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Abstract
Spectroscopy, fundamental symmetry tests and quantum simulation

with trapped ions
by

Thaned Pruttivarasin
Doctor of Philosophy in Physics

University of California, Berkeley
Professor Hartmut Häffner, Chair

This dissertation reports on precision measurements of the atomic structure of calcium
ions (40Ca+), application of trapped 40Ca+ ions as a probe for a violation of funda-
mental symmetry and prospects of performing quantum simulations with trapped
ion.

We demonstrate a novel technique to perform spectroscopy on the dipole transition
of 40Ca+ that circumvents usual difficulties from dark resonances and Doppler heating.
The center of the atomic transition can be detected to a precision of 200 kHz or less
with an integration time of 10 minutes. We apply this method to directly measure
the influence of micromotion on the fluorescence spectra and confirm the dependence
of the modulation index on the radial trap frequency.

We measure the branching fraction of the excited 2P1/2 state of 40Ca+ to be
0.93565(7) using a simple experimental scheme readily applicable to many other ion
species. Our result for 40Ca+distinguishes well among various theoretically calculated
values, which is important in guiding further developments of the theoretical work.

We apply the Ramsey spectroscopy technique based on a pair of correlated ions
to probe the effect of the violation of local Lorentz invariance (LLI). The energy
difference between the two components of the Bell state |ΨB〉 =

∣∣mJ = 5
2
,mJ = −5

2

〉
+∣∣mJ = 1

2
,mJ = −1

2

〉
in the D5/2 manifold of 40Ca+ is monitored for 12 hours. We found

that the energy component related to the violation of LLI varies less than 17 ± 22
mHz. Assuming a hydrogen-like model of 40Ca+, the measurement result provides us
the bound of the LLI parameter C

(2)
0 to be 1.7± 2.2× 10−17.

Based on numerical simulations, we show that the Aubry transition in the Frenkel-
Kontorova model with trapped ion can be observed for practical experimental param-
eters such as the strength and wavelength of the optical lattice, which serves as an
external perturbing periodic potential. Moreover, we also show that the normal mode
structure of ion chain can change significantly as we vary the strength of the optical
lattice.
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Chapter 1

Introduction

Driven by the prospect of quantum computing, the field of trapped ions has been
undergoing a rapid technological development in the past two decades. Quantum
coherence in trapped ions has been engineered such that it is tremendously immune
to external disturbance. Combined with our mastery in manipulating the quantum
state of the ions by means of laser light, experimentalists have been able to realize
many quantum computation algorithms with trapped ions in recent years [1, 2, 3].
Many leading experimental physics groups in the world are working toward realizing
more complicated protocols and scaling up quantum networks based on trapped ions
[4].

Outside the context of quantum computing, progress in using trapped ions in
precision measurements is also immense. One of the most promising candidates for the
next generation atomic clocks is realized using trapped Hg+ and Al+ [5, 6]. Moreover,
by engineering the quantum states of the ions, we can use ions as a sensitive probe
of external fields such as the strength of the magnetic field and the electric field
gradient [7]. Some of heavier ion species can be used as a probe of exotic effects such
as the parity non-conservation or the time-variation of the fine structure constant
[8]. Beyond trapping of atomic ions, ion trapping techniques are recently applied to
performing spectroscopy of molecules [9]. These experimental tools help propel our
understanding of not only the complex atomic or molecular structures, but also many
fundamental physical phenomena such as the effect of gravity on the atomic energy
levels [10].

Another exciting emerging field is quantum simulation with trapped ions. The
idea of using a well-controlled quantum system to simulate Hamiltonians has been
proposed many years ago by Richard Feynman [11]. At the beginning, most of the ex-
periments related to quantum simulations were performed with neutral atoms trapped
in optical lattices. The realization of the Mott insulator is perhaps one of the most
well-known experimental work in the past decade [12]. Trapped ions have a slower
start mainly because the number of particles trapped is rather small compared to typ-
ical neutral atom traps. However, there have been many proposals in using trapped
ions as a test-bed for quantum simulations [13, 14, 15]. Experimental works in this
direction have also been undergoing rapid development [16, 17, 18, 19, 20].

The story of ion trapping experiments at Berkeley, especially the so-called “lattice”
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project, started roughly five years ago with the goal of using a linear chain of trapped
ions in an optical lattice to perform a quantum simulation of the Frenkel-Kontorova
model [21]. However, the experimental setup did not work the way we envisioned.
The optical cavity that we put in the vacuum system was likely to become misaligned
during the bake-out. It is not clear what caused this problem since the cavity worked
well before in a separated test vacuum chamber. In any case, the realization of the
original intended work is still something we look forward to in the future.

Despite the mishap in the experimental setup, we did not get discouraged and
looked for interesting physics to explore with the setup that we have. Fortunately,
the robustness of trapped ions allows us to explore many aspects of physics we did
not even think about at the beginning of this project. There are two main categories
of the experiment that the lattice project gave birth to for the past 5 years. The first
category is related to the study of open quantum systems and the thermal behavior
of the ion chain. The work includes local detection of quantum correlation in trapped
ions [22] and energy transport in a chain of up to 37 ions [23]. This part is covered
extensively in Michael Ramm’s thesis.

The second category of our experiments is related to precision spectroscopy using
trapped ions. This is the main part of this thesis. The outline is given in the following:

We begin in Chapter 2 by reviewing the physics of trapping and cooling of ions.
The atomic structure of 40Ca+is presented along with the analysis of the corresponding
atom-light interaction. This leads to the technique of Doppler cooling and sideband
cooling which are essential in controlling the quantum state of 40Ca+. Chapter 3
describes the experimental setup that we use with an emphasis on the laser systems.
The trap construction and the layout of the vacuum chamber are described in details
in Michael Ramm’s thesis.

In Chapter 4, we demonstrate a novel experimental scheme to perform spec-
troscopy of dipole transitions in trapped ions. We show how the usual problems of
Doppler heating and dark resonances can be circumvented by rapidly alternating be-
tween the spectroscopy and the repumper laser light. Then we apply this method to
directly measure the modulation index of the fluorescence spectrum caused by the so-
called micromotion. We observe for the first time the dependence of the modulation
index on the trap frequency. The main result of this chapter is reported in Ref. [24].

Chapter 5 contains our work on a precision measurement of the branching frac-
tions of the excited 2P1/2 state of 40Ca+. The experimental scheme is based on fast
photon counting during population transfers of the ions between the ground state
and the metastable D-state. The precision of our measurement is enough to clearly
distinguish among different theoretical values. This simple experimental method is
applicable to many ion species use in modern ion trapping experiments. The main
result of this chapter is reported in Ref. [25].

The prospect of precisely measuring the lifetime of the excited 2P1/2 state of
40Ca+using the Hanle effect is the main topic of Chapter 6. This is motivated by
the discrepancy between the value measured in 1993 by Jin et al. [26] and recently cal-
culated value in 2011 by Safronova et al. [27]. In this chapter, we describe the physics
and theoretical considerations of many possible experimental schemes to measure the
lifetime via the Hanle effect in trapped 40Ca+. We analyze some of the potential sys-

2



tematic uncertainties and the expected precision of the measurement based on this
method.

In Chapter 7, we demonstrate a technique of using correlated ions to as a probe
for various external fields. We describe the experimental scheme and measure the
magnetic field gradient and the electric field gradient using a pair of trapped 40Ca+.
We then apply this technique to probe possible small changes in the atomic transi-
tion energy due to the violation of Local Lorentz Invariance (LLI). We report the
preliminary experimental bound of the violation.

In Chapter 8, we investigate the prospect of using trapped ions to realize the
Frenkel-Kontorova model in conjunction with an optical lattice. We report on nu-
merical simulations that show the feasibility of the experiment using practical exper-
imental parameters. The main result of this chapter is reported in Ref. [28].

In Chapter 9, we summarize the work and discuss potential improvements and
some of the future plans for the experiment.
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Chapter 2

Trapping and cooling of ions

Due to strong interactions between charged particles (ions) and electromagnetic fields,
we can tightly confine charged particles with either oscillating electric fields (the Paul
trap) or a combination of static electric and magnetic field (the Penning trap). Both
mechanisms provide trapping depths on the order of 1 eV and oscillation frequencies of
more than 1 MHz. This is many times stronger than that of neutral atoms in magneto-
optical traps (MOT) or dipole traps. Strong confinement allows us to perform Doppler
cooling of trapped ions efficiently, which is crucial in using trapped ions to perform
various precision measurements described in the subsequent chapters. In this chapter
we describes the most important building blocks of experiments with trapped ions:
the Paul trap and laser cooling.

2.1 Trapping of charged particles

Since trapping of a charged particle using only static electric fields is prohibited by
the Maxwell’s equations, the idea of using oscillating electric fields to dynamically
trap ions was pioneered by Wolfgang Paul back in 1953 (see his Nobel lecture at
[29]). At any instant of time, the ion experiences a saddle point quadrupole potential
generated by a set of electrodes, as shown in Fig. 2-1. The fast driving field effectively
shakes the ion back and forth, resulting in an induced “motional” dipole moment of
the particle. This induced dipole moment is then pulled toward the saddle point (the
radio-frequency (RF) null) which has the lowest electric field gradient.

To mathematically describe the motion of trapped particles, we consider a geome-
try of electrodes given in Fig. 2-2 and follow an analysis given in [31, 32]. The applied
potentials V0 on the two pairs of electrodes oscillate out of phase with each other at
a frequency ΩD. The potential near the trap center is given by

Φ(x, y, t) = V0 sin (ΩDt)
x2 − y2

R2
, (2.1)

where x and y are positions along each pair of electrodes, and R is a characteristic
length depending on the distance between electrodes.

Additionally, we also apply a static potential to the endcaps (as shown in Fig.

5



⌦

Figure 2-1: Dynamical trapping of a charged particle. A saddle point potential is
oscillating with a frequency ΩD, resulting in an effective trapping in all directions.
This diagram is adapted from [30].

2-2) to provide a confinement in the z direction (along the trap axis). This is given
by

U(x, y, z) =
κU0

Z2
0

(
z2 − x2 + y2

2

)
, (2.2)

where U0 is the potential applied to the endcaps, κ is a geometrical constant, and Z0

is a characteristic length depending on the distance between the endcaps.

We analyze the motion of the ions by first calculating the electric field near the
trap center. This is given by

~E = −~∇(Φ + U) (2.3)

= −2V0
xx̂− yŷ
R2

sin (ΩDt)−
κU0

Z2
0

(2zẑ − xx̂− yŷ). (2.4)

The equations of motion can then be written in the following form:

üi + (ai + 2qi sin (ΩDt))
Ω2
D

4
ui = 0, (2.5)

where ui is a displacement from the trap center along the î direction, and we intro-
duced the dimensionless variables

ax = ay = −1

2
az = − 4QκU0

mZ2
0Ω2

D

(2.6)

qx = −qy =
4QV0

mR2Ω2
D

(2.7)

qz = 0, (2.8)
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Figure 2-2: Radio-frequency electrodes and endcaps in a Paul trap.

and Q/m is a charge-to-mass ratio of the ion.

The form of equations given in Eq. (2.5) is called the Mathieu equation which is a
very important class of equations related to many fields in physics. A general solution
to the Mathieu equation is complicated, but in our case, we only need to look at the
lowest order solution.

If we look closely at Eq. (2.5), we can see that the motion of the charged particle
should have two distinct time scales: a fast motion oscillating at ΩD and a slower
one that depends on the electric field gradient. We call the fast motion to be the
“micromotion” and the slower motion to be the “secular” motion. We write the
displacement as

ui = µi + si, (2.9)

where µ and s are displacements corresponding to the micromotion and secular mo-
tion, respectively. Substituting into Eq. (2.5) yields

µ̈i + s̈i + (ai + 2qi sin (ΩDt))
Ω2
D

4
(µi + si) = 0. (2.10)

We assume that µ̈i � s̈i and si � µi. The equation of motion becomes

µ̈i + (ai + 2qi sin (ΩDt))
Ω2
D

4
si = 0. (2.11)
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We then use a fact that the micromotion oscillates with ΩD and obtain

−Ω2
Dµi + (ai + 2qi sin (ΩDt))

Ω2
D

4
si = 0

ai + 2qi sin (ΩDt)

4
si = µi. (2.12)

Substituting µi from the last expression into Eq. (2.10) gives

s̈i = −(ai + 2qi sin (ΩDt))
2 Ω2

D

16
si. (2.13)

After averaging over the period of the micromotion, the equation of motion for the
secular motion is given by

s̈i = −(a2
i + 2q2

i )
Ω2
D

16
si, (2.14)

which indicates that the secular motion is, to the first order, harmonic with a fre-
quency of

ωi =
ΩD

4

√
a2
i + 2q2

i . (2.15)

The motion of the charged particle is a combination of the micromotion and secular
motion:

ui = µi + si

= u0i cos (ωit+ δi)
(

1 +
ai
4

+
qi
2

sin (ΩDt)
)

≈ u0i cos (ωit+ δi)
(

1 +
qi
2

sin (ΩDt)
)
, (2.16)

where u0i is the amplitude of the secular motion and we use the fact that typically
ai � 1 in the last step.

An important remark that we want to keep in mind is that the micromotion is
intrinsically not a harmonic oscillator. It is a driven motion caused by the oscillating
potential on the trap electrodes. The secular motion, on the other hand, behaves
very much like an ideal harmonic oscillator. This is true in experiments where the
amplitude of the secular motion is small, which is well justified for Doppler cooled
ions in a typical Paul trap.

Another observation related to the experimental setup is the dependence of the
secular trap frequency ωi on the drive frequency ΩD and amplitude V0. From Eq.
(2.6-2.8) and (2.15), we can see that, for a small end cap potential (U0 ∼ 0), we
have ωi ∝ V0/ΩD. This relation might give an impression that we should keep the
drive frequency low to have higher trap frequency. While this statement is true,
experimentally we have a rule of thumb that the highest trap frequency we can achieve
by increasing the amplitude V0 of the RF drive for a given ΩD is roughly ΩD/10.
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Figure 2-3: Atomic structure of neutral calcium atoms.

Pushing the trap frequency beyond this will make the trap unstable. This means
that, for example, getting a trap frequency of 3 MHz requires the drive frequency to
be at least 30 MHz.

2.2 Atomic structure of calcium

The trapping mechanism described in the previous section works with any kind of
charged particle regardless of its internal structure. However, in our experiment, the
charge particles are in fact ionized calcium atoms which have an internal structure.
In this section we describe the atomic structure of calcium atoms and ions, which
is essential in understanding of Doppler cooling and quantum state manipulations of
40Ca+ions.

2.2.1 Neutral calcium atoms and calcium ions

The first step in our experiments is to create calcium ions from vapor of neutral
calcium atoms. Calcium bought from suppliers comes in the form of small metallic
grains. In the experiment, we produce a gaseous beam of calcium by heating up these
small grains and use laser light to photo-ionize them. We produce calcium ions by
essentially removing one electron from each calcium atom.

A calcium atom has two valence electrons, and the atomic structure is given in
Fig. 2-3 with each state notated by the term symbol 2s+1LJ . We can see that there
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Figure 2-4: Atomic structure of singly ionized calcium ions (40Ca+).

are at least three ways to ionize a calcium atom: a direct 203 nm path, a two-
step 422+391 nm path and a three-step 422+732+830 nm path. We use a two-step
422+391 nm path for photo-ionization since it requires only two laser beams which
are conveniently available.1 This photo-ionization path is also more efficient than the
three-photon path.

The reason why calcium and other elements with two valence electrons are ideal for
trapped ion experiments is because there is only one valence electron after a process
of photo-ionization. The atomic structure is then approximately similar to that of
hydrogen atoms.

There are two calcium isotopes used in modern trapped ion experiments: 40Ca+and
43Ca+. In our experiment, we use only 40Ca+which has no hyperfine structure. The
atomic structure of 40Ca+is relatively simple, as shown in Fig. 2-4. The 397 nm
and 866 nm transitions are used for Doppler cooling. The 729 nm transition is a
quadrupole transition with a lifetime of about 1 second [33]. We use this 2S1/2 →2D5/2

transition as a qubit. The 854 nm transition is for depopulating the D5/2 level and
broadening of the quadrupole transition, which is important in performing sideband
cooling.

1We produced the first ions in our trap using the three-step photo-ionization scheme. However, it
was difficult to find the transition frequency of the 732 nm laser light so we switched to the two-step
scheme.
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2.2.2 Electric quadrupole shift

The valence electron for different mJ states interacts differently with the external
electric field gradient. Since ions in a Paul trap are trapped using static potentials in
the axial direction, there is always an electric field gradient along the axial direction
ẑ. The energy shift from the interaction between the atomic quadrupole moment and
the electric field gradient for the D5/2 states is given by [34, 35]:

∆Equad = ~ωquad =
1

4

mω2
axial

e
|Q|A×





−1 if mJ = ±5
2

1
5

if mJ = ±3
2
,

4
5

if mJ = ±1
2

(2.17)

where m is the mass of the ion, ωaxial is the axial trap frequency, A is a geometric
factor depending on the asymmetry of the electric field gradient and the direction
of the quantization axis, and |Q| ∼ 1.9ea2

0 is a quadrupole moment of D5/2 state of
40Ca+[7].

2.2.3 Magnetic sub-levels

With a static magnetic field ~B applied to the ions, each state splits into smaller
Zeeman sub-levels according to its magnetic quantum number. The linear energy
splitting is given by

∆E
(1)
Zeeman = gJµBmJ | ~B|, (2.18)

where µB is Bohr’s magneton, mJ is the magnetic quantum number and the Landé
gJ factor given by

gJ = 1 +
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
. (2.19)

Table 2.1 summarizes the value of gJ for each state of 40Ca+. We always apply a
magnetic field of about 3-4 G in our setup. This gives the Zeeman splitting on the
order of 2-3 MHz.

There are also energy shifts which are quadratic in the magnitude of the mag-
netic field. In the low field limit, these can be calculated using the second-order
perturbation theory. This quadratic Zeeman shift is given by [34]

∆E
(2)
Zeeman = K

(µB| ~B|)2

hfFS

, (2.20)

where K = 6/25, 4/25 and 0 for mJ = ±1/2,±3/2 and ±5/2, respectively, and fFS
is the frequency of the corresponding fine-structure energy level. For the D levels of
40Ca+, fFS = 1.8 THz.
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State gJ
2S1/2 2
2P1/2 2/3
2P3/2 4/3
2D3/2 4/5
2D5/2 6/5

Table 2.1: The values of gJ for different levels of 40Ca+

2.3 Interaction of light with a two-level atom

Once we have understood the atomic structure of 40Ca+, we want to control and
manipulate the quantum state of calcium ions. For this we use laser light. To the
lowest order, we can describe the ion as an ideal two-level system interacting with a
monochromatic driving laser field, resulting in the Rabi oscillations of atomic states.
Next we add decoherence due to a spontaneous decay of the excited state, which is
important in Doppler cooling.

2.3.1 Rabi oscillation

We consider an ion with two levels: the ground state |g〉 and the excited state |e〉.
We first ignore the motional degree-of-freedom of the ion and analyze the atomic
population transfer from interaction with laser light. Many standard textbooks such
as [36] have detailed analysis on Rabi oscillations. Here we only highlight the most
important results.

2.3.1.1 Static ion

First we consider the ion as static by ignoring the momentum transfer of the laser
light onto the ion. We approximate the electric field of the laser light interacting with
the ion as a plane wave:

~E(~r, t) = ~E0e
i(~k·~r−ωlasert+φ), (2.21)

where ~r is the vector position of the atom, ~k is the wave-vector of the laser light and φ
is the phase of the laser light. We assume that the ion is a point-like particle located
at ~r = 0. We introduce the detuning δ = ω0 − ωlaser where ω0 is the frequency of the
atomic transition. In the interaction picture, the light-ion interaction Hamiltonian is
given by

H =

(
−~δ ~ΩR

2
eiφ

~ΩR
2
e−iφ 0

)
, (2.22)

where ΩR is the Rabi frequency associated with the laser light intensity.
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Let us consider the frequency of the laser light to be on resonance (δ = 0). The
time evolution of any initial state

|Ψ(t = 0)〉 = a |e〉+ b |g〉 =

(
a
b

)
(2.23)

is given by

|Ψ(t)〉 = e−iHt |Ψ(t = 0)〉 =

(
cos ( θ

2
) i sin ( θ

2
)eiφ

i sin ( θ
2
)e−iφ cos ( θ

2
)

)(
a
b

)
, (2.24)

where θ = −ΩRt and we set ~ = 1. Suppose that φ = 0 and initially the ion is in the
ground state, the time evolution of the populations is given by

|Ψ(t)〉 = i sin

(
θ

2

)
|e〉+ cos

(
θ

2

)
|g〉 =

(
i sin ( θ

2
)

cos ( θ
2
)

)
. (2.25)

This shows that the atomic population oscillates sinusoidally between |g〉 and |e〉.
The probability of finding the ion in the ground state is given by

Pg(t) = cos2

(
θ

2

)
= cos2

(
ΩRt

2

)
. (2.26)

We use the term π-pulse to indicate an interaction duration such that θ = π. This
means if the initial atomic population is in the ground state, after an application of
a π-pulse, all the atomic population is transferred to the excited state. A π/2-pulse
is used to indicate an interaction duration such that θ = π/2. If the initial atomic
population is in the ground state, after an application of a π/2-pulse, we create a
super-position state |Ψ〉 = i |e〉+ |g〉.

2.3.1.2 Trapped ion

We now include the motional degree of freedom of the ion. Since the ion motion is
approximately harmonic with a frequency of ω in a Paul trap, we also label its mo-
tional state using |n〉, where n is the vibrational quantum number. The Hamiltonian
of the light-ion interaction is given by [37, 38]

H = −~δ |e〉 〈e|+ ~ω
(
a†a+

1

2

)
+

~ΩR

2

(
σ+e−ikx + σ−eikx

)
, (2.27)

where σ± is the atomic raising and lowering operator of the electronic states and a is
the lowering operator for the ion motion. The term kx is usually written out using
the Lamb-Dicke parameter η = k

√
~/2mω as kx = η(a + a†). Usually we work in a

Lamb-Dicke regime where η � 1.

For δ = 0, similar to the case where we ignored the ion motion, the atomic
population oscillates back and forth between |g〉 and |e〉. However, the motion of the
ion in the trap results in a modulation of the spatial overlap between the ion and
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the light. Thus the effective Rabi frequency between |g〉 and |e〉 also depends on the
motional amplitude of the ion. The Rabi oscillation frequency between each pair of
|n, g〉 and |n, e〉 is given by [39]

ΩRn = ΩR(1− η2n). (2.28)

If the probability distribution of the vibrational quantum number is given by p(n),
then Eg. (2.26) is replaced by

Pg(t) =
∞∑

n=0

p(n) cos2

(
ΩR(1− η2n)t

2

)
, (2.29)

meaning that the contrast of the Rabi oscillations may decreases due to the averaging
of many different Rabi frequencies from different motional states.

2.3.2 Doppler cooling

In reality Rabi oscillations cannot persist forever due to a possibility of spontaneous
decay from the excited state |e〉 back to the ground state |g〉. The incoherent process
is dominant when the decay rate is comparable to or larger than the Rabi frequency.
Experimentally we rely on this fast spontaneous decay to quickly reduce kinetic energy
of the ions by means of light scattering. This so-called Dopper cooling generally brings
the temperature of the ion low enough to be in a Lamb-Dicke regime (η2n� 1) within
a few milli-seconds.

2.3.2.1 Intuitive picture of Doppler cooling

Doppler cooling relies on the Doppler effect, which is a shift in the observed frequency
of the laser light due to the motion of the observer. Consider an ion moving back
and forth in a harmonic trap. If the laser frequency is red-detuned from the atomic
transition, the ion will be more likely to absorb photons when moving towards the
laser light, as shown in Fig. 2-5. The momentum of the photon imparted on the
ion upon absorptions then reduces the magnitude of the momentum of the ion. The
kinetic energy is then reduced. We achieve the highest cooling efficiency when the
imbalance of the photon absorption rate between the ion moving away from the laser
light and toward the laser light is maximized. If the linewidth (or the decay rate) of
the atomic transition is given by γ, this is achieved by having the laser frequency at
δ ∼ −γ/2.

However, after any absorption of a photon, an ion must emit a photon out due to
spontaneous emissions. Assume that the ion is not polarized, the emission pattern
is isotropic in the low laser light intensity limit. This random emission process is
a heating mechanism which we cannot avoid. Balancing the cooling process due
to photon absorptions and the heating process due to random emissions yields an
ion energy (or temperature) in steady state. This so-called Doppler temperature is
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Figure 2-5: Simple picture of Doppler cooling. A laser light red-detuned from the
atomic transition makes the ion more likely to absorb photons with moving toward
the laser light (scenario A) compared to the ion moving away from the laser light
(scenario B). Hence, on average, the momentum of the ion is reduced.

approximately given by [32]

Td ≈
γ~
2kB

. (2.30)

2.3.2.2 The master equations

A standard way to mathematically incorporate spontaneous emission is to use the
quantum Liouville equation [38]:

d

dt
ρ = − i

~
[H, ρ] + Lρ, (2.31)

where L is the Lindblad operator. The form of L is given by

Lρ =
γ

2
(2σ−ρ̃σ+ − σ+σ−ρ− ρσ+σ−), (2.32)

where γ is the decay rate of the excited state and ρ̃ is the density matrix after a
spontaneous emission:

ρ̃ =

∫ 1

−1

du N(u) eikuxρe−ikux. (2.33)

N(u) is a geometrical factor corresponds to the pattern of spontaneous emissions.
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At the low saturation limit, the population of the excited state can be ignored
along with the coherence between the electronic ground and excited states. With
this, we obtain a set of differential equations describing populations of the ground
state in different vibrational quantum numbers n:

d

dt
ρnn = −γΩ2

R

4

(∑

k

|〈n| eikx |k〉|2
[(k − n)ω − δ]2 + γ2/4

ρnn

)

+ γ
Ω2
R

4

(∑

k,r

∫ 1

−1

duN(u)
|〈n| eikux |k〉|2|〈k| e−ikx |r〉|2

[(k − r)ω − δ]2 + γ2/4
ρrr

)
, (2.34)

where ρnn = 〈n|ρ|n〉.

In the Lamb-Dicke regime,

eikx = eiη(a+a†) ∼ 1 + iη(a+ a†)− η2

2
(a2 + a†a+ aa† + a†2). (2.35)

We substitute this expression into the matrix elements in Eq. (2.34):

〈n| eikx |k〉 ∼ 〈n| 1 + iη(a+ a†)− η2

2
(a2 + a†a+ aa† + a†2) |k〉 . (2.36)

After applications of a and a† to the vibrational state, we obtain (up to the second
order in η)

| 〈n| eikx |k〉 |2 = (1− η2(2k + 1))δn,k + η2kδn,k−1 + η2(k + 1)δn,k+1. (2.37)

Now the summations in the RHS of Eq. (2.34) can be explicitly evaluated:

∑

k

|〈n| eikx |k〉|2
[(k − n)ω − δ]2 + γ2/4

ρnn =

(
1− η2(2n+ 1)

δ2 + γ2/4
+

η2(n+ 1)

(ω − δ)2 + γ2/4
+

η2n

(ω + δ)2 + γ2/4

)
ρnn, (2.38)

and

∑

k,r

|〈n| eikux |k〉|2|〈k| e−ikx |r〉|2
[(k − r)ω − δ]2 + γ2/4

ρrr =

(
1− η2(1 + u2)(2n+ 1)ρnn

δ2 + γ2/4

)
ρnn+

(
αη2(n+ 1)

δ2 + γ2/4
+

η2(n+ 1)

(ω + δ)2 + γ2/4

)
ρn+1,n+1+

(
αη2n

δ2 + γ2/4
+

η2n

(ω − δ)2 + γ2/4

)
ρn−1,n−1. (2.39)
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By introducing

α =

∫ 1

−1

du N(u) u2, (2.40)

and Pn = ρnn, we write the rate equation to be

Ṗn =− γΩ2
Dη

2

4

(
n+ 1

(ω − δ)2 + γ2/4
+

n

(ω + δ)2 + γ2/4
+
α(2n+ 1)

δ2 + γ2/4

)
Pn

+ γ
Ω2
Dη

2

4

(
α

δ2 + γ2/4
+

1

(ω + δ)2 + γ2/4

)
(n+ 1)Pn+1

+ γ
Ω2
Dη

2

4

(
α

δ2 + γ2/4
+

1

(ω − δ)2 + γ2/4

)
nPn−1. (2.41)

We define the transitional rate

A± =
α

δ2 + γ2/4
+

1

(ω ∓ δ)2 + γ2/4
, (2.42)

and write the rate equation as

Ṗn = −γΩ2
Dη

2

4
(nA−Pn + (n+ 1)A+Pn − A+nPn−1 − A−(n+ 1)Pn+1) . (2.43)

We can now solve for a steady state solution by setting Ṗn = 0 and obtain

nA−Pn + (n+ 1)A+Pn − A+nPn−1 − A−(n+ 1)Pn+1 = 0, (2.44)

where the solution is given by Pn ∝ e−nβ with

eβ =
A−
A+

. (2.45)

This exponential weighting of the probability suggests that the steady-state popula-
tion is described by a thermal state where the temperature, T , appears as

β =
~ω
kBT

. (2.46)

The steady state temperature, Td of the trapped particle at the steady state is then
given by

Td =
~ω

kB ln
(
A−
A+

) . (2.47)

It is more convenient for experimentalists to quote a temperature in the unit of the
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Figure 2-6: Crystal of 37 ions under Doppler cooling.

mean vibrational number 〈n〉 of the ion:

〈n〉d =
TdkB
~ω

=
1

ln
(
A−
A+

) . (2.48)

To find the optimal detuning, δD, such that 〈n〉d is the lowest, we need to maximize
the term A−/A+. The exact expression of δD is long and complicated. However, there
are two limiting cases which are important:

δD → −ω as γ → 0: In the tight binding limit (ω � γ), which we achieve by
performing cooling on dipole forbidden transitions, the lowest temperature is achieved
by having the laser frequency detuning equal to the red sideband frequency. This is
nothing but a standard sideband cooling technique used routinely in trapped ion
experiments [40]. In this regime, 〈n〉d can be very close to 0 and is typically limited
by the background heating rate of the trap.

δD → −γ/2 as ω → 0: In the weak binding limit (ω � γ), which we achieve
by cooling with dipole transitions, the optimal detuning is roughly half the natural
linewidth. This is exactly the same as in the case for free ions. Experimentally,
the term Doppler cooling usually means performing cooling in this regime, and the
Doppler temperature is a steady state temperature of the ion in this limit. Though
the Doppler temperature is higher than that of the sideband cooling, the fast cooling
rate in the Doppler cooling makes it more efficient to cool ions with very high initial
temperature. Experimentally, we first apply Doppler cooling to bring the ion close to
the Doppler temperature and then apply sideband cooling to cool the ion further to
the motional ground state.

2.3.2.3 Cooling of 40Ca+

For 40Ca+ (the energy diagram is given in Fig. 2-4), Doppler cooling is carried out
on the 2S1/2 →2P1/2 transition using laser light at 397 nm. However, the excited
state 2P1/2 can also decay to a metastable state 2D3/2. We have to apply repumper
laser light at 866 nm to depopulate this state and keep on the Doppler cooling cycle.
We operate our trap usually at the radial trap frequency of ∼ 2π × 3 MHz, and the
temperature of the ion after Doppler cooling is roughly 〈n〉d ∼ 5− 7. A picture taken
by a CCD camera of a trapped and Doppler cooled crystal of 37 ions is shown in Fig.
2-6.

For sideband cooling, in order to be in a tight binding regime, the cooling is
done on the 2S1/2 →2D5/2 transition using laser light at 729 nm. Laser light at 854
nm, which couples the 2D5/2 to the 2P3/2 state, artificially broadens the quadruple
transition and increases the cooling rate. For our trap, the lowest temperature of
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the ion achieved using sideband cooling is roughly 〈n〉d ∼ 0.2 [22]. The heating rate
of the ion due to unknown noise from the trap prevents the temperature from going
closer to 0.
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Chapter 3

Lasers and experimental setup

Modern atomic physics experiments rely heavily on light produced from lasers to trap
and manipulate atoms. Though the basic principle of lasers are the same regardless
of the type of gain media, in our experiments, we use only semiconductor diode lasers,
which are relatively cheap and easy to operate. However, there are some tricks we can
play to improve the performance of diode lasers. In this chapter, we describe the laser
setup for our experiment and various tricks required to make all the measurements in
this thesis possible. We also describe other experimental hardware such as the trap
and the vacuum chamber at the end of this chapter.

3.1 Laser sources

3.1.1 Diode lasers

The main constraint in choosing a light source is the frequency of the light required
by the experiment. Here we summarize the required laser wavelengths Table 3.1. For
calcium ions, it is fortunate that all required laser frequencies can be obtained by
means of diode lasers. There are many good textbooks on the physics of lasers (see,
for example, [41]) which describe mechanisms to achieve population inversions in the
p-n junction of semiconductor diode lasers in details. For our purpose, we can treat
any laser diode as a simple light-emitting diode (LED). We simply correctly connect
the diode pins to a current source and there will be laser light coming out.

3.1.1.1 Free-running diode laser (375 nm)

A free-running diode laser might have a short term spectral linewidth of around 10-
100 MHz. However, an uncontrolled optical feedback and a variation in temperature
usually make the frequency of the laser light unstable, resulting in a long-term spectral
linewidth of up to 0.1 % of its center frequency. The stability of the frequency is
adequate for photo-ionization of neutral calcium atoms since any photon wavelength
shorter than 391 nm will ionize calcium atoms excited to the 1P1 state. In our
experiment, we use a free-running and non-temperature controlled laser diode at
375 nm produced by Nichia (NDU4116).
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λ (nm) Power (µW) Function
422 (844) 200 to excite neutral calcium atoms

375 100 to ionize excited neutral calcium atoms
397 100 main Doppler cooling of calcium ions
866 1,000 repumper for Doppler cooling of calcium ions
854 300 repumper for qubit manipulation of calcium ions
729 20,000 to address the S1/2-D5/2 transition of calcium ions

Table 3.1: Laser light wavelengths required to perform experiments. The energy
diagrams for calcium ions and atoms are shown in Fig. 2-4 and 2-3, respectively.
The power listed is what is typically measured before the viewport of the vacuum
chamber. The laser light at 422 nm is frequency doubled from a diode laser source
at 844 nm.

3.1.1.2 External cavity diode lasers (397 nm, 866 nm, 844 nm and 854
nm)

To make diode lasers more useful for the experiment, we have to reduce the spectral
linewidth of the laser light and make the frequency stable. By putting an external
grating to provide a controlled optical feedback back to the diode laser, the spectral
linewidth can be reduced to sub-MHz. This so-called external cavity diode laser
(ECDL) is widely used in modern atomic physics experiments. We use complete
systems from Toptica® for laser wavelengths at 397 nm (DL 100), 866 nm (DL 100),
844 nm (DL Pro) and 854 nm (DL Pro).

One caution in using an ECDL comes from an intrinsic spontaneous background
light. Although a diode laser has a strong laser light intensity at the center frequency,
there is a broad background light (usually 30 dB less than the center frequency) in the
range of ±5 nm or more. This can cause an unwanted off-resonant excitation of any
atomic transition. For example, laser light at 397 nm produced from the laser diode
also contains background light at 393 nm. This background light can off-resonantly
excite the ions to the 2P3/2 state. This state can decay to the metastable state 2D5/2

and halt the Doppler cooling process, which is clearly undesirable. We observed that,
without filtering out this background light, the fluorescence from the ions is reduced
by roughly 50%.

To spectrally filter out background light, we use a pair of dispersive prisms
(Thorlabs® PS850) to deflect unwanted light from the main beam path. In prin-
ciple, we can also use a ruled grating, which has substantially higher resolving power.
However, there is usually an unavoidable loss in the laser power of about 25 %. Using
prisms at the Brewster’s angle maximizes light transmission and we achieve an optical
loss of less than 5 % with correct light polarization.
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3.1.2 Frequency doubling system (422 nm)

At the beginning of the setup of the experiments (early 2009), a direct diode source
at 422 nm was not available.1 We instead frequency double laser light at 844 nm to
produce laser light at 422 nm.

3.1.2.1 Non-linear crystal

The principle behind frequency doubling is a non-linear response of a crystal. In our
case, we use a periodically-poled-potassium-titanyl-phosphate crystal (PPKTP) to
convert light from 844 nm to 422 nm. In a non-linear crystal, the response of the
polarization P (t) of the crystal lattice can be generally written as

P (t) = aE(t) + bE2(t) + ..., (3.1)

where E(t) is the electric field of the incoming light and a, b are constants related
to the property of the crystal. We assume that the monochromatic input light is a
plane wave E(t) = E0 cos(ωlasert− kz). The polarization response of the crystal then
becomes

P (t, z) = aE0 cos(ωlasert− kz) + bE2
0 (1 + cos(2ωlasert− 2kz)) + ... (3.2)

We see that the last term oscillates with a frequency twice of that of the input laser
frequency. A detailed analysis on phase matching and efficiency optimization can be
found in [42].

3.1.2.2 Bow-tie cavity

Eq. (3.2) suggests that the amplitude of the input light should be as high as possible
to efficiently generate frequency doubled light. We use a bow-tie optical cavity around
the doubling crystal to build up the laser power of the 844 nm laser light. The setup
of the cavity is shown in Fig. 3-1 and 3-2. The length of the cavity is locked to the
844 nm laser frequency using the Pound-Drever-Hall technique. With an input 844
nm light power at around 120 mW, we generally obtain 2-3 mW of laser light at 422
nm. Note that the output coupler mirror is curved on both sides. This is to reduce
the divergence of the 422 nm beam coming out from the bow-tie cavity.

We tune the temperature of the PPKTP crystal to achieve highest doubling effi-
ciency. The crystal is wrapped with a nichrome wire and placed in a teflon holder to
minimize any temperature drift. The optimal temperature is about 50°C which we
control using a microcontroller.

3.1.3 Narrow linewidth diode laser (729 nm)

The laser light with the most stringent requirement in our experiment is the 729 nm
laser light which we use to address the quadrupole transition of 40Ca+. The linewidth

1Now the diode can be obtained from Nichia®. The part number is NDV4A16E.
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Figure 3-1: Frequency doubling cavity for generation of 422 nm light.

Figure 3-2: Bow-tie cavity currently used in our experiment. We house the PPKTP
doubling crystal in a white teflon holder to minimize any temperature drift.
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Figure 3-3: Cavity ring-down signal for the high finesse cavity.

of this laser frequency determines the fidelity of the qubit operation. For basic state
manipulations, the linewidth of the laser should be sub-kHz, which requires locking
a laser light to a stable and high finesse cavity.

The optical cavity used in our setup has been built by Stable Laser Systems®. It
consists of a pair of mirrors that form a cavity with a free-spectral range of fFSR =
3.25 GHz and a finesse of ∼ 245, 000. We verified the finesse with a cavity ring-
down technique. Fig. 3-3 shows the cavity transmission signal during the ring-down
measurement. The time constant of the exponential decay is measured to be τ =
12.1± 0.2 µs. The cavity is placed in a (gold plated!) radiation shield under vacuum.
The shield is temperature controlled to minimize cavity length drifts due to changes
in the ambient temperature. We set the temperature of the shield close to 0° C.2

The cavity is inserted into the vacuum apparatus in a clean room to avoid dust
accumulating on the mirrors. Bringing a camera into the clean room would have
taken additional measures. We instead show a picture is Fig. 3-5 taken from Ref.
[43]. The vacuum chamber is placed inside a box to reduce acoustical noise, as shown
in Fig. 3-5.

Pumping down of the vacuum chamber with the high finesse cavity requires special
care as air currents can lead to dust accumulating at the mirrors. To prevent strong
air currents during pumping down, we use a blank copper gasket with a small hole
to reduce the pumping cross-section and speed. With this gasket in place, we reduce
the pressure in the vacuum chamber until it is safe to turn on an ion pump. We
then disconnect the rough pump after that point. During this pumping process, it
turned out that our hole was not small enough and the pressure dropped too quickly.3

2This corresponds to 32.00 kΩ of the thermistor resistance.
3It is recommended that the pressure reaches 1 torr in about 10 minutes. During our pumping
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Figure 3-4: High finesse stable cavity for the 729 nm laser light. The picture is taken
from [43].

Figure 3-5: Setup for the high finesse cavity for the 729 nm laser light. The vacuum
chamber, which houses the cavity, and the optics are mounted on a breadboard. The
whole setup is put on rubber balls to damp out acoustic noise.
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Figure 3-6: Setting of the locking parameters for the 729 nm diode laser using a FALC
module.

Fortunately, the measured finesse is similar to the one measured at J. P. Home’s group
(about 270,000 in their case [43]).

Our 729 nm source is a DLpro ECDL module from Toptica® with the Fast Analog
Linewidth Control (FALC) locking circuit. The locking parameter settings are shown
in Fig. 3-6. To find the optimal locking parameters, it is useful to look at the beat
signal of 729 nm before and after a passing through an AOM at 220 MHz and a 22-
meter-long optical fiber. The so-called servo bump, which is a frequency modulation of
the laser light from the feedback circuit, is prominent in the trace labeled “locked” in
Fig. 3-7. The locking parameters should be set such that the servo bump is minimized.
However, we observe that minimizing the servo bump makes the laser lock less stable
and rather unusable. We made a compromise such that the lock stability is acceptable
and the laser stays locked for a few hours. The FALC unit is quite unconventional to
use because there is no lock-unlock switch. To lock the laser, we simply tune the piezo
of the laser slowly to the cavity frequency, and then the laser will be automatically
locked (provided we set the locking parameters correctly).

To increase the power from the 729 nm laser system, we send the output of the 729
nm diode laser DLpro (∼35 mW) to a tapered amplifier (TA) chip from Eagleyard®.
The TA also needs to be temperature controlled. The net output from the TA is
more than 500 mW. After a few beam shaping optical elements and optical isolators,
the light power is about 330 mW. We have about 120 mW of 729 nm laser power

down, the pressure reached 1 torr in about 2-3 minutes.
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Figure 3-7: Beat signals between laser light shifted by 220 MHz using an AOM and
the unshifted light for free-running and frequency stabilized (locked) laser light. In
the frequency stabilized case, sidebands from the stabilization electronic circuit (servo
bumps) at ∼700 kHz are clearly visible.

available on the experimental optical table.
In the experiments, we use two independently controlled laser beams at 729 nm.

Both beam paths are shown in Fig. 3-8. We make use of the objective lens which
is optimized for imaging of ions to achieve single ion addressing of the 729 nm laser
light on the ions. The objective lens is also optimized to collect photons at 397 nm.
A dichroic mirror overlaps both the red and the blue beam paths.

3.1.4 Switching and frequency shifting of lasers

We use acousto-optical modulators (AOMs) to switch on and off the laser light and
shift its frequency. AOMs in a standard double-pass configuration allow us to shift
the laser frequency without displacing the laser beam. For the main Doppler cooling
beam at 397 nm, we make a slight modification such that the zeroth-order beam path
of the AOM is also reflected and overlapped with the frequency shifted laser path.
This allows us to switch to a far red-detuned beam for crystallization of a longer ion
chain without using an additional AOM. Fig. 3-9 shows how we configure the AOM.

3.2 Experimental setup

3.2.1 General structure of the laboratory

All the laser sources are located in a separated room from the main experiment room,
as shown in Fig. 3-10. This configuration of the laboratory makes it easy to share
all the laser light among all experiments in the group. The light is delivered to each
optical table through long optical fibers (22-meter long).
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Figure 3-8: Beam paths for 729 nm and ions imaging. The 397 nm photons scattered
from the ions in the trap collected using an objective lens are divided with 20% to
the CCD camera and 80% to the PMT. The same beam path is used to deliver 729
nm laser light to the ions. The two 729 nm light paths are for addressing two ions in
the trap independently, which is required by the experiment in Chapter 7.
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Figure 3-9: A modification to a standard double pass AOM setup to have the zeroth-
order beam path overlapped with the frequency shifted beam path.
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λ (nm) Frequency (THz) Note
729 411.04250 used to calibrate the wave-meter
375 - free-running
422 354.53917 laser frequency before doubling
397 755.22244 not including +220 MHz after AOMs
866 346.00002 not including +160 MHz after AOMs
854 350.86265 not including +160 MHz after AOMs

Table 3.2: Laser light frequencies measured by the wave-meter for trapping of 40Ca+.

3.2.1.1 Using long optical fibers

The laser light polarization stability though long polarization-maintaining (PM) fibers
(22 meters) suffers a lot from the temperature and mechanical instability of the fibers.
Despite extensive efforts, we were not able to reduce the polarization drifts for the
fibers transmitting the 397 nm and 375 nm laser light to an acceptable value. However,
switching from PM fibers to non-PM fibers seems to have mitigated the polarization
drifts. The current fibers we use for 397 nm and 375 nm are 405-HP fibers from
Thorlabs®, where the polarizations of the laser light are stable for more than 2-3
days.

Other long PM fibers for 729 nm, 866 nm and 854 nm seem to perform well. How-
ever, the fiber for the 729 nm laser might introduce additional noise which effectively
broaden the linewidth of the laser frequency. In the future, we plan to implement a
scheme to cancel any laser noise introduced from a long optical fiber similar to the
scheme used in [34].

3.2.1.2 Calibration of laser frequencies

Finding correct laser frequencies is relatively easy using a wave-meter (HighFinesse®

model WS-7) which has an absolute accuracy of 60 MHz. However, the wave-meter
needs to be calibrated with a known laser wavelength. Since the 729 nm laser is
always locked to a stable optical cavity, we calibrate the wave-meter such that the
reading for 729 nm is always 411.04250 THz.4 Other laser frequencies can then be
determined on the wave-meter and are summarized in Table 3.2.

We monitor the frequency of the high finesse cavity which the 729 nm laser is
locked to by performing spectroscopy on the 40Ca+ion. The results over a few months
is shown in Fig. 3-11. The cavity also exhibits a short-term drift, as shown in Fig.
3-12. This is mainly due to temperature drifts during the day. Usually, the drift is
on the order of 1 Hz/s.

4To calibrate the WS-7 wave-meter, the input fiber needs to be a FC/PC fiber.
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Figure 3-11: Cavity center frequency as measured relative to the center of the S-D
transition in 40Ca+over a period of 6 months. The frequency shown is relative to the
AOM center frequency (220 MHz).
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Figure 3-12: Short-term drift of the center frequency of the high finesse cavity. The
drift is about 1 Hz/second.

3.2.2 Helical resonator

For trapping, we require voltages of 100-200 Vpp at the RF electrodes. Using a
commercial amplifier to reach this level is not practical since most of the amplifiers in
the market are designed to drive 50 Ω loads. However, the trap electrodes represent
mainly a capacitive load. A more practical way is to use a resonator circuit, such as
a helical resonator.

Since we apply voltages 180°out of phase to the two pairs of the RF electrodes,
we configure our helical resonator to be a half-wave resonator. The voltages on both
ends of the resonator are automatically out of phase with respect to each other. For
an ideal helical resonator, the voltage on the resonator is zero exactly at the middle
(see Fig. 3-13, where we plot the voltage as a function of the position along the
resonator). Since our resonator has uneven spacing and diameter, it is difficult to
determine exactly the center of the resonator. Instead of explicitly grounding the
center of the resonator, we leave the ground floated, which seems to work well.

3.2.3 Vacuum system and trap construction

The vacuum system and the trap construction are shown in Fig. 3-14 and 3-15,
respectively. More details can be found in Michael Ramm’s thesis.
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Figure 3-13: The half-wave resonator used to generate voltages out-of-phase from
each other on the two ends of the resonator. The voltage of the resonator is plotted
as a function of the position along the resonator coil. We excite the resonator by a
direct drive close to the center. For an ideal resonator, the center of the resonator
is where the potential is always zero and should be grounded. Since our resonator is
uneven in the coil spacing and diameter, we leave the center floated (ungrounded).
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Figure 3-14: Vacuum setup for the experiment viewed from the top. We send the
Doppler cooling and photoionization lasers through one of the side viewport (the
global beam path). The local beam path is for additional laser beams used in ex-
periments described in Michael Ramm’s thesis. The three curved mirrors are for the
optical cavity designed for the experiment in Chapter 8. The manipulator is designed
to be able to fix the position of the optical cavity with respect to the trap. The RF
input for the RF electrodes, DC input for the endcaps and neutral calcium oven are
mounted on the same feedthrough. We found that grouping together all the electrical
connections on the same feedthrough makes debugging extremely inconvenient. In
the next generation of the trap, we plan to separate these electrical connections using
different feedthrough flanges.
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Figure 3-15: The Paul trap used in our experiment. All electrodes are mounted on
insulating ceramic pieces. The RF electrodes are about 3 mm wide. The gap between
opposite RF electrodes is 1 mm. More details in trap construction can be found in
Michael Ramm’s thesis.
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Chapter 4

Spectroscopy of dipole transitions

To measure an energy splitting between energy levels in an atom, we usually perform
spectroscopy by scanning the frequency of the laser light across the atomic transition
and recording photons scattered from an atom. In trapped ions, this is not straight-
forward since the excited state of the transition used for Doppler cooling in many ion
species usually has more than one decay channel. This requires us to use an addi-
tional repumper laser together with the main cooling laser. An interference between
these two lasers gives rise to dark resonances, which are similar to the electromag-
netically induced transparency (EIT) effect, which complicates the spectroscopy of
these transitions since the presence of additional lasers greatly alters the line-shape
of the atomic transition. In this chapter, we use fast laser switching to perform spec-
troscopy of dipole transitions in trapped 40Ca+. We circumvent the usual problem
due to dark resonances by rapidly alternating the probe laser and the repumper laser.
Moreover, we reduce the laser pulse duration to minimize Doppler heating when scan-
ning the probe laser across the atomic transition. We apply this experimental scheme
to directly observe modulations of the fluorescence spectra due to micromotion in a
Paul trap and experimentally confirm the dependence of the modulation index on the
radial trap frequency.

4.1 Dark resonances and Doppler heating

Dark resonances are quantum interferences among different quantum states when
more than one laser light is present. This situation frequently aries in atoms with
the level structure shown in Fig. 4-1. While the resulting effects such as electromag-
netically induced transparency (EIT) are generally interesting, the laser parameters
for Doppler cooling have to be set more carefully to maximize the cooling efficiency.
Moreover, with a finite magnetic field applied to the atom, dark resonances from ev-
ery magnetic sub-level can substantially hinder the Doppler cooling efficiency if the
frequencies of the two lasers accidentally match the EIT condition.

Dark resonances also complicate the spectroscopy of either the |g〉 → |e〉 or
|d〉 → |e〉 transitions. For example, if we scan the frequency of the 397 nm laser
in 40Ca+across the atomic transition to find the line center, the shape of the resul-
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Figure 4-1: Typical lambda-level structure for an atom with a simple valence electron
and a low lying D-state. The excited state |e〉 can decay to the ground state |g〉 or
the metastable state |d〉 with probabilities of p and 1 − p, respectively. The laser
wavelengths are for 40Ca+.

tant fluorescence spectrum depends on the 866 nm laser parameters. While the line
shape can be modeled using eight-level Bloch equations, the parameters we need to
control include the intensities, polarizations, frequencies, directions of both lasers as
well as the magnitude and direction of the magnetic field [44]. This large number
of parameters contribute significant uncertainties in determining the line centers of
both atomic transitions. Reaching a precision of less than a few MHz is particularly
challenging [45].

Another complication is the fact that the transition which we want to perform
spectroscopy on is the one we use for Doppler cooling. When we scan the probe 397
nm laser across the transition, the ions significantly heat up when the frequency of
the probe laser is blue detuned from the center of the atomic transition. The energy
acquired by the ion from this process can cause the ion to escape from the trap. A
possible experimental scheme that circumvents this problem is to use sympathetic
cooling, which adds at least one more laser beam path [46, 47]. Moreover, one has to
make sure that the cooling rate is sufficient to maintain the whole ion crystal close
to the Doppler temperature.

4.2 Spectroscopy with a single probe laser

To circumvent both the dark resonances and Doppler heating effect in trapped ions,
we utilize fast laser switching to perform spectroscopy of both the |g〉 → |e〉 and
|d〉 → |e〉 transitions. For 40Ca+, the two dipole transitions are the 2S1/2 →2P1/2

and 2D3/2 →2P1/2 transitions. The idea is to have only one probe laser on during
the probing time. If the probe pulse is sufficiently short and weak, the number of
photons scattered is directly proportional to the coupling rate (or the scattering rate)
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from the probe laser. Specifically, we first prepare the atoms in the ground state |g〉.
Then we induce a transition to the excited state |e〉 and detect photons scatter from
the atoms. However, the atom might decay to the metastable state |d〉. A repumper
laser is applied to depopulate the |d〉 state. A similar procedure is used to probe
the |d〉 → |e〉 transition. In the following section, we present now the theory and
experiments demonstrating this novel technique.

4.2.1 Time evolution of atomic populations

4.2.1.1 Spectroscopy on the |g〉 → |e〉 transition.

To perform spectroscopy on the |g〉 → |e〉 transition, we have a probe laser which
couples these two states. The coupling rate is given by R0. The excited state can
decay to either the ground state |g〉 or the metastable state |d〉 with probabilities
given by p and 1−p, respectively (as shown in Fig. 4-1). With only one laser present,
the atomic populations can be modeled using a set of rate equation given by [48]

dρg(t)

dt
= −R0ρg(t) + (pγ +R0) ρe(t) (4.1)

dρe(t)

dt
= R0ρg(t)− (γ +R0) ρe(t) (4.2)

dρd(t)

dt
= (1− p)γρe(t), (4.3)

where γ is the decay rate of the excited state. With the initial conditions pe(0) =
pd(0) = 0 and pg(0) = 1, we can solve for the time evolution of the excited state
population exactly:

pe(t) =
2R0e

−t(γ+2R0)/2

√
(γ + 2R0)2 − 4(1− p)γR0

sinh

(
t

2

√
(γ + 2R0)2 − 4(1− p)γR0

)
. (4.4)

In the limit of low saturation, R0 � 1, the expression is reduced to

ρe(t) =
R0

γ
e−(1−p)R0t. (4.5)

The number of photons scattered after a duration T given by

N(T ) =

∫ T

0

ρe(t)γdt =
1

1− p
(
1− e−(1−p)R0T

)
. (4.6)

If the detection duration T is short such that (1 − p)R0T � 1, we can expand the
exponent and obtain

N(T ) ≈ R0T

(
1− (1− p)R0T

2
+ ...

)
. (4.7)
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Figure 4-2: Typical averaged fluorescence dynamics collected for ∼ 106 measurement
cycles. (a) Laser intensities are adjusted to perform spectroscopy on the |g〉 → |e〉
transition. (b) The spectrum of the |g〉 → |e〉 transition is observed by collecting
photons at 397 nm scattered when the 866 nm probe laser is turned on.

This suggests that for R0 � 1 and (1− p)R0T � 1, the number of photons scattered
is directly proportional to the coupling rate of the laser R0.

4.2.1.2 Spectroscopy on the |d〉 → |e〉 transition.

Performing spectroscopy on the |d〉 → |e〉 transition is slightly different from the
previous case because experimentally we do not directly detect photons scattered
from the |d〉 → |e〉 transition. Instead, we extract the coupling rate, R′0, of the laser
addressing |d〉 → |e〉 by measuring photons emitted from |e〉 to |g〉.

The rate equations are given by

dρg(t)

dt
= pγρe(t) (4.8)

dρe(t)

dt
= R′0ρd(t)− (γ +R′0) ρe(t) (4.9)

dρd(t)

dt
= −R′0ρd(t) + ((1− p)γ +R′0) ρe(t). (4.10)

The time evolution of the excited state is given by

pe(t) =
2R′0e

−t(γ+2R′0)/2

√
(γ + 2R′0)2 − 4pγR′0

sinh

(
t

2

√
(γ + 2R′0)2 − 4pγR′0

)
. (4.11)
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At low saturation R′0 � 1 we have

ρe(t) =
R′0
γ
e−pR

′
0t. (4.12)

Eventually, the ion will be in the ground state |g〉 as t → ∞. The number of
photons emitted from the transition |e〉 → |g〉 is precisely the population in the
ground state. Hence, the average number of photons emitted is given by

N ′(T ) = ρg(t = T ) = pγ

∫ T

0

ρe(t)dt = 1− e−pR′0T . (4.13)

At small detection duration T, we have

N ′(T ) ≈ pR′0T

(
1− pR′0T

2
+ ...

)
, (4.14)

which suggests that the number of photons emitted from |e〉 to |g〉 is directly propor-
tional to the coupling rate R′0 of the probe laser.

We would like to point out that while Eq. (4.7) and (4.14) result from using a low
intensity approximation, both R0 and R′0 can be solved directly from Eq. (4.6) and
(4.13). For example, from Eq. (4.6), we have

R0 = − 1

(1− p)T ln(1−N(T )(1− p)). (4.15)

In this case we need to know the number of photons scattered N(T ) which can
be calculated from the detection efficiency ε. As we will see in in Chapter 5, we
can measure the detection efficiency by the photons counting method when the ion
population is transferred back from the dark state to the ground state through the
excited state (|d〉 → |e〉 → |g〉).

4.2.2 Spectroscopy on dipole transitions with fast laser switch-
ing

We apply the scheme described above to perform spectroscopy of the 2S1/2 →2P1/2

and 2D3/2 →2P1/2 transitions for 40Ca+. Experimentally, we have a probe laser beam
which addresses the transition we want to measure. Then we have to transfer the
ions back to the appropriate initial state using the so-called “reset” beam. For the
2S1/2 →2P1/2 transition, the probe beam is the laser light at 397 nm and the reset
beam is the laser light at 866 nm. For the 2D3/2 →2P1/2 transition, the roles of
the laser beams are reversed. Typical fluorescence counts collected from 7-8 ions
after ∼ 106 iterations are shown in Fig. 4-2. We can see from Fig. 4-2 that the
fluorescence during the probing duration is approximately constant due to a short
probing duration. Experimentally, we use a probe duration of 2 µs and the reset
duration of 10 µs.
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Figure 4-3: The fluorescence spectrum of the 2S1/2 →2P1/2 transition for 40Ca+as the
frequency of the laser, fL, is scanned across the transition. This data is collected from
a crystal of 7 ions after 106 measurement cycles for each data point.

Since the probe laser can heat up the ions by the Doppler heating effect especially
when the probe laser is blue-detuned from the atomic transition, we interleave a
Doppler cooling period of about 1 ms once every 50 iterations of the probe cycle. The
resulting spectra of the 2S1/2 →2P1/2 and the 2D3/2 →2P1/2 transitions are shown in
Fig. 4-3 and 4-5, respectively. The solid lines are theoretical fits with the effect of
micromotion included. (The model is described in details in the next section.) From
the fit, the line-center can be determined with a precision of ∼200 kHz. Each data
point is taken with 106 iterations of probing. The whole frequency scan takes about
10 minutes to complete. The error-bars include the Poissionian counting statistics
and uncertainty in the laser power, which is approximately 1-2%.

4.3 Micromotion modulated spectra

We now apply the experimental scheme discuss in the precious section to observing
the effects of micromotion on the spectra of dipole transitions in 40Ca+.

4.3.1 Micromotion spectra at different trap frequencies

If there is a static stray electric field, ~Es, in the trapping region, the ions are displaced
from the RF null of the potential generated by the trap electrodes. This causes the so-
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called “excess” micromotion, which is micromotion in addition to the fundamentally
unavoidable micromotion from the trapping mechanism described in Section 2.1.

We again follow [31] to analyze the effect of the stray electric field. With a static

electric field ~Es applied to the ions, the equations of motion become

üi + (ai + 2qi sin (ΩDt))
Ω2
D

4
ui =

Q ~Es · ûi
m

, (4.16)

where Q is the electrical charge of the ions. The lowest-order solution is given by

ui ≈ (u′i + u0i cos (ωit+ δi))
(

1 +
qi
2

sin (ΩDt)
)
, (4.17)

where

u′i =
4Q ~Es · ûi

m(ai + q2
i /2)Ω2

D

. (4.18)

Compared to Eq. (2.16), the stray electric field induces an additional motion which
oscillates at the drive frequency ΩD. The amplitude of this additional “excess” mi-
cromotion is directly proportional to the amplitude of the stray electric field.

Now we want see the effect of the excess micromotion on the fluorescence spectrum.
Due to the Doppler shift, the electric field of the laser light seen by an ion in a trap
is given by

E(t) = Re
[
E0e

i(~k·(~u0+~u′)−ωlasert)
]
, (4.19)

where E0 is the amplitude of the laser field, ~k is the wavevector of the laser and ωlaser

is the frequency of the laser. We can write

~k · ~u′ = β cos (ΩDt+ φm), (4.20)

where φm is the phase associated with the micromotion and β is the micromotion
modulation index given by

β =

√(
1

2
(kxu′xqx + kyu′yqy)

)2

+ C, (4.21)

where C accounts for any additional micromotion caused by a phase difference be-
tween the potentials on the trap RF electrodes or micromotion from the axial direc-
tion. With Eq. (4.20), we can write the electric field in Eq. (4.19) as

E(t) = Re
[
E0e

iβ cos (ΩDt+φm)ei(
~k·~u0−ωlasert)

]
. (4.22)

To completely see the effect of the this laser field on the fluorescence spectrum, we
have to solve the optical Bloch equations. However, in a limit of a low saturation
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Figure 4-4: Micromotion modulated fluorescence spectra of the S1/2 →P1/2 transition
for 40Ca+ at different modulation indices, β, due to different trap frequencies.
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Figure 4-5: Micromotion modulated fluorescence spectra of the D3/2 →P1/2 transition
for 40Ca+at high and low modulation index β due to different trap frequencies.

parameter, we can use the Bessel functions expansion

eiβ cos (ΩDt+φm) =
∞∑

n=−∞

Jn(β)ein(ΩDt+φm+π/2), (4.23)

where Jn is the n-th order Bessel function. We then solve the Bloch equations for
each individual laser frequency of different micromotion sidebands. The resulting
fluorescence spectrum is given by

P ∝ |E0|2
∞∑

n=−∞

J2
n(β)

(δ + nΩD)2 + (γ/2)2
, (4.24)

where δ is the detuning of the laser from the atomic transition frequency. We measure
the fluorescence spectra of the 2S1/2−2P1/2 and 2D3/2−2P1/2 transitions for 40Ca+ at
different trap frequencies, which are displayed in Fig. 4-4 and 4-5. We can see promi-
nent peaks at the multiple of the drive frequency ΩD ∼ 2π × 30.7 MHz for various
values of β.

To see more clearly the dependence of β on the trap frequency, we rewrite Eq.
(4.21) as

β =

√
1

λ2
LΩ4

D

(
A

f 2
x

+
B

f 2
y

)2

+ C, (4.25)

where fx and fy are the two radial trap frequencies and λL is the wavelength of the
laser light. We change the value of the radial trap frequency by changing the RF power
applied to the trap electrodes. However, we did not change fx and fy independently
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Figure 4-6: Relationship between the two radial trap frequencies, fx and fy. The
linear fit gives fy = 1.18(4) · fx − 0.63(8) (MHz).

from each other. The relationship between the two radial trap frequencies1 as we
change the RF power is shown in Fig. 4-6, with a resulting linear fit given by

fy = 1.18(4) · fx − 0.63(8) (MHz). (4.26)

With this, we can plot the dependence of β, which is obtained by fitting the spectra in
Fig. 4-4, on the trap frequency, fx, as shown in Fig. 4-7. The solid line is a fit according
to Eq. (4.25). The fit reveals that (A,B) = (1.1± 0.6, 1.0± 0.4)× 107 nm ·MHz4 and
C = 0.00(3) with a reduced chi-squared of χ2

red ≈ 1.06. The value of C suggests that
the effect from the phase difference of the potentials on the trap electrodes is small.

Another interesting observation can be made regarding the dependence of β on
the laser wavelength. At the trap frequency of fx = 1.07 MHz, the spectra of the
2D3/2 →2P1/2 and 2S1/2 →2P1/2 transitions yield the modulation indices to be β866 =
1.04(5) and β397 = 2.31(5). The ratio β397/β866 = 2.22(12) is consistent with the ratio
of the laser wavelengths λ866/λ397 ≈ 2.18 according to Eq. (4.25). The modulation
index is higher for shorter wavelength because of the relative amount of Doppler shift
of the laser light seen by the ion. One can also view this dependence as a result of
different Lamb-Dicke parameters.

1We measure the trap frequencies by the pulse excitation method similar to the one used in [23].
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Figure 4-7: Micromotion modulation index, β, measured as a function of trap fre-
quency, fx.

4.3.2 Spectral modulation due to intensity gradient

If a tightly focused probe laser beam is displaced from the ions, micromotion leads
to amplitude modulation of the laser light. This allows us to detect micromotion
perpendicular to the laser axis.

For the mathematical description, we write the laser light intensity gradient as
~∇ · E. Now the electric field of the laser seen by the ions is given by

E(t) = Re
[
E0(1 + β′ cos (ΩDt+ φ′m))ei(β cos (ΩDt+φm)−ωLt+φL)

]
, (4.27)

with β′ = ~u′ · ~∇E/E0. Again, we use the Bessel functions expansion and obtain

E(t) = E0(1 + β′ cos (ΩDt+ φ′m))×
∞∑

n=−∞

Jn(β) cos
(
n(ΩDt+ φm +

π

2
)− ωLt+ φL

)
. (4.28)

We explicitly evaluate this expression:

E(t)

E0

=
∞∑

n=−∞

Jn(β) cos
(
n(ΩDt+ φm +

π

2
)− ωLt+ φL

)
+

β′
∞∑

n=∞

Jn(β)
[
cos (ΩDt+ φ′m) cos

(
n(ΩDt+ φm +

π

2
)− ωLt+ φL

)]
. (4.29)
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Since φm = φ′m, we use the trigonometric identity

cosA cosB =
cos (A−B) + cos (A+B)

2
, (4.30)

and the second term of the RHS in Eq. (4.29) becomes

β′
∞∑

n=∞

Jn(β)
[
cos (ΩDt) cos

(
n(ΩDt+ φm +

π

2
)− ωLt+ φL

)]

=
β′

2

∞∑

n=−∞

Jn(β)
[
cos
(
n(ΩDt+ φm +

π

2
)− ωLt+ φL − ΩDt

)]
+

β′

2

∞∑

n=−∞

Jn(β)
[
cos
(
n(ΩDt+ φm +

π

2
)− ωLt+ φL + ΩDt

)]
(4.31)

=
β′

2

∞∑

n=−∞

(Jn+1(β)− Jn−1(β))
[
sin
(
n(ΩDt+ φm +

π

2
)− ωLt+ φL

)]
.

(4.32)

The electric field now becomes

E(t)

E0

=
∞∑

n=−∞

Jn(β) cos
(
n(ΩDt+ φm +

π

2
)− ωLt+ φL

)
+

β′

2

∞∑

n=−∞

(Jn+1(β)− Jn−1(β))
(

sin
(
n(ΩDt+ φm +

π

2
)− ωLt+ φL

))
(4.33)

=
∞∑

n=−∞

√
J2
n(β) +

β′2

4
(Jn+1(β)− Jn−1(β))2×

(
sin
(
n(ΩDt+ φm +

π

2
)− ωLt+ φL + ψ(n)

))
, (4.34)

where ψ(n) is the phase given by

ψ(n) = tan−1

(
2Jn(β)

β′(Jn+1(β)− Jn−1(β))

)
(4.35)

Analogous to Eq. (4.24), the fluorescence spectrum of the ions is given by

P ∝ ‖E0‖2

∞∑

n=−∞

J2
n(β) + β′2

4
(Jn+1(β)− Jn−1(β))2

(δ + nΩD)2 + (γ/2)2
. (4.36)

Using an identity for the Bessel functions,

J ′n(β) =
∂Jn(β)

∂β
=
Jn−1(β)− Jn+1(β)

2
, (4.37)
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Figure 4-8: Effect of laser light intensity gradient, β′, on the simulated fluorescence
spectra with β = 0. The micromotion sideband at ΩD = 1.3Γ is clearly visible
for larger values of β′. Note that only first-order sidebands are present because the
modulation is only from the intensity of the laser.

we have

P ∝ ‖E0‖2

∞∑

n=−∞

J2
n(β) + β′2(J ′n(β))2

(δ + nΩD)2 + (γ/2)2
. (4.38)

To see how the intensity gradient influences the fluorescence spectrum, consider
a situation where there is no micromotion in the direction of the laser light (β = 0).
If there is no intensity modulation, the spectrum has no sideband since Jn(0) = 0
for n 6= 0. However, if there is a finite intensity gradient (β′ 6= 0), there will be
sidebands at n = ±1 since J ′n=±1(0) = ±1/2 but no sideband at higher orders. Figure
4-8 shows simulated spectra with this effect at different values of β′ for β = 0, which
shows no sideband of order higher than the first order. On the other hand, if there
is micromotion in the direction of the laser light, higher order sidebands become
visible, as shown in Figure 4-9 for β = 1.0. The distinction between these two line-
shapes allow us to experimentally compensate micromotion in the direction both
perpendicular to the laser light direction (from intensity gradient) and along the laser
light direction.
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Figure 4-9: Effect of laser light intensity gradient, β′, on the simulated fluorescence
spectra with β = 1.0. Higher order sidebands are from the micromotion in the laser
direction. They are due to the Doppler effect and not the intensity gradient.
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Chapter 5

Measurement of branching fraction

An excited atomic state usually has multiple decay channels. For example the excited
2P1/2 state of 40Ca+can decay to either the ground 2S1/2 state or the metastable
2D3/2. Each decay channel has a fixed probability, called the branching fraction of
this channel. Branching fractions of atomic states depend on the atomic structure and
how each transition couples to the background vacuum field. Theoretical calculations
of the branching fractions for complex atoms are demanding and theorists usually
have to resort to many kinds of approximations [49, 50, 51, 52]. Comparing these
calculated values to precisely measurements provides a good estimate on the accuracy
of the models used in the calculations.

There have been a few measurements of the branching fractions of trapped ions.
The method by Gerritsma et al. [53], which is applied to measuring the branching
fractions of 40Ca+for the excited 2P3/2 state, utilizes a narrowband laser at 729 nm
for state readouts and preparations. However, this method is not applicable to the
decay of the 2P1/2 state since it requires at least three decay channels. The scheme by
Kurz et al. [54], which uses an ultra-fast laser pulse to measure the branching fraction
of the 2P3/2 state for Ba+, is applicable to the 2P1/2 state for 40Ca+. However, the
requirement of an ultra-fast laser complicates the experimental setup and introduces
additional systematic errors. In this chapter, we present a simple experimental scheme
to measure the branching fractions of the two decay channels of the excited state of
40Ca+ in the J = 1/2 manifold. We then compare the measurement result to the
theoretical calculations in the literature.

5.1 Measurement of branching fractions based on

photon counting

5.1.1 Theoretical considerations for measurement of branch-
ing fractions

We look again at atoms or ions with an energy level structure similar to the one
shown in Fig. 4-1. The excited state |e〉 can decay to either the ground state |g〉 or
the metastable state |d〉 with probabilities of p and 1− p, respectively. Assume that
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we have a single laser which couples the state |g〉 to |e〉. We measure this parameter
p by counting the number of photons emitted on the |e〉 → |g〉 transition by the ions
until the ions are trapped in the dark state |d〉. We then repump the ions from the |d〉
state and the ion will emit exactly one photon on the |e〉 → |g〉 transition, therefore
allowing us to calibrate the detection efficiency.

The time evolution of the atomic populations can be calibrated by solving a set
of rate equations similar to Eq. (4.1) to (4.3). However, those rate equations do not
include the coherence between the ground state and the excited state induced by the
laser. To fully capture this coherent effect, we use optical Bloch equations [48]. Those
are given by

ρ̇ee(t) =
iΩL(t)

2
(ρeg(t)− ρge(t))− γρee(t) (5.1)

ρ̇gg(t) =
iΩL(t)

2
(ρge(t)− ρeg(t)) + pγρee(t) (5.2)

ρ̇eg(t) = (iδ(t)− γ

2
)ρeg(t) +

iΩL(t)

2
(ρee(t)− ρgg(t)) (5.3)

ρ̇dd(t) = (1− p)γρee(t), (5.4)

where ΩL(t) is the Rabi frequency associated with the laser. Here we include explicitly
the time dependence of both the laser intensity and detuning. In the rate equations
in the previous chapter (Eq. (4.1) to (4.3)), we treat these parameters as fixed.

The mean number of photons scattered from the ions is given by

〈n〉 =

∫ ∞

0

γρee(t)dt. (5.5)

Substituting the expression for ρee(t) from Eq. (5.4), we get

〈n〉 =
1

1− p

∫ ∞

0

ρ̇dd(t)dt =
1

1− p(ρdd(t→∞)− ρdd(t = 0)). (5.6)

We know that as t→∞ all the ions will be in |d〉 and initially all the ions are in |g〉,
substituting these boundary values yields

〈n〉 =
1

1− p. (5.7)

We sees that 〈n〉 does not depend on any time-variation in laser intensity and detun-
ing.1

Before we proceed further, it is interesting to derive Eq. (5.7) from a probabilistic
point of view. Since the excited state of the ion decays to the dark state with a
probability 1− p, the probability of the ion to be dark after one photon absorption is

1Note that this result still holds even if we consider all Zeeman sub-levels in the Bloch equations,
as long as the laser is linearly polarized or we do not analyze the circular polarization of the emitted
light. We prove this statement in Chapter 6.
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1−p. The probability of the ion to be dark after n photon absorptions is pn−1(1−p).
The average number of photon absorptions is simply

〈n〉 =
∞∑

n=0

= npn−1(1− p) =
1

1− p, (5.8)

which agrees with the result derived from the Bloch equations above.
The last photon is emitted from the |e〉 → |d〉 transition. The frequency of the

photon from this transition is usually very different from the |e〉 → |g〉 transition.
Experimentally, we usually filter out the photons from the |e〉 → |d〉 transition and
detect only photons from the |e〉 → |g〉 transition. (For 40Ca+, we detect photons at
397 nm but not at 866 nm.) Then the number of photons detected is simply

〈N〉 = 〈n〉 − 1 =
p

1− p. (5.9)

Due to a finite detection efficiency, ε, experimentally, we detect only a small fraction
of the photon number, ε〈N〉. Once the ion is in the state |d〉, we can apply laser light
that couples between |d〉 and |e〉 state (866 nm for 40Ca+) to bring the ion back to
the ground state |g〉. During this process, the ion emits exactly one photon from the
|e〉 to |g〉 transition before going back to |g〉, allowing us to measure ε and calculate
the branching fraction p.

5.1.2 Experimental procedure for measuring the branching
fraction

In this section, we describe the experimental procedure to measure the branching
fraction, p, for 40Ca+. We start by preparing all ions in the ground state |g〉. Then
we turn on the laser at 397 nm (called a pump pulse) and collect all the photons at
397 nm until all the ions are in |d〉. Since there is a finite detection efficiency, ε, from
losses in optical elements and a finite solid angle of the detector, the mean number
of photons detected per ion is given by ε〈N〉. Once all the ions are in |d〉, the laser
light at 397 nm is switched off. Next we switch on the laser light at 866 nm (called
a reset pulse) to bring the ions back to the ground state. During this time, the mean
number of photon at 397 nm detected is given by ε. The pulse sequence described
here is shown in Fig. 5-1.

We repeat this procedure for T times. The total number of photon at 397 nm
detected during the pump pulse is given by Nb = εT 〈N〉. The total number of photon
at 397 nm detected during the reset pulse is given by Nr = εT . Together with Eq.
(5.9), we can write

p =
Nb

Nb +Nr

, (5.10)

where the efficiency ε drops out.
The timing of the pulse sequence we use is also shown in Fig. 5-1. Typically, after
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Figure 5-1: Pulse sequence for measuring the branching fraction. During the “pump”
duration, the laser light at 397 nm is switched on to transfer the ion population to
the state |d〉. The photons scattered from the ions during this duration is given by
Nb. After the ions are in the state |d〉, we switch on the laser light at 866 nm to
transfer the population back to the ground state |g〉. The 397 nm photons scattered
during this “reset” is given by Nr. The branching fraction p can be calculated from
p = Nb/Nb +Nr. For the “pump” duration, we switch on the laser light first with low
intensity to keep the count rate low. The last two pulses are for determination of the
background.
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a few measurement cycles, we have to perform Doppler cooling to the ion crystal
(which consists of 13 ions for this particular measurement) to keep the temperature
close to the Doppler temperature. We perform roughly ∼ 108 probing cycles in 10
hours. The result we obtained is p = 0.93565(7). The error is a combination of
statistical and systematic errors as shown in Table 5.1.

5.2 Sources of uncertainties

The Hanle effect and polarization dependence scattering rate. The Hanle
effect is the dependence of the polarization of the scattered photons on the polar-
ization of the excitation laser and the magnetic field strength and orientation. If
the Hanle effect is present in our system, the measured branching fraction using our
method will be affected if the detection path has a bias toward any photon polariza-
tion.

However, the Hanle effect for the J = 1/2 excited state is absent as long as the
excitation laser light is linearly polarized and the detector does not distinguish pho-
tons with different circular polarizations [55]. The result is that the scattering rate
of the ions from the 397 nm laser light is independent of both the magnitude and
orientation of the applied magnetic field. However, the detection optics might be
more efficient for a certain circular polarization than the other circular polarization
due to birefringence in the optical elements. We check this experimentally by mea-
suring p for different magnetic strengths and orientation, as shown in Fig. 5-2. We
found no dependence of p on the magnetic field orientation within our measurement
uncertainty. From this, we conclude that the Hanle effect will affect our branching
fraction measurement by at most 5× 10−5.

Finite AOMs extinction ratio. Even when the AOM is off, there will be laser
light leaking into the optical fiber and arrives at the ion. We measure the ratio of the
light intensity that arrives at the ions between the AOM being on and off in our setup
to be better than 5 × 10−6. Any laser light at 866 nm present during the “probe”
duration brings the ions back to the |g〉 state. The ions then start to scatter the 397
nm light again. We estimate that this effect increases Nb by 2 × 10−5 for our laser
power. The leakage of the 397 nm light during the “pump” 866 nm also increases Nr

by 7× 10−5. These two uncertainties contribute less than 5× 10−6 to the uncertainty
of the branching fraction.

Off-resonant excitation from the ground state to the 2P3/2 state. Because
the laser diode that produce the light at 397 nm for our experiment also contains
a small amount of light at 393 nm, an ion at the ground state can get excited to
the 2P3/2 state instead of the 2P1/2 state. We estimate an error due to this effect by
observing how often the ions become dark during Doppler cooling. The estimated
uncertainty of the branching fraction due to this effect is less than 1× 10−6.
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p - 0.93656

angle (degrees)

overnight runovernight run

Figure 5-2: Branching fraction p measured for different magnetic field strengths and
orientations. The legend shows the current applied to the magnetic coil with ∼1 G/A.
The orientation is the angle of the magnetic field measured from the vertical axis of
the experiment. The blue data point is take with the polarization of the 397 nm laser
rotated by 90°. The purple data point is our final measurement. The two overnight
runs for magnetic field at different orientations confirm that the value of p does not
change within our statistical uncertainty.
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Effect Shift Error

Photon counting statistical error - 5× 10−5

Detection optics birefringence - 5× 10−5

PMT dead time 7× 10−6 3× 10−6

Lifetime of 32D3/2 State 2× 10−6

Extinction ratio of AOMs - 5× 10−6

Off-resonant excitation to 42P3/2 state < 1× 10−6 -
Finite measurement duration 15× 10−6 6× 10−6

Total 22× 10−6 7× 10−5

Table 5.1: List of measurement uncertainties for the branching fraction of 40Ca+.

Finite dark time of the photo-multiplier tube (PMT). There is a finite re-
covery time (or dead time) for the PMT after detecting a photon. Hence, if the count
rate is too high, the PMT underestimates the count rate. To minimize this error,
we have to keep the count rate as low as possible. This done by first turning on
the 397 nm pump light at low intensity and then at high intensity, as shown in Fig.
5-1. Our PMT (Sens Tech® model P25PC)has a dead time of 16.5 ns. We estimate
that the PMT dead time contributes 7×10−6 fractional shift with 3×10−6 fractional
uncertainty to the uncertainty budget of the branching fraction.

Finite lifetime of the dark state. The D3/2 state of 40Ca+(the state |d〉 in the
measurement scheme) has a natural lifetime of ∼ 1.2 seconds [33]. If the duration of
the pump pulse is too long, the ion can decay from |d〉 back to |g〉 by spontaneous
emission and starts to scatter again. We minimize this effect by shortening the pulse
duration of the lasers. The pulse duration of 5-10 µs is relatively short compared to
the lifetime of the D3/2 state. We estimate that the finite lifetime of the D3/2 state
contributes to the final result about 2× 10−6 fractional error. On the other hand, we
also rely on having the laser pulse long enough such that we are confident that all
the ions are in |d〉 at the end of the pump duration. Our pulse duration of 5-10 µs
contributes 1.5× 10−5 fractional shift with 6× 10−6 fractional error to the branching
fraction.

Counting statistical errors. The measured values of both Nb and Nr are both
described by the Poisson statistics. A simple error propagation of Eq. (5.10) gives

δp

p
=

Nr

Nr +Nb

√(
δNr

Nr

)2

+

(
δNb

Nb

)2

. (5.11)

After 108 experimental cycles, our measurement yields Nr ∼ 2×106 and Nb ∼ 3×107.
This results in δp/p ∼ 5 × 10−5. The summary of all the uncertainties is given in
Table 5.1.
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This work

Figure 5-3: Measurement of the branching fraction compared to various theoretical
calculations in the literature. Legend: (•, I) Liaw et al. [51], (?) Guet et al. [50],
(J) Sahoo et al. [49], (�) Arora et al. [52]. The error bar of our experimental data is
smaller than the size of the data point.

5.3 Measurement result and discussion

Our measurement yields p = 0.93565(7) for 40Ca+. A comparison between this mea-
sured value and various theoretical values is shown in Fig. 5-3. Since the uncertainty
of our measurement is small enough to distinguish between calculation models, our
measured value can be used as a guideline for improvement of future theoretical works.

Because our experimental method only requires that the excited state decays to
either a ground state or other metastable state, the measurement scheme can be
readily applied to various atomic and ion species. In Au, there is work on both
theory and experiment related to its atomic structure [56, 57, 58]. Other ions such
as Sc++ [59], Sr+ [60, 61], Yb+, Ba+, Ra+ [8, 62, 63, 64] and Hg+ have excited states
with J = 1/2. Some of these heavy ions are especially relevant in probing the parity
non-conservation effect.

Our method is also applicable to excited states with J 6= 1/2, although the Hanle
effect will affect the measurement more strongly than the case for J = 1/2. For exam-
ple, the branching fractions of the excited 2P3/2 state of 40Ca+(with the energy level
shown in Fig. 5-4) can be measured this way if we do not have a narrow linewidth
729 nm laser. Analogous to the scheme presented in the previous section, the idea is
to have additional repumping lasers to selectively turn off any decay channel. Specif-
ically, the experimental procedure is the following:

1. We measure the number of blue photons, N393, (at 393 nm) with only the 393
nm laser on. As in Eq. (5.9), we have

N393 =
pεT

1− p, (5.12)

where ε is the detection efficiency and T is the number of the probe cycles.
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Figure 5-4: Energy diagram involving the excited 2P3/2 state which has three decay
channels.

2. We measure the number of the blue photons with both the 393 nm and 850 nm
lasers on. To avoid the complication of dark resonances, we alternate the 393
nm and 850 nm laser for the “pump” pulses until ions are in the |d2〉 state. The
number of photons measured is given by

N393,850 =
(p+ q)εT

1− p− q . (5.13)

3. Instead of the previous step, we can instead measure the number of the blue
photons with both the 393 nm and 850 nm lasers on. In this case, we have

N393,854 =
(1− q)εT

q
. (5.14)

4. For each probe cycle, the “reset” pulses consist of having both 866 nm and 850
nm lasers on. The number of blue photons during the “reset” pulses is given by

N850,854 = εT. (5.15)

5. The value of the branching fractions are then given by

p =
N393

N393 +N850,854

and q =
N850,854

N850,854 +N393,854

. (5.16)
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It is important to note that for the excited 2P3/2 state, we are more sensitive to the
Hanle effect compared to the case of excited 2P1/2 state. There will be a dependence
of the measured photon number on the direction of the linear polarization of the
excitation lasers and the orientation of the optics along the detection path.2 How-
ever, a careful characterization of the optics and laser polarization should allow us to
measure both p and q at the same level of precision as shown for the 2P1/2 state.3

2Most dielectric mirrors have different reflectivity between the s and p polarizations of the incident
beam.

3The level of control over the laser polarization required to achieve 10−5 precision in the branching
fraction for the 2P3/2 state depends on the strength of the magnetic field. For 40Ca+, at magnetic
field strength around 1 G, the laser polarization must be controlled to better than 10−3 level.
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Chapter 6

Observation of the Hanle effect
with trapped ions

Measuring the linewidth of the atomic dipole transition (or equivalently the lifetime
of the excited state) with high precision is one of the most challenging task in atomic
physics. This is because the atomic excited state is extremely sensitive to the envi-
ronment. Any small perturbation is likely to induce the decay of the excited state to
the ground state, effectively shortening the measured lifetime. There are also many
line broadening mechanisms (such as Doppler and power broadenings) that contribute
to the systematic uncertainty when performing spectroscopy on trapped atoms and
ions. For 40Ca+, the best measurement of the lifetime of the excited 2P1/2 state is
7.10± 0.02 ns by Jin et al. using the method of collinear ion-beam spectroscopy [26].
This measured value currently disagrees with the calculated value of 6.88±0.06 ns by
Safronova et al. by almost 4 standard deviations [27]. It is then beneficial to provide
additional measurements to resolve this discrepancy.

One experimental technique that experimentalists have been using to measure
the lifetimes of the atomic excited states for many decades is the Hanle effect. A
precession of an atomic dipole moment in a magnetic field provide a fluorescence
signal that depends on the strength of the magnetic field and the atomic lifetime.
Since we can use the ion itself as a magnetic field probe, it seems feasible to use
this scheme to improve the precision of the measured lifetime of the 2P1/2 state for
40Ca+. In this chapter we survey an experimental scheme to measure the lifetime of
the excited state of 40Ca+using the Hanle effect. We present a detailed theoretical
analysis for various experimental configurations.

6.1 Introduction to the Hanle effect

The observation of the Hanle effect, which was a main part of Wilhelm Hanle’s Ph.
D. thesis in 1922, is one of the very first atomic physics experiments that helped
develop the structure and understanding of quantum physics. Hanle studied the
dependence of the light intensity and polarization emitted from excited atoms in the
presence of a strong static magnetic field. He found that by detecting only a certain
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Figure 6-1: Condition for creating coherence in the excited states. The energy split-
ting of the excited states should be comparable to the linewidth of the transition.

polarization of the light emitted from the atoms, the measured light intensity depends
strongly on the magnitude and direction of the applied magnetic field [65]. Classically,
we can describe the Hanle effect as a precession of the atomic dipole moment in a
magnetic field. Since the orientation of the dipole determines the polarization of the
light emitted, as the dipole precesses, the polarization of the light also changes as a
function of time. However, the excited state eventually decays back to the ground
state. It turns out that the intensity of the light of certain polarization is maximized
when the precession period coincides with the lifetime of the excited state. Relying
on this fact, experimentalists have been using the Hanle effect to measure the lifetime
of the excited states for many decades [66, 67, 68].

6.1.1 Coherence in the excited state

In the point of view of quantum mechanics, the Hanle effect (or level-crossing spec-
troscopy) arises from the coherence in the excited states [69, 70, 71]. If the spacing
between different excited states is comparable to the linewidth of the transition, then
the coherence in the excited states can be created by simultaneously exciting them
using optical radiation, as shown in Fig. 6-1. This condition is usually met by means
of the Zeeman splitting of the excited state (which is about 1-2 MHz per 1 Gauss of
applied magnetic field). This is comparable to the linewidth of dipole allowed transi-
tion, which is usually in the order of a few MHz. After the excitation, the coherence
or the superposition of the excited states evolves according to the difference between
the populated energy eigenstates This can be done by performing measurements in
the basis different from the of the eigenbasis of the system.

To analyze the Hanle effect in more detail, consider a superposition of states
created in a way illustrated in Fig. 6-1. An excitation to both excited states simulta-
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Figure 6-2: Typical experimental setup to observe the Hanle effect. Excitation light
propagates perpendicular to the magnetic field. Circularly polarized light can excite
both excited state simultaneously, creating a superposition state. The detector is
place in the direction perpendicular to both the magnetic field direction and the
excitation light direction. The detector only detects a certain circular polarization.

neously can be realized by having circularly polarized light propagating perpendicular
to the quantization axis set by the magnetic field, as shown in Fig. 6-2. The state
right after the excitation is given by

|Ψ〉 = a |↑〉+ b |↓〉 , (6.1)

where |↑〉 and |↓〉 are the two magnetic sub-levels of the excited state. The state then
evolves according to the energy of each component:

|Ψ(t)〉 = ae−iE↑t |↑〉+ be−iE↓t |↓〉 , (6.2)

where we set ~ = 1. If we perform a measurement after the state has evolved for time
t in the eigenbasis, then the result does not depend on the time:

| 〈↑ |Ψ(t)〉 |2 =
a2

a2 + b2
and | 〈↓ |Ψ(t)〉 |2 =

b2

a2 + b2
. (6.3)

To extract the phase difference between |↑〉 and |↓〉, we have to measure in a different
basis |V 〉 = |↑〉 − |↓〉 and |H〉 = |↑〉+ |↓〉. We then have

| 〈V |Ψ(t)〉 |2 ∝ a2 + b2 − 2ba cos (∆Et), (6.4)

where ∆E = E↑ − E↓ is the Zeeman splitting of the excited state. Detecting in
{|V 〉 , |H〉} basis can be done by placing a detector in a direction perpendicular to
both the quantization axis and the direction of the excitation light, as shown in Fig.
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Figure 6-3: Typical Hanle signal. S is the light intensity at the detector (which
detects only a certain circular polarization). The horizontal axis is the energy splitting
between the two Zeeman levels of the excited state. S is maximum when ∆E = Γ.

6-2. The detector must detect only a certain circular polarization.
Next we include the finite lifetime of the excited states, which we model as an

exponential decay with a decay rate of Γ. The signal is then

S(t) ∝ e−Γt(a2 + b2 − 2ba cos (∆Et)). (6.5)

We find the total signal by integrating the signal with respect to time:

S ∝
∫ ∞

0

S(t)dt ∝ 1

Γ
+

∆E

∆E2 + Γ2
. (6.6)

A typical Hanle signal is plotted in Fig. 6-3. The term ∆E is directly proportional
to the magnitude of the magnetic field. Hence, to extract the lifetime of the excited
state, we have to measure the detector signal as a function of the magnitude of the
magnetic field. The maximum signal occurs when the Zeeman splitting of the excited
states matches the decay rate (or the lifetime of the excited state).

It is important to note that before the invention of lasers, all observations of the
Hanle effect were carried out with discharge lamps as light sources [66, 67, 68]. In
this sense, the light that interacts with atoms (usually confined in a vapor cell) has a
broad spectral linewidth and does not induce any coherence between the ground and
excited states of the atoms [72]. In the analysis above (and in other textbooks such
as [73]), we assume that this is the case. However, if we perform the experiment with

64



|3i

|4i+1/2

�1/2

mJ

|5i

|6i

|7i

+3/2

�3/2

+1/2

�1/2

|8i
mJ

|1i

|2i+1/2

�1/2

mJ

�r�b

gJmJ

gJmJ

gJmJ

+1

�1

�6/5

�2/5

+2/5

+6/5

+1/3

�1/3

S1/2

P1/2

D3/2

Figure 6-4: Diagram of the parameters of the 8-level Bloch equations.

lasers (which have narrow spectral linewidth), we cannot neglect this coherence and
have to use full optical Bloch equations to analyze the problem [74, 65, 75]. In the
next section, we will study this effect carefully.

6.1.2 Optical Bloch equations with all magnetic sub-levels

To include all the coherences in the system, we have to use the optical Bloch equations
(OBE) which include the full light-atom interactions and sources of decoherence from
spontaneous emissions and a finite laser linewidth. The basis of the OBE is again
the quantum Liouville equation as in Eq. (2.31) with the Liouvillian given by Eq.
(2.32). To analyze the Hanle effect in atoms which have an energy level structure
similar to 40Ca+, we setup the problem as in Fig. 6-4. Since solving the OBE for the
full system is lengthy and tedious, we show here only the analysis of the experiment
involving the |1〉, |2〉, |3〉 and |4〉 levels in Fig. 6-4. For 40Ca+, this corresponds to
a situation where only circularly polarized light at 397 nm illuminates the ions with
the geometry given in Fig. 6-2.

The Hamiltonian in the interaction picture is given by

H =




∆b − ε 0 ΩL/2 −ΩL/2
0 ∆b + ε ΩL/2 −ΩL/2

ΩL/2 ΩL/2 −ε/3 0
−ΩL/2 −ΩL/2 0 ε/3


 , (6.7)

where ΩL is the Rabi frequency associated with the intensity of the laser light,
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ε = µBB and ∆b is the detuning of the “blue” laser light (397 nm for 40Ca+) from
the atomic transition. For arbitrary light polarization and direction, the entry that
contains atom-light interaction can be calculated using the matrix elements given in
Appendix A.2.

Using the AtomicDensityMatrix package in Mathematica®, the OBE can be gen-
erated conveniently.1 We have a set of differential equations:

ρ̇11(t) = − i
~

(
ΩL

2
(ρ14 − ρ41 + ρ31 − ρ13)

)
+
pΓ

3
ρ33 +

2pΓ

3
ρ44 (6.8)

ρ̇12(t) = − i
~

(
ΩL

2
(ρ14 − ρ42 + ρ32 − ρ13)− 2ερ12

)
− Γ

3
ρ34 (6.9)

ρ̇13(t) = − i
~

(
ΩL

2
(ρ33 − ρ43 − ρ11 − ρ12)− (∆b −

2

3
ε)ρ13

)
− Γ

2
ρ13 − γρ13 (6.10)

ρ̇14(t) = − i
~

(
ΩL

2
(ρ12 + ρ34 + ρ11 − ρ44)− (∆b −

4

3
ε)ρ14

)
− Γ

2
ρ14 − γρ14 (6.11)

ρ̇21(t) =
i

~

(
ΩL

2
(ρ41 − ρ24 + ρ23 − ρ31)− 2ερ21

)
− Γ

3
ρ43 (6.12)

ρ̇22(t) = − i
~

(
ΩL

2
(ρ24 − ρ42 + ρ32 − ρ23)

)
+
pΓ

3
ρ44 +

2pΓ

3
ρ33 (6.13)

ρ̇23(t) = − i
~

(
ΩL

2
(ρ33 − ρ43 − ρ21 − ρ22) + (∆b +

4

3
ε)ρ23

)
− Γ

2
ρ23 − γρ23 (6.14)

ρ̇24(t) = − i
~

(
ΩL

2
(ρ21 + ρ22 + ρ34 − ρ44) + (∆b +

2

3
ε)ρ24

)
− Γ

2
ρ24 − γρ24 (6.15)

ρ̇31(t) =
i

~

(
ΩL

2
(ρ33 − ρ34 − ρ11 − ρ21)− (∆b −

2

3
ε)ρ31

)
− Γ

2
ρ31 − γρ31 (6.16)

ρ̇32(t) =
i

~

(
ΩL

2
(ρ33 − ρ34 − ρ12 − ρ22) + (∆b +

4

3
ε)ρ32

)
− Γ

2
ρ32 − γρ32 (6.17)

ρ̇33(t) = − i
~

(
ΩL

2
(ρ13 + ρ23 − ρ31 − ρ32)

)
− Γρ33 (6.18)

ρ̇34(t) = − i
~

(
ΩL

2
(ρ14 + ρ24 + ρ31 + ρ32)− 2

3
ερ34

)
− Γρ34 (6.19)

ρ̇41(t) =
i

~

(
ΩL

2
(ρ21 + ρ43 + ρ11 − ρ44)− (∆b −

4

3
ε)ρ41

)
− Γ

2
ρ41 − γρ41 (6.20)

ρ̇42(t) =
i

~

(
ΩL

2
(ρ12 + ρ22 + ρ43 − ρ44) + (∆b +

2

3
ε)ρ42

)
− Γ

2
ρ42 − γρ42 (6.21)

ρ̇43(t) =
i

~

(
ΩL

2
(ρ41 + ρ42 + ρ13 + ρ23)− 2

3
ερ43

)
− Γρ43 (6.22)

ρ̇44(t) = − i
~

(
ΩL

2
(ρ41 − ρ14 + ρ42 − ρ24)

)
− Γρ44 (6.23)

1See Appendix B for more details about how to use this wonderful package.
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ρ̇55(t) = (1− p)Γ(ρ44 + ρ33), (6.24)

where p is the branching fraction of the excited state, Γ is the decay rate of the excited
state and γ is the linewidth of the laser [72]. Here we collectively label every state in
the D3/2 level to be |5〉.

We cannot simply observe a steady state fluorescence of the ions because the
excited states eventually decays to the dark state |5〉. Instead, we use an experimental
scheme similar to that presented in Chapter 5 and measure the total number photons
emitted from the ions before all the ions are in the dark state, i.e. |5〉. This means we
have to integrate Eq. (6.8) to (6.24) with respect to time. Let the boundary conditions
for the atomic populations be all zero except ρ11(0) = 1 and ρ55(t → ∞) = 1. By
writing Pij =

∫∞
0
ρij(t)dt, we have

−1 = − i
~

(
ΩL

2
(P14 − P41 + P31 − P13)

)
+
pΓ

3
P33 +

2pΓ

3
P44 (6.25)

0 = − i
~

(
ΩL

2
(P14 − P42 + P32 − P13)− 2εP12

)
− Γ

3
P34 (6.26)

0 = − i
~

(
ΩL

2
(P33 − P43 − P11 − P12)− (∆b −

2

3
ε)P13

)
− Γ

2
P13 − γP13 (6.27)

0 = − i
~

(
ΩL

2
(P12 + P34 + P11 − P44)− (∆b −

4

3
ε)P14

)
− Γ

2
P14 − γP14 (6.28)

0 =
i

~

(
ΩL

2
(P41 − P24 + P23 − P31)− 2εP21

)
− Γ

3
P43 (6.29)

0 = − i
~

(
ΩL

2
(P24 − P42 + P32 − P23)

)
+
pΓ

3
P44 +

2pΓ

3
P33 (6.30)

0 = − i
~

(
ΩL

2
(P33 − P43 − P21 − P22) + (∆b +

4

3
ε)P23

)
− Γ

2
P23 − γP23 (6.31)

0 = − i
~

(
ΩL

2
(P21 + P22 + P34 − P44) + (∆b +

2

3
ε)P24

)
− Γ

2
P24 − γP24 (6.32)

0 =
i

~

(
ΩL

2
(P33 − P34 − P11 − P21)− (∆b −

2

3
ε)P31

)
− Γ

2
P31 − γP31 (6.33)

0 =
i

~

(
ΩL

2
(P33 − P34 − P12 − P22) + (∆b +

4

3
ε)P32

)
− Γ

2
P32 − γP32 (6.34)

0 = − i
~

(
ΩL

2
(P13 + P23 − P31 − P32)

)
− ΓP33 (6.35)

0 = − i
~

(
ΩL

2
(P14 + P24 + P31 + P32)− 2

3
εP34

)
− ΓP34 (6.36)

0 =
i

~

(
ΩL

2
(P21 + P43 + P11 − P44)− (∆b −

4

3
ε)P41

)
− Γ

2
P41 − γP41 (6.37)

0 =
i

~

(
ΩL

2
(P12 + P22 + P43 − P44) + (∆b +

2

3
ε)P42

)
− Γ

2
P42 − γP42 (6.38)
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0 =
i

~

(
ΩL

2
(P41 + P42 + P13 + P23)− 2

3
εP43

)
− ΓP43 (6.39)

0 = − i
~

(
ΩL

2
(P41 − P14 + P42 − P24)

)
− ΓP44 (6.40)

1 = (1− p)Γ(P44 + P33), (6.41)

where we assume that ΩL is constant. These equations become a set of linear equa-
tions and the value of Pij can be solved exactly. Depending on the detector configu-
ration, we can extract the signal using the fluorescence operator [65]. For example, if
the detector does not distinguish the polarization of the light, we have

F = |3〉〈3|+ |4〉〈4| . (6.42)

To extract the observable from the any operator, we calculate the trace of the product
between the density matrix and the operator. The observed scattering rate is given
by

S = Γ(tr(ρF)) = Γ(ρ33 + ρ44). (6.43)

Since we are interested in the total number of photons, the signal is

S = Γ

∫ ∞

0

tr(ρF)dt = Γ(P33 + P44). (6.44)

Note that the using last equation in the set, Eq. (6.41), we get

S = 〈n〉 =
1

1− p. (6.45)

This confirms the fact in the previous chapter that we do not observe the Hanle
effect for the J = 1/2 excited state if the detector does not distinguish the circular
polarization of the photons even when we consider all the Zeeman sub-levels.

For the observation of the Hanle effect, we are interested in detecting the light in
the circular polarization basis. The corresponding fluorescence operator is given by

F± =
1

2
(|3〉〈3|+ |4〉〈4| ± i(|3〉〈4| − |4〉〈3|)) , (6.46)

where the ± sign indicates whether the detector detects left or right circular polar-
ization. The scattering rate is then given by

S± = Γtr(ρF) =
1

2
(ρ33 + ρ44 ± i(ρ34 − ρ43)). (6.47)

The total number of photons of each circular polarization detected is

S± = Γ

∫ ∞

0

tr(ρF)dt =
Γ

2
(P33 + P44 ± i(P34 − P43)). (6.48)
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We note that the Hanle signal is contained exclusively in the last term: i(P34 − P43).
It turns out that Eq. (6.48) always takes the following form:

S± =
1

2(1− p) (1± f(ε)) . (6.49)

The sum of the number of photons for each circular polarization is the total number
of photons scatter given by Eq. (6.45):

S+ + S− =
1

1− p. (6.50)

The analysis presented above can be applied to the case where we use the laser
which couples the D3/2 state to the P1/2 state instead. Experimentally, this means
we excite the 40Ca+ions with the circularly polarized 866 nm laser light and detect
circularly polarized 397 nm photons emitted from the ions.

6.2 The Hanle effect in trapped calcium ion

In this section, we summarize the results of the calculation using the analysis pre-
sented in the previous section applied to 40Ca+. We consider the two main exper-
imental schemes: excitation with 397 nm light (2S1/2 to 2P1/2) and excitation with
866 nm light (2D3/2 to 2P1/2). In both cases, the average number of photons at 397
nm detected with a particular circular polarization is given by the expression in Eq.
(6.48). For convenience, we rewrite the Zeeman splitting ε in terms of the energy
difference between the two magnetic sub-levels of the excited state, ω = 2ε/3. ω also
serves us as a measure of the strength of the applied magnetic field. The Hanle signal
is now contained in the term f(ω). All frequencies are written in the unit of the decay
rate Γ of the excited state 2S1/2.

6.2.1 2S1/2 →2P1/2 transition

In this case, the Hamiltonian is again given by Eq. (6.7). Although we can obtain
the Hanle signal according to Eq. (6.48) exactly, it is very complicated. Therefore, it
is more illuminating to look at a few limiting cases.

At zero laser light detuning (∆b = 0) and in the broadband excitation limit
(γ →∞), we have

f(ω) =
ω

1 + ω2
, (6.51)

which agrees with calculations in the literature [55]. The extrema of the Hanle signal
are at ω = ±1. For arbitrary angle θ between the magnetic field and the direction of
the laser light, we have

f(ω) =
ω

1 + ω2
sin θ. (6.52)
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� ! 1

Figure 6-5: The Hanle effect for 2S1/2 →2P1/2 excitation. We plot the average number
of photons scatter, 〈n〉, as a function of the magnetic field strength applied to the
ion. We show the two cases with a narrowband excitation (γ = 0) and a broadband
excitation (γ →∞).
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Usually, experiments on the Hanle effect are carried out with discharge lamps, for
which the broadband limit is well justified. It is also possible to artificially broaden
the linewidth of a diode laser source using current modulation.

In the narrowband excitation limit (γ → 0), we expand in terms of the laser light
intensity, ΩL,

f(ω) =
2ω

1 + 10ω2
+

2ω(p− 3 + 24ω2 + 8pω2)Ω2
L

3(1 + ω2)(1 + 10ω2)2
+O[Ω4

L], (6.53)

which, for low intensity, gives the extrema of the Hanle signal at ω = ±Γ/
√

10. If
we have a small deviation δθ of the laser direction from the axis perpendicular to the
magnetic field, we have

f(ω) =
2ω

1 + 10ω2
+

12(p− 1)ω3δθ

(1 + 10ω2)(1 + 10ω2 + 2pω2)
+O[δθ2]. (6.54)

The simulated Hanle signals for both cases (in the limit of low intensity ΩL → 0)
are plotted in Fig. 6-5. Both curves are centered at half the mean average number of
photons scattered, 1/2(1−p). For 40Ca+, with p ∼ 0.9357 we have 1/2(1−p) ∼ 7.77.
In the narrow band limit, we can see that the modulation of the photon number due
to the Hanle effect can be as much as 50% for the broadband excitation.

6.2.2 2D3/2 →2P1/2 transition

We now analyze the experiment where the excitation laser is the 866 nm laser. Since
we detect only the 397 nm photons emitted from the ions, the total number of the
397 nm photons detected is 1. The Hanle signal then takes the form

S± =
1

2
(1± f(ω)) . (6.55)

For the excitation from 2D3/2 to 2P1/2, the light-ion interaction Hamiltonian is
given by

H =




− ε
3

0
√

3ΩL
2

−ΩL
ΩL
2

0

0 ε
3

0 ΩL
2

−ΩL

√
3ΩL
2√

3ΩL
2

0 ∆r − 6ε
5

0 0 0
−ΩL

ΩL
2

0 ∆r − 2ε
5

0 0
ΩL
2

−ΩL 0 0 ∆r + 2ε
5

0

0
√

3ΩL
2

0 0 0 ∆r + 6ε
5



. (6.56)

Solving the Bloch equations, we obtain the signal in the broadband limit (γ → ∞)
and zero detuning (∆r = 0) to be

f(ω) =
2

5

ω

1 + ω2
+

(25p′ − 2(96 + 5p′)ω2)Ω2
L

75γω(1 + ω2)2
+O[Ω4

L], (6.57)
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Figure 6-6: The Hanle effect for 2D3/2 →2P1/2 excitation. We plot the average number
of photons scatter, S+, as a function of the magnetic field strength applied to the
ion. We show the two cases with a narrowband excitation (γ = 0) and a broadband
excitation (γ →∞).

Average photon number

Magnetic field strength !/�

Average photon number
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⌦L/� = 0
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⌦L/� = 0.05

⌦L/� = 0.05
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⌦L/� = 0.01

S+ S+

Figure 6-7: Sharp resonances at low magnetic field strength for the narrowband
excitation (γ = 0) shown for different values of ΩL. The plot on the right is a
magnification of the shaded region of the plot on the left.
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for initially unpolarized ions (ρ55(0) = ρ66(0) = ρ77(0) = ρ88(0) = 1/4). Note that
p′ = 1− p is the probability that the excited states decay back to the 2D3/2 manifold.
If we have ρ55(0) = 1 or ρ88(0) = 1, then the signal is given by

f(ω) =
2

5

p′ω

1 + ω2
− (−25p′2 + 192p′ω2 + 10p′2ω2)Ω2

L

75γω(1 + ω2)2
+O[Ω4

L]. (6.58)

If we have ρ66(0) = 1 or ρ77(0) = 1, then the signal is given by

f(ω) =
2

5

(2− p′)ω
1 + ω2

− (2− p′)(−25p′ + 192ω2 + 10p′ω2)Ω2
L

75γω(1 + ω2)2
+O[Ω4

L]. (6.59)

For a narrowband excitation (γ = 0) and unpolarized ions, the Hanle signal is
given by

f(ω) =
20ω

25 + 97ω2
+

2(15623p′ − (375000− 179375p′)ω2)Ω2
L

3ω(1 + ω2)(25 + 97ω2)2(25 + 529ω2)
+

+
2(−(4040400 + 747725p′)ω4 + (979464− 125235p′)ω6)Ω2

L

3ω(1 + ω2)(25 + 97ω2)2(25 + 529ω2)
+O[Ω2

L]. (6.60)

The expected Hanle signals for both cases (in the limit of low intensity ΩL →
0 and initially unpolarized ions) are plotted in Fig. 6-6. For finite ΩL, the Hanle
curve exhibit an additional sharp resonance at low magnetic field. This resonance is
contained in the term proportional to 1/ω in the expansions of f(ω). So far we do
not have any intuitive explanation for the origin of this sharp resonance. We note
that this resonance is completely absent in the case of the 2S1/2 to 2P1/2 excitation.

6.3 Experimental considerations

In this section, we analyze a few potential systematic uncertainties in the measure-
ment of the lifetime of 40Ca+. We consider the case of a narrowband excitation of 2S1/2

to 2P1/2 transition and see how imperfections in the laser linewidth, laser intensity
and geometry of the setup influence the errors in the measurement of the lifetime.

We focus here on the narrow band case as it turned out to be difficult to broaden
our laser source enough to be in the broadband limit. Ideally, the Hanle signal for the
narrowband excitation of 2S1/2 to 2P1/2 transition in the limit of low probe intensity
(ΩL = 0) is given by

S+ = S0

(
1 +

2ω

1 + 10ω2

)
, (6.61)

where the maximum of the signal is at ω = 1/
√

10. If the intensity of the probe light
is not low enough and has a small finite value of ΩL = 0.1, the position of the signal
maximum shifts according to Eq. (6.53) at the 6×10−3 level. Experimentally, we can
measure ΩL rather accurately by measuring the decay constant of the fluorescence
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during the detection as given by Eq. (4.5). Another source of uncertainty is the
direction of the laser beam with respect to the magnetic field direction as given in
Eq. (6.54). We found that a 5° deviation from an ideal 90° shifts the maximum of the
Hanle signal at the 4× 10−4 level.2

We can confidently set the detuning of the laser to zero using a spectroscopic
method presented in Chapter 4 which works for both the 397 nm and 866 nm excita-
tions. The center frequency of the atomic transition can be measured with a precision
in the order of 200 kHz. This uncertainty in the laser detuning shifts the maximum
of the Hanle signal less than 3× 10−4.

The most significant source of the uncertainty seems to be the linewidth of the
laser. For γ = 0.01, which corresponds to the laser linewidth of 2π × 220 kHz,3 the
maximum of the Hanle effect is shifted by 3× 10−2. Since measuring the linewidth of
the laser is a non-trivial experimental task, it might be more desirable to artificially
broaden the linewidth of the laser and to measure the Hanle signal in the broadband
limit. This can be done by a current modulation of laser diodes or tapered-amplifiers
[76].

2A 10° deviation from 90° shifts the maximum of the Hanle signal at the 5× 10−3 level.
3For 40Ca+, the linewidth of the 2P1/2 state is Γ = 2π × 22.4 MHz so γ = 0.01 × Γ is equal to

approximately 2π × 220 kHz [26].
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Chapter 7

Spectroscopy with correlated
atoms

In this chapter, we demonstrate a generalized Ramsey-type spectroscopic technique
using two ions. By preparing a correlated state of the ions to be insensitive to common
magnetic field fluctuation, we can extract the energy difference between ions very
precisely. This experimental technique allows us to use a pair of correlated ions to
probe external fields such as the magnetic field gradient and electric field gradient with
high accuracy. This level of precision allows us to utilize 40Ca+ions to test for local
Lorentz symmetry by monitoring the energy level of the ions during a period of 12
hours. Assuming a hydrogen-like structure of 40Ca+, our experimental result provides
a bound for the violation of local Lorentz invariance at the level of 1.7± 2.2× 10−17.

7.1 Introduction

An interaction between an atom and external fields gives rise to energy shifts of
atomic states. To use an atom as a probe for external field, we need to precisely
measure changes in the atomic energy levels. For example, we can use an atom as
a magnetometer and measure the magnitude of the magnetic field by measuring the
energy between different Zeeman sub-levels. A typical Ramsey spectroscopy allows
us to extract the energy difference ∆E between two states |S〉 and |D〉1 of a single
atom by monitoring the phase evolution φ(t) of the super-position state

|Ψ(t)〉 = |S〉+ eiφ(t) |D〉 , (7.1)

where φ(t) = ∆Et/~. We can rewrite this state in the singlet-triplet basis, |±〉 =
|S〉 ± |D〉, as

|Ψ(t)〉 = (1 + eiφ(t)) |+〉+ (1− eiφ(t)) |−〉 . (7.2)

1To be more specific, the state |S〉 is a short hand for one of the Zeeman sub-level of the ground
state of 40Ca+. the state |D〉 is short hand for one of the Zeeman sub-level of 2D5/2 state of 40Ca+.
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Applying a π/2 pulse to this state maps the state |+〉 → |S〉 and |−〉 → |D〉. Then, we
measure a probabilities Ps or Pd for the atom to be in either |S〉 or |D〉, respectively.
The oscillation frequency of the probability Ps(t) is directly related to ∆E.

This Ramsey-type scheme can be generalized to the case of an entangled state of
two atoms. Consider the state

|Ψ(t)〉 = |SD′〉+ eiφ(t) |DS ′〉 , (7.3)

where the states {|S〉 , |D〉} belong to the first ion and {|S ′〉 , |D′〉} belong to the
second ion. In this case, the phase φ(t) contains the energy difference between the
|SD′〉 and |DS ′〉 states. As shown in Ref. [7, 77], we can similarly rewrite the state
in the singlet-triplet basis, |±′〉 = |SD′〉 ± |DS ′〉, as

|Ψ(t)〉 = (1 + eiφ(t)) |+′〉+ (1− eiφ(t)) |−′〉 . (7.4)

To extract the phase φ(t), we apply π/2 pulses to both atoms. The π/2 pulses map
the state |+′〉 → (|SS ′〉 − |DD′〉) and |−′〉 → (|SD′〉 − |DS ′〉). It is interesting that
the state |+′〉 get mapped to a state where a projective measurement will yield similar
outcomes for the two atoms: both in |S〉 or both in |D〉. We call this case an outcome
with an “even” parity. On the other hand, the state |−′〉 get mapped to a state where
the outcomes are the opposite: one in |S〉 and the other one in |D〉. We call this
case an “odd” parity. The oscillation frequency of the phase φ(t) is contained in the
oscillation frequency of these even and odd parity probability signals. Specifically, we
define a parity operator to be

Pp = PDD′ + PSS′ − PSD′ − PDS′ , (7.5)

where PDD′ is a probability of finding the first ion to be in |D〉 and the second ion
to be in |D′〉 and similar for other possible outcomes. Applying a parity operator to
the state in Eq. (7.4) after the two π/2 pulses gives Pp = cos (φ(t)).

Why do we want to use two ions instead of a single ion? For a single 40Ca+ ion
Ramsey experiment, the energy between the |S〉 and |D〉 states depends linearly
on the magnitude of the background magnetic field. Any electronic equipment in
the laboratory generates magnetic field radiation randomly and will quickly dephase
the super-position state of the ion. The coherence time of the state shown in Eq.
(7.1) is typically less than a few milliseconds. On the other hand, the state shown
in Eq. (7.3) can be prepared such that both |SD′〉 and |DS ′〉 states have the same
linear dependence of the energy on the magnetic field. The phase fluctuation due
to magnetic field noise is then a common phase and drops out. In this case, the
coherence time is fundamentally limited by the spontaneous emission of the |D〉.
This long coherence time allows us to precisely extract the phase φ(t) in Eq. (7.3)
and measure the energy difference between the |SD′〉 and |DS ′〉 states.

Additionally, we can apply π-pulses to the state in Eq. (7.3) to create a state that
involves only different Zeeman components of the D-state, as shown in Fig. 7-1:

|Ψ〉 =
∣∣D1

AD
2
A

〉
+ eiφ(t)

∣∣D1
BD

2
B

〉
. (7.6)
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Figure 7-1: Bell state created from different Zeeman levels of the D-state of two ions.

In this case the phase φ(t) is given by

φ(t) =
E|D1

AD
2
A〉 − E|D1

BD
2
B〉

~
t. (7.7)

This state has an advantage that there is no direct reference from the atomic state
to the 729 nm laser since there is no |S〉 state involved. Hence the laser phase noise
has no influence during the time evolution of the state.

In the following sections, we discuss in details the experimental procedure to create
such a state in Eq. (7.6). (Although, we will not create a pure state but rather a mixed
state that contains a state in Eq. (7.6)). Then, we utilize this state to measure Zeeman
shifts due to a magnetic field gradient and electric quadrupole shifts due to an electric
field gradient. In the last section, we apply our experimental method to perform a
precise test of local Lorentz symmetry by monitoring the energy shifts of the atomic
levels.

7.2 Spectroscopy with correlated ions

Preparing a pure entangled state usually requires ions in their motional ground states,
which is experimentally challenging with a trap with a high heating rate.2 However,
we can prepare a pure state which dephases to a mixed state that still contains the
entangled state.3 We call this a correlated state since the ions are not in a pure
entangled state but rather a mixed state that contains a quantum correlation. In this
section we show explicitly how spectroscopy with correlated ions works.

2It is also possible to create an entangled state from a thermal state using a method shown in
Ref. [78]. However, our high heating rate hinders the fidelity of the method.

3In our experiment, we rely on a fluctuating magnetic field to dephase our pure state. We can
also artificially apply a random common phase noise to the 729 nm laser pulses.
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7.2.1 State preparation

Our goal is to prepare a mixed state that contains the Bell state

|ΨB〉 =
1√
2

(∣∣D1
AD

2
A

〉
+
∣∣D1

BD
2
B

〉)
, (7.8)

which is an entangled state illustrated in Fig. 7-1. We start where ion 1 and ion 2
are at their ground states, |S1〉 and |S2〉, respectively. We then apply four pulses to
these ions:

∣∣S1S2
〉 R1

A(π
2
,0)−−−−−−−→ 1√

2

(∣∣S1
〉

+ i
∣∣D1

A

〉)
⊗
∣∣S2
〉

(7.9)

R1
B(π,0)−−−−−−−→ 1√

2

(∣∣D1
B

〉
+
∣∣D1

A

〉)
⊗
∣∣S2
〉

(7.10)

R2
A(π

2
,0)−−−−−−−→ 1

2

(∣∣D1
B

〉
+
∣∣D1

A

〉)
⊗
(∣∣S2

〉
+ i
∣∣D2

A

〉)
(7.11)

R2
B(π,0)−−−−−−−→ 1

2

(∣∣D1
B

〉
+
∣∣D1

A

〉)
⊗
(∣∣D2

B

〉
+
∣∣D2

A

〉)
(7.12)

The resulting state is a pure product state. Each state then evolves according to its
energy. The largest contribution to the phase evolution δ of each state due to the
linear Zeeman effect:

δ1
A =

E|D1
A〉

~
t =

g5/2µBmJ=A| ~B1|
~

t (7.13)

where the mJ=A is the value of mJ for state |D1
A〉 and ~B1 is the magnetic field at the

position of ion 1. We insert all the relevant phases into Eq. (7.12):

|Ψ(t)〉 =
1

2

(
e−iδ

1
B

∣∣D1
B

〉
+ e−iδ

1
A

∣∣D1
A

〉)
⊗
(
e−iδ

2
B

∣∣D2
B

〉
+ e−iδ

2
A

∣∣D2
A

〉)
(7.14)

=
1

2
e−i(δ

1
A+δ2A)

(∣∣D1
AD

2
A

〉
+ e−i(δ

1
B+δ2B−δ

1
A−δ

2
A)
∣∣D1

BD
2
B

〉)
+

+
1

2

(
e−i(δ

1
B+δ2A)

∣∣D1
BD

2
A

〉
+ e−i(δ

1
A+δ2B)

∣∣D1
AD

2
B

〉)
. (7.15)

Although the magnetic field at the two ion positions is in general different in
magnitude, usually they are related by a fixed and stable magnetic field gradient. The
fluctuating magnetic field is mostly from the 60 Hz AC power line radiation which
affects both ions equally. To the lowest order, we consider only this fast fluctuating
field and assume that ~B ∼ ~B1 ∼ ~B2. In order for the Bell state in Eq. (7.8) to survive

this random ~B fluctuation, we must have δ1
B + δ2

B− δ1
A− δ2

A = 0 or δ1
B + δ2

B = δ1
A + δ2

A.
This means that the two components of the Bell state must have the same energy: the
sum of the mJ for each component of the Bell state must be the same. For example,
we can have |Ψ〉 = |1/2,−1/2〉+ |5/2,−5/2〉 or |1/2,−3/2〉+ |−5/2, 3/2〉. Note that
here we use a notation |1/2,−1/2〉 to represent a state |D;mJ = 1/2, D;mJ − 1/2〉.
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With the condition that either δ1
B + δ2

B − δ1
A − δ2

A = 0 or δ1
B + δ2

B = δ1
A + δ2

A, we
then write the state as

|Ψ(t)〉 =
1√
2
e−i(δ

1
A+δ2A) |ΨB〉+

1

2

(
e−i(δ

1
B+δ2A)

∣∣D1
BD

2
A

〉
+ e−i(δ

1
A+δ2B)

∣∣D1
AD

2
B

〉)
. (7.16)

After averaging over a randomly fluctuating ~B, we are left with a mixed state:

|Ψ〉〈Ψ| = 1

4

∣∣D1
AD

2
B〉〈D1

AD
2
B

∣∣+
1

4

∣∣D1
BD

2
A〉〈D1

BD
2
A

∣∣+
1

2
|ΨB〉〈ΨB| . (7.17)

We can see that we have a desired Bell state in the resulting mixed state with 50%
probability.

7.2.2 State readout

After the preparation, we let the state in Eq. (7.17) evolves freely in time. The Bell
state component will evolve according to

|ΨB(t)〉 1√
2

(
∣∣D1

AD
2
A

〉
+ eiφ(t)

∣∣D1
BD

2
B

〉
). (7.18)

In this section, we discuss the readout process that extracts the phase φ(t).

The analysis pulses are essentially those applied in the preparation process applied
in a reversed order. To see how each component contributes to the final parity
oscillation signal, we analyze each component of the mixed state separately.

For the first component in Eq. (7.17),

∣∣D1
AD

2
B

〉 R2
B(π,0)−−−−−−−→ i

∣∣D1
AS

2
〉

(7.19)

R2
A(π

2
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2
(i
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2
〉
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2
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〉
) (7.20)

R1
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2
(i
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2
〉
−
∣∣D1

AD
2
A

〉
) (7.21)
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〉
−
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2
A

〉
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A

〉)
(7.22)

For the second component in Eq. (7.17),
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BD

2
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2
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〉
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(7.26)
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Figure 7-2: Top: Ramsey oscillations for individual ions. Bottom: Parity oscillations
of the two ions. We can see that the parity oscillations persists even when the Ramsey
oscillations of the individual ions are long washed-out. In this case, the Bell state is
|ΨB〉 = 1√

2
(|SD〉+ |DS〉).

As expected, we can see that the first two components do not contribute to the par-
ity signal other than populating the diagonal elements of the density matrix equally.

For the third (Bell state) component in Eq. (7.17),

1√
2

(
∣∣D1

AD
2
A

〉
+ eiφ
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BD

2
B

〉
) (7.27)
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+ ieiφ
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R1
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A(π

2
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2
√

2

(
(1 + eiφ)

∣∣D1
AD

2
A

〉
+ i(1− eiφ)
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A

〉)
+

+
1

2
√

2

(
i(1− eiφ)

∣∣D1
AS

2
〉
− (1 + eiφ)

∣∣S1S2
〉
)
)

(7.31)

In our experimental setup, each ion is addressed by a different 729 nm light beam.
We have to take into account that the phase of each laser light (given by φL1 and
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Figure 7-3: Top: Ramsey oscillations for individual ions. Bottom: Parity oscil-
lations of the two ions with the state |ΨB〉 = 1
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φL2) might be different after a free time evolution of the Bell state.4 We have
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(7.36)

4This might be from fluctuating beam paths or a difference in the phases of the two optical fibers
for the two 729 nm laser beams.
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In any case, after the state readout pulses, the diagonal elements of the density matrix
are

|Ψ〉〈Ψ| =
(

1

4
− 1

8
cosφ

) ∣∣D1
AS

2〉〈D1
AS

2
∣∣+

(
1

4
− 1

8
cosφ

) ∣∣S1D2
A〉〈S1D2

A

∣∣+

+

(
1

4
+

1

8
cosφ

) ∣∣S1S2〉〈S1S2
∣∣+

(
1

4
+

1

8
cosφ

) ∣∣D1
AD

2
A〉〈D1

AD
2
A

∣∣+ ... (7.37)

This provides us with the parity signal given by

Pp = PSS + PDD − PDS − PSD =
1

2
cosφ, (7.38)

where the contrast is half of that given for the entangled state.

7.2.3 Detection of the parity oscillation signal

To extract the phase of the parity oscillation, we perform a readout pulse that consists
of both the 397 nm and 866 nm lasers. These lasers project the ions to the {|S〉 , |D〉}
basis. If the ion is in the |S〉 (|D〉) state, it will appear bright (dark).5 For the
parity operator defined in Eq. (7.38), we need to distinguish the even parity case
(both ions are the same) from the even parity case (the ions have opposite outcome).
The number of 397 nm photons collected in a 3 ms interval lets us clearly distinguish
these cases. We show in Fig. 7-4 the histogram of the photons from our experiment
separated by the two threshold (red lines).

We here derive the statistical uncertainty of the parity oscillation signal. Let the
outcomes of the i-th readout of each individual ion be xi and yi. Both xi and yi,
which are described by the Bernoulli distribution, can take a value of either 1 or 0
with probabilities of px and py, respectively. We can then write the parity signal for
the i-th readout to be

ηi = xiyi + (1− xi)(1− yi)− xi(1− yi)− yi(1− xi) (7.39)

= 1 + 4xiyi − 2xi − 2yi. (7.40)

Since xi and yi can take a value of either 1 or 0, ηi can take a value of ±1. Let’s
define η′i = (ηi + 1)/2 so that η′i can take a value of either 1 or 0. We can write

η′i =
ηi + 1

2
= 1 + 2xiyi − xi − yi. (7.41)

By using x2
i = xi and y2

i = yi, we can write

η′2i = 1 + 2xiyi − xi − yi. (7.42)

We can see that η′2i = η′i. This fact alone allows us to conclude that η′i is also described
by the Bernoulli distribution. After a large number of trials N , we can write the best

5More details can be found in Michael Ramm’s thesis.
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Figure 7-4: Histogram of the readout for two ions. The three peaks clearly distinguish
the cases where both ions are bright (|SS〉), both ions are dark (|DD〉) and only one
ion is bright (|SD〉 and |DS〉).

estimate for the expectation value of η′i to be

〈η′〉 =
1

N

N∑

i=1

η′i ±
√
〈η′〉(1− 〈η′〉)

N
. (7.43)

Then the best estimate for ηi is given by

〈η〉 =
1

N

N∑

i=1

ηi ±
√

1− 〈η〉2
4N

. (7.44)

For a parity signal close to 0, the error is given by 1/2
√
N .

With this detection method, we show the parity oscillation signals for mixed states
that contain |Ψ〉 = |SD〉+|DS〉 (as shown in Fig. 7-2) or |Ψ〉 = |D1 = 1/2, D2 = −1/2〉+
|D1 = −1/2, D2 = 1/2〉 (as shown in Fig. 7-3). In both cases, we can see that while
the Ramsey signal of each individual ion is completely washed-out by the fluctuating
magnetic field, the parity oscillations survive for a much longer time.
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~B + ~�B

cooling ion cooling ion

Figure 7-5: Four-ion configuration. The outer two ions are for sympathetic cooling
of the inner two ions which we use for spectroscopy. The diagram show a possibility
of having a magnetic field gradient between the two spectroscopic ions.

7.2.4 Correlated ions with additional sympathetically cool-
ing ions

Our trap has intrinsic noise that heats up the ions in the trap. The heating rate is
measured to be on the order of ∼ 0.4 − 1.0 phonons/ms. Hence, after a evolution
period (Ramsey time) in the Ramsey spectroscopy of 200 ms, the ion heats up to
a temperature significantly higher than the Doppler temperature. This increase in
the ions temperature directly affects the quality of Rabi oscillations and effectively
reduces the contrast of the Ramsey fringe. To circumvent this problem, we can
use additional ions to perform sympathetic cooling of the two spectroscopy ions. One
possible configuration is shown in Fig. 7-5. Note that the Doppler cooling light at 397
nm and 866 nm does not directly destroy the coherence of the two inner spectroscopic
ions since they are in the D-state manifold.

Figure 7-6 shows an effect of having additional sympathetic cooling. The lower plot
is without any cooling, and the decay constant of the fringe is τ ∼ 0.17(3) seconds.
With sympathetic cooling, the upper plot shows a significant improvement for the
decay constant. The decay constant increases to τ ∼ 0.65(40) seconds. Eventually,
the decoherence from the finite D-state lifetime (about 1.2 seconds) kicks in.

7.3 Measurement of magnetic field gradient

A magnetic field gradient along the ion can be measured by preparing a product state
that contains a Bell state |ΨB〉 = |1/2,−1/2〉 + |−1/2, 1/2〉. Each component has
the same quadrupole shift which depends on m2

J as given in Eq. (2.17). Thus the
frequency of the parity oscillations only depends on the magnetic field gradient. For
a configuration shown in Fig. 7-1, the parity oscillations frequency is given by the
energy ∆E = g5/2µB|δ ~B|. The quadratic Zeeman shift, as given in Eq. (2.20), is
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Figure 7-6: Effect of sympathetic cooling on the parity signal. Top: With cooling.
The decay constant of the parity fringe is τ = 0.65(40) seconds. Bottom: Without
cooling. τ = 0.17(3) seconds.
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〉
+
∣∣1

2
,−1

2

〉
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2
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〉
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∣∣1

2
,−1

2

〉
3g5/2µB|δ ~B|∣∣−5

2
, 5

2

〉
+
∣∣−1

2
, 1

2

〉
2g5/2µB|δ ~B|

Table 7.1: Energy shifts due to magnetic field gradient for each possible combination
of the state |ΨB〉 = |1/2,−1/2〉+ |5/2,−5/2〉.

negligible for this state. For our experimental configuration (faxial ∼ 200 kHz), we
measure ∆E/h ∼ 50−60 Hz. In principle, the magnetic field gradient can be reduced
further using a set of Helmholtz coils.

If instead we use a Bell state |ΨB〉 = |1/2,−1/2〉+|5/2,−5/2〉, there will be signif-
icant contributions from both the quadratic Zeeman effect and the electric quadrupole
shift. The energy shift from these two effects is independent of the possible combi-
nations of this Bell state, |ΨB〉 = |±1/2,∓1/2〉+ |±5/2,∓5/2〉. However, the energy
shifts from the magnetic field gradient are different for each combination, as shown
in Table 7.1. By taking an average over the measured parity oscillation frequencies
for every state in Table 7.1, we found that the frequency contribution from both the
quadratic Zeeman and electric quadrupole effect is ∼ 10 Hz. The measured magnetic
field gradient agrees with the measurement using the |1/2,−1/2〉+ |−1/2, 1/2〉 state.

7.4 Test of local Lorentz invariance using corre-

lated ions

Local Lorentz symmetry is fundamental to the Standard Model [80]. If Lorentz
symmetry is preserved locally, then the outcome of the experiment does not depend
on its orientation with respect to a reference frame (usually defined by the Sun). In
the atomic physics setting, if there is a violation of local Lorentz invariance (LLI),
then the kinetic energy of electrons in an atom is different depending on the direction
in which the electrons move. This results in an energy shift of the atomic transition
depending on the orientation of the atom. There have been many theoretical and
experimental works that probe the violation of LLI by measuring atomic transition
frequencies [81, 82, 83, 84]. In this section, we show how we can use a pair of correlated
40Ca+ ions to probe the effect of a possible violation of LLI to and potentially improve
bounds set by other experiments.

7.4.1 Energy shift due to the violation of LLI in 40Ca+

The violation of LLI in atoms would appear as a shift in the energy levels. The
magnitude of the shift depends on the wave-function of the electrons. For the D5/2
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state of 40Ca+, the energy shift is given by

∆E

h
= (1.4× 1015) · C(0)

0 + [(2.4× 1014) + (8.2× 1013) ·m2
J ] · C(2)

0 (Hz), (7.45)

where the parameters C
(0)
0 and C

(2)
0 characterize the degree of the violation of LLI in

the context of the Standard Model Extension [81].6 The violation of LLI is contained
in the mJ because the wave-function of the valence electron in 40Ca+with different mJ

has different projection onto the quantization axis set by the applied magnetic field.
As the Earth rotates, the direction of the applied magnetic field in the laboratory
changes its direction with respect to the reference frame set by the Sun. Hence, the
direction of the electron’s momentum also change its direction with respect to the
Sun. If there is a violation of LLI, the energy of the atomic transition will change
corresponding to the Earth rotation.

Experimentally, we create a magnetic field insensitive state |ΨB〉 =
∣∣5

2
,−5

2

〉
+∣∣1

2
,−1

2

〉
, which has an energy difference between the two components given by

∆E

h
= (9.84× 1014 Hz) · C(2)

0 . (7.46)

We monitor this energy difference and look for a variation that coincides with the
Earth’s rotation frequency. To the first order, we expect a variation in the energy
level with a period of 12 hours.7 The bound of the energy variation translates directly
to the bound of the parameter C

(2)
0 , which is currently set by an experiment with

dysprosium atoms in Dima Budker’s group to be C
(2)
0 < 2.2× 10−16 with 400 seconds

of integration time [83].

7.4.2 Experimental procedure

To probe the violation of LLI in 40Ca+, we simply monitor the energy difference
between the two components of the state |ΨB〉 =

∣∣5
2
,−5

2

〉
+
∣∣1

2
,−1

2

〉
using the parity

oscillation shown in the previous section. Unfortunately, this energy difference also
depends on the magnetic field amplitude (through the quadratic Zeeman effect), the
magnetic field gradient and the electric field gradient (through the electric quadrupole
shift) created by the trap. In this section, we discuss an experimental procedure that
let us separate these contributions from the violation of LLI signal.

To probe the effect of the magnetic field gradient, we measure the oscillation
frequencies of the state

∣∣Ψ+
B

〉
=
∣∣5

2
,−5

2

〉
+
∣∣1

2
,−1

2

〉
and

∣∣Ψ−B
〉

=
∣∣−5

2
, 5

2

〉
+
∣∣−1

2
, 1

2

〉

to be f+ and f−, respectively. As shown in the previous section, the contribution
from the magnetic field gradient for these two states has an opposite sign. Hence, the

6The derivation is done by Michael Hohensee by evaluating the term
〈
a| 1

6m (p2 − 3p2z)|a
〉

and
assuming that 40Ca+ has a hydrogen-like atomic structure.

7This is because we are looking for a signal with has an even parity. Suppose that the direction
from the Earth to the Sun is defined to be ẑ. Then the energy shift in the ions for magnetic field
pointing in the x̂ direction is similar to the case with the magnetic field pointing in the −x̂ direction.
Hence, the signal for the violation of LLI has a period of 12 hours.
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Figure 7-7: Electric quadrupole shift as a function of applied electric field gradient.
The offset in the frequency shift at 8.9(8) Hz is due to the quadratic Zeeman effect,
which is estimated to be 8 Hz for an applied field of 3.9 G.
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55 ± 10 deg
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Figure 7-8: Phase jump due to an instantaneous change in the magnetic field gradient.
To demonstrate the effect of a drift in the magnetic field gradient on the measurement,
we change the current of the magnetic coil at t = 600 seconds by 1 mA. This causes
the phase that makes the parity oscillation signal zero jumps by approximately 13°.

oscillation frequency that depends only on the magnetic field magnitude, electric field
gradient and the violation of the LLI signal is contained in the averaged frequency
f o = (f+ + f−)/2.

To characterize the effect of the electric quadrupole shift, be measure the frequency
f o as a function of the electric field gradient in the trap by changing the axial trap
frequency. We use Eq. (2.17) to convert from the measured axial trap frequency to
the electric field gradient. The result is shown in Fig. 7-7. The fit yields a slope of
4.0(8) Hz·mm2/V. This translates to a shift in the oscillation frequency of 27(6) mHz
per 1 kHz change in the axial trap frequency from the centered value of 210 kHz.
The offset of the oscillation frequency at 8.9(8) Hz is due to the quadratic Zeeman
shifts. At the applied magnetic field of 3.9 G, the expected quadratic Zeeman shift
is calculated to be 8 Hz (see Eq. (2.18)). This translates to a shift in the oscillation
frequency of 16 mHz per 1 mG variation in the magnetic field. We actively monitor
both the axial trap frequency and the magnitude of the magnetic field by performing
spectroscopy on the ion using the 729 nm transition.8

To extract the oscillation frequency from the parity signal, one can take the whole
parity oscillation curve and extract the frequency by fitting to a model (similar to the

8Details on how to measure trap frequencies and magnetic field can be found in Michael Ramm’s
thesis.
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phase shift

offset shift

� � + ⇡

Figure 7-9: Effects of the phase shift and offset shift. Top: a shift in the overall phase
of the parity oscillation appears as a frequency shift. To distinguish the phase shift
from the frequency shift, we probe the parity oscillation also at a short Ramsey time,
which is largely sensitive to the phase shift but not the frequency shift. Bottom: a
shift in the overall offset appears also as a frequency shift. To distinguish the offset
shift from the frequency shift, we measure the parity oscillation signal where the laser
light phase is added by π.

plots in Fig. (7-6)). However, we are more interested in the change in the oscillation
frequency rather than the absolute value of the frequency. To monitor the change
in the frequency, can constantly probe the parity signal at a fixed Ramsey time. To
maximize the sensitivity of the signal to the change in frequency, we calculate the
phase of the oscillation from the parity signal. This phase is then used to provide
a feedback to the phase of the 729 nm laser such that the parity signal is always
close to zero, where the sensitivity is the highest. We monitor the change in the
oscillation frequency by monitoring the value of the this phase correction. Fig. 7-8
shows a sudden jump in the phase data when we intentionally change the magnetic
field gradient by changing the current on one of the magnetic coils. We convert the
variation in the phase to the variation in the frequency using

f (Hz) =
φ (degree)

360° · TRamsey (s)
, (7.47)

where TRamsey is the Ramsey time.

There are two effects that can influence the monitoring of the oscillation frequency
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of the parity signal using a phase feedback method: phase shift and offset shift. These
two effects are shown in Fig. 7-9. We observe a slight dependence of the phase of the
parity oscillation on the detuning of the 729 nm laser light from the carrier transitions
of 40Ca+.9 To subtract out the effect from the phase shift, we additionally monitor
the parity signal at a short Ramsey time Tshort, where the phase feedback is more
sensitive to the phase shift. The difference of the parity oscillation signals between
Tshort and Tlong depends only on the frequency shift of the parity oscillation but not
the phase shift. However, we sacrifice the sensitivity by having instead an effective
Ramsey time equals to Tlong − Tshort.

To subtract out the effect of the offset drift, we compare the parity signal to the
signal where we add 180° (or π) to the phase of one of the readout 729 nm laser
(see Fig. 7-9). The phase correction is derived from the difference between these two
signals.

In summary, each measurement iteration consists of probing the parity signal
with the state

∣∣Ψ+
B

〉
and

∣∣Ψ−B
〉
, with Tshort and Tlong, and with two opposite phases

of the 729 nm laser pulse. For our measurement of the violation of LLI, we chose
Tshort = 2 ms and Tlong = 100 ms. Tshort is chosen to be long enough such that the
state of our ions has already dephased to the mixed state. As shown in Fig. 7-2,
at 2 ms, the random fluctuation in the magnetic field has completely dephased any
component that is sensitive to the magnetic field. We can potentially increase Tlong

to increase the sensitivity of our measurement. Currently, the heating rate of the
trap limits our Ramsey fringe decay constant to about 170 ms. This effect can be
circumvented by performing sympathetic cooling on the additional ions. However, we
observed that the 866 nm laser light can induce an AC-Stark shift of the state

∣∣Ψ±B
〉

up to 20 Hz.

7.4.3 Experimental result

With the experimental parameters given in the previous section, we monitor the fre-
quency variation of the state

∣∣Ψ+
B

〉
=
∣∣5

2
,−5

2

〉
+
∣∣1

2
,−1

2

〉
in a course of 12 hours starting

from 7:30 pm of April 14th, 2014. The frequency data corrected with independently
measured magnetic field (Fig. 7-10) and axial frequency (Fig. 7-11) is shown in Fig.
7-12. The fit yields the amplitude of the variation to be 17 ± 22 mHz. The Allan
deviation of the frequency data is shown in Fig. 7-13. Deviations from the fitted line
are likely caused by systematics that we have not accounted for.

To convert from the variation of the measured frequency to the violation of LLI
parameter, we use Eq. (7.46) which assumes a simple hydrogen-like model of 40Ca+.

Our preliminary result yields the bound for the parameter C
(2)
0 to be 1.7±2.2×10−17.

This is an improvement of almost an order of magnitude compared to the previous
work done in Ref. [83].

9The origin of this dependence is yet to be understood.
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B ( ⇥ 10�3 G) f (mHz)

Figure 7-10: Variation in the magnetic field from the mean value of 3.929 G observed
for 12 hours. The right vertical axis provides a correction to the frequency shift due
to the quadratic Zeeman effect. To see the effect of drifts in the magnetic field on the
final Lorentz violation signal (which has a period of 12 hours), we fit the magnetic
data with a sine function with a period of 12 hours. The fit yields the amplitude of
the frequency variation to be 0.75(4) mHz.
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Figure 7-11: Variation in the axial trap frequency from the mean value of 210.4 kHz
observed for 12 hours. The right vertical axis provides a correction to the frequency
shift due to the electric quadrupole shift. Similar to the magnetic field in Fig. 7-10,
we fit the axial trap frequency data with a period of 12 hours to see its effect on the
final Lorentz violation signal. The fit yields the amplitude of the parity oscillation
frequency variation to be 3(1) mHz.
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Figure 7-12: Variation in the frequency of the quadrupole shift of the ions observed
for 12 hours. The fit gives a 12-hour oscillation period with an amplitude of 17± 22
mHz.
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Figure 7-13: Allan deviation of the frequency calculated from the phase data shown
in Fig. 7-12. Deviations from the linear fit are likely caused by some other systematics
that we have not accounted for.
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Chapter 8

Quantum simulation of the
Frenkel-Kontorova model

In this chapter, we investigate the prospect of using a trapped linear ion chain super-
imposed with an optical lattice to study an interface between two periodic structures
with two arbitrary lattice constants. This model is known as the Frenkel-Kontorova
model. We show numerically that, using realistic experimental parameters, the sig-
nature of the Aubry transition is still observable despite a deviation from an ideal
Frenkel-Kontorova model. This model is also useful in describing how friction works
in the nano-scale regime. We present an experimental scheme one might use to study
the physics of nano-friction using trapped ions.

8.1 The Frenkel-Kontorova model

The Frenkel-Kontorova (FK) model is a simple one-dimensional model where particles
of equal masses, joined together by identical springs, are subjected to an external
periodic potential of an arbitrary period, as shown in Fig. 8-1. The original model
describes a system with infinite number of particles [86]. The Hamiltonian of the
system is described by

H =
∑

i

[
1

2
mẋ2

i +
1

2
k(xi − xi−1 − a)2 +K cos

(
2πxi
λ

)]
, (8.1)

where m is the mass of each particle, k is the spring constant, xi is the position of
the i-th particle, K is the strength of the external periodic potential with a period of
λ and a is the unperturbed lattice spacing of the chain. The behavior of the system
is governed by the magnitude of K and the ratio λ/a.

Let’s look at the two limiting cases of the FK model as depicted in Fig. 8-2. For
a very weak external potential strength (K → 0), obviously the ground state of the
system is a chain of equally spaced particles with a lattice constant a. The dynamics
of the chain can be described by rudimentary waves dynamics. We can call this case a
“sliding” phase because the particle chain can glide over the external potential without
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Figure 8-1: The Frenkel-Kontorova model. Each pair of particles with masses m is
held together by a spring such that the lattice constant is given by a. The external
periodic potential has a period of λ.

Very weak lattice Very strong lattice 

?
Figure 8-2: Left: system with a very weak external potential. Right: system with
a very strong external potential. The intermediate regime which bridges the two
extreme cases is the main subject of Aubry’s study in his seminal paper [85].

98



any difficulty. However, for a very strong external potential strength (K → ∞), all
the particles are found at the minima of the external potential. Each particle behaves
approximately as an independent oscillator with a local oscillation frequency given by
the curvature of the external potential. The spacing between particles is a multiple
of λ. We call this case a “pinned” phase since each particle is locked by the external
potential.

Clearly the behavior of the system is very different in the two extreme cases. The
next interesting question to ask is how does the system transition from the “sliding”
to the “pinned” phase as we increase the value of K? It is clear that there is a critical
value Kc where the particle chain becomes pinned by the external potential. This
is called in the literature later on as the Aubry structural phase transition. Serge
Aubry studied this problem in 1983 and found the characteristic of this sliding-to-
pinned structural phase transition depends strongly on the ratio λ/a [85]. If λ/a is
a rational number, then the system in commensurate and Kc = 0. However, if λ/a
is irrational, the system is incommensurate and Kc 6= 0. This is striking because it
means that the system is in a sliding phase even with a finite small external potential
[87, 88].

To see the onset of the structural phase transition in the FK model, we first find
the equilibrium positions of the particles by solving

∂H

∂xi
= k(−xi+1 + 2xi − xi−1)− 2πK

λ
sin

(
2πxi
λ

)
= 0. (8.2)

This set of equations can be written in a form of an area-preserving map

[
xi+1

xi

]
= T

[
xi
xi−1

]
=

[
2xi − κ sin

(
2πxi
λ

)
− xi−1

xi

]
, (8.3)

where κ = 2πK/λk. To use this map, we first pick an ion and denote the position
of that ion (modulo λ) to be x0. Next we pick the position of the adjacent ion
and denote that to be x1. Subsequent ion positions can be generated by repeatedly
applying the mapping in Eq. (8.3) to the initial positions [x0, x1]. We generate maps
of different values of κ in Fig. 8-3. For a weak external potential (|κ| = 0.1), most
of the trajectories in the map are well-defined separated lines called “dense curves.”
According to Aubry, a dense curve, which is a curve consists of points infinitesimally
close to each other, in the map represents an incommensurate phase of the system. We
interpret this dense curve as a sliding phase configuration since it does not cost any
energy to traverse along the trajectory in the map. As the value of κ increases, more
and more dense curves are destroyed and eventually no dense curve is observed in
the map for |κ| = 0.9. The last dense curve that survives is the last incommensurate
configuration. This turns out to be the configuration with a golden ratio λ/a =
(1 +

√
5)/2. In this case, κc ∼ 0.972 [89, 90].1 It is no surprise that this particular

1If the last dense curve is destroyed at κc ∼ 0.972, why don’t we see any curve for |κ| = 0.9
in Fig. 8-3? This is because to generate such curve, we have to pick a very specific set of initial
positions. This is very challenging in a computer where essentially every number is rational.
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Figure 8-3: Maps generated using Eq. (8.3) for different values of κ. At small value
of κ, most of the trajectories in the map look like well-connected lines. For large
value of κ, most of the region in the map consists of randomly scattered points which
represent chaotic trajectories in the map.
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Sliding Phase Pinned Phase

Figure 8-4: The hull function of the incommensurate FK model in different phases.
The figure is taken from [91].

value of λ/a gives the last dense curve since the golden ratio is the “most irrational”
number defined by a continued fraction

1 +
√

5

2
= 1 +

1

1 + 1
1+ 1

...

. (8.4)

While the area-preserving map in Eq. (8.3) can be used to characterize the phase
of any configuration of the system, it is more convenient to describe the phase using
an order parameter similar to other kinds of phase transition. One possible definition
of the order parameter is to use the so-called hull function, h(x). The hull function
is a collection of particle positions with respect to the phase2 of the external periodic
potential. We consider only the case of an incommensurate system (sliding phase).
For κ → 0, since the ratio λ/a is an irrational number, the particles in the system
sample equally every possible phase of the external periodic potential. This is shown
in the leftmost plot in Fig. 8-4. As the value of κ increases, if the system is still in
a sliding phase, the hull function is still continuous. However, if κ is large enough
(and the system is in a pinned phase), the hull function becomes discontinuous and
we see clearly the gap in the middle. This is because, for large κ, particles are not
found near the top of the external potential. We use this gap in the middle of the hull
function as an order parameter which quantify the phase of the system. When this
gap is zero, the system is in a sliding phase. When this gap is non-zero, the system
is in a pinned phase.

Additionally, there have been many studies that consider the FK model in the
quantum mechanical regime [21, 92, 93, 94, 95, 96]. By introducing quantum fluc-
tuations into the system, the Aubry transition becomes less sharp compared to the
classical model. However, distinct features between the sliding and the pinned in

2Not to be confused with the term “phase” in the phase transition.
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the quantum FK model are still observable when looking at the wave-function of the
particles in the chain. For instance, Borgonovi et al. show in Ref. [21] that the hull
function, which in the quantum case plots the expectation value of the particle po-
sition with respect to the phase of the external period potential, can still be used to
distinguish between the two structural phases.

8.2 Numerical simulation of the Frenkel-Kontorova

model with trapped ions

We discuss now how a long string of trapped ions can be used to study the FK
model. We can realize the external periodic potential using an optical lattice with
a period defined by the wavelength of the light in the cavity. The strength of the
perturbation is governed by the AC Stark effect [14, 97]. A possible experimental
setup is shown in Fig. 8-5. The FK model with ions (FKI) is more complicated than
the FK model in Eq. (8.1) because of the long range Coulomb interactions between
ions. The Hamiltonian of the system is given by

H =
∑

i

[
1

2
mẋi

2 +
1

2
mω2

axialx
2
i +K cos

(
2πxi
λ

)]
+
∑

i<j

[
e2

4πε0|xj − xi|

]
. (8.5)

The axial trapping potential and mutual Coulomb interactions act like springs con-
necting the ions. The lattice constant analogous to a in Eq. (8.1) is not well-defined
in the FKI model because the ion-ion spacing is not a constant. Ions are more closely
spaced near the center of the trap and spreaded out toward the end of the ion chain
(see Fig. 2-6). Garćıa-Mata et al. suggested that we consider only the middle part
of the ion chain where the spacing can be approximated to be homogeneous [14].
Despite a departure from an ideal FK model, they found a clear distinct signature
between the sliding phase and the pinned phase of the ion chain. Another approach is
to shape the axial potential such that the ions are spaced equally, which can be easily
done in a planar trap since more electrodes are typically available for fine tuning the
shape of the axial potential.

We saw from the previous section that the sliding phase is least perturbed by the
external potential when the ratio between the lattice constant and the period of the
external potential is given by the golden ratio (∼ 1.618), which is assumed by both
Garćıa-Mata et al. [14] and Benassi et al. [97]. Typical ion-ion spacing in a trap with
an axial frequency of ∼ 1 MHz is about 5 µm. This means that the wavelength of the
light in the optical lattice is also on the order of µm. Laser light at this wavelength is
far detuned from the atomic transitions of any ion species used in most trapped ion
experiments (which are usually at optical wavelengths), making the strength of the
external potential very weak compared to the Coulomb interaction between ions. To
observe the Aubry transition, we estimate that one would need a laser power on the
order of kW.

It is more realistic to use a laser wavelength not too far detuned from the atomic
transition to avoid requiring too high power of the optical lattice. For 40Ca+, we
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Figure 8-5: Linear chain of ion in an optical lattice created by a standing wave formed
by an optical cavity. The ions are trapped with the axial confinement from the RF
trap and small microtraps formed by an optical lattice, as shown in the inset.
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Figure 8-6: Effect of an optical lattice at 405 nm on the ion chain. (a) The frequency
of the first normal mode of the ion chain as a function of intra-cavity laser power.
The inset shows the case for an ideal FK model. (b) The hull function at zero optical
lattice power. (c) The hull function for optical lattice power of 1.5 W.
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choose a laser light at 405 nm for an optical lattice. This is because a laser diode at
405 nm is commercially available and typical diodes that capable of producing light
at this wavelength can deliver 120 mW of light power easily. We now show that we
still see a signature of the Aubry transition despite not having a golden ratio between
the ion-ion spacing and the laser wavelength. In our simulations, we use an axial trap
frequency of faxial = 100 kHz with the beam waist of the optical lattice of 25 µm. We
assume that there are 35 ions in the chain–a size we have already trapped successfully
(see Fig. 2-6).

First we numerically solve for the equilibrium positions of the ions with the Hamil-
tonian given in Eq. (8.5). We numerically find a solution to a set of equations gen-
erated by the conditions ∂H/∂xi = 0. For low optical lattice power, the solution
to these equations is unique, which is similar to the case where no optical lattice
is present. However, at higher optical lattice power, there is more than one solu-
tion. This means that there are many configurations of the ion positions that locally
minimize the potential. To truly find the ion positions that globally minimize the
potential is computationally intensive. In the experiment, one likely would adiabat-
ically ramp up the optical lattice power from zero. In our simulation, we find the
equilibrium positions of the ions at any optical lattice power by gradually increasing
the optical lattice power and solve for the equilibrium positions at each lattice power
step. For each step, the initial positions of the ions are the equilibrium position from
the previous step.

Next, we linearize the system and calculate the normal mode frequencies as a
function of the external optical potential power, K. The normal mode frequencies
are the eigenvalues of the coupling matrix ∂2H/∂xi∂xj. The frequency of the lowest
normal mode against the optical lattice power is given in Fig. 8-6. We can see that
for K > 1.5 W, the frequency increases monotonically with the optical lattice power.
The hull function at K = 1.5 W also shows a clear gap in the middle compared to
the case K = 0 W (see Fig. 8-6). An optical lattice power at 1.5 W can be realized
with a moderate finesse optical cavity.3

The presence of the optical lattice also affects the dynamics of the ions in the
chain. If the displacements of the all ions from their equilibrium positions are small,
then the system is well described by the normal mode picture. The optical lattice
can strongly modify the structure of the normal mode frequencies and thus affects
the dynamics of the ion chain. In Fig. 8-7a, we show the normal mode frequencies of
the ion chain for different optical lattice powers. At moderate optical lattice power
(P = 1.5 W), there exists a large gap between the first and the second normal mode
frequencies which in not found in the strong lattice power (P = 5.0 W) or weak lattice
power (P = 0 W).

We study the dynamics of the ion chain by means of numerical simulations. We
apply a small displacement in the axial direction to one of the outermost (leftmost)
ion in the chain and let the system evolve freely. The decomposition of this initial
displacement into the normal mode basis is shown in Fig. 8-7b, where we show the

3In these simulations, we assume that the center ion is at the maximum of the optical lattice.
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Figure 8-7: The effect of the optical lattice on the mode structure of the ion chain.
(a) Frequencies of the normal modes for different optical lattice powers. (b) Mode
distribution for when only the first ion is displaced for different optical lattice powers.

normal mode decomposition of the initial state for different optical lattice powers.4

We look at the kinetic energy of the ion on the other end of the chain (rightmost) as
a function of the free evolution of the kicked system (see Fig. 8-8).

An interesting observation can be made regarding the so-called the “turn-around”
time, which is defined by the time when the last ion acquires the maximum energy.
Fig. 8-8a shows the time evolutions of the rightmost ion for different ion number
without any external optical lattice. The “turn-around” time, which is indicated by
a grey line in the plot, does not seem to depend on the number of the ions. This is
a special feature of long-range Coulomb interactions among ions in the chain. With
more ions in the chain, while the length of the chain increases, the coupling rate
between ions also increase due to the ions being closer to each other. These two
effects cancel out and thus the “turn-around” time has only a weak dependence on
the ion number. The dynamics of the ion crystal similar to the simulations here is
explored more deeply in Michael Ramm’s thesis for radial excitations of ion strings.

Next we look at the time evolution of the energy of the rightmost ion for different
optical lattice powers. This is shown in Fig. 8-8b to Fig. 8-8e. For P = 0 W, the time
evolution shows no obvious pattern. However, at P = 0.5 W, the mode structure is
heavily altered and the time evolution shows a distinctive pattern. As we increase
the optical lattice power further, the ions are pinned to the optical lattice minima
and the coupling between ions becomes relatively weaker.

8.3 Using trapped ions to study nano-scale friction

The origin of friction that we experience in daily life is still not well understood
from the microscopic point of view [98, 99]. This is extremely important in designing

4For larger excitation, the normal mode picture does not hold because of the non-linearity of the
Coulomb interaction.
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Figure 8-8: Dynamics of the last ion in a chain with different optical lattice power
when the first ion is kicked. (a) The position of the last ion for different number of
ions in the chain with no optical lattice. (b-e) Time evolutions of the last ion for
different optical lattice powers. The horizontal axis displays time in a unit of the
inverse of the axial trap frequency, ω−1
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Figure 8-9: Center-of-mass position of the chain as a function of the axial tilting of
the trap (γ) for different optical lattice powers.
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nano-scale machines. Recently, there has been a proposal that combines the field of
nano-scale friction and trapped ions [97, 100]. Usually, experimental investigations
of nano-scale friction are done using atomic force microscopy (AFM) to probe the
surface of materials (for example, see Ref. [101, 102]). Since the level of control over
experimental parameters of trapped ions is exceptional, using trapped ions to study
nano-scale friction will hopefully provide a fresh look into this old physics problem
of friction. The two interfaces are modeled using the ion chain interaction with the
periodic potential of an optical lattice similar to the FK model presented in the
previous section. Here we show a numerical simulation that demonstrates how we
might perform experiments to study nano-friction.

The most natural way to study friction is to displace the two interfaces with
respect to each other by means of applying a shear force and measure their responses.
Experimentally, we can easily displace the position of the ion chain along the optical
lattice axis by applying voltages to the endcaps of the trap. The Hamiltonian of the
system, which is given in Eq. (8.5), has then an additional tilting term:

V =
∑

i

[
1

2
mω2

axialx
2
i + γxi +K cos

(
2πxi
λ

)]
+
∑

i<j

[
e2

4πε0|xj − xi|

]
. (8.6)

The parameter γ is the amount of pull what we apply to the ion chain. For each γ,
we calculate the equilibrium position of each ion in a 20-ion chain with an optical
lattice parameters similar to what we use in the previous section. The center-of-mass
position of the ion chain as a function of the amount of drag is shown in Fig. 8-9
for different optical lattice powers. We see that for small optical lattice powers (red
and brown curves in the figure) the chain glides over the optical lattice without being
pinned down by the lattice. In this sense, the name “sliding” phase is appropriate
since it does not require a large magnitude of force to displace the ion chain. On
the other hand, with large optical lattice powers (blue and dark blue curves in the
figure) the chain gets stuck on the lattice most of the time (horizontal lines). Then
the chain jumps over this barrier with a large displacement and gets stuck again. This
“slip-stick” mechanism of a trapped ion chain over an optical lattice is also studied
numerically in depth by Mandelli et al. [100]. Here, we show that such an effect can
be observed with reasonable optical lattice power and wavelengths. Our numerical
simulation, however, does not take into account a finite motion of the ions due to
finite temperature of the ion crystal. This effect, together with an instability of the
axial confinement, can cause the ions to hop to adjacent lattice site and blur-out the
“slip-stick” motion of the chain.

8.4 Experimental progress toward realizing the FK

model with trapped ions.

Experimental progress toward realizing the FK model with trapped ions is underway
both in our group and in other ion trapping groups. The effect of localization of
the ion motion from an optical lattice has been reported by the Vuletić group at
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Figure 8-10: Our current trap with an optical cavity for the realization of the FK
model. The mirrors which form an optical cavity are placed about 7 cm apart from
each other. The holes at the end of the trap is for the optical lattice to enter the trap
at the center.
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Tapped hole for locking the cavity 
to the trap. Mirrors Mirror mount

Stainless steel U-shape base

Figure 8-11: Mechanism to align the optical lattice with the trap in-vacuum. Right:
a u-shape stainless steel base houses a pair of mirrors that form an optical cavity.
Left: the u-shape base can move independently with respect to the trap, which is
mounted on another stainless steel base. A tapped hole is for locking the position of
the cavity to the trap.
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MIT [103]. For our setup, the optical lattice in our first iteration of the experimental
system unfortunately did not work well. Here we summarize some problems that
arose during our first attempt.

Our main concern is the overlapping of the optical cavity mode with the ions. To
increase the intensity of the lattice light, the waist size should be as small as possible.
This can be realized by having an optical lattice close to being a concentric configu-
ration. However, in this configuration, the stability of the cavity is very sensitive to
the distance between the mirrors, making it difficult to align the mirrors. Moreover,
aligning a cavity with a very small waist to the center of the trap is challenging since
we cannot predetermine the position of the ion in the trap to be better than a few
micrometers. We chose a compromise between the intra-cavity light intensity and
beam waist and decided to choose the waist of the optical cavity to be 35 µm. This
provides a large enough Rayleigh range for the optical lattice to clear the holes on
both ends of the trap, as shown in Fig. 8-10.

To provide an ability to align the optical cavity with the ions after we place both
in the vacuum chamber, we use a manipulator-bellow system to separately move the
optical lattice mounted on a u-shape stainless steel base as shown in Fig. 8-11. Once
the cavity is aligned, we have another manipulator (with a screw-driver attached) to
screw and lock the position of the cavity with respect to the trap. Before we baked
the vacuum chamber, the whole cavity moving and locking system worked reasonably
well. We observed that the position of the cavity moved during the locking process.
However, the cavity mode was still visible after the locking of the screw. Tightening of
the screw further also exerts a pressure enough to distort the alignment of the mirrors.
But with a few trials-and-errors, we found the right amount of tightening to avoid
any significant distortion to the structure of the trap and the cavity. Unfortunately,
after the vacuum bake-out, we could not observe any mode of the cavity. We suspect
that the mirrors were coated with neutral calcium atoms during our attempt to load
ions into the trap for during the first couple of months. It is difficult to know exactly
the reason for the failure of the cavity until we open up the vacuum chamber and
investigate.
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Chapter 9

Summary and outlook

We have surveyed many aspects of using trapped ions to touch on many branches
of physics. First, we perform spectroscopy of the dipole transitions of 40Ca+ and
measure directly the effect of the micromotion on the spectrum of the fluorescence.
This is perhaps the most basic form of spectroscopy: scanning the frequency of the
probe laser over the atomic transition. We remove interference from the repumpers
by switching them off during the probe duration of the spectroscopy laser. Then
we measure precisely the branching fractions of the excited state of 40Ca+ using a
simple technique that involves only two lasers. The result obtained has small enough
uncertainty to discriminate between different theoretical models. Another atomic
property of 40Ca+ that can be measured precisely the lifetime of the excited state.
We investigate the possibly of using the Hanle effect to measure this quantity. All
these measurements extract parameters built into the atomic structure of 40Ca+.

Then we use 40Ca+ as a probe to measure properties of the environment. We can
measure the magnetic field strength, magnetic field gradient and electric field gradient
precisely using a pair of correlated ions. Performing measurements in a decoherence-
free manifold suppresses a fast external magnetic fluctuation and allows exceptional
measurement accuracies. We then apply this technique to perform a measurement
that directly test and look for the violation of local Lorentz invariance.

Finally, we investigate the prospect of using trapped ions as a (quantum or even
classical) simulator to study complex systems where simulations in a computer might
not be possible. The Frenkel-Kontorova model, with the external perturbing optical
lattice, is closely related to the problem of nano-friction, which is one of the oldest
physics problem that we do not yet understand well. We show that is it possible
to observe various physical features related to the Aubry transition using realistic
experimental parameters.

All experiments reported in this thesis have been carried out with the first gen-
eration of the Paul trap in our group. Certainly, there are many improvements that
can be done to either suppress systematic errors in the measurements or realize some
of the experimental plans outlined in the previous chapters. In any case, we list here
according to the topics mentioned in this thesis how we can improve the experimental
setup and pursue the next stage of the project.
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Spectroscopy on dipole transitions A frequency comb can reference the fre-
quencies of different laser lights to the 729 nm light, which we can use the ions to
determine the absolute frequency with high precision. The transition frequencies of
all the dipole transition of 40Ca+ can then be measured to a precision of less than
200 kHz. This is already competitive with, if not better than, most recent work on
measuring dipole transitions in trapped ions [104, 105, 106].

Measurement of the branching fractions The main uncertainty currently is the
birefringence in the detection optics. With better characterization of all the optics, we
certainly can significantly reduce this uncertainty at least 1 or 2 orders of magnitude.
To improve the photon counting statistics, a better detector with a higher collection
efficiency is needed. Many research groups around the world are currently working
on improving the collection efficiency. Optical systems with 100 times more efficient
detection as compared to ours have been reported [107, 108, 109]. The experimental
scheme demonstrated here can be applied to measure the branching fraction of the
2P3/2 state and also to other species of ions.

Observation of the Hanle effect One limitation of our current setup is the
strength of the applied magnetic field. Currently, to apply a suitable magnetic field,
the current coil has to be water-cooled. It still creates potential thermal drifts of the
experimental setup. With properly placed Helmholtz coils, we have a better control
over the direction and the magnitude of the magnetic field. Similar to the branch-
ing fractions measurement, a higher collection efficiency will drastically improve the
result.

Spectroscopy with correlated ions If the measurement is done with an entan-
gled pair of ions instead of just a correlated pair, we gain twice the signal-to-noise
ratio. One limitation that prevents us from creating an entangled state with high
enough fidelity is our inability to cool ions to the ground state. This is because of an
exceptionally high background heating rate. The source of this heating rate is not well
understood and one suspect is the fact that we cannot compensate micromotion well
enough in the current trap. Performing sideband cooling with Raman beams might
circumvent this problem. However, the high background heating rate also requires
us to perform sympathetic cooling during the Ramsey time. Having a trap with low
heating rate definitely will improve the systematic errors of the measurement tremen-
dously. Also the stability in all electrical equipment that provide the voltages to the
endcaps and compensation electrodes can certainly be improved.

Study of Frenkel-Kontorova model and nano-friction with trapped ions
Certainly, the most important ingredient missing from the current trap is the optical
lattice. Integrating an optical lattice with ions has always been challenging, even with
a moderate finesse optical cavity. The most demanding task is to align the optical
lattice with the center of the trap. One solution is to have additional RF electrodes in
the trap to be able to move the RF null to align with the optical lattice. Then there
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is a concern with the stability of the optical lattice with respect to the ion. Since the
wavelength of the optical lattice is ∼ 200 nm, any sub-micron instability of the setup
will make the observation of the Aubry transition very difficult. Having a monolithic
setup where the mirrors that form the optical lattice and the trap are solidly joined
together seem to be a reasonable solution.

General improvement Our current trap has a limited optical access which limits
the number of laser beams we can use to address the ions. This prevents us from
potentially realize a more complex experiments. For example, the experiment with a
correlated (or entangled) pair of ions can be done with four ions which required four
729 nm beam paths. In this case, the systematic errors such as the influence of the
magnetic field gradient can be canceled out within the same measurement run.
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Appendix A

Matrix elements between magnetic
sub-levels

In this section we list the matrix elements which are used in calculating interaction
between light and a pair of atomic energy levels with the total angular momentum
quantum number, j, and the magnetic quantum number m.

A.1 Geometry

We define the coordinates according to Fig. A-1. The polarization vector of the laser
is given by

ê = î(cos θ cosφ cosα− sinφ sinα) + ĵ(cos θ sinφ cosα + cosφ sinα)

+ k̂(− sin θ cosα), (A.1)

We can also define

ez = − sin θ cosα (A.2)

e− = (cos θ cosα− i sinα)e−iφ (A.3)

e+ = (cos θ cosα + i sinα)eiφ. (A.4)

Note that e∗− = e+ and

e2
z + |e−|2 = e2

z + |e+|2 = sin2 θ cos2 α + cos2 θ cos2 α + sin2 α = 1. (A.5)

A.2 General form of the matrix elements

From [110], the matrix elements are

〈
α, j,m|

↔
T|α′, j + 1,m± 1

〉
= ∓

↔
T j,j+1

1

2

√
(j ±m+ 1)(j ±m+ 2)(̂i± îj) (A.6)

〈
α, j,m|

↔
T|α′, j + 1,m

〉
=

↔
T j,j+1

√
(j + 1)2 −m2k̂ (A.7)
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Figure A-1: Coordinate of the direction of light propagation n̂. The angle α measure
the polarization of the light with respect to the vertical direction.

〈
α, j,m|

↔
T|α′, j,m± 1

〉
=

↔
T j,j

1

2

√
(j ∓m)(j ±m+ 1)(̂i± îj) (A.8)

〈
α, j,m|

↔
T|α′, j,m

〉
=

↔
T j,j mk̂ (A.9)

〈
α, j,m|

↔
T|α′, j − 1,m± 1

〉
= ±

↔
T j,j−1

1

2

√
(j ∓m)(j ∓m− 1)(̂i± îj) (A.10)

〈
α, j,m|

↔
T|α′, j − 1,m

〉
=

↔
T j,j−1

√
j2 −m2k̂, (A.11)

where we write
〈
α, j|

↔
T |α′, j′

〉
=
↔
T j,j′ .

A.2.1 J = 1/2→ J = 1/2

These are matrix elements for light that couples
∣∣S1/2

〉
→
∣∣P1/2

〉
:

〈
α, j =

1

2
,m =

1

2
|
↔
T|α′, j =

1

2
,m = −1

2

〉
=

↔
T 1

2
, 1
2

1

2
(̂i− îj) (A.12)

〈
α, j =

1

2
,m = −1

2
|
↔
T|α′, j =

1

2
,m =

1

2

〉
=

↔
T 1

2
, 1
2

1

2
(̂i + îj) (A.13)

〈
α, j =

1

2
,m =

1

2
|
↔
T|α′, j =

1

2
,m =

1

2

〉
=

↔
T 1

2
, 1
2

1

2
k̂ (A.14)

〈
α, j =

1

2
,m = −1

2
|
↔
T|α′, j =

1

2
,m = −1

2

〉
=

↔
T 1

2
, 1
2

(−1

2
)k̂. (A.15)
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For arbitrary angles,

〈
α, j =

1

2
,m =

1

2
|
↔
T|α′, j =

1

2
,m = −1

2

〉
=

↔
T 1

2 ,
1
2

1

2
(cos θ cosα− i sinα)e−iφ (A.16)

〈
α, j =

1

2
,m = −1

2
|
↔
T|α′, j =

1

2
,m =

1

2

〉
=

↔
T 1

2 ,
1
2

1

2
(cos θ cosα+ i sinα)eiφ (A.17)

〈
α, j =

1

2
,m =

1

2
|
↔
T|α′, j =

1

2
,m =

1

2

〉
=

↔
T 1

2 ,
1
2

(−1

2
) sin θ cosα (A.18)

〈
α, j =

1

2
,m = −1

2
|
↔
T|α′, j =

1

2
,m = −1

2

〉
=

↔
T 1

2 ,
1
2

1

2
sin θ cosα. (A.19)

A.2.2 J = 3/2→ J = 1/2

Similarly, these are matrix elements for light that couples
∣∣D3/2

〉
→
∣∣P1/2

〉
:

〈
α, j =

1

2
,m =

1

2
|
↔
T|α′, j =

3

2
,m =

3

2

〉
=

↔
T 1

2
, 3
2

(−
√

3

2
)(̂i + îj) (A.20)

〈
α, j =

1

2
,m =

1

2
|
↔
T|α′, j =

3

2
,m =

1

2

〉
=

↔
T 1

2
, 3
2

√
2k̂ (A.21)

〈
α, j =

1

2
,m =

1

2
|
↔
T|α′, j =

3

2
,m = −1

2

〉
=

↔
T 1

2
, 3
2

√
1

2
(̂i− îj) (A.22)

〈
α, j =

1

2
,m = −1

2
|
↔
T|α′, j =

3

2
,m =

1

2

〉
=

↔
T 1

2
, 3
2

(−
√

1

2
)(̂i + îj) (A.23)

〈
α, j =

1

2
,m = −1

2
|
↔
T|α′, j =

3

2
,m = −1

2

〉
=

↔
T 1

2
, 3
2

√
2k̂ (A.24)

〈
α, j =

1

2
,m = −1

2
|
↔
T|α′, j =

3

2
,m = −3

2

〉
=

↔
T 1

2
, 3
2

√
3

2
(̂i− îj). (A.25)

For arbitrary angles,

〈
α, j =

1

2
,m =

1

2
|
↔
T|α′, j =

3

2
,m =

3

2

〉
=

↔
T 1

2 ,
3
2

(−
√

3

2
)(cos θ cosα+ i sinα)eiφ (A.26)

〈
α, j =

1

2
,m =

1

2
|
↔
T|α′, j =

3

2
,m =

1

2

〉
=

↔
T 1

2 ,
3
2

(−
√

2) sin θ cosα (A.27)

〈
α, j =

1

2
,m =

1

2
|
↔
T|α′, j =

3

2
,m = −1

2

〉
=

↔
T 1

2 ,
3
2

√
1

2
(cos θ cosα− i sinα)e−iφ (A.28)

〈
α, j =

1

2
,m = −1

2
|
↔
T|α′, j =

3

2
,m =

1

2

〉
=

↔
T 1

2 ,
3
2

(−
√

1

2
)(cos θ cosα+ i sinα)eiφ (A.29)

〈
α, j =

1

2
,m = −1

2
|
↔
T|α′, j =

3

2
,m = −1

2

〉
=

↔
T 1

2 ,
3
2

(−
√

2) sin θ cosα (A.30)

〈
α, j =

1

2
,m = −1

2
|
↔
T|α′, j =

3

2
,m = −3

2

〉
=

↔
T 1

2 ,
3
2

√
3

2
(cos θ cosα− i sinα)e−iφ. (A.31)
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Appendix B

AtomicDensityMatrix package for
Mathematica®

In atomic physics, most of the time we tackle the interaction between an atom and
light using the optical Bloch equations (OBE). If we include in the problem many
atomic states, then the mathematical complexity increases and it is more convenient
to use a software like Mathematica®. Simon Rochester (Dimitry Budker’s group)
wrote a very useful package called AtomicDensityMatrix (ADM) that generate a set
of OBE. The package can be found at http://budker.berkeley.edu/ADM/. In this
section, we demonstrate the usage of this package to generate OBE relevant to the
analysis of the Hanle effect in Chapter 6.

Once the ADM package is installed, we can start using it by calling

<<AtomicDensityMatrix‘

Then we disable the time-dependence option:

SetOptions[DensityMatrix, TimeDependence-> False]

Next we define the states of the system. In this case there are 4 states

system = {AtomicState[1],AtomicState[2],AtomicState[3],AtomicState[4]};

To check that we have a reasonable set of state, use this command:

DensityMatrix[system]

Finally, to generate a set of OBE, we execute

eqs = LiouvilleEquation[system,H,A,B]; TableForm[eqs]

where the Hamiltonian H in the atom-laser interaction Hamiltonian is given by, for
example,

H =




∆b − ε 0 ΩL/2 −ΩL/2
0 ∆b + ε ΩL/2 −ΩL/2

ΩL/2 ΩL/2 −ε/3 0
−ΩL/2 −ΩL/2 0 ε/3


 , (B.1)
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A is the matrix containing the decay of the excited state

A =




0 0 0 0
0 0 0 0
0 0 Γ 0
0 0 0 Γ


 . (B.2)

and B is any remaining term. In this case B contains population increase rate of the
ground state from the decay of the excited state and laser linewidth, γ:

B =




1
3
pΓρ33 + 2

3
pΓρ44

1
3
pΓρ34 −γρ13 −γρ14

1
3
pΓρ43

1
3
pΓρ44 + 2

3
pΓρ33 −γρ23 −γρ24

−γρ31 −γρ32 0 0
−γρ41 −γρ42 0 0


 . (B.3)
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Appendix C

Electronics and experiment
controls

To make life as an experimentalist easier, most of laboratory equipment are computer
controlled. In this chapter, the most important electronics used in our experiment
are described. We also show how we use our software framework to control this
equipment.

C.1 Pulse sequencer and direct digital synthesizer

(DDS)

The heart of the experiment control is the pulse sequencer (Pulser). This equipment
provides an interface between a computer and other equipment, as shown in Fig. C-1.
All experimental procedures consist of switching on and off lasers with the correct
amplitudes and frequencies at the correct time. Typically, the time scale in modern
trapped ions experiment ranges from a few microseconds to a few seconds. This is
impossible to do manually. Hence, the sequencing of the laser pulses is carried out
using a fast field-programmable-gate-array (FPGA) based on a 200 MHz clock.1 This
FPGA, together with the direct digital synthesizer (DDS) chips, generate TTL pulses
and RF signals that control the lasers through AOMs.

The Pulser also collects data from the photo-multiplier tube (PMT) which detects
photons scattered from an ion. The photon counting can be done independently using
the Normal PMT counter. This is a simple counter which continuously counts the
number of photons. Additionally, the photon counting can be tied to a pulse sequence.
This is useful when we need to know the photon arrival time with respect to the timing
of the pulse sequence.

1The VHDL code can be found at https://github.com/HaeffnerLab/Haeffner-Lab-FPGA.
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Pulser DDSDDSDDSDDSDDSDDS

AOMsAOMsAOMsAOMsAOMsAOMs

rf

Shutters

busUSB2.0

PMT

Python

DAC

Figure C-1: Hardware wiring configuration for the Pulser.

Figure C-2: The Pulse break-out board and two DDS boards under testing.
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on

on

off

off

866 nm

397 nm . . .

. . .

time (ms) 0 100 200 300 400 500 600

Figure C-3: Sample pulse sequence.

C.1.1 Pulser

The Pulser uses XEM6010 module from Opal Kelly®. (The test setup is shown in Fig.
C-2.) This is convenient since Opal Kelly provides a software framework in Python,
which is our experiment control programming language. This makes transferring data
easy and fast (through USB 2.0). The module itself uses a Spartan 6 FPGA from
Xilinx®.

C.1.1.1 Theory of operation

The Pulser is essentially a programmable pulse sequencer. Its main function is to
output trains of pulses in a well controlled way. Each pulse can be used to control
a shutter, an AOM, a CCD camera or other equipment. This is essential for most
of the ions trapping experiments since the experimental sequence has to be repeated
many times to build up statistics. Data from the experiment is usually collected in
the form of photons scattered by ions detected by a photo-multiplier tube (PMT).

A basic pulse sequence, for example, is the so-called “differential mode.” The
sequence compares the fluorescence of the 397 nm light scattered by an ion when
the 866 nm (repumper) is on and off.2 This is extremely important in ion loading
(especially when loading for the first time) because the 397 nm fluorescence from the
ion might be buried under a background light. It is hard to conclude whether there is
any ion in the trap or not. By using a differential photon counting mode, we subtract
the signal when the 866 nm is on from the signal when the 866 nm is off and thus
remove the background. Any signal after the subtraction indicates that there is an

2This is essentially a lock-in technique.
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ion in the trap. Once some signal is obtained, other parameters (laser position, laser
frequency, etc.) can be optimized to increase the signal.

The pulse sequence of this differential mode is represented in the time domain in
Fig. C-3.

To minimize memory space used by the pulser to store the pulse configurations,
the pulse sequence consists of looping of a smaller pulser sequence. In this particular
case, the pulser is simply a looping of 866 nm on for 100 ms then 866 nm off
for 100 ms while keeping 397 nm light on. The Pulser stores this small pulse
in its memory and loops this pulse until it is interrupted.

The pulse configuration is stored in the RAM of the Pulser. Each line of the RAM
has 64 bit of data. The first 32 bit represents the channel of the pulse. For example,
we might designate 397 nm to be channel 0 and 866 nm to be channel 1. The
last 32 bit is the time. This time is the time when there is any change in the state
of the channel. To illustrate this, let us measure time in units of microseconds. A
typical line in the RAM will looks like [00....0011:250000]. This means that at time
= 250000 (and right after), the state of channel 0 and 1 will be “high” or “1” and
others to be “low” or “0.”

By convention, the first line of the RAM indicates the initial state of the channels.
The RAM will look like this (we show only 4 channels for simplicity):

[Chanel(3..0):Time]

line1: [0011:000000] (At t = 0, channel1 = 1 and channel0 = 1)

line2: [0001:100000] (At t = 100 ms, change channel1 to 0 and channel0 to 1)

line3: [0011:200000] (At t = 200 ms, since the next line consists of t = 0, end
the pulse)

line4: [0000:000000]

Note that the channel configuration in line3 does not really matter since it only
indicates when the pulse ends (by having the next line to be all zeros). Once the
pulse reaches the last line, we have an option to tell Pulser to loop the sequence by
going to line1 again until we tell it to stop. Note that the limitation from the memory
of the pulser is in the complexity on the pulse (how many times the state of the TTL
changes in the pulse sequence) rather than the duration of the pulse.

C.1.1.2 Time-resolved photon counting module

During the pulse sequence, we might want to know when a photon has been scattered
by the ion. This is useful because we might care only about the number of photon
detected during a small period in the pulse sequence (for example, only when far blue-
detuned 397 nm light is on). We can also extract the information in the frequency
domain of the scattered light by taking a Fourier transform of the arrival times of the
collected photons.

In the main pulser module, there is a counter which keeps track of the time for
each pulse sequence. In our particular case, the Pulser is running from a 100 MHz
clock. So we have a counter which counts once every 10 ns. The time-resolved photon
counter simply records the time in the memory whenever there is a photon detected
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from the PMT. For example, after a pulse sequence, we might have in the memory of
the time-resolved photon count module a series of numbers like this:

[000001]
[000123]
[000267]
[000439]
[001485].
This means after the pulse sequence has finished, we have detected 5 photons,

with the arrival time at 10, 1230, 2670, 4390 and 14850 ns. One advantage of using a
common clock between the main pulser module and the time-resolved photon count-
ing module is that the arrival times of the photons in the time-resolved are always
consistent with the timing in the pulse sequence. For example, if we care only the
photon detected during the time t = 10 ms to t = 20 ms, we can disregard any data
which has the arrival time outside t = 10 ms to t = 20 ms. Another advantage is
when we loop the pulse sequence more than once, we might get a series of photon
detected like this:

[000001]
[000123]
[000267]
[000439]
[001485]
[000002]
[000133]
[000257]
[000539]
[001585].
This clearly indicates that the 6th photon and so on belong to the second iteration

of the pulse sequence since the main counter of the time reset back to zero after the
first iteration. This is beneficial because there is an overhead in data transfer from
the memory on the Pulser to the computer. We can wait until the memory of the
time-resolved photon counting module is almost full and transfer all the data in one
set.

C.1.1.3 Normal PMT counting

This module is rather independent from the rest of the Pulser. It counts how many
photon detected in the PMT module during a given period of detection time. Nor-
mally the time period ranges from 10 ms to 1 s. The time period can be set to be
automatic (where the counting is totally independent of the pulser) or tied to the
pulse sequence (which we use, for example, in the differential counting mode).

C.1.2 Direct digital synthesizer (DDS)

A direct digital synthesizer (DDS) is a generation of RF signal using a high speed
digital-to-analog converter. The main chip used in our setup is AD9910 from Analog
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Devices®. Generation of RF is crucial in switching the laser on and off using AOMs.
Fig. C-4 shows the block diagram of the DDS board.

The DDS board, once configured, only listens to one of the channels of the Pulser
to do frequency, amplitude and phase stepping of the RF. The configuration of the
DDS is very similar to the way the main pulser module is configured. Information
about the frequency and amplitude is stored in the RAM. Each line in the memory has
64 bit of data. The first 32 bits encode the frequency. The next 16 bits (though only 14
bits are currently used) is the amplitude. The last 16 bits represent the phase. There
is no timing information on the DDS board. Once the TTL pulse is received from
the Pulser, the DDS board steps to the next frequency/amplitude/phase in the RAM
on the DDS board. (If the pulse sequence does not require any frequency/amplitude
switching, the DDS will stay at the first frequency/amplitude/phase of the memory
on each DDS board). If there are multiple DDS boards connected to the Pulser, all
DDS boards share the same stepping TTL pulse. In this way, the number of I/O lines
used to connect DDS boards to the Pulser is minimized. As of now, up to 8 DDS
boards can be connected to Pulser. The frequency/amplitude/phase of each DDS is
sent to each DDS board from the computer through a 16 bit bus.

C.1.3 Using the Pulser

Most of the hardware configuration is on the FPGAs. We use VHDL to code these
FPGAs. We will describe in detail the code structure of each module in this section.

C.1.3.1 Pulser

As mentioned before, the main FPGA of Pulser is Spartan 6 FPGA on the XEM6010
module. There are three ways of transferring data between XEM6010 and a PC:
Wire, Pipe and Trigger. Wire is a physical signal on the FPGA which can be set
from the PC. This is suitable for configuring the FPGA to be operating in a certain
mode. Pipe is designed to handle heavy data transfer between the Pulser and the
PC. This is used, for example, for writing a pulse sequence to the Pulser or reading
time-resolved data from the Pulser. The Trigger is used mainly for resetting the pulse
sequence or other modules on the FPGA.

C.1.3.1.1 Programming the pulse sequence To program the pulse sequence
to the memory on the Pulser, first we generate a string of data to be transferred to
Pulser. (A LabRad Python server written by Michael Ramm does this. A detailed
description can be found in his Ph. D. thesis.) The data is written to the Pulser by
using the command

xem.WriteToBlockPipeIn(0x80, 2, buf)

which will transfer all data to PipeIn stored in “buf” at address 0x80 on the Pulser.
This data is first written to a first-in-first-out (FIFO) memory on the Pulser. This is
required because the data transfer of XEM6010 is done on a 48 MHz clock (USB 2.0
clock frequency) which operates somewhat independently from the main clock of the
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Figure C-4: Block diagram of the DDS board.
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FPGA (which is 100 MHz). Once there is some data in the FIFO, the “FIFO empty”
pin of the FIFO is set to low. There is a process (call “RAM writer”) in the FPGA
which monitors the state of this pin and writes data from the FIFO to the RAM until
data in the FIFO is empty. Since the PipeIn data transfer from the PC is done in a
chunk of 16 bit, the input of the FIFO is 16 bit wide but the output of the FIFO is
64 bit wide. To program a new pulse sequence, simply run

xem.ActivateTriggerIn(0x40,1)

This command tells the RAM writer to write to address 0 of the RAM when there is
anything in the FIFO.

The RAM is configured to be a simple dual-port RAM (single input and single
output). Both the input and the output are 64 bit wide. The input is handled
automatically by the RAM writer. The main pulser module looks at the time and
channel configurations on the RAM and steps through each line until the last line is
reached. Then depending on the mode (whether it is in a looping mode or a one-shot
mode), the Pulser will stop or repeat itself.

Note that the clock of the FPGA is running at 100 MHz. The pulse sequence,
however, does not require a resolution of 10 ns. There is a coarse counter which runs
at 25 MHz and a fine counter which runs at 100 MHz. The pulse sequence timing is
based on the 25 MHz time (so that the unit of the timing in the RAM is in 40 ns).
The 100 MHz fine counter is used only by the time-resolved photon counting module
which requires high timing resolutions.

C.1.3.1.2 Logic out overwrite The state of each channel of the pulse sequence
is stored in a 32 bit vector called master logic in the VHDL code. However, there are
applications where users need to overwrite the logic of particular channels manually.
Each channel is then gated with a manual control logic (ep02wire and ep03wire) set
by users. The configuration is:

If ep02 = ’0’ and ep 03 = ’0’, then output follow master logic, If ep02
= ’0’ and ep 03 = ’1’, then output invert master logic, If ep02 = ’1’ and
ep 03 = ’0’, then output is always ’0’ and If ep02 = ’1’ and ep 03 = ’1’,
then output is always ’1’.

C.1.3.1.3 Time-resolved photon counting To record the arrival time of each
photon detected from the PMT, there is a FIFO (32-bit wide memory) which is
written every time a photon is detected. This is done by tying the write clk pin of
the FIFO to the PMT signal. We also tie the write enable pin to one of the channels
of the pulse sequence to selectively record photons only when we want to (to reduce
the memory used). The timing, as mentioned before, is the same timing used for the
pulser module.

The reading is done through a PipeOUT channel A0 by using the command

buf = "\x00"*2*2*320

xem.ReadFromBlockPipeOut(0xa0,2,buf)
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a = Struct("H"*(len(buf)/2))

Struct.unpack(a,buf)

where the length of “buf” depends on how many photon there are in the FIFO.
The Struct method is used to convert binary data to an integer. The number of
photons in the FIFO can be read using the command

xem.UpdateWireOuts()

xem.GetWireOutValue(0x22)

Since PipeOUT reads in a chunk 16 bit, the output of the FIFO is 16 bit wide
where the input is 32 bit wide. This means that the max “read data count” of this
FIFO is 65536 lines corresponding to 32768 photons. With this in mind, we have to
make sure that we are not filling up the FIFO before reading it out. This limitation,
however, could be overcome by implementing SDRAM on the XEM6010 board.

C.1.3.1.4 Normal PMT Counting Normal PMT counting is a bit more com-
plicated because there is a counter which we have to reset every counting period.
This counter will increase by 1 every time there is a signal from the PMT. There are
two modes: automatic and differential modes. In the automatic mode, the Normal
PMT modules measure the photons independent of the pulse sequence. We set the
counting period manually using

xem.SetWireInValue(0x01,0x0064)

xem.UpdateWireIns()

In the differential mode, the counting period is tied to one of the channel of the pulser
sequence. Basically, the Normal PMT counting process waits for a TTL pulse from
the PMT. When it detects a pulse, it writes the data in the counter to the FIFO
(which is 32 bit wide) and then resets the counter and wait for the next pulse. In
principle, there is a down time of the counter (when it is being reset). However,
the down time is short enough such that it does not change the number of photons
counted during a period of 100 ms for our typical photon count rate of 20− 30× 103

counts/s. The most significant bit of the data in the FIFO (bit 32) indicated whether
the 866 nm is on or off in the differential mode. The reading of normal PMT count
is done by first asking how much data is there in the FIFO by calling

xem.SetWireInValue(0x00,0x40,0xf0)

xem.UpdateWireIns()

xem.UpdateWireOuts()

xem.GetWireOutValue(0x21)

then read by calling

buf = "\x00"*2*2*32

xem.ReadFromBlockPipeOut(0xa1,2,buf)

a = Struct("H"*(len(buf)/2))

Struct.unpack(a,buf)

Note that ep21wire displays information depending on bit (7..5) of ep00wire. This is
to reduce the number of Wire modules used in the Pulser.

139



C.1.3.2 DDS

C.1.3.2.1 Pulser side To program the DDS board, users have to write data to
the FIFO on the Pulser similar to the way we write the pulse sequence. The FIFO is
16-bit in and 16-bit out. Now, the RAM module is on the FPGA on the DDS board.
There is a RAM writer in the FPGA on each DDS board which checks if there is any
data on the FIFO on the Pulser. If there is, then it writes the data to the RAM. The
RF output of the DDS is automatically set to the frequency, amplitude and phase of
the first address of the RAM. Then the DDS board steps to the next setting if there
is a pulse from the Pulser.

Since all DDS boards share the same bus, to program the right DDS board, the
user has to first set which board to program by calling

xem.SetWireInValue(0x04,0x00)

xem.UpdateWireIns()

and then write the DDS data using

xem.WriteToBlockPipeIn(0x81, 2, "\x02\x00\x00\x00\x00\xef")

Note that PipeIn address is 81 instead of 80 (which is used for pulse sequences). We
can also reset all DDS boards and step all DDS boards to the next frequency/ampli-
tude/phase by calling

xem.ActivateTriggerIn(0x40,4)

and

xem.ActivateTriggerIn(0x40,5)

respectively. Only the selected DDS board listens to these triggers. One thing to
remember is that we cannot selectively step a particular DDS board. We have to step
all DDS boards at the same time. In this sense when operating a pulse sequence that
contains frequency/amplitude/phase stepping, we have to program all DDS channels
accordingly so that all DDS boards behave correctly.

C.1.3.2.2 DDS side We also have to program the FPGA on the DDS board. As
mentioned in the previous section, there is a RAM writer which looks at the FIFO on
the Pulser to see if there is any data in the FIFO. If there is, then the Pulse writes
that data to the RAM on the DDS board. The output of the RAM is rather simple.
There is a RAM read address which increases by one every time there is a “step to
the next parameter” pulse. The output is written to the DDS chip (for frequency)
and a variable gain amplifier (for amplitude) on each DDS board.

The DDS chip needs to be programed before it is functional. This happens every
time the DDS boards are powered on. Please refer to the datasheet of AD9910 for
details. The chip configuration we are using is

• Frequency tuning through parallel port

140



Figure C-5: Filtering of DC voltages. The four 180 kΩ resistors are for decoupling
both the ground and the signal of the electrodes from the DC power supplies.

• Input clock without dividing by 2

• PLL enabled (800 MHz)

• Disable RAM functionality on the DDS chip

• Retain old data when TxENABLE is asserted low

The address of the board is set by a DIP switch. The LEDs are used for debugging.
The DDS board also has an on-board 25 MHz oscillator which lets us use the DDS
board as a stand alone RF source. If this is the case, then the PLL of the DDS chip
must be enabled. However, the noise floor is higher when operating in this mode.
Normally there is a jumper which disconnect the power to the oscillator (P10).

C.2 DC voltage control using digital-to-analog con-

verter (DAC)

DC voltages on the end caps provide a confinement in the axial direction. These
voltages are generated by an AD660 (Analog Devices®) chip, which provide a 16-bit
±10 V of voltage amplified by an op-amp OPA554 (Texas Instrument®) to reach ±40
V. The PC controls two DAC channels for the two end caps through an Opal Kelly®

XEM6001 module (with Spartan® 6 FPGA on board).
Each DC channel is filtered with a low-pass filter to remove electrical noise which

can heat up the ion. The most important frequency to filter are the secular frequen-
cies, which for our case from 150 kHz to 3 MHz. This is done using a circuit shown
in Fig. C-5. The most important components are the capacitors, which should be
verified to work well at the drive frequency (30 MHz).
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