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Quantum Thermodynamics: A Nonequilibrium Green’s Functions Approach

Massimiliano Esposito
Complex Systems and Statistical Mechanics, University of Luxembourg, L-1511 Luxembourg, Luxembourg

Maicol A. Ochoa and Michael Galperin
Department of Chemistry & Biochemistry, University of California San Diego, La Jolla CA 92093, USA

(Dated: February 15, 2015)

We establish the foundations of a nonequilibrium theory of quantum thermodynamics for nonin-
teracting open quantum systems strongly coupled to their reservoirs within the framework of the
nonequilibrium Green functions (NEGF). The energy of the system and its coupling to the reservoirs
are controlled by a slow external time-dependent force treated to first order beyond the quasistatic
limit. We derive the four basic laws of thermodynamics and characterize reversible transformations.
Stochastic thermodynamics is recovered in the weak coupling limit.

PACS numbers: 05.70.Ln, 05.60.Gg, 05.70.-a

Nonequilibrium thermodynamics of open quantum sys-
tems is a powerful tool for the study of mesoscopic and
nanoscale systems. It allows one to reliably assess the
performance of energy-converting devices such as ther-
moelectrics or photoelectrics, by identifying the system
entropy production. It enables one to meaningfully com-
pare these different devices by discriminating the system-
specific features from the universal ones and to appraise
the role of quantum effects. It can also be used to
verify the thermodynamic consistency of approximation
schemes. Such a theory is nowadays available for systems
weakly interacting with their surrounding [1–6] where it
has proven very useful [7–15]. However, in case of strong
system-reservoir interactions, finding definitions for heat,
work, entropy and entropy production, which satisfy the
basic laws of thermodynamics is an open problem. Each
proposal has its own limitations [16–23], even at equilib-
rium [24–30]. Reversible transformations, for instance,
are never explicitly characterized. Establishing a consis-
tent nonequilibrium thermodynamics for open quantum
systems strongly coupled to their surrounding is there-
fore an important step towards a more realistic thermo-
dynamic description of mesoscopic and nanoscale devices.
It is also essential to improve our understanding of the
microscopic foundations of thermodynamics.

In this Letter, we use the NEGF to establish a fully
consistent nonequilibrium thermodynamic description of
a fermionic single quantum level strongly coupled to mul-
tiple fermionic reservoirs. A slow time-dependent driv-
ing force controls the level energy as well as the system-
reservoir interaction. We propose definitions for the par-
ticle number, the energy, and the entropy of the system,
as well as for entropy production, heat and work, which
give rise to a consistent zeroth, first, second, and third
law. These definitions can be seen as energy resolved
versions of the weak coupling definitions used in stochas-
tic thermodynamics. An interesting outcome of our ap-
proach is that the general form of the energy and particle
currents are different from the standard form used in the
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FIG. 1: (Color online) Sketch of a fermionic single quantum
level junction. The level is broadened by the strong coupling
to the reservoirs and is driven by a time-dependent force.

NEGF and cannot be expressed as an expectation value
of operators. We recover the known expressions when
considering nonequilibrium steady states (i.e. in absence
of driving) or in the weak coupling limit.
The total Hamiltonian that we consider is Ĥ(t) =

ĤS(t) +
∑

ν Ĥν +
∑

ν V̂ν(t), where ν labels the dif-

ferent fermionic reservoirs (see Fig. 1), ĤS(t) =

ε(t)d̂†d̂ is the fermionic single level Hamiltonian, Ĥν =
∑

k∈ν εk ĉ
†
kĉk is the reservoir ν Hamiltonian, and V̂ν(t) =

∑

k∈ν

(

V ν
k (t)d̂†ĉk +H.c.

)

is the level-reservoir coupling.

The time dependence in the system and in the coupling
is due to the external time-dependent driving force.
The central object in the NEGF theory is the single

particle Green function (GF) [31]

G(τ1, τ2) = −i
〈

Tc d̂(τ1) d̂
†(τ2)

〉

, (1)

where Tc denotes the contour ordering operator and
τ1 and τ2 are the contour variables. Here and below,
~ = kB = 1. When the time-dependent driving force is
slow relative to the system relaxation time, the dynam-
ics of the GF (1) can be evaluated using the first order
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gradient expansion [31–33]. Within this limit, this sys-
tem dynamics is fully characterized by two quantities,
the probability to find the level filled at the energy E,
φ(t, E), and the retarded projection of the Green func-
tion Gr(t, E). The energy dependence of these quantities
results from the fact that the energy of the level is not
sharply defined at ε(t) as in the weak coupling limit, but
gets broadened by the strong coupling to the reservoirs.
As shown is [32, 34–37] (see also [38]), the retarded Green
function is given by

Gr(t, E) = [E − ε(t)− Σr(t, E)]−1 , (2)

where the real and imaginary part of the total retarded
self-energy, Σr(t, E) = Λ(t, E)− iΓ(t, E)/2, describe, re-
spectively, the Lamb shift Λ(t, E) and the broadening
Γ(t, E) of the system level caused by the coupling. In
the weak coupling limit, Γ → 0 and Λ → 0. The oc-
cupation probability of the level, φ(t, E), is obtained by
solving the equation of motion

{E − ε(t)− Λ(t, E);A(t, E)φ(t, E)} (3)

+ {ReGr(t, E); Γ(t, E)φ(t, E)} = C(t, E),

where {f1; f2} denotes the Poisson bracket operation
∂Ef1∂tf2 − ∂tf1∂Ef2 and A(t, E) = −2 ImGr(t, E) is
the system spectral function describing the Lorentzian
probability amplitude for finding the system at energy E

A(t, E) =
Γ(t, E)

(E − ε(t)− Λ(t, E))
2
+ (Γ(t, E)/2)

2
. (4)

It become a delta function centered around ε(t) in the
weak coupling limit. Σr as well as Λ and Γ are sums of
reservoirs contributions: respectively Σr

ν(t, E), Λν(t, E)
and Γν(t, E). Finally, the net particle current entering
the level at energy E, C(t, E) in (3), is also the sum of
different reservoirs contributions, each expressed as a dif-
ference between incoming (+) and outgoing (-) electrons

Cν(t, E) = C+
ν (t, E)− C−

ν (t, E) (5)

C+
ν (t, E) = A(t, E)Γν(t, E)fν(E) [1− φ(t, E)]

C−
ν (t, E) = A(t, E)Γν(t, E)φ(t, E) [1− fν(E)] ,

where fν(E) is the Fermi-Dirac distribution of reservoir
ν.
In absence of time-dependent driving, ε, Λ and Γ do

not depend on time. If the level is in contact with a
single reservoir at temperature T and chemical potential
µ, it will relax to an equilibrium state where φ(t, E) will
correspond to the Fermi distribution f(E) at T and µ. If
another reservoir at the same T and µ is put in contact
with the level, the system will remain at equilibrium with
respect to the two reservoirs. In that sense, the NEGF
satisfies the zeroth law of thermodynamics.
We introduce the renormalized spectral function

A(t, E) = A(1 − ∂EΛ) + Γ∂EReG
r ≥ 0, (6)

which as its standard version (4), can be proven non-
negative, normalized to one, and to converge to a delta
in the weak coupling limit A → 2πδ(E−ε)[38]. We define
the particle number, energy and entropy of the system as
energy-resolved versions of the standard weak coupling
definitions where the energy resolution is controlled by
the renormalized spectral function A

N (t) =

∫

dE

2π
A(t, E)φ(t, E) (7)

E(t) =

∫

dE

2π
A(t, E)E φ(t, E) (8)

S(t) =

∫

dE

2π
A(t, E)σ(t, E), (9)

where σ(t, E) is an energy resolved Shannon entropy

σ(t, E) =− φ(t, E) ln φ(t, E)

− [1− φ(t, E)] ln[1− φ(t, E)]. (10)

When attempting to use the standard spectral function
rather then the renormalized one in (7)-(9), one fails to
define a proper entropy production and second law.

The entropy (9) was introduced in Refs. [35, 36] in the
context of the quantum Boltzmann equation. We em-
phasize that this entropy satisfies the third law. Indeed
at equilibrium when φ(E) = f(E), if we take the limit
T → 0, σeq(E) → 0 and therefore Seq → 0.

The evolution of the particle number (7)

dtN (t) =
∑

ν

Iν(t) (11)

is given by the sum of the energy-integrated particle cur-
rent (5) from reservoir ν

Iν(t) =

∫

dE

2π
Cν(t, E). (12)

The evolution of the energy (8) in turn can be ex-
pressed as a first law

dtE(t) =
∑

ν

Q̇ν(t) + Ẇ + Ẇc. (13)

Note that the dots are not partial derivatives, but a sym-
bolic notation for rates. The first contribution is the heat
flux from reservoir ν

Q̇ν = Jν(t)− µν Iν(t), (14)

where the energy current from reservoir ν is the energy
integral of the energy times the particle current (5) at
that energy

Jν(t) =

∫

dE

2π
E Cν(t, E). (15)
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The second is the mechanical work performed by the ex-
ternal time-dependent force

Ẇ(t) =

∫

dE

2π

(

− Aφ∂t(E − ε(t)− Λ)− Γφ∂tReG
r
)

(16)

and the third is the chemical work due to the particle
currents flowing from the reservoirs to the system

Ẇc =
∑

ν

µν Iν(t). (17)

The evolution of the entropy (9) can be expressed as a
second law

dtS(t) = Ṡi(t) +
∑

ν

Q̇ν(t)

Tν

, (18)

where the entropy production becomes an energy-
resolved version of the weak coupling form

Ṡi(t) =
∑

ν

∫

dE

2π

(

C+
ν (t, E)− C−

ν (t, E)
)

ln
C+
ν (t, E)

C−
ν (t, E)

≥ 0

(19)

which measures the deviation from detailed balance at
each energy E, and only vanishes at equilibrium when
∀ν : fν(E) = φ(t, E).
In the presence of a single reservoir, the second law (18)

implies Q̇ ≤ TdtS(t). When integrated along transfor-
mations connecting an initial and final equilibrium point
we recover Clausius inequality Q ≤ T∆Seq. Introducing
the nonequilibrium grand potential

Ω(t) = E(t) − µN (t)− TS(t) (20)

and using the first law (13), the second law (18) can also
be rewritten as

T Ṡi(t) = Ẇ(t)− dtΩ(t) ≥ 0. (21)

For a transformation starting and ending at equilibrium,
we thus recover Kelvin’s statement of the second law
W(t) ≥ ∆Ωeq, where Ωeq = T

∫

dE
2π

A(t, E) ln f(E).
For reversible transformations, the inequalities result-

ing from the positivity of the entropy production become
equalities. Such transformation occurs when the level is
in contact with a single reservoir and subjected to a qua-
sistatic driving (much slower than the level relaxation
time). In this case, the entropy production vanishes to
first order Ṡi(t) = 0, while to the same order heat and
mechanical work become state functions Q̇(t)/T = dtSeq

and Ẇ(t) = dtΩ
eq.

We can also prove that (as for weak coupling [39]) the
nonequilibrium grand potential is always larger then the
equilibrium one, i.e. Ω(t) ≥ Ωeq . Indeed, using (20) and
(7)-(9), we find that

Ω(t)− Ωeq = T

∫

dE

2π
A(t, E)D(t, E) ≥ 0, (22)
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FIG. 2: (Color online) Heat flux (14) and entropy production
(19), for the quantum level in contact with a single reservoir
at T = 300 K. The external force drives the level energy as
ε(t) = ε0 + ∆(1− cosω0t) /2 from ε0 at t = 0 to ε0 + ∆ at
t = π/ω0, where ε0 = −0.02 eV and ∆ = 0.02 eV. Entropy
production (solid line, red) and heat flux (dashed line, blue)
are depicted in (a) as functions of time for Γ = 0.01 eV and
ω0 = 0.01 eV. The ratio of their time-integrated values is
depicted in (b) as a function of the driving rate ω0.

where the energy-resolved relative entropy reads

D(t, E) = φ(t, E) ln
φ(t, E)

f(E)

+ [1− φ(t, E)] ln
1− φ(t, E)

1− f(E)
≥ 0. (23)

The non-negativity of (22) follows from A, D ≥ 0.
We consider in Fig. 2 the quantum level in contact

with a single reservoir. Its energy is driven by the ex-
ternal force according to the protocol described in the
caption. Fig. 2a depicts the heat flux (14) and entropy
production (19) increase with time as the distribution φ
departs from its equilibrium value. The reversible trans-
formation (Ṡi = 0) is reached in the very slow driving
limit when ω0 → 0, as shown on Fig. 2b.
We note that the system energy (8) and particle num-
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ber (7) as well as the energy and particle currents (15)
and (12) that we introduced cannot be expressed in term
of expectation values of operators. One may interpret
this as a manifestation of the fact that defining a bound-
ary between the system and the reservoirs in case of
strong interaction is an ambiguous task. The main ar-
gument in favor of the proposed definitions is that they
lead to a consistent nonequilibrium thermodynamics at
slow driving.
In absence of driving the system eventually reaches a

steady state (equilibrium or nonequilibrium), where the
system properties such as φ(t, E), A(t, E) and (7)-(9) be-
come time independent. In this case we find that Jν(t) =

−Tr
(

Ĥν dtρ̂(t)
)

and Iν(t) = −
∑

k∈ν Tr
(

ĉ†k ĉk dtρ̂(t)
)

[38].
The first and second law at steady state simplify to

Ẇc = −
∑

ν

Q̇ν(t), Ṡi(t) = −
∑

ν

Q̇ν(t)

Tν

≥ 0. (24)

Since in the weak coupling limit A and A become delta
functions, we recover the usual definitions of stochastic
thermodynamics [3, 40, 41] for a master equation with
Fermi’s golden rule rates describing the evolution of the
occupation probability of the level [8, 42].
Figure 3a depicts the entropy production of the quan-

tum level at steady state between two reservoirs with
different temperatures and chemical potentials. The en-
tropy production is plotted as a function of the coupling
strength with the reservoirs, when this device operates
as a thermoelectric. As the coupling strength increases,
the discrepancy between the entropy production (19) and
its weak coupling counterpart (dotted vs. dash-dotted
and solid vs. dashed lines) becomes more pronounced.
We note that the weak coupling prediction can overesti-
mate (dash-dotted line) or underestimate (dashed line)
the entropy production (19). Fig. 3b depicts the same
two entropy productions for Γ = 0.1 eV as functions of
the position of the level. In the weak coupling regime,
this system satisfies the condition of tight coupling (en-
ergy and particle current are proportional) [43–46] which
enables it to operate reversibly at finite bias, as seen at
ε = 0.0017 eV. However, the level broadening induced by
the strong coupling to the reservoirs completely breaks
the tight coupling property and reversibility is lost.
The main message of this Letter is that it is possible

to formulate a consistent nonequilibrium thermodynam-
ics for driven open quantum systems strongly coupled to
their reservoirs. No such theory existed before and the
definitions we used seem to be the only ones rendering
such a formulation possible. We considered a fermionic
level coupled to fermionic reservoirs, but our approach
can be straightforwardly extended to any noninteract-
ing fermionic or bosonics systems. It can probably be
extended to describe interacting systems, but consider-
ing fast drivings remains out of its reach since it relies on
treating slow time-dependent driving forces (i.e. gradient
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FIG. 3: (Color online) Entropy production for the quantum
level at steady state between two reservoirs ν = L,R (with
TL = 300 K, TR = 10 K, µL = −0.05 eV, µR = EF = 0) as
a function of: (a) the interaction strength to the reservoirs
Γ = 2ΓL = 2ΓR, (b) the position of the level ε. The strong
coupling entropy production (19) is depicted for ε = −0.05 eV
(dotted line, blue) and ε = 0.05 eV (solid line, blue) and its
weak coupling counterpart for ε = −0.05 eV (dash-dotted
line, red) and ε = 0.05 eV (dashed line, red). The energy grid
used spans from −3 eV to 3 eV with step 10−6 eV.

expansion). We are now in the position to address im-
portant problems such as characterizing the dissipation
caused by connecting or disconnecting a system from its
reservoirs, or assessing the difference in performance be-
tween strongly-coupled and weakly coupled energy con-
verting devices.
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Letters B 433, 236 (1998).
[51] A. C. Hewson, The Kondo Problem to Heavy Fermions

(Cambridge University Press, 1993).
[52] Y. Meir and N. S. Wingreen, Phys. Rev. Lett. 68, 2512

(1992).
[53] G. D. Mahan, Many-Particle Physics (Kluwer Academic

Publishers-Plenum Publishers, 2010).




