Lemma 5.2.6. There are at most 5cd vectors of length at least 2
√
n.

Proof. Let L be the set of “long” vectors, those with length at least 2
√
n. Let us prove by

contradiction, so assume there are more than 5cd long vectors. Consider a graph H = (L, E),

where vectors ~vi, ~vj ∈ L (i 6= j) are connected by an edge if ~vi
‖~vi‖2 ·

~vj
‖~vj‖2 ≥ 1/4n. We choose the

1/4n bound to ensure that all edges in H are edges in G.

Formally, for any edge (i, j) in H, ~vi · ~vj ≥ ‖~vi‖2‖~vj‖2/4n ≥ (2
√
n)2/4n = 1. So (i, j)

is an edge with probability 1 in G ∼ GV . The degree of any vertex in H is at most c. By

Lemma 5.2.3, H contains an independent set I of size at least 5cd/(c + 1) ≥ 4d. Consider an

arbitrary sequence of 4d (normalized) vectors in I ~u1, . . . , ~u4d. Applying Lemma 5.2.5 to this

sequence, we deduce the existence of (i, j) in I (i 6= j) such that ~vi
‖~vi‖2 ·

~vj
‖~vj‖2 ≥ 1/4d ≥ 1/4n.

Then, the edge (i, j) should be present in H, contradicting the fact that I is an independent

set.

Denote by V ′ the set of all vectors in V̂ with length in the range [n−2, 2
√
n].

Claim 5.2.7. The expected degree of every vertex in G ∼ GV ′ is at most c, and the expected

number of triangles in G is at least ∆n/2.

Proof. Since removal of vectors can only decrease the degree, the expected degree of every vertex

in GV ′ is naturally at most c. It remains to bound the expected number of triangles in G ∼ GV ′ .
By removing vectors in V \ V ′, we potentially lose some triangles. Let us categorize them into

those that involve at least one “long” vector (length ≥ 2
√
n) and those that involve at least one

“short” vector (length ≤ n−2) but no long vector.

We start with the first type. By Lemma 5.2.6, there are at most 5cd long vectors. For

any vertex, the expected number of triangles incident to that vertex is at most the expected

square of the degree. By Claim 5.2.4, the expected degree squares is at most c+ c2 ≤ 2c2. Thus,

the expected total number of triangles of the first type is at most 5cd× 2c2 ≤ ∆n/ lg2 n.

Consider any triple of vectors (~u,~v, ~w) where ~u is short and neither of the others are

long. The probability that this triple forms a triangle is at most

min(~u · ~v, 1) ·min(~u · ~w, 1)

≤ min(‖~u‖2‖~v‖2, 1) ·min(‖~u‖2‖~w‖2, 1)

≤ (n−2 · 2
√
n)2 ≤ 4n−3

Summing over all such triples, the expected number of such triangles is at most 4.
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Thus, the expected number of triangles in G ∼ GV ′ is at least ∆n −∆n/ lg2 n − 4 ≥
∆n/2.

Part 2: Finding core of sufficiently long vectors with enough triangles

For any integer r, let Vr be the set of vectors {~v ∈ V ′|‖~v‖2 ∈ [2r, 2r+1)}. Observe that

the Vrs form a partition of V ′. Since all lengths in V ′ are in the range [n−2, 2
√
n], there are

at most 3 lg n non-empty Vrs. Let R be the set of indices r such that |Vr| ≥ (∆/60c2)(n/ lg n).

Furthermore, let V ′′ be
⋃
r∈R Vr.

Claim 5.2.8. The expected number of triangles in G ∼ GV ′′ is at least ∆n/8.

Proof. The total number of vectors in
⋃
r/∈R Vr is at most 3 lgn×(∆/60c2)(n/ lgn) ≤ (∆/20c2)n.

By Claim 5.2.4 and linearity of expectation, the expected sum of squares of degrees of all vectors

in
⋃
r/∈R Vr is at most (d + c2) × (∆/20c2)n ≤ ∆n/10. Since the expected number of triangles

in G ∼ GV ′ is at least ∆n/2 (Claim 5.2.7) and the expected number of triangles incident to

vectors in V ′ \ V ′′ is at most ∆n/10, the expected number of triangles in G ∼ GV ′′ is at least

∆n/2−∆n/10 ≥ ∆n/8.

We now come to an important claim. Because the expected number of triangles in

G ∼ GV ′′ is large, we can prove that V ′′ must contain vectors of at least constant length.

Claim 5.2.9. maxr∈R 2r ≥
√

∆/4c.

Proof. Suppose not. Then every vector in V ′′ has length at most
√

∆/4c. By Cauchy-Schwartz,

for every pair ~u,~v ∈ V ′′, ~u · ~v ≤ ∆/16c2. Let I denote the set of vector indices in V ′′ (this

corresponds to the vertices in G ∼ GV ′′). For any two vertices i 6= j ∈ I, let Xi,j be the indicator

random variable for edge (i, j) being present. The expected number of triangles incident to

vertex i in G ∼ GV ′′ is

E[
∑
j 6=k∈I

Xi,jXi,kXj,k] =
∑
j 6=k∈I

E[Xi,jXi,k]E[Xj,k]

Observe that E[Xj,k] is at most ~vj · ~vk ≤ ∆/16c2. Furthermore,∑
j 6=k∈I

E[Xi,jXi,k] = E[D2
i ]

(recall that Di is the degree of vertex i.) By Claim 5.2.4, this is at most c + c2 ≤ 2c2. The

expected number of triangles in G ∼ GV ′′ is at most n× 2c2×∆/16c2 = ∆n/8. This contradicts

Claim 5.2.8.

Part 3: Applying the rank lemma to the core

We are ready to apply the rank bound of Lemma 5.2.1 to prove the final result. The

following lemma contradicts our initial bound on the rank d, completing the proof. We will omit

some details in the following proof, and provide a full proof in the SI.

102



Lemma 5.2.10. rank(V ′′) ≥ (α∆4/c9)n/ lg2 n.

Proof. It is convenient to denote the index set of V ′′ be I. Let M be the Gram Matrix

(V ′′)T (V ′′), so for i, j ∈ I, Mi,j = ~vi · ~vj By Lemma 5.2.1, rank(V ′′) = rank(M) ≥
(
∑
i∈IMi,i)

2/
∑
i,j∈I |Mi,j |2. Note that Mi,i is ‖~vi‖22, which is at least 22r for ~vi ∈ Vr. Let

us denote maxr∈R 2r by L, so all vectors in V ′′ have length at most 2L. By Cauchy-Schwartz,

all entries in M are at most 4L2.

We lower bound the numerator.(∑
i∈I
‖~vi‖22

)2 ≥ (∑
r∈R

22r|Vr|
)2

≥
(

max
r∈R

22r(∆/60c2)(n/ lg n)
)2

= L4(∆2/3600c4)(n2/ lg2 n)

Now for the denominator. We split the sum into four parts and bound each separately.∑
i,j∈I

|Mi,j |2 =
∑
i∈I
|Mi,i|2 +

∑
i,j∈I

i 6=j,Mi,j∈[0,1]

|Mi,j |2

+
∑
i,j∈I

i6=j,Mi,j>1

|Mi,j |2 +
∑
i,j∈I
Mi,j<0

|Mi,j |2 :!

Since |Mi,i| ≤ L2, the first term is at most 4nL4. For i 6= j and Mi,j ∈ [0, 1], the probability

that edge (i, j) is present is precisely Mi,j . Thus, for the second term,∑
i,j∈I

i 6=j,Mi,j∈[0,1]

|Mi,j |2 ≤
∑
i,j∈I

i 6=j,Mi,j∈[0,1]

Mi,j ≤ 2cn (5.8)

For the third term, we observe that when Mi,j > 1 (for i 6= j), then (i, j) is an edge with

probability 1. There can be at most 2cn pairs (i, j), i 6= j, such that Mi,j > 1. Thus, the third

term is at most 2cn · (4L2)2 = 32cnL4.

Now for the fourth term. Note that M is a Gram matrix, so we can invoke Lemma 5.2.2

on its entries. ∑
i,j∈I
Mi,j<0

|Mi,j |2 ≤ L2
∑
i,j∈I
Mi,j<0

|Mi,j |

≤ L2(
∑
i∈I
|Mi,i|+

∑
i,j∈I
Mi,j>0

|Mi,j |)

≤ 4nL4 + L2
∑
i,j∈I

Mi,j∈[0,1]

|Mi,j |+ 4L4
∑
i,j∈I
Mi,j>1

1

≤ 4nL4 + 2cnL2 + 8cnL4 (5.9)
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Putting all the bounds together, we get that
∑
i,j∈I |Mi,j |2 ≤ n(4L4 +2c+32cL4 +4L4 +2cL2 +

8cL4) ≤ 32n(L4 + c(1 + L2 + L4)). If L ≤ 1, we can upper bound by 128cn. If L ≥ 1, we can

upper bound by 128cnL4. In either case, 128cn(1 + L4) is a valid upper bound.

Crucially, by Claim 5.2.9, L ≥
√

∆/4c. Thus, 44c4L4/∆2 ≥ 1. Combining all the

bounds (and setting α < 1/(128 · 3600 · 44)),

rank(V ′′) ≥ L4(∆2/3600c4)(n2/ lg2 n)

128cn(1 + 16L4)

≥ L4(∆2/3600c4)(n/ lg2 n)

128cn(44c4L4/∆2 + 16L4)

≥ (α∆4/c9)(n/ lg2 n)

5.3 Details of empirical results

Data Availability: The datasets used are summarized in Tab. 5.2. We present here

four publicly available datasets from different domains. The ca-HepPh is a co-authorship network

Facebook is a social network, cit-HepPh is a citation network, all obtained from the SNAP graph

database [SNA19]. The String hs dataset is a protein-protein-interaction network obtained

from [str19]. (The citations provide the link to obtain the corresponding datasets.)

We first describe the primary experiment, used to validate Theorem 5.0.2 on the SVD

embedding. We generated a d-dimensional embedding for various values of d using the SVD. Let

G be a graph with the n×n (symmetric) adjacency matrix A, with eigendecomposition ΨΛΨT .

Let Λd be the matrix with the d× d diagonal matrix with the d largest magnitude eigenvalues

of A along the diagonal. Let Ψd be the n × d matrix with the corresponding eigenvectors as

columns. We compute the matrix Ad = ΨdΛdΨ
T
d and refer to this as the d spectral embedding

of G. This is the standard PCA approach.

From the spectral embeddings, we generate a graph from Ad by considering every pair

of vertices (i, j) and generate a random value in [0, 1]. If the (i, j)th entry of Ad is greater than

the random value generated, the edge is added to the graph. Otherwise the edge is not present.

This is the same as taking Ad and setting all negative values to 0, and all values greater than

1 to 1 and performing Bernoulli trials for each edge with the resulting probabilities. In all the

figures, this is referred to as the “SVD TDP” (truncated dot product) embedding.

5.3.1 Triangle distributions

To generate Figure 5.1 and Figure 5.3, we calculated the number of triangles incident

to vertices of different degrees in both the original graphs and the graphs generated from the

embeddings. Each of the plots shows the number of triangles in the graph on the vertical axis
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Dataset name Network type Number of nodes Number of edges

Facebook [SNA19] Social network 4K 88K

cit-HePh [Arn19] Citation 34K 421K

String hs [str19] PPI 19K 5.6M

ca-HepPh [SNA19] Co-authorship 12K 118M

Figure 5.2: Table of datasets used
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Figure 5.3: Plots of degree c vs ∆: For each network, we plot c versus the total number of triangles only

involving vertices of degree at most c. We divide the latter by the number of vertices, so it corresponds

to ∆, as in the main definition. In each subfigure, we plot these both for the original graph, and the

maximum ∆ in a set of 100 samples from a 100-dimensional embedding. Observe how the embeddings

generate graphs with very few triangles among low degree vertices. The gap in ∆ for low degree is 2-3

orders of magnitude in all instances.

and the degrees of vertices on the horizontal axis. Each curve corresponds to some graph, and

each point (x, y) in a given curve shows that the graph contains y triangles if we remove all

vertices with degree at least x. We then generate 100 random samples from the 100-dimensional

embedding, as given by SVD (described above). For each value of c, we plot the maximum

value of ∆ over all the samples. This is to ensure that our results are not affected by statistical

variation (which was quite minimal).

105



100 101 102 103

degree

100

102

104

nu
m

be
r o

f n
od

es

Degree distribution of ca-HepPh

original
svd TDP

100 102

degree

100

102

104

nu
m

be
r o

f n
od

es

Degree distribution of facebook

original
svd TDP

100 102 104

degree

100

105

nu
m

be
r o

f n
od

es

Degree distribution of String_hs

original
svd TDP

100 101 102 103

degree

100

105

nu
m

be
r o

f n
od

es

Degree distribution of cit-HepPh

original
svd TDP

Figure 5.4: Plots of degree distributions: For each network, we plot the true degree distribution vs

the expected degree distribution of a 100-dimensional embedding. Observe how the embedding does

capture the degree distribution quite accurately at all scales.

5.3.2 Alternate graph models

We consider three other functions of the dot product, to construct graph distributions

from the vector embeddings. Details on parameter settings and the procedure used for the

optimization are given in the SI.

Logistic Regression on the Dot Product (LRDP): We consider the probability of an edge

(i, j) to be the logistic function L(1 + exp(−k(~vi · ~vj − x0)))−1, where L, k, x0 are parameters.

Observe that the range of this function is [0, 1], and hence can be interpreted as a probability.

We tune these parameters to fit the expected number of edges, to the true number of edges.

Then, we proceed as in the TDP experiment. We note that the TDP can be approximated by

a logistic function, and thus the LRDP embedding is a “closer fit” to the graph than the TDP

embedding.

Logistic Regression on the Hadamard Product (LRHP): This is inspired by linear models

used on low-dimensional embeddings [HYL17b]. Define the Hadamard product ~vi�~vj to be the

d-dimensional vector where the rth coordinate is the product of rth coordinates. We now fit

a logistic function over linear functions of (the coordinates of) ~vi � ~vj . This is a significantly

richer model than the previous model, which uses a fixed linear function (sum). Again, we tune

parameters to match the number of edges. The fitting of LRDP and LRHP was done using

the Matlab function glmfit (Generalized Linear Model Regression Fit) [mat]. The distribution

parameter was set to “binomial”, since the total number of edges is distributed as a weighted

binomial.
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Softmax: This is inspired by low-dimensional embeddings for random walk matri-

ces [PARS14, GL16b]. The idea is to make the probability of edge (i, j) to be proportional to

softmax, exp(~vi · ~vj)/
∑
k∈[n] ~vi · ~vk. This tends to push edge formation even for slightly higher

dot products, and one might imagine this helps triangle formation. We set the proportionality

constant separately for each vertex to ensure that the expected degree is the true degree. The

probability matrix is technically undirected, but we symmetrize the matrix.

node2vec experiments: We also applied node2vec, a recent deep learning based

graph embedding method [GL16b], to generate vector representations of the vertices. We used

the optimized C++ implementation [n2va] for node2vec, which is equivalent to the original

implementation provided by the authors [n2vb]. For all our experiments, we use the default

settings of walk length of 80, 10 walks per node, p=1 and q=1. The node2vec algorithm tries

to model the random walk matrix associated with a graph, not the raw adjacency matrix. The

dot products between the output vectors ~vi · ~vj are used to model the random walk probability

of going from i to j, rather than the presence of an edge. It does not make sense to apply the

TDP function on these dot products, since this will generate (in expectation) only n edges (one

for each vertex). We apply the LRDP or LRHP functions, which use the node2vec vectors as

inputs to a machine learning model that predicts edges.

In Figures 5.1 and 5.3, we show results for all the datasets. We note that for all datasets

and all embeddings, the models fail to capture the low-degree triangle behavior.

5.3.3 Degree distributions

We observe that the low-dimensional embeddings obtained from SVD and the truncated

dot product can capture the degree distribution accurately. In Figure 5.4, we plot the degree

distribution (in loglog scale) of the original graph with the expected degree distribution of the

embedding. For each vertex i, we can compute its expected degree by the sum
∑
i pij , where pij

is the probability of the edge (i, j). In all cases, the expected degree distributions is close to the

true degree distributions, even for lower degree vertices. The embedding successfully captures

the “first order” connections (degrees), but not the higher order connections (triangles). We

believe that this reinforces the need to look at the triangle structure to discover the weaknesses

of low-dimensional embeddings.

5.3.4 Detailed relationship between rank and triangle structure

For the smallest Facebook graph, we were able to compute the entire set of eigenvalues.

This allows us to determine how large a rank is required to recreate the low-degree triangle

structure. In Figure 5.5, for varying rank of the embedding, we plot the corresponding triangle

distribution. In this plot, we choose the embedding given by the eigendecomposition (rather than

SVD), since it is guaranteed to converge to the correct triangle distribution for an n-dimensional
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Figure 5.5: Plots of degree c vs ∆, for varying rank: For the Facebook social network, for varying rank

of embedding, we plot c versus the total number of triangles only involving vertices of degree at most

c. The embedding is generated by taking the top eigenvectors. Observe how even a rank of 2000 does

not suffice to match the true triangle values for low degree.

embedding (n is the number of vertices). The SVD and eigendecomposition are mostly identical

for large singular/eigenvalues, but tend to be different (up to a sign) for negative eigenvalues.

We observe that even a 1000 dimensional embedding does not capture the c vs ∆ plots

for low degree. Even the rank 2000 embedding is off the true values, though it is correct to

within an order of magnitude. This is strong corroboration of our main theorem, which says

that near linear rank is needed to match the low-degree triangle structure.
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Chapter 6

On the (in)-effectiveness of

matrix factorization-based graph

embedding methods for

community labeling

Graph structured data is ubiquitous. Capturing the graph structure is important

for a wide variety of machine learning tasks, such as ranking in social networks, content

recommendations, and clustering [EK10b]. A long-studied challenge for building such machine

learned models has been to capture the graph structure for use in a variety of modeling

tasks. Graph representation learning, or low-dimensional graph embeddings, provide a convenient

solution to this problem. Given a graph G on n vertices, these methods map each vertex

to a vector in Rd, where d � n, in an unsupervised or a self-supervised manner (it is also

sometimes referred to as a pre-training procedure). Typically, the goal of the embedding is to

represent graph proximity by (a function of) the dot product of vectors, thereby implicitly giving

a geometric representation of the graph.1 The dot product formulation provides a convenient

form for building a models (e.g. using deep learning). Moreover, the geometry of the embedding

allows efficient reverse-index lookups, using nearest neighbor search. Thus, these embedding

vectors are not only used as features for many downstream tasks (such as link prediction,

community detection, and clustering), but also used for reverse lookups using nearest neighbor

search [CAS16, Twi18].

The study of low-dimensional graph embeddings is an incredibly popular research

1Since there is a wide range of methods for Graph representation learning, we refer the reader to the “Shallow
embeddings” class in a recent survey [CAEHP+20] for a more comprehensive overview.
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area, and has generated many exciting results over the past few years (see surveys [HYL18,

CAEHP+20] and a Chapter 23 in [Mur21]). Nonetheless, there is limited principled understand-

ing of the power of low-dimensional embeddings (a few recent papers address this topic [SSSG20b,

CMST20, Lou20, GJJ20]). Our work aims to understand the effectiveness of a class of graph em-

beddings in preserving graph structure as it manifests in performance on different downstream

tasks.

Due to an explosion of interest in the area, there are by now a large class of graph

embedding methods [Mur21]. For the sake of a principled study, we focus on the important class

of unsupervised low-rank factorization methods. While there do exist many methods outside this

class, such factorization methods cover a number of popular and influential embeddings methods,

including GraRep [OCP+16], DeepWalk [PARS14], and Node2Vec [GL16a]. In fact, a recent

result shows that many existing embedding techniques can be recast as matrix factorization

methods [QDM+18]. One begins with an n × n promixity matrix M , typically the adjacency

matrix, the random walk matrix, or some variant thereof (e.g. Node2Vec uses the matrix

for a certain second order random walk). Using optimization techniques, the matrix M is

approximated as a Gramian matrix V TV , where V ∈ Rd×n. The column vectors of V are the

embeddings of the vertices. In direct factorizations, one simply tries to minimize ‖V TV −M‖2.

More sophisticated softmax factorizations perform non-linear entry-wise transformations on

V TV to approximate M . This class of unsupervised embedding methods is among the most

popular and prevalent low-dimensional graph embeddings, and hence this is a particularly useful

class to quantify performance for.

Our aim is to study a natural question, albeit one that is somewhat challenging to

pose formally: to what extent do factorization-based embedding methods capture graph structure

relevant to downstream ML tasks?

To this end, we fix the following well-defined pairwise community labeling problem.

Given two vertices i and j, the binary classification task is to determine whether they belong to

the same community. We note that this community labeling problem is an instance of a broad

range of community detection problems that have a long history of study in the graph mining

literature [LRU20]. We then attempt a rigorous theoretical and empirical understanding of the

performance of factorization-based graph embeddings on community labeling.

6.0.1 Formal description of setting

We formally describe the graph embeddings techniques that are studied in this work.

The learned factorization approach is to approximate M by the Gramian matrix V TV (the

matrix of dot products). Typically, this matrix V is found by formulating a machine learning

problem, which has a loss function that minimizes a distance/norm between V TV and M .

Broadly speaking, we can classify these methods into two categories:
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• Direct factorizations: Here, we set V as

argminV ‖V TV − M‖2, where M is typically (some power of) the graph adjacency matrix.

Methods such as Graph Factorization, GraRep [CLX15], and HOPE [OCP+16] would fall under

this category.

• Softmax factorizations: These methods factorize a stochastic matrix, such as

(powers of) the random walk matrix. Since V TV is not necessarily stochastic, these methods

apply the softmax to generate a stochastic matrix. Notable examples are such methods are

DeepWalk [PARS14] and Node2vec [GL16a]. Formally, consider the normalized softmax matrix

nsm(V ) given by

nsm(V )ij =
exp(~vi · ~vj)∑
k exp(~vi · ~vk)

(6.1)

Note that nsm(V ) is stochastic by construction. The objective of the learning problem is to

minimize KL(nsm(V ),M), which is the sum of row-wise KL-divergence between the rows (this

is equivalent to cross-entropy loss).

The recent NetMF [QDM+18] method interpolates between these categories and shows

that a number of existing methods can be expressed as factorization methods, especially of the

above forms. For this study, we only focus on the above two category of unsupervised embedding

methods. (We discuss this choice and other methods in §6.0.3.)

Figure 6.1: Each point, (x,y), on the curve represents the approximate fraction of vertices, y, for

which the given method produces a precision@10 score of at least x. LR-Structural is plotted

against the two best performing embedding methods. 1000 vertices are sampled and for each

vertex v sampled, the vertices of the graph u1, . . . , un, are ordered by decreasing score assigned

by the given classifier. The precision@10 is the fraction of u1, . . . , u10 which share a community

with v.

Empirical setup: We empirically investigate performance of the above methods on

graphs where the ground truth communities correlate well with graph structure. In the case

of real data, the ground truth is provided by the existing community labels. With synthetic

data, we explicitly construct stochastic block models with well-defined communities. For every

pair of vertices i, j, the prediction problem is to determine whether they belong to the same
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community (note that they may belong together in multiple communities, but we do not require

the community label itself to be determined; just whether they belong in any community

together).

For both real and simulated data, we note that the ground truth is sparse, i.e. the

vast majority of node pairs do not belong to the same community. Hence, it is appropriate

to measure the prediction performance using precision-recall curves for this highly imbalanced

label distribution [DG06]. Consistent with most of the literature on graph embeddings and the

applications that often require nearest neighbor lookups, the main feature we use for prediction

is the value of the dot product [CAS16, CAEHP+20].

Theoretical setup: In order to analyze the performance, we provide an abstraction of

community structure from a matrix standpoint: this can intuitively be thought of as having many

dense blocks in an overall sparse matrix. We then attempt to quantify ”how much” community

structure can be present in a matrix V TV or nsm(V ), for any matrix V ∈Rd×n (for d� n). This

formulation captures the fundamental notion of a low-rank factorization, without referring to any

specific method to compute it. Our results hold for any direct/softmax factorization method,

regardless of how the embedding is computed. Our formulation theoretically investigates

whether it is even possible to recreate community structure using a low rank factorization of the

form V TV or nsm(V ).

6.0.2 Main results

Our main finding is that all of the graph embeddings methods we tested (including

GraRep, DeepWalk, Node2Vec, and NetMF) perform poorly on the community labeling task, and

are handily out-performed by a baseline logistic model LR-Structural built using just four

classic graph structural features2. We observe the same outcome for a series of experiments on

real data and synthetic data. Motivated by this empirical finding, we provide a mathematical

explanation for this result by providing a theorem which shows that the community structure

exhibited by softmax factorizations is unstable under small perturbations of the embedding

vectors.

Evaluations on real data: In our experiments, not only do we see poor absolute

performance on the community labeling task, but a baseline LR-Structural based on “classic”

graph features handily outperforms the embeddings. We see this difference not only in an overall

manner, but across individual nodes in the graph. In particular, Figure 6.1 shows a “reliability

plot” for precision@10 for a set of 1000 nodes sampled randomly from each of the graphs. To

produce this chart, we first randomly sampled 1000 nodes, each of which has at least 10 neighbors

in the same community. Then, each of these vertices selects their top-10 predictions for a same-

2The features for a node pair (u, v) are: 1) Personalized-PageRank (PPR) score from u to v, 2) PPR from v
to u, 3) cosine similarity among N(u) and N(v) (where N(·) denotes a node’s neighborhood), and 4) the size of
the cut separating N(u) and N(v)
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community neighbor using a model, producing a distribution over precision@10. Then for each

model, one can produce a reliability plot (see Figure 6.1) that produces points (x, y): for any

given value x for precision@10, define y as the fraction of nodes that have precision@10 of at least

x. Thus, we’d expect that a highly accurate model would have an almost flat curve. The results

in Figure 6.1 show that generally LR-Structural can produce high accurate (precision@k≥ 0.7)

community labels for 20–40% more nodes than the embedding-based models. This suggests that

the embeddings can retrieve very few of the community neighbors, while classic graph features

used in LR-Structural (PPR scores, neighborhood similarity) recover much of the community

structure.

We emphasize that our empirical analysis is more nuanced than the more common

aggregated measurement (such as via the AUC-ROC [CAEHP+20]) as it measures the perfor-

mance across individual nodes in the graph. We believe this individual measurement is more

reflective of our goal, and also, as the label distribution (which pairs co-occur in communities) is

highly imbalanced, a P/R-like curve provides a more useful measure than the ROC curves. The

latter can be misleading as an ROC curve can still look quite good while misclassifying much of

the minority class. [DG06].

For completeness, we also perform experiments with regression models using the

Hadamard product of the two vectors. Again, the embeddings gives results of similar quality,

showing that linear functions (of the embedding vectors) fail to predict community structure.

Refer to Section 6.2 for more details.

Evaluations on SBMs: To further investigate this phenomenon, we also generated

synthetic graph instances using Stochastic Block Models (SBMs) that have a very simple planted

community structure. For example, we create a graph with n= 105 vertices and blocks of size 20.

The edge density inside a block is 0.3 and we connect the blocks by a sparse Erdős-Rényi graph

such that the average number of links within a block is equal to those that go between blocks.

We vary the overall edge density (while keeping the ratio between inter-block and intra-block

edges constant) and study the precision@10 scores. We observe that while the performance

across methods tends to increase with density, LR-Structural still outperforms them.

Theoretical explanation: We provide a formulation for what it means for a matrix

to exhibit community structure. We emphasize that this is not meant to completely capture the

challenging notion of communities (which has a deep and rich history), but rather to give us some

formal framework to state our impossibility results. Intuitively, an overall sparse matrix/graph

has community structure if a non-trivial fraction of the rows/vertices participate in small dense

blocks of entries. We then investigate when V TV and nsm(V ) exhibit community structure.

First, we prove that for d � n, V TV cannot exhibit community structure, which provides a

principled justification for the empirical observation that direct factorization methods perform

poorly across all real and synthetic instances.
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Interestingly, we also show that despite the negative result for truncated-SVD in [SSSG20b],

softmax factorizations can exhibit community structure similar to those given by the SBMs dis-

cussed earlier. A related observation has been made by [CMST20]. This result suggests that

they provide a superior alternative to direct factorizations. On the other hand, we also prove

that this community structure is fundamentally unstable under small perturbations of the vec-

tors obtained from softmax factorizations. Meaning, if we take any matrix V such that nsm(V )

has community structure, then with high probability, nsm(Ṽ ) does not have such a structure

(where Ṽ is a slight random perturbation of nsm(V )).

This strongly suggests that optimization methods cannot produce low dimensional

matrices V where nsm(V ) has community structure. This theorem provides a mathematical

understanding of the limitations of softmax factorizations.

6.0.3 Justification of Setting & Related Work

The area of graph embeddings has seen a lot of exciting recent progress since a series of

papers, DeepWalk [PARS14], LINE [TQW+15b], and Node2Vec [GL16a], showed how to apply

deep learning methods developed for NLP (such as Word2Vec [LM14]) for graph embeddings.

Given the amount of attention this area has received, we do not cover the entire field, and

instead refer the reader to excellent recent surveys for an overview [HYL18, CAEHP+20]. In

this section, we discuss justifications for our theoretical and empirical setting, and discuss related

work.

Why factorization methods: We note that there are graph embedding methods

that are not factorization based (e.g. GraphSage [HYL17a]) as well as factorization methods

that do not use direct or softmax factorizations [CMST20], as well as GCNs and GNNs [TW17,

CAEHP+20]. For the sake of a principled study, we chose a well-defined subclass of meth-

ods that covered many important methods such as GraRep [CLX15], DeepWalk [PARS14],

Node2Vec [GL16a], and NetMF [QDM+18]. Moreover, the recent NetMF algorithm shows how

many past methods can be recast as factorization methods.

We do note that these techniques are foundational in that they are widely used, have

been influential in motivating new lines of work, and capture the basic premise of mapping a

network-based notion of closeness among vertices to geometric closeness.

In particular, DeepWalk [PARS14] is the canonical and arguably the most important

softmax factorization. It is a seminal result in this area that established a mapping between

graph structure and deep learning (specifically, Word2Vec), and has motivated substantial fol-

lowup work among that line. Among these is Node2Vec [GL16a], which is also a widely used

method, and forms the core idea for several other embeddings methods. NetMF [QDM+18] com-

bines many different algorithms and frames them directly through low-rank matrix factoriza-

tions, providing a unifying interpretation for several techniques. These representation learning
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methods are all unsupervised (or sometimes called self-supervised), and can be thought of as

pre-training methods.

Why community labeling: One central promise of unsupervised graph embedding

methods is to preserve network structure in the geometry that can then be useful for downstream

tasks. Indeed, there is a rich history of spectral methods dating back several decades that are

based on a similar premise [LV99, NJW02, McS01]. In our work, we focus on the task of

community labeling both because it is one of the most popular graph mining tasks, and is

also directly connected to the core of the question we study here: how well do embeddings

preserve the graph structure? This community labeling task also has a rich history of work in

the graph mining literature, and we mention only a few salient works here, referring the reader

to this survey [FH16]. One of the main findings here has been the usefulness of higher-order

graph structure in community detection, as showcased by both theoretical work on Stochastic

Block Models [CRV15], and experimental investigations [AL06, LHBH15]. This observation

makes the community labeling task an excellent fit for studying the question of how well do

graph embeddings capture the graph structure for a downstream task that they are not directly

trained for. Moreover, the optimization used to generate embeddings often tries to place similar

vertices geometrically closer. Hence, a natural measure of success in preserving structure is to

check whether communities are captured by sets of geometrically close vertices. Community

labeling is easy to empirically validate with ground truth, so we can do precise studies of the

quality of a candidate embedding method.

How we chose our input graphs: Our main question is to what extent embedding

methods capture relevant graph structure. Hence, we focus on real and synthetic datasets

where the graph structure correlates with community structure. This is measured by the

good performance of LR-Structural on the community labeling task, since LR-Structural

uses classic features such as Personalized-PageRank (PPR) scores and cosine similarities of

neighborhoods. Our thesis is that if embedding methods cannot perform well on such graphs,

then the embedding fails to capture the structure of the graph. We feel that the SBM

experiments are quite enlightening, since the underlying community structure is quite simple

(and easy to learn through simple structural features).

Other related work: We briefly note a few important representation learning

techniques that are beyond the scope of our work. The most prominent among these is

the Graph Neural Networks such as [HYL17a, TW17, VCC+18, HLG+20], which can be

thought of as a class of learned message passing methods. We refer the reader to a nicely

interpretable classification of these methods in a recent survey [CAEHP+20]. The factorization

methods we study fall under the ”Shallow embeddings” classification there. There are several

recent works [GJJ20, Lou20, XHLJ19] that theoretically study the power of GNNs, but this is

complementary to our work since we study a different class of methods.

115



A recent result shows the inability of low-dimensional SVD based embeddings of

preserving the triangle structure of real-world networks [SSSG20b]. A followup showed that

these impossibility results can be circumvented by alternate embedding methods [CMST20].

Our result can be thought of as a deeper investigation into this issue. First, we look at a class

of factorization methods subsuming those used in practice. Secondly, we also focus on a specific

downstream ML task, unless previous results that focus solely on the graph structure.

6.1 Mathematical results and interpretation

We define a simple abstraction of community structure in a matrix M . Then, we try to

quantify how much community structure Gram matrices and softmax factorizations can possess.

We will state these as formal theorems, which are our main mathematical result. The proofs

will be given in §5.2.2.

Let us start with an n × n matrix M that represents the “similarity” or likelihood

of connection between vertices. For convenience, let us normalize so that the row sums have

absolute value at most one. (So the sum of similarities of a vertex is at most 1.) A communities

is essentially a dense block of entries, which motivates the following definition. We use ε to

denote a parameter for the threshold of community strength. One should think of ε as a small

constant, or something slowly decreasing in n (like 1/poly(log n)).

Definition 6.1.1. A pair of vertices (i, j) is a potential community pair if both Mij and Mji

are at least ε.

Note that we do not expect all such pairs (i, j) to truly be together in a community.

Hence, we only consider such a pair a potential candidate. We expect community relationships

to be mutual, even if the matrix M is not. A community can be thought of as a submatrix where

at least a constant fraction of pairs are potential community pairs. For our purposes, we do not

need to further formalize. It is natural to expect that Θ(n) pairs are community pairs; indeed,

most vertices should participate in communities, and will have at least a constant number of

community neighbors. Our mathematical analyses shows that direct and softmax factorizations

cannot produce these many potential community pairs.

Lower bound for direct factorizations: We first show a strong lower bound for

direct factorizations. We prove that the number of potential community pairs in V TV is linear

in the rank, and thus, a low-dimensional factorization cannot capture community structure. The

key insight is to use the rotational invariance of Frobenius norms.

Theorem 6.1.2. Consider any matrix V ∈ Rd×n such that row sums in V TV have absolute

value at most 1. Then V has at most d/2ε2 potential community pairs.
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Proof. Since V TV has row sums of absolute value at most 1, the spectral radius (largest absolute

value of eigenvalue) is also at most 1. (This can be proven directly, but it also a consequence of

the Gershgorin circle theorem [Ger20].) Since the rank of V TV is at most d, V TV has at most

d non-zero eigenvalues. We can express the Frobenius norm squared, ‖V TV ‖22, by the sums of

squares of eigenvalues. By the arguments above, ‖V TV ‖22 ≤ d.

Note that ‖V TV ‖22 is also the sums of squares of entries. Each potential community

pair contributes at least 2ε2 to this sum. Hence, there can be at most d/2ε2 potential community

pairs.

The instability of softmax factorizations: The properties of softmax factorizations

are more nuanced. Firstly, we can prove that softmax factorizations can represent community

structure quite effectively.

Theorem 6.1.3. For d=O(logn), there exists V ∈Rd×n such that nsm(V )ij exhibits community

structure. Specifically, for any natural number b ≤ n, there exists V ∈ Rd×n such that nsm(V )

has n/b blocks of size b, such that all entries within blocks are at least 1/2b.

Indeed, this covers the various SBM settings we study, and demonstrates the superiority

of softmax factorizations for modeling community structure. We note that a similar theorem

(for a different type of factorization) was proved in [CMST20].

On the other hand, we prove that these factorizations are highly unstable to small

perturbations. Indeed, with a tiny amount of noise, any community pair can be destroyed with

high probability.

Formally, our noise model is as follows. Let δ > 0 be a noise parameter. Think of

the ith column of V as the d-dimensional vector ~vi, which is the embedding of vertex i. For

every vector ~vi, we generate an independent random Gaussian Xi ∼ N (0, δ2) and rescale ~vi as

(1 +Xi)~vi (formally, we rescale to eXi~vi, to ensure that the scaling is positive). We denote this

perturbed matrix as Ṽ (δ). We think of δ as a quantity going to zero, as n becomes large. (Or,

one can consider δ as a tiny constant.)

Theorem 6.1.4. Let c denote some absolute positive constant. Consider any V ∈ Rd×n. For

any δ > c ln(1/ε)/ lnn, the following holds in nsm(Ṽ (δ)). For at least 0.99n vertices i, for any

pair (i, j), the pair is not a potential community pair with probability at least 0.99.

Thus, with overwhelming probability, any community structure in nsm(V ) is destroyed

by adding o(1) (asymptotic) noise. This is strong evidence that either noise in the input or

numerical precision in the final optimization could lead to destruction of community structure.

These theorems give an explanation of the poor performance of the embeddings methods studied.
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6.1.1 Proof ideas

We give the full proof details in §6.4. In this section, we lay out the main ideas in

proving Theorem 6.1.4. It helps to begin with the upper bound construction of Theorem 6.1.3.

Quite simply, we take n/b random Gaussian vectors, and map vertices in a community/block to

the same vector. After doing some calculations of random dot products, one can deduce that

the vectors need to have length Ω(
√

lnn) for the construction to go through. By carefully look

at the math, one also finds that the construction is “unstable”. Even perturbing the vectors

within a block slightly (so that they are no longer the same vector) affects the block structure.

We essentially prove that these properties hold for any set of vectors.

We outline the proof of Theorem 6.1.4. Suppose nsm(V )ij >ε. Note that
∑
k∈[n] nsm(V )ik =

1, since nsm(V ) is normalized by construction. Thus, there exists some k such that nsm(V )ik ≤
1/n. We deduce that nsm(V )ij/nsm(V )ik > εn. Writing out the entries and taking logs, this

implies ~vi · ~vj − ~vi · ~vk > ln(εn). Therein lies the power (and eventual instability) of softmax

factorizations: ratios of entries are transformed into differences of dot products. By Cauchy-

Schwartz, one of ~vi,~vj ,~vk must have length Ω(
√

lnn) (ignoring ε dependencies). By an averaging

argument, we can conclude that for a vast majority of community pairs (i, j), ‖~vi‖2 = Ω(
√

lnn).

Note that both nsm(V )ij and nsm(V )ji must be at least ε; these quantities have the same nu-

merator, but different denominators. By analyzing these expressions and some algebra, we can

prove that
∣∣∣‖~vi‖2 − ‖~vj‖2∣∣∣ = o(1/

√
lnn).

Thus, we discover the key property of communities expressed by softmax factorizations.

Vectors with a community have length Ω(
√

lnn), but the differences in lengths must be

O(1/
√

lnn). Asymptotically, this is unstable to perturbations in the length. A vanishingly

small change in the vector lengths can destroy the community.

6.2 Empirical verification

6.2.1 Community pair prediction

We study the performance of matrix factorization embeddings at identifying community

structure in a graph with many possibly overlapping communities. Formally, we state this as

a binary classification task over pairs of vertices. Every dataset consists of a graph, G, and

a set of (possibly overlapping) communities, C1, C2, . . .. This gives us a ground truth labeling

over the pairs from V × V where positive instances are those (u, v) such that u, v ∈ Ck, for

some community Ck. We evaluate the performance of embedding techniques on this binary

classification task over V × V as follows:

1. An embedding method is applied to G to obtain an embedding v1, . . . ,vn of the

nodes in V .
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2. A pair scoring function, f : V × V → R, is constructed from the embedding of node

pairs.

All of the evaluation is done with respect to this pair scoring function. We use this abstraction

to encapsulate all of the tasks downstream of the embedding generation itself. It consists of

mapping the embedding vectors to predictions in R. Ideally, f(u, v) > f(x, y) whenever u and

v share a community and x and y do not. Every violation of this represents some loss in the

ability to reconstruct community structure. The construction of f is based on the dot product

of the embedding vectors of u and v. The full construction is given in §6.2.3.

6.2.2 Experimental results

We observe that no choice of embedding method were competitive with the baseline

LR-Structural method on the task of community pair prediction. Across three datasets,

LR-Structural was consistently able to identify community pairs while the embedding-based

methods were not. For each method being compared, one thousand vertices were selected at

random from the graph, and we examine the precision of the classifier on the neighborhoods

of each selected vertex. Fig. 6.1 shows that LR-Structural makes more precise predictions on

average than the best performing datasets, while Fig. 6.2 contains the mean precision for each

classifier on each dataset.

The methods are evaluated by comparing the distribution of a precision@10 for each

method on each dataset. For each of 1000 vertices sampled, v, we order the other vertices of

the graph, u1, . . . , un such that f(v,ui) ≥ f(v,ui+1) for all i. We compute the precision of the

classifier on (v, u1), . . . , (v, un) when it predicts positive labels only for those (v, ui) such that

i ≤ 10. In other words, we sample a vertex at random and report the fraction of its ten nearest

neighbors in the embedding space with which it shares a community.

We represent the distribution of values of precision@10 scores as a reliability curve.

This is the curve (x, y) such that at least a y fraction of vertices sampled had a precision@10

score score of at least x. Higher y values for a given x indicate better performance. Fig. 6.1

contains the curves for the best performing dot product methods against the baseline, while

Fig. 6.2 contains the mean across samples.

Given Theorem 6.1.4, and that each of the embedding methods contains some amount

of noise, be it approximation error or the result of randomness over internal sampling procedures,

we expect that if (u, v) is a community pair in some ground truth matrix, M , then it is very

unlikely that (u, v) is a community pair in any noisy approximation of M . The results in

this section bear out this conclusion, as we show that whatever community structure exists in

the approximations produced by the embedding methods do not correlate well with the actual

community structure in the graphs examined when compared to the performance of more naive

methods.
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method/dataset amazon dblp sbm

LR-Structural .92 .80 .88

DeepWalk .44 .49 .35

NetMF .49 .28 .66

Node2Vec .49 .61 .55

DeepWalk-hp .43 .44 .33

NetMF-hp .41 .37 .76

Node2Vec-hp .37 .55 .50

Figure 6.2: Average precision@10 across 100 samples for all methods across the three datasets.

In all cases, LR-Structural is the best performing.

6.2.3 Experimental setup

Community pair prediction methods

We compare the performance of three different embedding methods to a baseline to

a simple supervised logistic regression model using common structural graph features. The

implementation of the embedding methods is based on [RKS20] and will be made available by

the time of publication. Except for setting the dimension to 128 for all embedding methods, the

hyperparameters are taken from [RKS20].

LR-Structural For the baseline method, we use a logistic regression model trained to predict

community pairs based on four tractable graph features found to be useful in the literature:

• Cosine similarity between u’s and v’s adjacency vectors [SSG17],

• Size of the cut between u’s neighborhood and v’s neighborhood, and

• Personalized PageRank (PPR) score from u to v, as well as that from v to u [RAL07].

We use the approximation algorithm from [RAL07] to compute sparse approximate PPR vectors.

Note that this allows for all features to be computed locally, i.e. the space/time complexity for

computing the features for one vertex pair are independent of graph size. The overall space/time

costs in practice are on par with the embedding methods.

GraRep This is a direct factorization method (see definition in §6.0.1). The embedding it

returns is the concatenation of an embedding fit to a modified version of the k-step random

walk matrix for each k up to a hyperparameter K. Consistent with [RKS20], we set K = 5.

With this parameter setting, GraRep was not able to complete on the test machine since it

requires explicitly computing powers of the adjacency matrix which is not feasible with any

memory restraints.
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DeepWalk This is a softmax factorization technique. It performs random walks to approxi-

mate the mean of the first K step random walk matrices (this is the window size parameter).

In our experiments we use K = 5.

Node2Vec Like DeepWalk, this is a softmax factorization technique which generates an

approximation to an average over the first K random walk matrices by performing random walks.

However, the random walks performed are a special kind which are controlled by parameters p

and q. When p = q = 1, the walks are identical to ordinary random walks. In our experiments,

we use p = q = 0.5 and K = 5.

NetMF This is a direct factorization technique which performs SVD on a modified version of

the sum of the first K random walk matrices. For our experiments, and consistent with [RKS20],

we use K = 2.

Pair features

The embedding methods produce a feature vector for each vertex. Since the community

pair prediction task requires a set of feature vectors over V × V and a method to produce

scores, we need to turn node features into pair features. Building on strategies proposed in

prior work [GL16a], for the embeddings we choose two methods from the literature which are

computationally efficient, and relatively accurate. Given a d-dimensional embedding, v1, . . . ,vn

we compute the feature vector for (u, v) ∈ V × V with the dot product and Hadamard product

denoted u · v and u ◦ v respectively.

The dot product is the usual inner product over Rd, i.e. u ·v =
∑
i∈[d]u(i)v(i). It takes

the two d-dimensional vector embeddings and maps them to a 1-dimensional feature vector. On,

the other hand, the Hadamard product of u and v, u ◦ v, is a d-dimensional vector whose ith

coordinate is the product of the ith coordinates of u and v.

We will indicate when the pair features used are the dot product or Hadamard product

of the endpoints. The actual scoring function, f : V × V → R, we use is implicit from the

pair features. Whenever the pair features are dot products, f(u, v) = u · v. Whenever the pair

features are the Hadamard product of u and v, we fit a logistic regression model to the features

u◦v to produce a weight vector β, and so the pair scoring function becomes f(u,v) = σ(β ·(u◦v))

where σ = exp(x)/(1 + exp(x)) is the sigmoid function.

In order to compute the weight vector, β, in the Hadamard product case, we select

a training set of size 50n by choosing 50 vertices which participate in a community with at

least twenty members, v1, . . . , v50, and compute u ◦ vi for each u ∈ V . This collection of 50n

feature vectors, along with ground truth labeling of community pairs, are given to an sklearn

LogisticRegression object which produces β.
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Implementation

All our experiments were run on AWS using machines with up to 96 cores and 1 TB

memory. The methods were implemented in python based on the karateclub package (cite)

(the code used to generate results is available anonymously before publication at https://

anonymous.4open.science/r/0bee6b7b-870f-4b7e-ac8f-ee3f336295e2/). Except for set-

ting the dimension to 128 for all methods, the default hyperparameters were used. Any method

which did not complete in 24 hours or which required more memory was considered not complete.

Datasets

We show the performance of the various embedding methods contrasted with LR-

Structural on three datasets: two publicly available real world datasets with ground truth

community labels, and one synthetic stochastic block model (SBM).

• dblp: a co-authorship network of 317K computer science authors with communities

defined as venues

• amazon: a network of 335K products on amazon with a link representing frequent

co-purchasing. Communities are product categories.

• sbm: synthetic dataset with 100K vertices and communities of size 20. Edges are

randomly generated with an inter-community edge probability of 0.3 and intra-community edge

probability of 0.3/n.

Statistic dblp amazon sbm

number

of nodes
317K 334K 100K

number

of edges
1M 1M 585K

num

communites
13K 75K 5K

max size 75K 53K 20

median size 8 5 20

mean comm

density
0.09 0.10 0.30

Table 6.1: Dataset summary

“Mean comm density” is an average weighted by community size of the edge density of each

community.
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6.3 Stochastic block models

6.3.1 Setup

We complement our experimental results on real datasets with measuring performance

of graph embedding methods on synthetic datasets generated according to the popular Stochastic

Block Model (SBM). An n-vertex graph, G, is generated according to an SBM by partitioning

the vertex set, [n] into k equal sized communities, C1, C2, . . . , Ck. The distribution of edges is

controlled by two parameters: p and q. For two vertices in the same community, u, v, p controls

the probability of edge (u, v) being added to the graph. For u, v not in the same community, the

edge (u, v) is added with probability q. We chose the SBM parameters in order to approximate

some of the features we observed in the empirical datasets.

All SBMs have one hundred thousand vertices and communities (or “blocks”) of size

20. In Tab. 6.1, the average community size for all datasets is much smaller. The parameter q is

set so that the average number of neighbors a vertex has inside its community is equal to that

outside of its community. In real data, there are often 3 or 4 times as many inter-community

neighbors as intra-community neighbors. The three SBM graphs generated, sbm sparse, sbm,

sbm dense, have average degrees 4, 12 and 20 respectively.

6.3.2 Results

Motivated by Theorem 6.1.3, we can study the embeddings’ resilience to noise in the

simulated setting. Specifically, we simulate noise in the community structure of the original

graph. We generate three SBMs to mimic real datasets and perform community pair prediction

on them. Fig. 6.3 shows the results from this experiment. Note that the accuracy of the

embeddings at pairwise community labeling decreases as the internal density of the communities

decreases.

Here we demonstrate the robustness of our results. LR-Structural is able to

outperform the factorization- based embedding methods across a regime of parameters commonly

encountered in sparse datasets. There is a wide body of work on the relationship between

triangles in the graph and community structure ([SSSG20b] recently explored this in the context

of graph embeddings). As the density increases, the probability that a vertex participates in an

intra-block triangle increases. In sbm sparse, very few vertices participate in triangles, while in

sbm dense, many more do. In all cases, LR-Structural is the best performing.

6.4 Proof of instability in softmax factorizations

We restate and prove the upper bound theorem, showing that softmax factorizations

can recreate community structure.
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Figure 6.3: Precision@10 reliability curves for sbm datasets. All datasets are stochastically

generated datasets with size 10,000 and disjoint communities of size 20. The average degrees

are 4, 12 and 20 from left to right. Curves are generated from 100 samples.

Theorem 6.1.3. For d=O(logn), there exists V ∈Rd×n such that nsm(V )ij exhibits community

structure. Specifically, for any natural number b ≤ n, there exists V ∈ Rd×n such that nsm(V )

has n/b blocks of size b, such that all entries within blocks are at least 1/2b.

Proof. We apply the probabilistic method. We select V from a random distribution, and prove

that the desired community structure is exhibited with high probability.

Let d = c lnn, for some sufficiently large constant c. We will construct n/b blocks

of vertices, each with b vertices. All the vertices in the bth block will be represented by the

same vector ~vb. We will set each ~vb to be a uniform random Gaussian vector of length 2
√

lnn.

Thus, for any two vertices i, j within a block, ~vi · ~vj = 4 lnn. For two vertices i, j that occur

in different blocks, the dot product ~vi · ~vj is normally distributed with mean zero and variance

(4 lnn)/d = 4/c. By tail bounds for the Gaussian, Pr[~vi · ~vj ≥ (16 lnn)/c] ≤ 1/n4, where the

probability is over the choice of the vectors. By a union bound over all (at most) n2 pairs, with

probability at least 1− 1/n2, for every pair i, j in distinct blocks, ~vi · ~vj < (16 lnn)/c, which is

at most lnn (for sufficiently large c).

Note that, for all vertices i, we can split the sum
∑
k exp(~vi · ~vk) into vertices within

i’s block and outside i’s block. The total sum outside the block is at most n× exp(lnn) = n2.

The sum within the block is b exp(4 lnn) = bn4. For i, j within a block, nsm(V )ij ≥
exp(4 lnn)/(bn4 + n2) ≥ 1/2b. Thus, nsm(V ) exhibits the desired community structure.

We note some features of this construction. Firstly, the vectors are of non-constant

length. Moreover, the vectors within a community are extremely close to each other compared

to their length; in the construction, they are actually identical.

We essentially prove that both these properties are necessary for any V where nsm(V )

exhibits community structure. The second property of closeness is extremely sensitive to noise,

and we prove that even small amounts of noise can destroy the community structure. In practice,

we believe that such unstable solutions are hard to find, and the ambient noise in data forces
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solutions that are stable to perturbations. This point is validated in our experiments, where the

solutions do not exhibit community structure.

Lemma 6.4.1. For at least 0.99n vertices i, the following property holds. If (i, j) is a potential

community pair, then ‖~vi‖22 ≥
√

ln(εn/100) and
∣∣∣‖~vi‖2 − ‖~vj‖2∣∣∣ ≤ 2 ln(1/ε)/

√
ln(εn/100).

Proof. Recall that nsm(V )i,j = exp(~vi · ~vj)/
∑
k exp(~vi · ~vk). There are n vertices, so by

Markov’s inequality, for at least 0.99n vertices k, nsm(V )i,k ≤ 100/n. Pick any such k, and

note that nsm(V )i,j/nsm(V )i,k = exp(~vi · ~vj − ~vi · ~vk) ≥ εn/100. Taking logs, ~vi · (~vj − ~vk) ≥
ln(εn/100). By Cauchy-Schwartz, ‖~vi‖2‖~vj − ~vk‖2 ≥ ln(εn/100). By the triangle inequality,

‖~vi‖2(‖~vj‖2 + ‖~vk‖2) ≥ ln(εn/100).

For convenience, let N := εn/100. Suppose that ‖~vi‖2 <
√

lnN/2 and ‖~vj‖2 <
√

lnN/2.

This implies that ‖~vj‖2 + ‖~vk‖2 ≥
√

lnN , and thus, ‖~vk‖2 ≥
√

lnN/2.

Thus, one of the following holds. Either for every potential community pair (i, j),

max(|~vi‖2, ‖~vj‖2) ≥
√

lnN/2,

or for at least 0.99n vertices k, ‖~vk‖2 ≥
√

lnN/2. Regardless, for at least 0.99n vertices i, for

every potential community pair (i, j), max(|~vi‖2, ‖~vj‖2) ≥
√

lnN/2.

Consider a potential community pair (i, j) where max(|~vi‖2, ‖~vj‖2) ≥
√

lnN/2. Wlog,

let ‖~vi‖2 be larger. Recall that nsm(V )ij = exp(~vi · ~vj)/
∑
k exp(~vi · ~vk) ≥ ε.

exp(~vi · ~vj) ≥ ε
∑
k

exp(~vi · ~vk)

=⇒ exp(~vi · ~vj) ≥ ε exp(~vi · ~vi)

=⇒ ~vi · ~vj ≥ ln ε+ ‖~vi‖22
=⇒ ‖~vi‖2‖~vj‖2 ≥ ln ε+ ‖~vi‖22 (Cauchy-Schwartz)

=⇒ ‖~vj‖2 ≥ ‖~vi‖2 − (ln 1/ε)/‖~vi‖2 (6.2)

Since ‖~vi‖2 ≥
√

lnN/2 (and ‖~vi‖2 ≥ ‖~vj‖2), |‖~vi‖2 − ‖~vj‖2| ≤ 2 ln(1/ε)/
√

lnN

We now state the perturbation instability theorem (we skip the proof), which should

be intuitively clear by Lemma 6.4.1. For (almost all) community pairs (i, j), both ‖~vi‖2 and

‖~vj‖2 are at least Ω(
√

lnn), but the difference between the lengths is O(1/
√

lnn). Infinitesimal

perturbations will destroy such a property, and thus the community pair will be lost.

Theorem 6.1.4. Let c denote some absolute positive constant. Consider any V ∈ Rd×n. For

any δ > c ln(1/ε)/ lnn, the following holds in nsm(Ṽ (δ)). For at least 0.99n vertices i, for any

pair (i, j), the pair is not a potential community pair with probability at least 0.99.
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Chapter 7

Evaluating embeddings for link

prediction

Link prediction is perhaps the most important prediction problem for modern network

data. If our data is somehow incomplete, e.g. edges are missing, then link prediction is the

problem of predicting whether the edge (u, v) is in the graph for some pair of vertices u and

v. Many pracitcal problems reduce to link prediction: product recommendation, identifying

network intrusion, studying protein function, etc.

There are many approaches to link prediction - we could consider many features which

do not have network structure - but we shall focus here on structural link prediction approaches.

In other words, we are interested in how we can predict future links in the graph only from the

observable graph structure. One of the first works to address this problem in the modern machine

learning context is [LNK07]. They showed that simple structural pairwise-features, such as the

Jacard similarity between two sets of neighbors, can be very successful unsupervised predictors

in a wide variety of real world networks. Observe that there need not be any correlation between

past links and future links in the graph, but the work of Liben-Nowell helped establish that real

networks have common, specific structural characteristics which we have observed previously in

this part.

Since 2007, there have been various link prediction methods. Some touting the

superiority of supervised approaches [AHCSZ06], and a plethora of unsupervised embedding

methods have we discussed throughout this part. While each new algorithm touts some kind of

improvement over the previous ones, a debate over how best to evaluate link prediction methods

is hardly settled.

There are a plethora of different evaluation criteria to consider, see [LLC10, ME11,

YLC15] for some excellent discussions. In this chapter we focus on just one aspect of this
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discussion: the use of ROC AUC as an evaluation metric. This gives a one number summary

of a binary predictor and is one of the most consistently used throughout the literature. We

recommend against its use since it is known to be distorting on sparse data [DG06]. We shall

recap the reasons why in the next section.

The discussion on how to evaluate link prediction methods has evolved alongside the

methods themselves. New work is analyzed using new methods. Little effort has been made to

understand the performance of the older, simpler methods using new perspectives. This problem

is especially apparent in the world of graph embeddings where we see an explosion of complex,

high tech deep learning methods coming from a simple matrix factorization approach which is

decades old.

In this chapter, we shall recap why AUC is not appropriate for sparse networks, and

show how reliability curves can reveal some real deficiencies in the performance of embeddings

for link prediction.

7.1 The problem with AUC

ROC AUC stands for Receiver Operating Characteristic Area Under Curve. It is

defined as the area under a certain curve, but it turns out to have a much simpler equivalent

interpretation. Suppose we have some binary classification task on some set of objects, x1, . . . ,xn.

The objects have hidden ground truth labels in {0, 1}. Let yi be the ground truth label of xi.

Our classifier produces scores in R, ŷi for each xi. We hope that the scores are such that if

ŷi > ŷj then yi ≥ yj . The ROC AUC can be used to evaluate the extent to which this is true.

ROC AUC is equivalent to the expectation of the following experiment: select a random

xi such that yi = 1 and a random xj such that yj = 0, and output the indicator random variable

for the event that ŷi ≥ ŷj . Note that the value of AUC then does not depend at all on the

proportion of positive instances (i.e. those xi such that yi = 1) and negative instances (yi = 0).

It only depends on the distribution of scores among positive instances and the distribution

among negative instances. For this reason, AUC is sometimes recommended on sparse datasets.

As our next example will show, this thinking is dangerous.

Networks are incredibly sparse, even compared to sparse datasets found in other

domains. To see the potential distorting effects of AUC, consider the following example. Suppose

we are given a sparse graph with dn edges, and two different link prediction models. Each model

assigns a score to each pair of vertices in the graph, and the more accurate model should rank

pairs corresponding to edges above those which do not. In the ranking induced by Model A, the

top 10dn pairs are non-edges, followed by the dn edges and then the remaining Θ(n2) non-edge

pairs. Model A has a ROC AUC of 1−O(d/n) since there is only a d/n probability of picking

one of the non-edges ranked above the edges from among all non-edge pairs. In Model B, the
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first dn/2 pairs are edges, followed by half of the non-edge pairs, then the remaining edges and

last the remaining non-edge pairs. Here the probability that a random edge is ranked higher

than a random non-edge is only ∼ .75. Model A has near perfect ROC AUC, but does it really

offer better performance than Model B?

The problem with AUC is that it is not sensitive to the unique problems posed by sparse

data. Identifying the few true instances from among the vast quantity of negative instances

should be the focus of any classifier. Having a high AUC does not guarantee this. We can have

an AUC of 0.999999, but still, when we examine the ranking of scores output by our classifier,

it may requires sifting through hundreds of negatives at the top before we find a single true

positive prediction.

7.2 Reliability curves

Reliability curves come out of our experience with item recommendation in sparse

networks. In this context, we are interested in providing good recommendations to each user of

our service. This boils down to predicting good links for every vertex in the graph. Reliability

curves show how reliably a classifier is able to do this across the whole dataset.

Given a classifier, we compute reliability curves as follows: for every vertex we calculate

a precision@d score. We assume the degree of v, dv is given and calculate a precision@dv for each

v. The precision@k is the fraction of these pairs which are edges in the graph. The reliability

curve provides a visualization of the distribution we observe over the precision@d scores. Each

point (x, y) on the reliability curve indicates that y% of the vertices had a precision@d of at

least x. The reliability curves are monotone decreasing from the point (0, 1) to (1, 0), and for

each x-value along the way, a higher y-value indicates better performance.

The reliability curves thus measure precisely what AUC does not - the quality of the

top few predictions as ranked by the classifier. Moreover, reliability curves provide a view

normalized over vertices so that we can see if the performance varies for different vertices in the

graph.

7.3 Experimental results

We evaluate the performance of each of the embeddings as features in a logistic

regression model in two different ways: the ROC AUC scores of Fig. 7.1 and the reliability

curves of Fig. 7.2. We present these two as a contrast. We show that despite the apparently

impressive ROC AUC scores for the embedding methods, the reliability curves show that the

nearest neighbors in the embeddings do not often contain very many vertices which are actually

neighbors in the graph.
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dataset deepwalk netmf node2vec structural

amazon .91 .86 .87 1.00

dblp .97 .95 .99 1.00

blogcatalog .78 .87 .83 .96

ppi .66 .93 .87 .97

Figure 7.1: ROC-AUC scores of hadamard product embedding models. The scores are calculated

on the test set consisting of half true-labeled pairs and half negatively labeled pairs

Figure 7.2: Reliability curves from 1K vertex samples. For each vertex, v, in the sample, the

top dv neighbors according to the classifier is selected and a precision@d is calculated for each

vertex. Each point, (x, y), on the curve represents the approximate fraction of vertices, y, for

which the given method produces a precision@d score of at least x.

7.3.1 Experimental setup

For each dataset, we generate an embedding for each vertex using the complete dataset

for use in a downstream logistic regression model. In order to construct such a link prediction

model, we need to transform the per-vertex embedding vectors into features across all pairs of

vertices. Past work shows that the hadamard product of the embedding vectors usually offers

the best performance.

The embedding vectors are used as features in training a logistic regression model. The

training data consists of half of all edges in the graph and an equal number of non-edge pairs. All

of the models were trained using the liblinear solver implemented in sklearn’s LogisticRegression

package. We use the remaining half of edges and another set of non-edge pairs as the test set.

The ROC AUC scores of Fig. 7.1 are calculated on the test sets. Across the half of

129



edges not in the training set, and an equal number of non-edge pairs, we see relatively high AUC

scores.

The reliability curves (Fig. 7.2) are calculated from a sample of one thousand vertices.

For each vertex, v, sampled, we calculate the scores output by the classifier for all pairs

(v, u1), . . . , (v, un). We assume the degree of v, dv is given and calculate a precision@dv for

each such v in the sample. The precision@k is the fraction of these pairs which are edges in

the graph. The reliability curve provides a visualization of the distribution we observe over the

precision@d scores in our sample. Each point (x, y) on the reliability curve indicates that y%

of the vertices sampled had a precision@d of at least x. The reliability curves are monotone

decreasing from the point (0, 1) to (1, 0), and for each x-value along the way, a higher y-value

indicates better performance.

7.3.2 Datasets

We test all the methods using publicly available real world datasets. In order to show

that our results are broadly applicable, we choose a variety of massive sparse graph across

different domains. See Tab. 5.2 for a summary of the datasets.

amazon [LK14] This is a product co-purchasing network for the retail website amazon. Nodes

represent product and edges indicate products which are frequently purchased together.

blogcatalog [RA15] This is a social network in which vertices represent users of the bloggling

websit BlogCatalog and consists of links between users.

dblp [LK14] This is a co-authorship network where each vertex represents an author with

a publication in the DBLP computer science bibliography. Edges indicate that two authors

collaborated on at least one publication.

ppi [GL16a] In this protein-protein interaction network, vertices represent proteins in the

human body and edges represent observed interactions between them.

wikipedia [GL16a] This network represents word co-occurrences for a subset of Wikipedia.

Vertices represent words and edges represent their co-occurence in articles.
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Table 7.1: Summary of datasets

Name n m

amazon 335K 926K

blogcatalog 10K 334K

dblp 317K 1M

ppi 4K 38K

wikipedia 5K 92K
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