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Abstract

Humans rely on our social networks to make more accurate
inferences about the world. Yet it remains unclear how those
inferences are shaped by the medium through which informa-
tion is exchanged and beliefs are shared. In this paper, we re-
port two experiments where participants (N = 645) were asked
to make inferences about an unknown probability distribution
based on limited private observations. They exchanged mes-
sages with neighbors in a small social network and were asked
to update their beliefs over repeated rounds. We compared
three conditions: a unidirectional message medium, a con-
strained slider medium, and an interactive chat. All groups
were able to converge toward more accurate inferences, but
their convergence rates varied across conditions in ways not
well-captured by common models. We argue that computa-
tional models of collective behavior must move beyond the
assumption of direct belief transmission to capture the com-
plexities of sharing information through natural language.

Keywords: Social learning; statistical inference; collective be-
havior

Introduction
As individuals, humans must learn and make decisions based
on relatively sparse and noisy observations. As social groups,
however, we have access to a much larger pool of knowl-
edge. We rely on communication to aggregate information
across different agents and to collectively arrive at infer-
ences, predictions, and decisions that integrate diverse expe-
riences (Henrich, 2016; Gweon, 2021; Hawkins et al., 2023;
Fränken, Valentin, Lucas, & Bramley, 2024). For instance,
giving individual clinicians access to an information-sharing
network significantly reduces medical errors (Centola et al.,
2023). A longstanding question across the cognitive sci-
ences concerns how exactly human groups manage to balance
individual and social information (Galesic, Olsson, Dalege,
van der Does, & Stein, 2021; Becker, Brackbill, & Centola,
2017). What cognitive mechanisms and social dynamics en-
able effective information sharing?

One fruitful approach to studying collective inference is
to study agent-based models of opinion dynamics (Smaldino,
2023; Goldstone & Janssen, 2005; Golub & Jackson, 2010).
These models simulate how networks of individual agents
exchange and update beliefs through repeated social interac-
tions. One classic example is a voter model (Axelrod, 1997),
where agents copy the opinion of a randomly selected neigh-
bor at each time step, leading to convergence or polarization
across the network (Nowak, Szamrej, & Latané, 1990). Other

models integrate more sophisticated cognitive factors like
confirmation bias, where agents preferentially adopt opinions
that match their existing views (Hegselmann & Krause, 2002)
or social identity (Steiglechner, Smaldino, Moser, & Merico,
2023), where agents preferentially attend to members of their
own group. These models may also be enriched by statistical
inference mechanisms, as in Bayesian models of social learn-
ing (Bonawitz & Shafto, 2016; Tang & Chorus, 2019; Shafto,
Goodman, & Frank, 2012)

While agent-based modeling provides a useful framework
for deriving collective outcomes from assumptions about
individual cognition, empirical measurements of collective
behavior have lagged behind the proliferation of models
(Moussaı̈d et al., 2017; Centola, 2010). Without quantita-
tive data, it is unclear which models best capture the pat-
terns observed in human groups and human social cogni-
tion. Most agent-based models assume direct transmission of
scalar opinions, yet real-world interaction involves a linguis-
tic bottleneck, requiring individuals to interpret verbal mes-
sages, extract relevant information, and map it back to their
internal beliefs. That is, linguistic utterances have a complex,
non-linear relationship with social cognition. Communicative
acts are decoupled from internal belief updating (Moussaı̈d et
al., 2018; Van Overwalle & Heylighen, 2006).

Controlled behavioral experiments are critical for revealing
divergences from idealized theoretical dynamics. In this pa-
per, we report results from a novel group inference task where
participants exchanged messages in small social networks un-
der varied conditions. By tracking how beliefs evolved over
repeated interactions, we directly measured the pathways by
which social information shapes collective knowledge. Our
findings reveal that subtle factors in communication mechan-
ics and network structure can accelerate or impair conver-
gence to accurate beliefs. For example, introducing a con-
strained numerical format for messaging akin to classical
models actually slowed or reversed the ability of the group
to converge on the true value. These effects demonstrate the
need to move beyond simplistic models of direct transmission
and incorporate richer cognitive mechanisms of information
exchange. More broadly, our work aims to provide a stronger
empirical foundation for a new generation of models that cap-
ture the complexities of collective human inference.
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1. Join social network

Stage a: Send messages

Stage b: Receive messages & report beliefs

3. Discuss

Player 1 Player 2

Player 3 You

9×2. Observe your critters

Figure 1: Participants were connected in groups of four and observed a private sample of wildlife (here, two squirrels, or one
squirrel and two rabbits). On each trial of the experiment, they were asked to write a message to a neighbor and report their
beliefs about the underlying distribution after receiving a message.

Experiment 1: Distributed statistical inference
Participants We recruited N = 144 participants from Pro-
lific and assigned them to N = 36 groups of four. All par-
ticipants were from the US, UK, or Canada, and were pre-
screened as fluent English speakers. Active participants re-
ceived a base pay of $15 US per hour, and the experiment
took approximately 15 minutes. We excluded six partici-
pants who failed to provide responses for 2 consecutive tri-
als. We excluded six additional participants showing a devi-
ation of more than 70% from their initial distribution on the
first round, suggesting they misunderstood the direction of
the scale on the slider.1

Stimuli Participants were asked to estimate the relative pro-
portion of rabbits vs. squirrels in the local wildlife
population. We showed each participant a fixed set of crit-
ters out their virtual “window” as initial private information
to be shared in subsequent rounds of social interaction. Pri-
vate samples of critters for each participant in a given net-
work were independently drawn from binomial distributions
with the same fixed proportion p. In order to vary the total
amount of observations across participants, we also placed a
hyper-prior over the sample size N, giving each individual a
unique sample size and yielding the following distribution:

P( |p) = EN
[

f ( ,N, p)
]
= EN

[(
N
)

p (1− p)
]

for N ∼ Unif{0,9}. In other words, for each participant in a
network, we first sampled an integer between 0 and 9 to be
the total number of critters, and then we sampled the set of
observations from a binomial distribution. This procedure al-
lowed for variability both in the total amount of information
and local proportions, while maintaining a constant underly-
ing probability across the entire network. We set p = 0.7 for
half of the networks and p = 0.3 for the other half.

1Data from the remaining participants in these networks were
still included in analyses, although results were robust if we ex-
cluded all incomplete networks.

Procedure After reading the task instructions and passing
a comprehension quiz, participants were directed to a reac-
tive web application built with Empirica (Almaatouq et al.,
2021). The task interface had two major components. On the
left side of the screen, a group of critters (rabbits and squir-
rels) were presented out a ‘window’. On the right side of the
screen, a messaging interface was provided to communicate
with other participants in the network and report beliefs about
the true underlying distribution (see Figure 1).

On each round of the task, participants were paired with an-
other participant in the group and given 30 seconds to send a
message or messages about the underlying distribution. There
was no limit to the number of messages they could send, but
the communication modality was unidirectional so they did
not receive any messages back during this period, reflecting
the structure of information exchange typically used in agent-
based models. Following the communication stage, they were
shown the message(s) produced by their partner and asked
to report their own updated beliefs about the underlying dis-
tribution using a slider. The slider ranged from no rabbits
(100% ) to all rabbits (100% ).

Participants proceeded to the next round after 30 seconds
or as soon as all members of their network had submitted their
responses. Dyadic pairings on each trial were rotated using a
round-robin algorithm such that participants sent messages
to, and received messages from, each partner exactly three
times over the course of nine trials. We used this structure
rather than a blocked design (i.e. repeated exchanges with a
single partner before moving to the next partner) to acceler-
ate the “mixing rate” of information in the network; a blocked
design would be more similar to the interactive condition in-
troduced in Experiment 2 below. Demographic information
was collected in an exit survey following the final round.

Results
Communication improves inferential accuracy We begin
by considering the extent to which groups are able to improve
their collective accuracy through deliberation. We hypoth-

1316



30

40

50

60

70

1 3 5 7 9
round #

av
er

ag
e 

gu
es

s

p=0.3 p=0.7

−50

0

50

0 20 40 60 80
outlier degree

av
er

ag
e 

er
ro

r

2.5

5.0

7.5

round

0

10

20

30

1 3 5 7 9
round #

av
er

ag
e 

er
ro

r

p=0.3 p=0.7

Figure 2: (Left) Participants’ initial estimates tend toward the midpoint but as communication unfolds within the network,
estimates approach the true latent probabilities p. Dotted lines represent empirical frequencies p̂ in our sample. (Right)
Average error decreases significantly for both conditions as a function of social information exchange. Participants with an
outlier sample from the distribution (measured here as distance from game p) are more likely to significantly modify their
responses, lowering error over time. Error ribbons are bootstrapped 95% CIs. (Middle) Participants whose private observations
deviate more from the ground-truth proportions tend to adapt their guesses the most, eventually reaching an error rate closer to
participants with more representative information.

esized that, although each participant received sparse local
observations, the network as a whole would be able to ag-
gregate their estimates over time to approach the true latent
probability as seen in agent based models. We tested this hy-
pothesis using a mixed-effects model predicting each slider
rating (0 to 100) including fixed effects of round index (con-
tinuous; 1 to 9), latent probability condition (sum-coded; 0.3
vs. 0.7), and their interaction. Due to nested layers of clus-
tered variation, we included intercepts and random effects of
round index for each game as well as for each player within
those games. We found a significant interaction, b =−16.18,
t(43.5) =−9.2, p < 0.001, where participants in the p = 0.7
condition increased their guesses over time while participants
in the p = 0.3 condition gradually decreased their guesses.
In other words, participants tended to regularize their initial
guesses closer to the midpoint of the scale before moving in
toward the true rate as social information was acquired (see
Figure 2, left).

Next, to more directly examine our hypothesis that a
game’s error would decrease over time as messages are ex-
changed, we constructed a second mixed-effects model in-
stead predicting trial-level error: how far off each slider es-
timate was from the true probability. Because each game
had a distinct distribution of critters that fluctuated around
0.7 or 0.3, we used the game-level empirical frequencies
p̂i = i/( i + i) as our reference point, i.e. our de-
pendent variable was ε = |ŷi − p̂i|. As predicted, we found a
significant main effect of round index, b =−63.38, t(71.6) =
−4.86, p < 0.001, suggesting that error decreases and esti-
mates converge toward the empirical game-level frequency
across both conditions (see Figure 2, right). We found no ev-

idence that these slopes differed across conditions, p = 0.62.
These findings were robust to additional exclusion criteria,
such as removing players who happened to draw an empty
sample (no critters at all), or removing games where more
than one player was missing data due to inattention.

Outliers make bigger belief revisions Next, we turned to
examine how individual belief updates vary as a function of
private and social information. It is commonly observed in
the collective behavior literature that agents make larger revi-
sions to their estimates when they are more out of step with
their neighbors (e.g. Becker et al., 2017). Here, we test
the extent to which this effect replicates under linguistically-
mediated communication. First, we calculated a measure of
outlier degree for each participant, defined as the distance be-
tween the empirical proportion of rabbits in a participant’s
private sample p̂i j and the empirical proportion in their game
as a whole p̂i. We then constructed a linear mixed-effects
model predicting participants’ error magnitudes as a function
of their outlier degree, round index, and the interaction be-
tween the two. All variables were z-scored, and we included
maximal game-level random effects2

As predicted from prior work(Moussaı̈d, Kämmer, An-
alytis, & Neth, 2013), we found a significant interaction
between outlier degree and round index on error, b =
1.4, t(881) = 2.79, p = 0.0054. Participants who happened
to receive outlier samples (e.g. 2 rabbits and 1 squirrel in
the condition where squirrels were more likely) initially had
higher error in their estimates (light blue line) but the slope

2The estimated variance of the random interaction was near 0, so
we removed it from the random effect structure.
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Stage 1: Register thoughts

Stage 2: Receive messages & report beliefs
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Stage 1: Chat

Stage 2: Report beliefs
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Stage 2: Receive messages & report beliefs

unidirectional condition 9× 9×

experiment 1 experiment 2 A B

Figure 3: We compare three different communication modalities to examine their impact on group opinion dynamics. (A) In
Experiment 1, we used a unidirectional interface where messages were asynchronously sent and received. (B) In Experiment
2, we added a ’slider-only’ condition, which constrains input to a proportion slider, generating a pre-worded message, as well
as an ’interactive’ condition allowing unconstrained dyadic communication through the chat box.

of this relationship significantly decreased over time (darker
blue lines), indicating that these participants were revising
their guesses without other participants’ estimates getting sig-
nificantly worse (see Figure 2, middle). In other words, par-
ticipants receiving social information that deviates strongly
from their own observations tend to most significantly revise
their beliefs.

Experiment 2: The effect of
the communication medium

Our results so far suggest that groups effectively aggregate
private knowledge into more accurate collective estimates by
exchanging information. However, it remains unclear how
the specific medium of communication impacts this process.
Classic agent-based models (e.g. DeGroot, 1974) typically
assume that agents have direct access to the underlying be-
liefs of neighboring agents. On one hand, we may expect
the linguistic bottleneck that free-form messages must pass
through may reduce the efficiency and accuracy of opinion
transmission compared to directly sharing numerical repre-
sentations, thus impairing convergence. On the other hand,
the flexibility and richness of natural language may allow for
new coordination strategies that improve on simplistic aver-
aging models.

To test these accounts, we extended our paradigm from
Experiment 1 with two additional conditions manipulating
the communication medium: (1) a ’slider-only’ condition re-
sembling the classic assumption from agent-based models
that others’ estimates are directly accessible, and (2) an ’in-
teractive’ condition allowing free bidirectional communica-
tion. By comparing what makes groups more or less effective
across these conditions, we aim to reveal how the communi-
cation modality of social networks shape their collective out-

comes (Boyce, Hawkins, Goodman, & Frank, 2022).

Participants We recruited an additional N = 420 partici-
pants from Prolific and assigned them to N = 105 unique net-
works of size four (approximately N = 25 networks per con-
dition). We used the same exclusion criteria as Experiment
1, filtering out 18 participants who initially used the slider
inconsistently with the observations they were given.

Design The procedure was identical to Experiment 1, ex-
cept for the communication interface. The slider-only condi-
tion constructed a close behavioural replica of classic agent-
based models. Communication entirely took place through
direct numerical data transmission of opinion reports. Rather
than starting with a message-sending phase and then pro-
ceeding to a belief report phase, individuals were initially
prompted to input their opinion using a slider. After all par-
ticipants submitted their belief reports, they advanced directly
to the next round, where they were shown the same slider in-
terface but with an auto-generated message (e.g. “I think the
population is 73% rabbits”). In other words, the two stages
were merged, because providing a belief report is the same
act as providing a message. Meanwhile, the interactive con-
dition used the same two-stage control flow as Experiment 1,
but instead of waiting until the report stage to receive mes-
sages, dyads were able to bidirectionally exchange messages
in real time for the entire 30 second communication window,
similar to a one-on-one text messaging conversation.

Results

Direct transmission of beliefs impairs group inference
To evaluate the extent to which different communication
modalities improve or impair the distributed inference abili-
ties of participants in our task, we compared the average error
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Figure 4: (left) Among our three conditions, groups using unidirectional messaging performed best (Experiment 1), groups
using slider-only communication performed worst, and groups using interactive channels were in between (Experiment 2).
(right) Participants in all three conditions change their reported beliefs less and less over the course of the study.

of each guess across conditions. As in Experiment 1, we cal-
culated error as the distance between the slider value and the
network’s empirical frequency of rabbits p̂i. We constructed a
mixed-effects model with fixed effects of condition (unidirec-
tional vs. slider-only vs. interactive, sum-coded) and round
index (1 through 9, centered), with nested random effects for
each game and each player within that game.

First, we found a significant main effect of round index
where error decreased over time in all conditions, b = −6.9,
t(134.3) =−7.11, p < 0.001. More centrally for our hypoth-
esis, however, we also found a main effect of condition, with
the slider condition performing significantly more poorly at
all time points than the average across conditions b = 0.14,
t(138.9) = 2.25, p = 0.028, and the unidirectional condi-
tion performing significantly better than average, b =−0.13,
t(136.4) =−2.15, p = 0.034. As seen in Figure 4, the inter-
active condition falls somewhere in between. Thus, we find
some support for the hypothesis that, rather than serving as
a bottleneck and impeding the direct transmission of belief
states, language may in fact facilitate more accurate aggrega-
tion of information across networks. We consider potential
reasons for this ordering in the Discussion below.

Direct transmission helps groups with more information
Due to the fact that each participants’ sample size N was ran-
domized, some groups happened to receive to a larger amount
of total information (’critters’) than others. The increased
number of total observations were distributed more or less
unevenly across participants in the group. In this section we
test the hypothesis that, even if groups in the interactive or
slider-only conditions do not perform as well as the unidirec-
tional groups overall, these alternative interfaces may simply
be more sensitive to data sparsity and allow groups to perform
quite well when sample sizes are large. To test whether total
information impacted convergence differently across condi-
tions, we compared a mixed-effects model including main

effects of condition, sample size, and round index against a
model also including the interaction between condition and
sample size. As seen in Figure 5, the model with an inter-
action provided a significantly better fit in a nested model
comparison, χ2(4)= 11.48, p= 0.022, suggesting that the re-
lationship between information quantity and collective error
depends on the communication medium. This effect suggests
that interactive and slider-based modalities may be dispro-
portionately affected by lower quality data, possibly due to
the information format or working memory load. Follow-up
analyses indicated that the effect of sample size on group er-
ror in Experiment 1 was significantly smaller than the effect
for the interactive condition, t(484) = 2.18, p = 0.03, but we
could not reject the null hypothesis for the slider condition,
t(485) =−0.688, p = 0.49.

Participants’ guesses stabilize over time A final reason
for the observed difference in performance across conditions
is the speed of convergence. Intuitively, information obtained
later during learning should have less of an impact on beliefs
than information obtained at the beginning; however, it was
unclear whether this would differ as a function of the com-
municative channel. We measured the absolute difference be-
tween a player’s guess on round k and their guess on k + 1
and constructed a mixed-effects model with fixed effects of
round index and condition and maximal random effect struc-
ture. First, we found a significant main effect of round in-
dex, b = −110, t(168) = −5.93, p < 0.001, indicating that
participants were gradually stabilizing over time in all con-
ditions; they were changing their responses less and less as
the game went on. Additionally, we found a significant main
effect between the slider condition and the interactive condi-
tion, b=−2.3, t(160)=−2.14, p= 0.034 where participants
overall made much smaller changes in the slider-only condi-
tion.
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Figure 5: Unlike the unidirectional condition (Experiment 1), participants in the interactive condition and the slider-only
condition (Experiment 2) performed relatively better when the group as a whole had access to a larger sample size of animals
distributed across individuals in the group.

Discussion
Agent-based models of opinion dynamics are popular for a
reason. They provide a simple interface for examining emer-
gent behavior at the level of populations by grounding it in
simple assumptions at the level of individuals. However, as
these models grow in complexity, it becomes more critical
to take a step away from idealized qualitative phenomena to-
ward quantitative measurements of real human groups in con-
trolled settings. In this paper, we considered a distributed
inference task where a small social network collectively in-
ferred a latent probability from limited individual observa-
tions. We found that, overall, groups were able to aggregate
knowledge through communicating and successfully reduced
the error of their estimates over repeated interactions.

Critically, we manipulated the communication modality
used to exchange information, finding that a slider interface
that enforces standard numerical assumptions of agent-based
models was not as effective as natural-language interfaces.
The improvement observed with text communication may
arise from increased information density in communicative
speech acts; in speech, the participants have the opportunity
to communicate not only their own current beliefs, but also
the beliefs of others, their confidence in these information
sources, and the data itself, thus distinguishing their percep-
tion of the network from their beliefs about the latent value.
It is possible that some of the disadvantage is attributable to
presenting the slider-transmitted information as a percentage
(Gigerenzer, Hertwig, Lindsey, & Hoffrage, 2000), but re-
ported beliefs as percentages in all conditions, so this diffi-
culty would likely affect all conditions equally.

One particularly surprising finding was that groups using
a bi-directional messaging interface performed more poorly
than groups using a uni-directional messaging interface de-
spite allowing for higher-bandwidth deliberation. There are
several potential explanations for this counterintuitive result.
For one, the additional quantity of messages being exchanged
may increase noise or working memory load, outweighing the
benefits of bidirectional information flow. A related factor

is the possibility of introducing interference between differ-
ent conversations with different interlocutors, leading some
information to be more socially salient or weighted more
strongly than others; introducing stronger social cues and dis-
sociable avatars might help to reduce interference. Finally,
these unstructured dialogues may have introduced opportuni-
ties for disorganized, “stream-of-consciousness” arguments
or mistrust about their interlocutor’s reliability, undermining
cooperative inference in the relatively short window of time
allowed for discussion. Untangling these possibilities will re-
quire analysis of the language itself. But it is clear that simply
allowing freer exchange does not automatically improve col-
lective intelligence.

Another puzzling result is that, while error decreased in rel-
ative terms, participants also seemed to consistently over- or
under-shoot the true latent value in absolute terms, resulting
in unexplained residual error. It is possible that 9 rounds of in-
teraction is not sufficient for convergence, or that participants
simply have a positive response bias in their slider use. An-
other more intriguing explanation is that pieces of redundant
social information were being double-counted. For example,
participants could think they were being paired with another
new partner on the 4th trial when in fact they were paired with
their first partner again (Whalen, Griffiths, & Buchsbaum,
2018). These misunderstandings could create positive feed-
back loops that lead networks away from the ground truth.

Natural language facilitates a richer space of strategies than
simply averaging opinions across neighbors. We argue that
formal models going forward must move beyond direct trans-
mission assumptions to capture this hidden layer of linguis-
tic coordination and secondary information. By combining
controlled behavioral experiments with computational mod-
eling, we can reverse engineer the cognitive mechanisms that
enable collectively intelligent behavior to emerge from local
exchanges. More broadly, our work contributes to a cross-
disciplinary understanding of how low-level linguistic pro-
cesses scale up to shape the dynamics of collective reasoning
and collective behavior.
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