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Three Case Studies in Quantitative Approaches to Agroecosystem Management 
 

Graeme Joel Baird 
 
Abstract  
 
 
Effective ecological management of agroecosystems for both productivity and 

sustainability is by design a messy and complex task, producing problems which 

benefit from highly data-focused analyses. Here, three case studies using quantitative 

approaches to these problems are presented. First, using results from soil nitrogen 

monitoring in a long-term organic vegetable/strawberry cropping dataset, an 

ensemble machine learning model and process model are contrasted and used to 

reveal key drivers of soil mineral nitrogen asynchrony and loss potentials. 

Environmental factors, nutrient inputs, and management practices interact to 

determine the magnitude of nitrogen mineralization, and key combinations of these 

factors, such as early- or late-season disturbance and irrigation, may increase the risk 

of generating loss-vulnerable pools. Second, a Bayesian network modeling approach 

is used to synthesize data across multiple lab and field experiments, using cross-

experimental data in an integrative manner, furthering our understanding of treatment 

dynamics in anaerobic soil disinfestation, an ecological soil pathogen control method, 

and providing a step forward in recommendations to strawberry growers seeking to 

optimize implementation in their systems. A strong relationship between carbon 

inputs and soil temperatures suggests that growers may be able to ease environmental 

restraints with additional inputs during treatment applications. Finally, an 
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unsupervised cluster analysis is applied to a broad survey of on-farm management 

practices and approaches to disease control in walnut production, detecting two 

primary groups of divergent management practices. These groups, broadly 

characterized by moderate versus high levels of data and technology use, utilize 

markedly different approaches towards the integration of information and technology 

into on-farm management decisions. 
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Learning ecological nitrogen management: model approaches to predicting 

nitrate asynchrony in organic vegetable/strawberry cropping systems 

Introduction 

As agricultural systems continue to develop in the 21st century, a variety of 

projections and critical objectives have been proposed to help guide researchers and 

land managers towards fruitful avenues of development. Of specific concern is 

agricultural intensification, the concomitant demands placed on system-level 

productivity, and how to best meet projected yield requirements while maintaining 

the integrity of peri-agricultural environmental, social, and economic systems. In 

particular, there is a continued need to tighten nutrient cycles within agroecosystems, 

with particular emphasis on the movement, use efficiencies, and losses of nitrogen 

(Gruber and Galloway 2008) and phosphorous (E. M. Bennett, Carpenter, and Caraco 

2001). 

Despite extensive documentation of impacts (Gruber and Galloway 2008, Howarth 

2008, Robertson and Vitousek 2009) and contemporary research on improved 

management practices (Follett 2012), nitrogen (N) losses from agricultural fields 

remain one of the primary and intractable sources of N pollution to global ecosystems 

(Robertson and Vitousek 2009). Modes of off-farm transportation of agricultural N, 

very frequently in the same season as it was brought to the farm as synthetic N 

fertilizer, persist at relatively high levels with modern estimates of nitrogen use 
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efficiency (on-farm and harvest N retention versus total applied) remaining below 

50% (Cassman, Dobermann, and Walters 2002). Many of these losses result from 

asynchrony between soil N availability, microbial N uptake, and plant N 

requirements, producing a concomitant accumulation of loss-vulnerable pools of soil 

inorganic N (Drinkwater and Snapp 2007). While these pools are particularly 

prominent in systems that maintain soil inorganic N saturation through applications of 

synthetic N fertilizers, excess N can exist in any soils where fertilizer inputs and net 

N mineralization outpace real-time crop N requirements. 

Some success in reducing N asynchrony has been found in the use of model-

calibrated fertilizer recommendations, which use estimations of underlying N 

transformations and plant uptake to specify fertilization rates, application timings, and 

irrigation management. However, these models tend to be targeted towards large-

scale conventionally-managed cereal systems (Follett 2012) and their results may be 

poorly extendable to intensively managed vegetable crops with markedly different 

climactic conditions, crop phenologies, and management practices (Kersebaum 

2007). 

Regardless, while the effects of N losses on local and regional ecological processes 

are particularly prominent in areas with surface water flows and industrialized cereal 

cropping systems (e.g. domestically, the Mississippi River Basin (McIsaac et al. 

2001), globally (Diaz and Rosenberg 2008)), vegetable cropping systems in the 

Central California Coast region (San Mateo, Santa Cruz, Monterey counties, hereafter 

“CCA”) can lose a considerable amount of N to the environment, primarily through 
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leaching to shallow groundwater (leading to surface water pollution) and to deeper 

aquifers (Fogs, LaBolle, and Weissmann 1999), and as N2O emissions, a potent 

greenhouse gas (Harter et al. 2014). 

Manipulation of management and input-timing is relatively understudied in systems 

which use ecological nitrogen management (“ENM”) strategies. Agroecosystems 

utilizing ENM frameworks, most commonly organically managed systems, avoid the 

input of synthetic N fertilizers, instead relying on in-season mineralization of soil 

organic N, biomass fertilizers, and crop residues. Further, long-term management of 

soil microbial biomass and recalcitrant N pools are seen as a fundamental component 

of fertility management (Drinkwater and Snapp 2007). 

Applications of predictive modeling to complex ecological management systems is 

appealing - with the caveat that existing N-management crop models are often 

calibrated towards managing N dynamics in systems reliant on synthetic fertilizers as 

the primary source of plant available N, where N transformations are largely 

subsumed by the magnitude of mineral N inputs. Organic vegetable cropping systems 

reliant on ecological nitrogen management (ENM) strategies depend on a more 

diverse and unstable set of immobilization-mineralization reactions. 

While the underlying microbial transformations and soil-plant interactions which 

drive mineralization patterns from soil organic nitrogen (SON) pools are well-studied 

(Benbi and Richter 2002), predicting the relative contributions of management events 

and environmental factors in driving net N mineralization and immobilization 
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remains a daunting task, leaving CCA growers who wish to use ecological practices 

little scientific support on how best to manage system N. 

Model approaches to ENM 

One approach involves the use of process models, or mechanistic models, which seek 

to directly represent the underlying biogeochemistry of the modeled systems. These 

are typically continuous simulation models, generally with hard-coded parameters, 

that use time-step simulations of soil processes such as water transport and nutrient 

transformations, alongside models of plant growth. In theory, by simulating these 

processes to a certain degree of specificity, emergent and measurable phenomena can 

be adequately captured, even in systems which are dominated by biological N 

turnover processes (Kersebaum 2007, Giltrap, Li, and Saggar 2010). 

Conversely, instead of emphasis on underlying biological processes an alternative 

approach is the use of data-driven prediction models, i.e. those derived from 

statistical and machine learning paradigms. These models consider the data features 

themselves to be the system under consideration. In some cases, domain-specific 

expert knowledge may be incorporated into the modeling procedures, for example in 

the construction and specification of a deep hierarchical Bayesian model, and in other 

cases the modeling specifications may be driven only by improving model 

performance on key evaluative measures (out-of-sample loss, specificity/sensitivity 

equilibria, etc.). In the latter category, modern nonparametric machine learning 

methods contain useful features such as robustness to parameter collinearity, high 
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degrees of predictive performance, and feature selection capacity during the model 

fitting process. A summary of the high-level differences between these two analyses  

paradigms are provided in Table 1-1. 

Statistical/ML models (data-focused) Mechanistic models (process-focused) 

Foundation 
- Model or algorithm 

performance and robustness 
- Verification of distributional / 

inferential assumptions in data 
Basis 

- Fitted model or learned 
parameters describing data 

Training 
- Typically via an objective 

function, such as error or loss, 
which may be problem-specific 
according to outcome goals 

 
Outcome 

- Direct model interpretation, if 
possible, via learned structure 

- Forecasting and prediction from 
combination of model structure 
and training data 

 
Dependencies 

- Adequate vetting of model 
structure, assumptions, and bias 

- Capture or acknowledgement of 
systematic error in data-
generating process  

- Domain knowledge generally 
required for inference 

- Protection against overfitting 
for generalizable results 

Foundation 
- Fundamental characteristics of 

data-generating process 
- Verification of mechanistic 

assumptions of data 
Basis 

- Learned / parameterized 
equations describing process 

Training 
- Starting conditions, outcome 

boundaries, and parameters set 
on a system-specific basis when 
known, or best guess 

Outcome 
- Direct model interpretation 

sometimes possible via 
simulation 

- Forecasting and prediction 
using model structure and set 
parameters 

 
Dependencies 

- Adequate construction of 
mechanistic structure and 
assumptions 

- Process-based capture of 
systematic error in data-
generating process 

- System-specific knowledge and 
empirical inputs for learning 
model parameters 

- Upstream models for imputing 
missing data 
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Table 1-1. General characteristics and differences between data-focused and process-

focused modeling approaches.  

DNDC 

One process model is ``DeNitrification DeComposition" (DNDC), a simulation 

model which builds crop growth and nutrient movement patterns from underlying 

carbon and nitrogen biogeochemical modeled processes (Giltrap, Li, and Saggar 

2010). DNDC has been parameterized for a wide variety of agroecosystems, 

including animal agriculture and perennial systems, contains simulation modules 

specifically calibrated to soil N immobilization-mineralization processes, and shows 

promise for adaptation to the intensive vegetable systems of the CCA. Importantly for 

this application, the DNDC model also provides functionality to directly simulate soil 

NO3 values. 

The code for DNDC is closed-source, but the overall structure of hard-coded 

pathways and user-defined parameters is as described in Li 2009. Via a complex 

biogeochemical simulation framework, the DNDC model is capable of estimating 

daily pools of soil nitrate and is capable of linking these simulated nitrate pools to 

unique environmental and management scenarios. 

Random forests 

A data-driven machine learning model considered here is the random forest model 

(RF model). Random forests leverage a combination of bagging, random parameter 
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sampling, and an underlying ‘base learner’ model called “classification and 

regression trees” (CART), to generate outputs which, via weighted combinations, 

leverage the weak predictions from the base CART learners into a robust overall 

prediction. 

CART models are non-parametric prediction models which use a method called 

binary recursive partitioning to structure data; by using binary subdivision to structure 

data into a series of nested forks and nodes, data series can be broken down into 

smaller series of binary prediction tasks. The algorithm is generally accomplished by 

searching through data features, testing a variety of binary split points for each 

feature, and choosing the feature-split combination that minimizes variance, impurity, 

or some other loss function. This procedure is then repeated until the loss function 

can no longer be minimized with additional splits, or when user-specified constraints 

are encountered. 

The exact form of the underlying CART model can be calibrated to the prediction 

task at hand (i.e. by manipulation of the loss functions, manipulation of 

hyperparameters, modification of how the tree is built) and then used to build the 

overall ensemble model. (The ‘depth’ of each tree, or the number of levels the tree is 

allowed to grow until a terminal node, is often manipulated as a hyperparameter 

which controls overfitting.) 

In particular, improvements can be made to the CART algorithm, and by extension 

the RF model predictions, by changing the methodology of how splits are generated. 
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The original formulation of CART (Breiman et al. 1984) expresses a general 

tendency to over-utilize covariates with many possible splits, biasing the model 

against fully utilizing the potential feature space, and a general tendency to overfit by 

generating splits with very small improvements over the loss function (although this 

behavior can be somewhat controlled with hyperparameter tuning). 

The formulation of conditional inference trees, first proposed by (Hothorn, Hornik, 

and Zeileis 2006), posits a method to address both of these concerns, by modifying 

the binary split procedure and introducing a distributional test to evaluate whether a 

split is ‘worth’ making. By extension, conditional random forests leverage these 

improvements on the underlying CART model to create a more performant ensemble 

model, using the same strategy of bagging and boosting to maximize data utilization, 

and with conditional inference trees as the base learners. 

Interpreting ML models 

A major challenge in the use of machine learning prediction models in inferential 

tasks is translating their generalized predictive powers to more interpretive modes of 

use. This can sometimes be done via direct examination of how individual marginal 

effects or simple interactions of effects influence final predictive outcomes via 

examination of posterior predictions given simulated inputs, but such ‘black box’ 

models generally lack the interpretable ease of, say, the coefficients of a linear model. 

This has overall led to calls for additional development of ‘interpretable machine 

learning’ methods (Doshi-Velez and Kim 2017) to facilitate both interpretation of 
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how and why predictions are made from machine learning models. The latter question 

of why predictions are structured in particular ways given particular datasets is 

essentially a reframing of an inferential problem, and answers to this question can be 

leveraged here to interpret the underlying mechanisms in our machine learning 

approach. 

Shapley values 

One method for interpretable models is an approach borrowed from coalitional game 

theory, the Shapley value, a model-agnostic explanatory value adapted from a 

‘player-payout’ structure in theoretical games. The full treatment of how this value 

can be formulated is available here: (Molnar 2018); some key aspects of the 

methodology presented there are repeated below for clarity. 

Given some arbitrary prediction function 𝑓 (𝑥%⋅), such as a linear model: 

𝑓 (𝑥%(, … , 𝑥%+) = 𝛽. + 𝛽(𝑥%( +⋯+ 𝛽+𝑥%+ 

Where each 𝑥%1 is a sample at observation 𝑖 and feature 𝑗, and each 𝛽 are feature 

weights, we can consider the feature effect 𝜙%1 of 𝑥%1 to be: 

𝜙%1(𝑓) = 𝛽1𝑥%1 − 𝛽1𝐸(𝑋1) 

This is the difference between the mean effect of this feature on all data and the effect 

of this feature on data point 𝑖. By iterating through all datapoints in the target dataset, 

a distribution of observation-specific feature effects can be assembled (unique to that 
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dataset), and by iterating through all features in the same way, each feature can be 

assessed for its relative contribution to the dataset predictions. 

This general principle, here applied to a linear model, can be transferred to a model-

agnostic form by the use of Shapley values, which consider each feature as a player in 

an overall game of predicting outcomes, and the contribution of each feature to that 

outcome is their ‘payout’, or Shapley value. By computing the distributions of values 

for each observation-feature set, we can obtain average and marginal values 

appropriate for analysis in a form similar to 𝜙%1(𝑓) (Štrumbelj and Kononenko 2014). 

Importantly, the above form illustrates the interpretive meaning of 𝜙%1 - for every 

observation 𝑖, 𝜙%1 represents the amount that feature 𝑗 ‘pulls’ the prediction away 

from the global mean (whether in large or small magnitude), and thus can decompose 

a complex non-linear model into intepretable, observation-specific chunks. 

The utility of this calculation can be explored via plotting simulated effects and 

Shapley values (Figure 1-1). Four scenarios are plotted: a positive linear relationship, 

negative linear relationship, nonlinear relationship, and no consistent effect 

relationship. For interpretability in visualization, the observed values are scaled to 

range between −1 and 1. 

The linear relationships are straightforward to interpret (Figure 1-1, A B) - each 

simulated pair of Shapley value and observed value are plotted via the x-axis position 

(Shapley value) and point color (scaled observed value). The observed value at each 

point pushes the model prediction in the direction and magnitude indicated by the 
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corresponding Shapley value. The nonlinear relationship follows a similar pattern 

(Figure 1-1, C), but switches direction in the middle range of observed values. 

Finding this relationship would indicate that observed values at either high/low 

extremity did not influence model predictions, but values in the middle of the 

observed distribution did. Finally, the distribution of Shapley and observed values if 

there is no clear effect manifests as a generally mixed distribution around 0 (Figure 1-

1 D). 

 

Figure 1-1. Example relationships represented by a Shapley value plot. Simulated 

Shapley values (x-axis) for each relationship (y-axis) are plotted with simulated 

underlying scaled parameter values (point color). 
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Study goals 

This work approaches the problem of understanding N asynchrony in mixed 

vegetable cropping systems using these two linked methods. First, using a multi-year, 

multi-crop ENM dataset, we evaluate the outcomes of the DNDC model to determine 

1) which components of the N cycle are estimated as most important to overall 

dynamics, with specific attention to processes generally considered as important to 

ENM (namely, N release from OM pools), and 2) how well process-based estimates 

match observed soil mineral N levels. This serves as the “bottom-up” approach to N 

dynamics in ENM, building from N cycle processes to outcomes. 

Second, using the same dataset, we apply a purely machine learning approach via a 

conditional random forest model. Model structure analysis and simulation provides 

inference into the primary drivers of soil N dynamics in this regionally-specific 

dataset. This serves as the “top-down” counterpart approach, taking a process-naïve 

analysis structure to infer environmental and management features critical to N 

asynchrony in ENM systems. 

Methods 

Field experimental design - treatment and spatial layout 

The Mother-baby trials are a set of field experiments composed of two linked 

components: the Mother trial, a replicated field experiment conducted on the UCSC 

farm, and the Baby trials, a set of smaller unreplicated treatments exported to on-farm 
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trials. Both trials are designed to simulate actual cohorts of on-farm practices, 

combined in ways that constitute overall management strategies. Only the data from 

the Mother trial is analyzed here. 

The mother trial is a split-split plot design experiment which varies treatments by 

three levels: (1) length of rotation: 2 years vs 4 years, (2) crops in rotation: a broccoli-

dominant sequence vs a lettuce-dominant sequence, (3) 4 levels of combined 

disease/fertility treatments: no-fertilizer, no-fertilizer, mustard seed meal, and 

compost/feather-meal additions. Paired with these treatments are winter-cropping 

regimes that vary which species are planted as cover crop over winter, respectively: 

bare fallow, mixed-legume cover crop (a 45%/45%/10% mixture of bell bean Vicia 

faba, hairy vetch Vicia villosa, and cereal rye Secale cereale), cereal rye cover crop 

(100% Secale cereale), and mixed-legume cover crop (same mixture proportions). 

The overall layout of the management and treatment schedule is illustrated in Table 

1-2 and 1-3, as well as the correspondence between schedules and treatment 

letterings, which are used later in the paper for comparisons of error. 
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Year 1, 5 Year 2, 6 

Treatment Fall 
2011 

Winter  Summer 
2012 

Fall  
2012 

Winter Summer 
2013 

1a cc cc Broccoli cc cc Lettuce / 
Cauliflower 

2a cc cc+c+f Broccoli cc cc+c+f Lettuce / 
Cauliflower 

3a rcc rcc+mc Broccoli rcc rcc+mc Lettuce / 
Cauliflower 

4a bf bf Broccoli bf bf Lettuce / 
Cauliflower 

5a cc cc Lettuce cc cc Broccoli 
6a cc cc+c+f Lettuce cc cc+c+f Broccoli 
7a rcc cc+mc Lettuce cc cc+mc Broccoli 
8a bf bf Lettuce bf bf Broccoli 
1b cc cc Broccoli asd Strawb + Strawb + 
2b cc cc+c+f Broccoli asd + c Strawb + Strawb + 
3b rcc cc+mc Broccoli mc Strawb + Strawb + 
4b bf bf Broccoli   Strawb Strawb 
5b cc cc Lettuce asd Strawb + Strawb + 
6b cc cc+c+f Lettuce asd + c Strawb + Strawb + 
7b rcc cc+mc Lettuce mc Strawb + Strawb + 
8b bf bf Lettuce   Strawb Strawb 

 
Table 1-2. Crop rotation and management treatments. cc=legume/cereal cover crop, 
rcc=rye covercrop, bf=bare fallow, mc=mustard seed meal, f=fertilizer, 
Strawb=strawberry, Strawb+= strawberry+ fertigation.  Treatments 1a to 8a are 4 year 
rotations, and 1b to 8b are 2 year rotations. 
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Year 3 Year 4 

Treatment Fall  
2013 

Winter Summer 
2014 

Fall  
2014 

Winter Summer 
2015 

1a cc cc Broccoli asd Strawb 
+ 

Strawb + 

2a cc cc+c+f Broccoli asd + c Strawb 
+ 

Strawb + 

3a rcc rcc+mc Broccoli mc Strawb 
+ 

Strawb + 

4a bf bf Broccoli   Strawb Strawb 
5a cc cc Lettuce asd Strawb 

+ 
Strawb + 

6a cc cc+c+f Lettuce asd + c Strawb 
+ 

Strawb + 

7a rcc cc+mc  Lettuce mc Strawb 
+ 

Strawb + 

8a bf bf Lettuce   Strawb Strawb 
1b cc cc Broccoli asd Strawb 

+ 
Strawb + 

2b cc cc+c+f Broccoli asd + c Strawb 
+ 

Strawb + 

3b rcc rcc+mc Broccoli mc Strawb 
+ 

Strawb + 

4b bf bf Broccoli   Strawb Strawb 
5b cc cc Lettuce asd Strawb 

+ 
Strawb + 

6b cc cc+c+f Lettuce asd + c Strawb 
+ 

Strawb + 

7b rcc rcc+mc Lettuce mc Strawb 
+ 

Strawb + 

8b bf bf Lettuce   Strawb Strawb 
 
Table 1-3. rop rotation and management treatments. cc=legume/cereal cover crop, 
rcc=rye covercrop, bf=bare fallow, mc=mustard seed meal, f=fertilizer, asd+c= 
asd+compost, Strawb=strawberry, Strawb += strawberry + fertigation.  Treatments 1a 
to 8a are 4 year rotations, and 1b to 8b are 2 year rotations. 
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Figure 1-2. Illustration of Mother-Baby Trial field sites. Within the state of 

California, USA, four counties, San Mateo, Santa Cruz, San Benito, and Monterey 

counties are highlighted, and approximate field trial locations within these counties 

are provided by red points and white labels. 

The soil, environmental, and management data from the Mother trial is not analyzed 

as a traditional treatment framework, but instead is approached as a dataset of 

observations with decomposed individual parameters (precipitation, fertilization, 

tillage, etc.) associated with each data point. When appropriate, model predictions 
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from the decomposed dataset are pooled together back into assemblages of 

management systems via treatment labels.  

Data collection 

Soil inorganic N 

Soil inorganic N levels (NO3, NH4) were monitored via direct sampling (see 

Appendix 2 for sampling dates). Soil samples were taken from each plot at two soil 

depths (0-15cm, 15-30cm) using an 3cm internal diameter soil probe, and field 

extracted or stored under refrigeration until lab extraction. Extraction was 

accomplished by placing approximately 5 grams of soil into 25ml of 2M KCl, 

followed by 30 minutes of agitation on a table shaker, filtration through Whatman 

Grade SA 720 type filter papers, and the resulting solute stored in a freezer until 

analysis. Process blank samples were taken for each sampling date to monitor sources 

of contamination during the sampling and filtration process. KCl extracted samples 

were analyzed for NO3- and NH3+ using an automated colorimetric flow injection 

analysis technique (Lachat FIA 8500). At each sampling date, moisture samples were 

obtained for gravimetric moisture analysis and back-conversion of inorganic-N levels 

to a dry soil basis (mg NO3 / kg dry soil). Gravimetric moisture analysis was 

conducted by weighing samples before and after 24 hours in an oven set to 105C. 
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Fertility input rates and CN 

Fertility inputs were evaluated for total carbon and nitrogen content via combustion 

analysis. Samples were taken from all fertility inputs prior to application. Samples 

were then oven dried to remove all moisture, ground and homogenized to pass a 

.5mm sieve, and analyzed in-house using a combustion-based gas analysis CNS 

protocol. Dry-weight amendment rates and CN values were then used to calculate the 

absolute contribution of N g / kg amendment and C g / kg amendment. These values 

form the basis of estimating kg/ha carbon and nitrogen input rates. 

Cover crop biomass rates and CN 

Mineralization effects from decomposing crop residues and cover crop biomass were 

estimated by direct measurement of biomass and CN content. Crop residues were 

extrapolated from measured wet weights during crop harvest to generate estimations 

of kg / ha residue biomass remaining in the field after harvest. Sub-samples were 

retained for laboratory CN analysis. Cover crop biomass rates were extrapolated from 

biomass sampling using two .25 m^2 quadrats per plot, separation of biomass by 

plant type, and subsequent wet weighing. Sub-samples from each plant type were 

retained for laboratory CN analysis. Both the crop residue CN samples and cover crop 

CN samples were then oven dried to remove all moisture, ground and homogenized to 

pass a .5mm sieve, and analyzed in-house using a combustion-based gas analysis 

CNS protocol. Dry-weight biomass and CN values were then used to calculate the 
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absolute contribution of N g / kg biomass and C g / kg biomass, and subsequently 

extrapolated to a kg / ha basis. 

Yield biomass rates and CN 

Yields from all plots were measured via direct sampling of marketable yield rates, 

averaged over two harvest events for vegetable crops, and cumulatively sampled over 

season-wide harvest events for berry crops. Sub-samples of biomass from all yield 

events were retained for moisture and CN analysis. Yield values were then used to 

parameterize biomass production processes in the DNDC model. 

Environmental monitoring 

Environmental conditions such as precipitation, temperature, soil temperature, and 

ETo were collected from a combination of data streams from an on-farm weather 

station and nearby CIMIS weather stations (https://cimis.water.ca.gov/). Data for all 

parameters were collected on an hourly basis and missing values were imputed using 

nearest-neighbor averaging. 

Management events 

Management events such as planting dates, incorporation, tillage, and irrigation were 

tracked via maintenance of field records by field managers. For irrigation data, date 

of application, application type (sprinkler/drip) and irrigation amount (cm) were 

retained. Incorporation and tillage data were tracked by date, type, and depth of soil 

disturbance. 



 20 

Windowing functions 

Environmental parameters temperature, soil temperature, and ETo were transformed 

with mean-value windowing functions from 0 to 20 days prior to the date of 

observation, i.e. “soil temperature 0” as the parameter value on the day of 

observation, and “soil temperature -20” as the average parameter value over the 20 

days prior to observation. Precipitation and irrigation were transformed using 

cumulative windowing functions from 0 to 20 days prior to the date of observation, 

using a sum of all observations in the window period. Fertilization C and N rates were 

transformed via cumulative windowing functions 90 and 180 days before observation. 

Final data matrix 

After collection of all associated data and transformed parameters, the final data 

matrix of 3117 date-plot unique observations and 120 parameters was used for 

analysis. All but one parameter (crop type, factorial) were treated as numeric or 

integer types. 

Model fitting - DNDC 

As the DNDC model operates on daily simulations, the underlying dataset was first 

converted into a compliant format. Weather data (precipitation, maximum/minimum 

daily temperatures), fertilizer data (kg/ha C and N), tillage data (date, depth, type), 

planting/harvest data (crop type, planting/harvest dates), irrigation data (date, depth, 

type) were used as direct inputs to the model. 
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Crop growth parameters were adjusted to reflect observed crop biomass 

characteristics and biomass distribution ratios (sampled via “yield biomass rates”), as 

well as adjustments to nitrogen fixation, nutrient uptake, and water uptake 

parameters. 

The DNDC simulations were conducted using DNDC version 9.5, published by the 

University of New Hampshire and available for download at 

http://www.dndc.sr.unh.edu/. Simulations were run in ‘site’ mode, using input .dnd 

and .txt files that are stored in this repository and which contain the entirety of 

parameters and data necessary to reproduce these simulations. 

After simulation over the entire observation window in the input data, simulated NO3 

values were extracted and matched with observation dates from the original dataset 

for further analysis. 

Model fitting - conditional random forest 

An RF model was fit using the cforest function from the partykit package in R 

Statistical Software (Team 2013). The randomly preselected input features for each 

underlying CART learner model was set at 11, the approximate square root of the 

input parameter count, a standard baseline. The number of trees was evaluated by 

searching over the hyperparameter space between 250 and 1500 trees until RMSE 

stabilized, and the lowest number of trees within this space was kept (1000). 

Underlying CART learners were left unpruned and allowed to grow to maximum 

depth. Model fit results are presented in (Appendix 6). 
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Following the initial model fit, variable importance scores were calculated to estimate 

the relative contributions of individual parameters to overall predictive capacity. 

These scores were calculated with the conditional permutation importance framework 

outlined by (Strobl et al. 2008), proposed as an extension of Breiman’s original 

measure of variable importance (Breiman 2001) as more robust to detecting variable 

importance within correlated parameters. 

To calculate conditional permutation importance, out-of-bag error was first calculated 

for the entire ensemble of parameters, such that the prediction error from the non-

bootstrapped data for each tree is used to generate an overall calculation of error. 

Rather than permuting the values of each parameter independently and sequentially, a 

grid of permuted parameter values with conditional dependencies is used to re-

calculate OOB error, and the difference between the original intact OOB error and the 

permuted OOB error is used to assign a variable importance score to each parameter 

(Strobl et al. 2008). These scores were calculated using the varimp function from the 

partykit package in R. 

Following the initial model fit and variable importance score calculation, prior 

knowledge on the collinearity of windowed environmental parameters was used to 

exclude all but the best-performing parameter from each category. This procedure 

was used to improve final model parsimony and interpretability. 
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RF posterior predictions 

From the RF model, predictions on new data can be generated fairly simply via a 

combination of input data 𝑥, fitted weighting functions 𝑤, and original data 𝑌% 

(Meinshausen 2006), i.e.: 

𝜇 (𝑥) =<𝑤%

=

%>(

(𝑥)𝑌% 

Posterior predictive checks and simulated management scenarios from the final RF 

model were generated via the formula above, via iteration through original data or 

simulation data (Appendix 7) using the party_predict method from the partykit 

package in R. 

Shapley values 

Shapley values were constructed from the selected conditional random forest model 

using the Shapley function in the shapleyR package. This package implements 

calculation of Shapley values using the algorithm as described in (Štrumbelj and 

Kononenko 2014) and partially detailed above. 

Model comparison 

To facilitate comparison between models, data were clustered based on treatments 

and predictive outcomes evaluated on a treatment-date basis, as the DNDC model did 

not incorporate plot-specific effects. To implement this, prediction error scoring was 

calculating using root mean square error within each treatment-date cluster, where the 
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loss for each replicated observation 𝑖, 	𝑖 = {1,2,3,4} given model 𝑓(. ), data 𝑥%, and 

real outcome 𝑦% is calculated as: 

ℒHIJK(𝑥, 𝑦) = L1
4 < (
{(,M,N,O}

%>(

𝑓(𝑥%) − 𝑦%)M 

Calculation of RMSE for each cluster provides an estimate of date-treatment-specific 

error, which is then used to evaluate changes in error between models, management 

regimes (treatments), and seasonal heteroskedasticity. 

Results 

DNDC model results 

While the DNDC model did not effective capture the volatility or overall seasonal 

patterns in the NO3 data, synchrony between estimated local hotspots of NO3 

availability suggests that the underlying mineralization simulations tying specific 

management events, such as soil disturbance, fertilization, or changes in soil 

moisture, are at least somewhat grounded in reality (Figure 1-3). 

Large, persistent simulated peaks in soil NO3 were predicted by the DNDC model but 

not supported by data, and appear to be primarily driven by simulated fertilization 

events in the mid- and high- fertility treatment plots. In contrast, mineralization 

patterns from the unfertilized treatments were almost entirely uncaptured. 
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Figure 1-3. Soil nitrate levels, measured in NO3 kg /ha. Observed mean values across 

replicates per date-observation are plotted as blue lines, with blue shading 

representing standard error around the mean. DNDC values are directly simulated 

using treatment-specific data and date-treatment point outcomes are plotted as red 

lines. 

RF model variable importance 

In the initial model fit to all possible parameters, variable importance via permutation 

indicates an overwhelming dominance of environmental factors as important 

predictors, second only to crop type (Appendix 4). Dominant environmental 

predictors include soil moisture, baseline soil organic N, air temperature (20 day 

average), soil temperature (20 day average), ETo (4 day average), precipitation (4 day 
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cumulative), and irrigation (10 day cumulative). Days since planting, cultivation, and 

incorporation rank highly, as well as average nitrogen inputs, cover crop nitrogen 

inputs, and total contributions of carbon from fertilizers over a window of 90 and 180 

days (Appendix 4). Ranking of relative performance remained stable after re-fitting 

the RF model with the selected subset of parameters and re-calculation of the variable 

importance score (Figure 1-4). 

 

Figure 1-4. Feature importances, measured as error loss on permutation, for the 

restricted set of parameters after elimination of lower-performing transformed 

parameters from the tested feature set. Higher values indicate a greater importance of 

the parameters to the overall model. 
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RF model residuals and posterior predictive 

Posterior predictions from the RF model display a good fidelity to original data, and 

generally capture critical peaks. Overall error is concentrated around NO3 peaks, with 

posterior predictions underestimating the magnitude of mineralization peaks (Figure 

1-5). 

 
Figure 1-5. Soil nitrate levels and RF model projections, measured in NO3 mg / kg 

dry soil. Observed mean values are across replicates per date-observation are plotted 

as black lines with black shading representing standard error around the mean. RF 

values are simulated on a plot-specific basis, averaged across replicates per date-
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observation, and plotted as red lines with red shading representing standard error 

around the mean. 

Shapley values 

The overall distributions of Shapley values are, with the exception of crop type, 

heavily distributed around 0, indicating the extreme nonlinearity of variable 

interactions in the modeled system - on an observation-by-observation basis, the 

effect of individual parameters can vary widely from being strongly positive to 

strongly negative. This finding, in combination with the overall good fit of the RF 

model to observed data, suggests that successful observation-specific predictions of 

soil NO3 is possible by complex combinations of underlying covariates (Figures 2-6, 

2-7). 

In particular, the importance of the only factor covariate in the model (crop type), 

both via the variable importance measure and the observed extremities of Shapley 

values, suggests there may by carry-forward effects within the CART models within 

crop types. This postulate is confirmed by individual examination of crop-specific 

Shapley values (Figures 2-6, 2-7), where differentiation in values across the 0-axis 

emerges, indicating crop-specific segregation of effects. 



 29 

 

Figure 1-6. Shapley values for parameters in the final RF model (cover crop and 

fallow). 
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Figure 1-7. Shapley values for parameters in the final RF model (lettuce and broccoli) 

Comparing DNDC and RF models 

The random forest model far outperforms the DNDC model in predicting date-

specific levels of soil nitrate pools, despite a considerably weaker assembly of 

underlying features and autoregressive properties (Figure 1-8). 
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Figure 1-8. Date-observation RMSE values calculated for DNDC and RF models, 

clustered by treatment. RMSE values from DNDC are back-transformed to be on a 

mg NO3 / kg dry soil basis. 

Period-specific predictions 

Calculation of Shapley values for period-specific data provides an insight into the 

drivers of asynchrony in post-incorporation data. Subsetting all data to be bounded 

within 30 days of crop incorporation and no more than 15 days after planting provides 

a restricted set of values (Figure 1-9). 
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Figure 1-9. Shapley values calculated for observations within 30 days of crop 

incorporation.  

Discussion 

DNDC vs RF 

A great deal of the error in the DNDC model appears to be attributable to a general 

underestimation of two factors: first, the magnitude of volatility in the real system is 

far greater than model estimates. Second, the year-over-year losses of nitrate from the 

system appear to be grossly underestimated, with almost no instances of movement 

from high nitrate levels to undetectable levels, even under winter precipitation 

regimes that would almost certainly leach any free nitrates from the 0-10cm profile 
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under consideration. In fallow, unfertilized no-cover-crop treatments (4a,8a,4b,8b), 

where N dynamics are presumably entirely driven by mineralization-immobilization 

patterns from pools of soil organic N, nearly all peaks of NO3 availability were 

completely absent from simulated data (Figure 1-10). A notable exception is the N 

peaks produced during the strawberry crop in treatments 4b and 8b (Figure 1-10, 

panels 4b/8b), which were generally predicted by the DNDC simulation, but 

subsequent uptake/losses of NO3 were not adequately modeled. 

 

Figure 1-10. Soil nitrate levels and DNDC model projections, measured in NO3 mg / 

kg dry soil, for treatments without winter crops or any applied fertilizers. Observed 

mean values across replicates per date-observation are plotted as blue lines, with blue 

shading representing standard error around the mean. DNDC values are directly 
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simulated using treatment-specific data and date-treatment point outcomes are plotted 

as red lines. 

While this could be an issue with insufficient or incorrect parameterization of the 

underlying process model, it remains notable that despite extensive tuning using data 

relatively unusual in specificity, DNDC predictions remain somewhat inaccurate. It 

may be the case that for prediction of soil nitrate pools themselves, underlying model 

processes are relatively underdeveloped, as the primary development goals of this 

model were for estimations of gaseous losses from agroecosystems. 

In contrast, posterior predictive estimations from the random forest model indicate 

good fit to the real data, both in general fit to the time-series pattern (Figure 1-10) and 

in overall RMSE (Figure 1-8). This, despite the markedly aperiodic form of the 

nitrate data, suggests that the time-series can be successfully decomposed into 

functions associated covariates at each individual date, with little loss of predictive 

power from an absence of an autoregressive term. This is in agreement with (Finney, 

Eckert, and Kaye 2015), who successfully used a similar approach of parameter 

transformation, CART models, and RF models to analyze longitudinal soil nitrate 

data. 

While autoregressive features may be important to effective simulation in process 

models such as DNDC, their absence is a benefit to the overall interpretability and 

potential applications of this model to ENM. With no prior knowledge of the nitrate 

levels in a soil at some arbitrary time in the past, environmental covariates can be 



 35 

assembled to provide a reasonable prediction of the magnitude of NO3 concentration 

in the soil, and a decision theoretic framework can then take over. 

Interpreting RF results 

In the RF model, the pronounced role of environmental factors such as temperature, 

precipitation, and evapotranspiration in producing a close fit to real-world data 

illustrate the importance of key periods in the cropping cycle to the development of 

microbial activity and resultant mineralization patterns, and agree with prior work 

describing these factors as critical drivers in ENM systems (Drinkwater and Snapp 

2007). 

The strongly positive effect size and overall frequent inclusion of cultivation timing 

lends further support to suggestions that mineralization patterns can be deliberately 

stimulated via soil disturbance processes, whether via breakdown of soil aggregates, 

introduction of oxygen into soil environments, or mixing of decomposing materials 

(Booth, Stark, and Rastetter 2005). 

Management recommendations 

This finding, together with the evidently powerful role of soil moisture and irrigation 

on N pools, further suggests that a combination of soil temperature manipulation, 

tillage practices, and irrigation, can be used to provoke transformations of soil organic 

N reserves when plant N uptake may be expected, especially in situations where may 
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wish to reserve N contributions from incorporated cover crops until late-season 

plantings, as has been previously noted (Kaye and Quemada 2017). 

In complement, these findings suggest that inappropriately timed tillage and irrigation 

may pronounce N mineralization beyond levels that early-season plants, with low N 

requirements and underdeveloped root systems, may be able to uptake. In this 

scenario, or in situations where post-incorporation soils are simply fallow, these 

standing pools, while also capable of immobilization transformations back into 

organic N, are the canonical sources of N pollution via water and gas losses (Schimel 

and Bennett 2004). 

Model-agnostic forms of interpreting machine learning models such as Shapley 

values provide a novel path for researchers interested in both inference and prediction 

from their datasets to produce actionable insights, and the potential to approach 

datasets that were previously considered intractable or necessitated excessive 

simplification before they could be analyzed. 

In particular, an increasing number of tools are available for growers to use in their 

farm nitrogen management protocols, with offerings from both the public and private 

sphere. Both the calibration of these tools with grower-provided information and the 

production of mineralization or N pathway predictions rely on appropriate model 

structures. The results from this study suggest both that (1) some combination of 

process and machine learning models may provide the best site- and data-specific but 

biologically-grounded results, and (2) if these services are provided to fields, growers, 
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or management systems with a particular emphasis on the provision of nitrogen via 

ENM or organic matter more generally, careful attention should be paid to the 

inclusion and calibration of OM / SOM mineralization pathways. 
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Cross-experimental synthesis to determine environmental and management 
drivers in Anaerobic Soil Disinfestation, an ecological pathogen management 
technique 

Introduction 

In California’s strawberry production systems, soil-borne fungal pathogens are a 

critical pest that can cause substantial crop losses or crop failures, making pre-plant 

soil fumigation a functional necessity. However, the long-term sustainability of this 

keystone technology is doubtful. In the peri-urban coastal growing regions of 

strawberry production, increasingly restrictive regulatory policy, mounting 

environmental and human health concerns, and residential development have limited 

the rates of fumigants that growers are permitted to apply. 

Viable alternatives to chemical fumigation, especially biological control methods, are 

limited, and growers are often economically restricted from cultural practices that 

would allow for system-inherent pathogen control. The limitations of these practices 

are especially true for organic strawberry producers, who cannot use pre-plant 

fumigation and instead rely almost exclusively on cultural management in order to 

limit disease losses. 

A method for pathogen biocontrol, Anaerobic Soil Disinfestation (here called “ASD”, 

also called “BSD” and “biosolarization”), was recently adapted for use in California 

strawberry systems (Shennan et al. 2013, Rosskopf et al. 2015, Shennan et al. 2018). 

Early work on ASD has indicated a promising capacity to effectively suppress 
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pathogens and provide similar crop outcomes as fumigation, but has not been 

intensively monitored after grower-directed applications (Rosskopf et al. 2015). 

The basic application method of ASD is to incorporate a carbon source into the soil, 

saturate soil pore spaces with water, and maintain saturation during the treatment 

period. The biotic and abiotic changes that occur during maintenance of anaerobic 

conditions appear to be responsible for the disease-suppressive properties of this 

treatment, but the exact mechanisms of action and optimal application parameters are 

the subject of continued research (Shennan et al. 2018). 

Years of ASD development across multiple research groups have produced an 

extensive amount of work on the various controlled and uncontrolled parameters that 

influence treatment outcomes of ASD in both laboratory and field settings. During the 

ASD treatment, a variety of biological and chemical shifts occur (Momma et al. 

2013). The initial period of treatment sees a rapid drop in soil redox potential, 

presumably from biological activity (Momma et al. 2013), which is maintained via 

periodic irrigation or maintenance of a gas-impermeable barrier. The cumulative 

exposure to extreme reductive conditions, sometimes calculated as Eh hours below -

200mV, has been proposed as an important predictor of treatment success (Shennan 

et al., 2014). Additionally, chemical species with anti-pathogen activity such as Mn 

4+, Fe 3+, NH4+, and various fatty acids are generated during treatment, which may 

have some anti-pathogenic activity (Momma et al. 2013). 

The primary driver in this process appears to be a complex relationship between 

anaerobicity, temperature, carbon-source type, and carbon-source application rate. 
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Anaerobicity is usually maintained via saturation of soil pore spaces with 

management of irrigation water and where plastic mulch application is feasible. 

However, there is some evidence that different pathogens may express different 

sensitivities to combinations of these factors, such as Fusarium’s noted survival 

capacity under low-temperature treatment conditions, leading to the formation of 

critical soil temperature thresholds which ASD applications must exceed to achieve 

pathogen-specific suppression (Shennan et al. 2018). 

Manipulation of soil temperature is a relatively difficult task, only feasibly 

accomplished by moving the treatment dates towards warmer seasons or by selection 

of specialized mulch material. In cases where these options are insufficient or 

unavailable, equivalent outcomes may sometimes be achieved through increased 

application rates of C-sources (D. M. Butler et al. 2012). With this said, while a 

variety of carbon sources, such as ethanol, cereal bran, molasses, manure, standing 

cover crops, or other locally available carbon-rich materials have been successfully 

tested in ASD applications at a variety of rates (Rosskopf et al. 2015), there is 

substantial evidence that the microbial shifts linked to pathogen control may express a 

substantial dependence on C-source type (Mazzola, Muramoto, and Shennan 2018). 

With these and other factors that could influence the operational outcome of ASD 

disease control in production systems, it is evident that the biological complexity in 

real-world application is significant. One way of approaching this complexity is via a 

global-level analysis to infer critical thresholds, cumulative requirements, 
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associations, or other parameter features that could produce a generalized estimate of 

the treatment and environmental conditions most important in operational settings. 

Synthesizing datasets with networks 

An ideal candidate model type for integration across experimental data in a complex, 

multivariate system are probabilistic graphical models. These models provide a useful 

structure for combining prior knowledge, both in the form of system structure and 

prior distributions, with inference gleaned from data evidence. 

Probabilistic graphical models utilize system-wide knowledge to represent 

relationships and uncertainties in a system using probabilistic structures via encoding 

probability distributions in a structure called Directed Acyclic Graphs (DAGs). DAGs 

are defined by two object types: nodes, representing observed instances of random 

variables, and edges, representing dependencies between nodes. Encoding data 

structures as DAGs provides a direct method for decomposing complex multivariate 

systems into tractable structures via the specification of joint probability distributions. 

Bayesian networks 

Bayesian Networks, a specialized case of probabilistic graphical models, accomplish 

this specification by factorizing the joint probability distribution into a set of marginal 

and joint likelihoods, viz. the likelihood-prior factor of Bayes Equation, encoding 

conditional dependence structures in the joint likelihoods to represent structural 

dependencies. Prior work has found modeling using Bayesian networks to be robust 
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in difficult conditions such as noisy or highly sparse data (Tsamardinos, Brown, and 

Aliferis 2006), providing further support to the utility that a network-based approach 

provides in the analysis of complex, noisy multivariate data. 

Determining the joint probability likelihoods is, however, not a trivial task. Even in 

smaller graphs (typically defined as below 30 nodes), a graph could contain as many 

as 2NM probabilities (fully-connected) requiring consideration, a computationally 

infeasible task. In this sense the process of analyzing data in a Bayesian network 

framework (and in PGNs more generally) is generally split into two components: 

structural discovery, where the pre-defined nodes are linked via directed edges, and 

parameter inference, where the edge relationship between any two nodes is assigned a 

parametric relationship. This parametric relationship is typically Gaussian for 

continuous variables or encoded as conditional probability tables for discrete 

variables but can also leverage link functions to accommodate nonlinear 

relationships. 

Once the joint probability distributions are defined over the graphical model as a 

Bayesian network, probability maximization approaches can then be applied to search 

over the parameter space by whatever means is desired or appropriate for the task at 

hand, such as likelihood or posterior maximization, direct sampling, or other 

algorithms. 
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Expert knowledge 

Bayesian networks are sometimes called expert knowledge networks in reference to 

the clearly defined role domain-specific expertise can play in informing the modeling 

process. While modern algorithmic approaches to structure discovery can be 

extremely effective in discovering network structures within data - and in some cases 

this is the experimental goal - domain knowledge can still play an important role in 

defining node and edge characteristics. This can be accomplished by a-priori 

definition of dependency strengths and variances, blacklisting (complete elimination) 

or whitelisting (complete inclusion) of edge presences from inferred graphs, or a-

priori establishment of edge directions. 

These characteristics may, for example, be particularly useful in the analysis of data 

from experimental data where treatments or manipulations have been established, or 

in observational data where prior domain knowledge has clearly defined causal 

relationships. In these cases, edge directions where background knowledge is 

available can be explicitly set, allowing for inference to be conducted on the edge 

parameters solely. 

Additional information may be encoded in systems via the use of ‘levelness’ in data, 

where graph structures are encoded in directed levels. These directed levels cluster 

nodes in groups of cascading effects, as instanced in systems containing 

environmental, mediating, and outcome variables. In such a system, edge 
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dependencies moving from outcome to environmental are physically impossible and 

can be excluded from structural inference a priori. 

Study goals 

This study seeks to leverage the analytical ability of probabilistic graphical network 

modeling to bring together several datasets across multiple years, sites, and contexts 

(in both field and incubator studies), to produce an integrated analysis of the 

relationship between management, environmental, and treatment factors in ASD 

implementation, with a specific focus on inference of key outcomes and discovery of 

factors that can be leveraged to maximize the treatment success. 

In particular, applying Bayesian networks as synthesis models provides a 

methodology and foundation for future work to combine disparate ASD datasets 

containing mixes of treatments and observed variables, into a coherent framework of 

analysis that can produce inference using all available experimental and observational 

data. 

Methods 

Source datasets 

The datasets used for this analysis are extracted from datafiles collected via 

laboratory and field experiments conducted at University of California Santa Cruz, or 

from on-farm trials at sites nearby the UC Santa Cruz campus. Individual experiments 



 45 

covered diverse subsets of total system parameters, but no trial sites contained 

observations from all parameters. 

Year 

conducted Location Variables tracked 

2015-2016 UC Santa 

Cruz 

Diameter, yield, wilt, Verticillium, 

soil temperature, soil moisture, Eh, 

carbon source, carbon rate, soil EC 

2016-2017 UC Santa 

Cruz 

Diameter, yield, wilt, Verticillium, 

soil temperature, soil moisture, Eh, 

carbon source, carbon rate 

2013-2014 Watsonville, 

CA 

Yield, wilt, soil temperature, carbon 

source, carbon rate 

2016-2017 Watsonville, 

CA 

Eh, carbon source, carbon rate 

2011-2012 UC Santa 

Cruz 

Yield, wilt, Verticillium, carbon 

source, carbon rate, prior crop 

2011-2012 Salinas, CA Yield, wilt, soil temperature, carbon 

source, carbon rate, prior crop 

2014-2015 UC Santa 

Cruz 

Yield, wilt, diameter, pH, EC, 

Verticillium soil count, Verticillium 
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plant infection, carbon source, 

carbon rate 

2012-2013 UC Santa 

Cruz 

Yield, wilt, carbon source, carbon 

rate, soil temperature 

2010-2011 Castroville, 

CA 

Yield, soil temperature, Eh, carbon 

source, carbon rate 

2013-2014 La Selva 

Beach, CA 

Wilt, EC, pH, carbon source, carbon 

rate, soil temperature 

2014-2015 La Selva 

Beach, CA 

Wilt, Eh, carbon source, carbon 

rate, soil temperature 

2012-2013 Watsonville, 

CA 

Carbon source, carbon rate, yield 

2013-2014 Watsonville, 

CA 

Carbon source, carbon rate, yield 

2013 UC Santa 

Cruz 

Verticillium, carbon source, carbon 

rate, soil temperature, soil moisture, 

Eh, pH 

Table 2-1. Datasets used. 

Yield measurements, wilt and plant diameter measurements 

Yield measurements were determined by end-of-season cumulative yield, measured 

in units of [lbs. marketable fruit weight per acre], generally sampled twice a week, 
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and summed over the entire growing season. Yields were then standardized by 

conversion to a yield ratio using the basic equation 

𝑌PQR%S = 𝑌RPR/𝑌US=RPSV 

where the yield ration 𝑅 is the comparison of each ASD treatment to the within-

experiment control, typically a completely untreated or only fertilized treatment. This 

conversion serves to standardize yield measurements to account for methodological 

differences between experiments, including differences in observation window, 

variety- or environment- specific differences in yield not related to ASD or pathogen 

damage, and any measurement biases. 

Wilt measurements were determined using a standard plant pathology wilt scoring 

system based on visual determination of disease presence and severity. Similar to 

yield, wilt measurements were standardized via a ratio transformation in a manner 

identical to yield ratio calculation, providing partial control for experimental 

differences in methodology or overall plant health. 

𝑊PQR%S = 𝑊RPR/𝑊US=RPSV 

In all experiments, plant diameter was calculated via visual observation of the 

strawberry plant crown and measurement of the top-down longest dimension of the 

plant canopy (measured in cm). Diameter measurements were then converted to ratio 

measurements in a manner identical to yield ratio calculations. 

𝐷PQR%S = 𝐷RPR/𝐷US=RPSV 
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For a single field site (OREI Mother Trial), 𝑌US=RPSV, 𝑊US=RPSV , and 𝐷US=RPSV were set 

in these equations to a different non-ASD treatment, as the control treatment was 

compromised by additional fertility treatments that excessively lowered yields in 

those plots. 

Anaerobic soil conditions 

Soil anaerobicity was measured via determination of the relative potential, or Eh of 

the soil environment. Included datasets universally measured Eh by the use of ORP 

probes (manufacturer information), which use a platinum electrode sensor and 

installation-based monitoring to provide hourly measures of Eh. Prior work has 

indicated that the level or duration of anaerobicity, measured as detected Eh values 

below a threshold of 200mV, is an indicator of the intensity of ASD treatment (Wang 

et al. 1993). 

𝐸ℎ[\] = ∑(𝐸ℎ_ − 𝐸ℎ`aHKJa)	∀	(𝐸ℎ_ − 𝐸ℎ`aHKJa > 0) 

where 𝐸ℎ`aHKJa  for this study is 200mV. 

Carbon sources and rates 

Carbon sources and rates were documented as meta-data alongside experimental data 

for all sampled datasets. Application rates were treated as fixed [tons/acre] amounts 

whether applied as pre-plant dry materials or via an injection method (i.e. for 

molasses treatments). Carbon sources were converted to binary presence/absence 
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variables in a [0,1] interval, and rates were combined into a single unscaled “carbon 

source” variable. 

Soil temperatures and threshold calculations 

Soil temperature data were obtained on a daily basis from on-site weather stations or 

soil temperature sensors, if available, or from soil temperature estimates generated by 

the nearest CIMIS weather station dataset. Temperatures were sampled from a 3-

week window capturing the ASD application process, and converted to three 

parameters: maximum soil temperature observed, average soil temperature, and a 

sum-thresholded area, calculated by a function which calculates a summary value 

𝑇[\], for any daily mean soil temperature observation 𝑡_ above some threshold 

temperature 𝑡`aHKJa: 

𝑇[\] = ∑(𝑡_ − 𝑡`aHKJa)	∀	((𝑡_ − 𝑡`aHKJa) > 0) 

The temperature threshold value was evaluated via a model-fitting framework during 

the final modeling process and set at 18C. 

Soil EC and pH 

Soil EC (electrical conductivity) and pH values were obtained via direct probe 

measurements in-situ or via bench analysis on collected soil samples. 
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Soil Verticillium counts and plant Verticillium counts 

Soil Verticillium dahliae levels were evaluated in all datasets by the same 

methodology. First, representative samples were taken from experimental units using 

a soil probe to 15cm depth - incubator containers, if an incubator experiment, or 

experimental plots, if a field experiment. Samples were then air-dried, ground with 

mortar and pestle to homogenize and mix, and passed through a .5mm sieve. 

Approximately 2 grams of the homogenized sample was passed through an Anderson 

sampler onto a set of 5 petri-dishes with semi-selective media. After 1 month of 

growth, individual colonies were tallied on a colony-forming unit (CFU) and back-

converted to a CFU / kg dry soil basis. 

Plant-infected Verticillium counts were evaluated in all datasets via direct sampling of 

potentially-infected root hairs from a random sample of plants in each experimental 

unit. Root hair segments were then placed onto a set of 5 petri-dishes with semi-

selective media. After 1 month of growth, colonies were evaluated for presence or 

absence of Verticillium. 

Temperature projections for treatment suitability 

Temperature projections were generated by using historical weather data from 2017. 

First, estimated daily soil maximum temperature values were obtained from the 

CIMIS system (cimis.water.ca.gov, Figure 2-1), an irrigation management system that 

provides high-quality weather data via a distributed network of weather stations. 

Weather stations are placed in agricultural zones and provide a variety of 
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instrumentation-based data - in the case of soil temperatures, via direct measurement 

using a thermistor (cimis.water.ca.gov). An evenly spaced coordinate sampling grid 

was then placed within the general boundaries of the major strawberry growing 

regions of California (Figure 2-2). Daily soil temperatures were imputed to these 

coordinate points by 3-nearest-neighbor averaging of daily soil temperatures from 

nearest CIMIS stations, yielding a coordinate sampling grid with associated 

temperatures. For four months - August, September, October, and November, 

temperatures were then summarized using the same averaging and sum-thresholding 

function applied to experimental data, yielding two measurements (threshold-sum, 

mean) over four months for each coordinate point. 
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Figure 2-1. A map of California, with counties outlined. Red points indicate 

coordinates of CIMIS weather stations, which provide daily estimates of maximum 

soil temperatures. Counties filled with black color indicate coverage of the majority 

of strawberry-growing areas, and the boundary for temperature simulations. CIMIS 

stations provide underlying data for projecting treatment success based on historical 

temperatures. 
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Figure 2-2. A map of California, with mean maximum soil temperatures (A) and 

accumulated soil degree days (B) as fill cells, from data collected in September 2017. 

Data sourced from daily estimates via CIMIS weather stations. 

Data preparation 

All available explanatory variables and outcomes from each dataset were targeted for 

inclusion in this study and transformed using the above described methodologies. 

Further manipulation of factorial treatment data was used to isolate rate from type, 

with equivalent C tons / ac serving as a continuous variable of rate, while binary 

index variables were generated for each C input type to provide a [0, 1] parameter of 
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C input presence. Interaction effects were manually generated by creation of derived 

interaction variables for all environmental and treatment inputs, but no interaction 

effects were generated for outcome variables, as these would not be interesting or 

interpretable. 

Network structure discovery 

Structure discovery was conducted by first encoding the underlying mixed 

continuous/discrete data as binned sets of observations, which allows for model 

analysis to proceed using continuous probability tables as per (Friedman, Goldszmidt, 

and others 1996). To learn the network structure, expressed here as an n × n matrix 

where any cell 𝑖, 𝑗 takes a value of 1 when node 𝑖 is connected to node 𝑗, a max-min 

hill-climbing (MMHC) algorithm described in (Tsamardinos, Brown, and Aliferis 

2006) was applied. The MMHC algorithm uses repeated applications of a sub-

protocol, the max-min parent-child algorithm, to iteratively search through a range of 

possible edges, searching and scoring a series of edge and node combinations until 

the highest-scoring DAG is found. 

Expert knowledge was incorporated into structure discovery via a-priori enforcement 

of directed levels in the network structure, both in order to facilitate faster model 

convergence and to limit the presence of causally impossible edge directions, i.e. for 

some defined variable groupings 𝐴 and 𝐵, the dataset 𝐷 is subset into two parameter 

sets 𝑋 and 𝑌 so that all variables 𝑋 ∈ 𝐴 and 𝑌 ∈ 𝐵 can only be linked by the edge 

𝑋 → 𝑌, not 𝑌 → 𝑋. Pre-defined directed groups were established for four layers. (1) 
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Environmental: pre-treatment vert soil CFU (continuous +), soil temperature 

threshold (continuous +), soil temperature (continuous +), soil moisture accumulated 

(continuous +), soil moisture (continuous +), rice bran (binary), cover crop (binary), 

molasses (binary), mustard meal (binary), carbon rate (continuous +), soil 

temperature X carbon rate (continuous +), soil temperature threshold X C (continuous 

+). (2) Intermediate: Eh-h < 200mV (continuous +), soil temperature X Eh-h < 

200mV (continuous +), post-treatment Verticillium strawberry infection (proportion), 

pre- vs post-treatment Verticillium suppression (proportion). (3) Plant health: 

strawberry crown diameter (ratio vs control), strawberry plant wilt score (ratio vs 

control). (4) Yield (ratio vs control). No other structuring, such as mandatory groups 

or white/blacklisting were enforced on structure discovery. 

Weighted network structure 

While the MMHC approach provides a robust methodology of discovering the 

highest-scoring network structure, the stability of the discovered network to 

perturbations in the data is uncaptured, as the DAG generation minimizes a loss 

function over the entire dataset for selection of a single network. To provide 

confidence measures on the existence or robustness of any edge in the discovered 

network, MMHC was conducted within a bootstrapping framework, allowing for 

generation of confidence measures for each edge, and the creation of a “weighted 

DAG”. The wDAG is generated by the following algorithm from (Friedman, 

Goldszmidt, and Wyner 1999): 



 56 

For 𝑖 = 1,2, . . .𝑚, sample with replacement 𝑁 instances from 𝐷 to create a new 

dataset 𝐷%. 

Apply structural learning to 𝐷% to learn network structure 𝐺%̂ = 𝐺̂ (𝐷%). 

For each feature, define the weight as: 

𝑝p
∗,=(𝑓) =

1
𝑚<𝑓

]

%>(

(𝐺%̂) 

i.e. the total number of occurrences of any edge in all networks learned from all 𝑚 

bootstrapped samples. This algorithm was applied here using 𝑚 = 100 bootstrapped 

samples with a sampling rate of 𝑁 = 276, the original data size, using the bnstruct 

package in R (Franzin, Sambo, and Di Camillo 2016, R Core Team 2013). 

Parameter learning 

From all observed 𝐺%̂ the final graphical structure was extracted via manual 

examination. Isolated variables (nodes with no edges) and variables with lower than 

80% confidence in the wDAG were excluded from the final network structure prior to 

parameter learning. The final model 𝒢 = (𝐕, 𝐴), where 𝐕 is the global probability 

distribution 𝐕 = {𝑋(, 𝑋M, . . . 𝑋1} for all 𝑗 variables and 𝐴 is the set of discovered edges, 

provides the corresponding joint probability distribution as a factorized form of 𝐕 and 

conditional independence is learned via the presence and direction of edges in 𝐴. 
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The determined conditional independence structure was then used to construct a 

Gaussian Bayesian Network, where independence is maintained by treating every 

random variable 𝐗 as multivariate-normal distributed, so that for all {𝑋(, 𝑋M, . . . 𝑋1}, 

𝑝(𝑋(, 𝑋M, . . . 𝑋1) = 𝑁(𝜇, 𝛴) 

where 𝜇 is a vector of means corresponding to each variable 𝑋 and 𝛴 is the variance-

covariance matrix, with conditional independence relationships are encoded by a 

priori sparsity, i.e. the covariance 𝜎%𝜎1 is set to 0 where conditional independence 

between 𝑋%, 𝑋1 is assumed. Parameters from this probability distribution were then 

learned using maximum likelihood estimation, generating MLE estimators 𝜇 and 𝛴̂ 

(Scutari 2009). Where learned covariance 𝜎%𝜎1 was zero, indicating poor support for 

direct effects, the edge was manually removed, and any resulting orphan nodes were 

discarded. This algorithm was applied here using the bnlearn package in R (Scutari 

2009, R Core Team 2013). 

Prediction 

Parameter estimates over the entire probability distribution 𝑝(𝑋(, 𝑋M, . . . 𝑋1) provide a 

fully generative model. Prediction is then accomplished by evaluating the probability 

of a fixed outcome 𝑋% in the system generally, 𝑝(𝑋% = 𝑥|𝐗, 𝜇, 𝛴), single maximum 

likelihood estimates given a set of observations 𝑝(𝜇%|𝐗, 𝜇, 𝛴), or any combination of 

maximum likelihood estimates , single maximum likelihood estimates given a set of 

observations 𝑝(𝜇%, 𝜇1|𝐗, 𝜇, 𝛴). As conditional independence within the network 
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allows marginalization of node likelihoods to direct parents, predictions on any subset 

of variables 𝑝(𝑋(, 𝑋M, . . . 𝑋1) only requires consideration of parents 𝛱{|..1, i.e. 𝑝(𝑋|𝛱{) 

(Scutari 2009). 

Results 

Graph structure 

Structure discovery found strong support for nearly all environmental variables, 

including evidence for mediation of effects via plant health characteristics (diameter, 

wilt) on yield, as well as direct effects on yield. There was no support for 

differentiation of carbon inputs by type. Instead, direct carbon rates were found to 

influence wilt and yield both as individual and as interaction effects with soil 

temperature and soil temperature threshold (Figure 2-3). 
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Figure 2-3. Weighted directed acyclic graph structure. Structure was learned using 

100 iterations of bootstrap sampling over the entire dataset. Arrows indicate the 

presence and direction of edges, and shading indicates the strength of the relationship, 

measured in the number of times the edge was learned over all iterations. The 

adjacency matrix for this wDAG is available in Appendix 2. 

Pruned graph structure and parameters 

After parameter fitting and removal of null edges and orphaned nodes, the final graph 

structure simplified into a set of three primary input drivers (temperature, carbon rate, 

and Eh), influencing the three primary outcomes (plant diameter, plant wilt, and 

yield) (Figure 2-4). Evidence for both direct effects to outcome variables and 
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mediated effects are apparent, the latter effect being primarily driven by plant 

diameter and plant wilt serving as mediating variables.  

 
 Figure 2-4. Gaussian Bayesian network structure, after removal of orphan nodes and 

null edges. Nodes and edges represent means and covariance parameters as factorized 

in the multivariate normal representation of the joint probability distribution.  

Predictive outcomes - marginal 

Posterior predictive outcomes indicate a strong interaction effect between soil 

temperatures and carbon inputs. Figure 2-5 illustrates this relationship by evaluating 

the probabilistic outcome of yield exceeding a 20% boost over the control, via the 

likelihood 𝑝(𝑋}%~V_ > 1.2|𝐗, 𝜇, 𝛴), and values of carbon source and mean maximum 

daily temperature simulated over realistic ranges. 



 61 

A bivariate inflection ridge is apparent in the projection separating the predictive 

values into low- and high-likelihood regions. A similar but slightly moderated ridge is 

apparent in Figure 2-5, which evaluates the same likelihood but with carbon source 

and mean degree days daily temperature as the simulation variables. 

 

Figure 2-5. Predictive surface estimating the probability of a 20% yield boost given 

varying soil maximum temperatures and carbon rates. Probabilities are derived from 

evaluating the model over a range of simulated C rates and soil temperatures. Contour 

lines mark every .1 increase in posterior probability estimation. 
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Figure 2-6. Predictive surface estimating the probability of a 20% yield boost given 

varying soil degree-day temperatures and carbon rates. Probabilities are derived from 

evaluating the model over a range of simulated C rates and soil temperatures. Contour 

lines mark every .1 increase in posterior probability estimation. 

Predictive outcomes - geographical 

These same findings are repeated when applied to the geographic data derived from 

rasterized CIMIS soil temperature data extracted and interpolated between weather 

stations for four months (August, September, October, November). Given three 

carbon rates (11 tons / ac, 9 tons / ac, 7 tons / ac), the probability of a 20% yield boost 
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closely tracks soil temperatures, generally along a north-south gradient but with some 

notable regional variation, presumably due to topographic variation. 

 

Figure 2-7. Projections of the probability of a 20% yield boost given varying carbon 

rates, months of year, and geographic location. Month of year and geographic 

location are used to index rasterized temperature data, which is sampled from 2017 

historical CIMIS data. 

Discussion 

Key factors to successful treatment 

Results from both the structural and parameter learning process strongly confirm the 

critical importance that environmental parameters play in determining the outcomes 
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of ASD applications, reinforcing the existing recommendations that applications of 

this method in on-farm scenarios requires careful consideration of the application 

parameters and environmental conditions that will influence outcome successes. 

The greedy nature of the MMHC algorithm used in structural learning is likely 

responsible for the sharp differences between the larger network derived initially and 

the smaller network that was retained for parameter learning; by leveraging iterative 

evaluations of conditional independence and bootstrapping, and by fitting on 

conditional probability tables, MMHC is far more sensitive to the presence or absence 

of edges than the gaussian network’s MLE algorithm used for parameter discovery 

(Scutari 2009). 

The presence of edges and nodes in the MMHC-derived network structure may 

suggest important avenues for future research; while soil moisture parameters 

appeared to influence both plant diameter and wilt, their parameters could not be 

estimated effectively. Prior work supports the hypothesis that maintenance of soil 

moisture is important for both stimulation of microbial activity and maintenance of 

anaerobic conditions (also supported by the presence of an edge between soil 

moisture average and Eh-h) (Shennan et al. 2018). Future work may consider 

evaluating the role of irrigation and soil moisture maintenance under a manipulative 

experimental framework to generate additional data on this relationship. 

In the gaussian Bayesian network, the dominant role of carbon rate and soil 

temperatures is also in agreement with prior work (Hewavitharana, Ruddell, and 
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Mazzola 2014) and an underlying hypothesis of ASD treatment mechanisms - as ASD 

relies on the stimulation of soil microbial activity and respiration, and on the 

facilitation of metabolic product generation, there should exist a strong relationship 

between carbon resource additions and temperatures on outcomes. 

Surprisingly, effects the type of carbon source were not detected in either MMHC or 

MLE learning, despite prior work indicating that lability and other qualities may 

make certain organic amendments more suitable for ASD than others (Butler et al. 

2012). Further work or expansion of the present model to accommodate additional 

data sources should explore these relationships. 

Both the marginal plots of carbon rate X temperature and geographic projections of 

treatment success probabilities indicate the potential for adaptive use of carbon rates 

in response to projected temperature regimes. For growers in southern growing areas, 

or with the flexibility to apply ASD on ground in early-season, model projections 

suggest the possibility of carbon rate reductions with little impact on the projected 

ability to generate improved yield / plant vigor. 

Conversely, the presence of compensatory effects may allow growers in northern 

growing areas or late-season applications who still wish to apply ASD to “make up 

for” the temperature penalty by increasing their carbon application rates. While the 

present analysis was not able to capture disease pressure-specific parametric 

relationships, the natural extension of these findings is to evaluate whether soils with 

higher disease burdens, either through CFU or pathogen species, could be adaptively 

treated with higher temperature or carbon rates on a sub-field basis. 
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Limitations 

The use of yield ratios in this study provides a convenient standardization of results 

across experiments, especially useful in strawberry systems where absolute yield and 

plant characteristics may vary widely from small changes to cultivar selection or plant 

spacing. However, ratios also require more considered interpretation, as they 

simultaneously represent the potential yield change from ASD applications and the 

baseline performance of the reference plot. 

In fields with very little disease pressure and overall high yields, this may suppress 

the apparent effect of even a well-applied ASD treatment, and in fields with very 

strong, this may pronounce the same effect (assuming the ASD application worked). 

In theory, this can result in paradoxical findings, such as a high baseline disease 

pressure having an overall positive effect on the yield outcome. While disease-count 

parameters were not estimable in this study, this type of challenge of interpretation 

remains salient. 

Further, the strong majority of experiments included in this synthesis (with the 

exception of two fields) were only documented as containing infestation of 

Verticillium dahliae as the primary pathogen. Prior work on ASD applications in 

fields infested with Macrophomina and Fusarium indicates that the required 

treatment conditions in these fields may be quite different (Yonemoto et al. 2006, 

Muramoto et al. 2016, Ebihara and Uematsu 2014); most notably, the soil 
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temperatures required to achieve suppression of species other than Verticillium are 

notably higher. 

From this perspective, the Bayesian network learned here is best characterized as 

Verticillium-specific. Future work integrating additional datasets into a synthetic 

analysis should take careful consideration on model structures that accommodate 

pathogen-specific system differences, either through completely unpoled model 

fitting (separate structures and parameters for each pathogen system), or via more 

complicated hierarchical structures. 

Future work 

The risk aversion of many growers is profound even within the consideration of 

switching between fumigant types, not to mention non-fumigant control options (Asci 

et al., n.d.), and the high capitalization and extreme consequences of fungal pathogens 

in strawberry production (Carter et al. 2005, Koike and Gordon 2015) likely 

exacerbate this aversion. 

The outcomes of this project provide both a methodology and results that may 

provide a path forward for reducing the uncertainty about optimized ASD treatment 

recommendations and their predicted outcomes. Integration of additional data from 

experiments and on-farm would improve the specificity and reliability of predictions 

and may provide additional avenues for farm-specific management recommendations, 

such as nesting of meteorological projections, mulch selection for increasing soil 
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temperatures if model projections indicate insufficient temperatures, or other 

management interventions to improve success estimates. 

Further, both structure discovery and parameter learning are Bayesian processes 

which allow for integration of new data on existing model structures without re-

learning the entire dataset. Via belief propagation methodologies, the existing 

MMHC-derived model structure can be updated and evaluated with additional data, 

facilitating continuous inclusion of additional data. 
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Unsupervised clustering of farmer approaches to information use, 
land management, and pathogen control in walnut production 
systems in Chile 

Introduction 

In the last 10 years, walnut production in Chile has undergone a significant expansion 

in land under cultivation, from an estimated 5,000 hectares in 2007 to 40,000 hectares 

in 2018 (Guajardo et al. 2019). This production area represents an increasingly 

economically important industry, and most projections of future demand for walnuts 

and walnut products indicate that the market will continue to be supply-limited, 

encouraging future growth (Guajardo et al. 2019). 

Within this acreage, a significant portion of the walnut-producing area appears to 

present evidence of root- and stem-rot diseases associated with infection via 

pathogenic Phytophthora species (Guajardo et al. 2017). While the damage is often 

non-lethal and controllable, Phytophthora infection can cause complete loss of 

productivity from individuals or progress to full mortality, representing a major threat 

to the productivity of affected orchards (Mircetich, Matheron, and others 1983). 

Further, the geographic distribution of walnut production systems in Chile appears to 

be shifting, at least in part due to changes in geographic suitability attributable to 

global climate change (Guajardo et al. 2019). In areas previously unexposed to walnut 

production, soil conditions may affect the type and behavior of Phytophthora spp and 

produce root-pathogen interactions more severe than traditional production 

geographies. 



 70 

Although the factors affecting Phytophthora infection in Chilean walnut production 

are multivariate, a few key features of the production systems are salient. First, the 

susceptibility of an orchard to attack by Phytophthora spp is well-described in 

agronomic literature as primarily management-based (Browne et al. 2006), in that 

with appropriate irrigation, sanitation, and varietal practices an orchard may generally 

be inured to significant damage from Phytophthora-related die-off. Additionally, the 

majority of plantings utilize Juglans regia rootstock (Guajardo et al. 2017). While this 

rootstock is admired for its high-performing yield characteristics, it is also notoriously 

susceptible to attack by Phytophthora species (Browne et al. 2006). 

Several gaps of knowledge in this system are present. First, while several species and 

sub-species of Phytophthora have been identified as parasitic/pathogenic to walnuts, 

the prevalence and distribution of these species within Chile is unknown, nor whether 

their geographic distribution is indeed a source of novel severity in disease outbreaks. 

Second, while alternative rootstocks are available, it is as yet unknown whether 

introduction of these rootstocks will actually reduce morbidity. 

Finally, there is a considerable absence of information on the actual on-farm 

management practices in Chilean walnut production, and how integrated agronomic 

programs can best serve these operations. It is to this final point that the present work 

is directed. 
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Extension work and technology transfer 

Contemporary research in agricultural extension and outreach has seen an increasing 

call for further incorporation of stakeholder-oriented methodologies into the design 

and implementation of agricultural research, with particular emphasis towards the 

role socioeconomic stratification may play in the incorporation and relative benefit of 

technological innovation in agroecosystems (MacMillan and Benton 2014, Levidow, 

Pimbert, and Vanloqueren 2014). 

While traditional models of technological development by researchers and extensions 

have primarily focused on methodological and epistemic challenges as the primary 

motivators to inquiry, proponents of a more integrated approach to extension work 

encourage a conceptualization of agronomic improvements as components of an 

overall integrated agroecosystem, with a concomitant responsibility to down-stream 

effects of released technologies (Hauser et al. 2016). 

Further, it has been well-noted that agronomic work may serve to benefit a restricted 

strata of land managers - in particular, farms of greater capitalization and 

technological adoption may be more prepared to invest in, acquire, and implement 

further technological improvements produced by scientific research, further 

cementing the potential role of research in directly shaping the agricultural landscape 

(Leeuwis 2013, for an overview of the subject). 

With this in mind, manager-oriented research, such as participatory action research, 

establishes a clearly defined role of farmers and land managers within the scientific 
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inquiry process, both as collaborators to the research process and recipients of the 

outcomes (Hauser et al. 2016). Such projects frequently incorporate expert knowledge 

and feedback from farmer-stakeholders into several or all of the steps in a research 

pipeline, from initial ideation, development of project outcomes, and implementation 

and data collection, sometimes even involving farmer-stakeholders as active 

participants in data collection and monitoring (ibid.). 

In the absence of direct involvement of farmers within the research cycle, 

conscientious understanding of the agroecological landscape is recommended as a 

first step towards directing research and technology transfer activities (Liu, Bruins, 

and Heberling 2018, Hauser et al. 2016). While often overlooked, the diversity, 

frequency, and sufficiency of actively implemented farm practices can provide a 

valuable source of knowledge and direction for both future research and effective 

provisioning of extension services. 

Further, it may be the case that managers in a study system present a diversity of 

characteristics that is neither unified nor random, but instead can be understood 

within broad groups of management approaches. This phenomenon has been 

observed in multiple study systems previously, from productions as diverse as dairy 

(Cook et al. 2016), rice (Savary et al. 1994), and mixed vegetable production (Hillger 

et al. 2006). In this case, understanding the underlying distribution of clustering is a 

critical task prior to implementing a technology transfer program, as the information 

on disparate needs or approaches may provide insights as to how a potential 

intervention may be structured as to maximize (or minimize) particular effects. 
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Methods 

Methods: survey dataset 

This work is based on a 2017 dataset surveying management practices and 

technological attitudes of walnut farmers in Chile. To adequately capture a 

representative range of socioeconomic and management characteristics in the 

production landscape, this survey used a stratified sampling design with pre-binned 

categories by geography and farm size. In each administrative region where walnut 

production has a meaningful presence (Regions 4, 5, 6, 7, 8, and RM/13), a target of a 

minimum 16 growers to survey was established; within that target, a sub-target of 4 

growers from four farm sizes (<1ha, 1-5ha, 5-25ha, 50ha+) was established, though 

obtained numbers vary (Appendix 4). Questions addressed socioeconomic 

characteristics of the farm operations, management behaviors, irrigation management, 

specific management approaches to the control of Phytophthora and disease 

generally, and agricultural information management (see Appendix 1 for a full list). 
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Farm survey geography 

 

Figure 3-1. Surveyed regions within Chile, numbered by region name. 
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Figure 3-2. Surveyed regions within Chile, numbered by respondent counts. 

Converting and subsetting responses 

The final dataset is composed of 96 unique survey points with 101 unique questions 

(Appendix 2). Of these questions, 37 are based on factor-response answer types. 

Almost all data analysis methods implicitly or explicitly convert factor responses to 

sets of binary response variables, e.g. “dummy variable encoding” or “1-hot 

encoding”. In this dataset there are an additional 117 binary responses from possible 

choices within factor responses, bringing the total parameter count to 218. 
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Responses were then further subset to reflect the desired parameter pool for 

clustering. Instead of using the entire feature space, the features were restricted to 

include only information on demographics, farm-level characteristics, and farm 

management responses, so that clustering would be conducted on a dataset 

determined by actual management behaviors rather than underlying information-

attitude responses. 

Partition around medoids algorithm 

The clustering method applied here uses an unsupervised learning algorithm called K-

medoids. Similar to the more commonly used K-means algorithm, K-medoids 

eschews the use of synthesized centers (‘means’) and instead considers data 

observations as candidate pivots for generation of cluster centers. A simplified 

version of the algorithm operates as follows, for some arbitrary number of clusters K: 

 

K-medoid partitioning (Reynolds et al. 2006) 

Take an initial guess for centers 𝑐(, . . . , 𝑐�  via random sampling of the actual dataset. 

1. Minimize over 𝐶: for each 𝑖 = 1, . . . 𝑛, find the cluster center 𝑐� closest to 𝑋%, 

and let 𝐶(𝑖) = 𝑘 

2. Minimize over 𝑐(, . . . , 𝑐�: for each 𝑘 = 1, . . . 𝐾, let 𝑐� = 𝑋�∗, the medoid of points 

in cluster 𝑘, i.e., the point 𝑋% in cluster 𝑘 that minimizes ∑ ∥�(1)>� 𝑋1 − 𝑋% ∥MM 
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When within-cluster variation doesn’t change with a new medoid, the process is 

stopped. In English, this algorithm assigns an arbitrary label to some random point as 

an initialization step, searches through the rest of the data and assigns labels based on 

their similarity to any of the initialized values, finds a medoid within each generated 

cluster, and repeats the label-assigning and medoid-finding process until no further 

improvements can be made. 

This process generates a few key measurements: clusters derived from the 

algorithmic iteration, representative medoids for those derived clusters, and the 

overall fit of derived clusters to the dataset (‘silhouette width’). Each are helpful for 

different aspects of the modeling process: clusters assigned to each data point 

separate observations into discrete units for later dissection, representative medoids 

provide real-world examples of a ‘canonical’ example most-exemplary of each 

derived cluster, and fit measures provide a measure by which we can search over the 

hyperparameter space 𝑘 and find the optimal cluster size. 

PAM implementation 

Implementation of the PAM algorithm on this dataset was conducted using R 

Statistical Software (R Core Team 2013), precise software details at end of 

document). First, selected categorical response variables were decomposed into 

constituent binary variables using a general 1-hot-encoding technique. Numerical and 

ordinal response variables were not modified. 
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Of the 116 original parameters (Appendix 2), a subselection of all questions related to 

management practices were used as inputs to a clustering method (63 total). The 

objective was to identify clusters of farmer behaviors within the dataset based on 

similarities within observed parameters. Some parameters were removed due to 

covariance (e.g. region ID and coordinates), irrelevance (e.g. file source or email), 

irregularity (e.g. irrigation frequency information), or insufficient processing 

(e.g. varying response types to open-ended questions). Information network questions 

were excluded from clustering as they were not directly related to management 

practices but are included as profile variables linked to derived clusters. 

First, a dissimilarity matrix was constructed by using Euclidean distance (root sum-

of-squares difference) for numeric parameters or Gower’s distance method (Kaufman 

and Rousseeuw 2009) for nominal, ordinal, and binary data. Gower’s distance is a 

function which attributes a dissimilarity value 𝑑%𝑗 to any two observations 𝑖 and 𝑗 

based on a weighted mean calculation. These steps were accomplished with the daisy 

function from the cluster library in R (R Core Team 2013). 

This dissimilarity matrix was then used as an input into an implementation of pam 

algorithm following the original build/swap steps as described above, using the pam 

function from the cluster library in R (R Core Team 2013).. 

Silhouette width 

The pam function provides a model fit of generated clusters and overall “silhouette 

width”, a generalized measure which evaluates variance explained within clusters 
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versus variance unexplained (Rousseeuw 1987). The general approach to this 

calculation relies on determination of within-group dissimilarity and between-group 

dissimilarity, via estimation of the function 𝑠(. ) for every observation 𝑖, where the 

function 𝑎(𝑖) determines the average dissimilarity of observation i to all other 

observations in the final cluster, as determined by the fitting process detailed above, 

and function 𝑏(𝑖) determines the minimum average dissimilarity of observation 𝑖 

when iteratively compared to all other clusters. From these underlying functions, we 

define 𝑠(. ) as: 

𝑠(𝑖) =
𝑏(𝑖) − 𝑎(𝑖)

𝑚𝑎𝑥{𝑎(𝑖), 𝑏(𝑖)} 

Which provides a [-1,1] bounded interval of “silhouette width” (Rousseeuw 1987). 

Represented by the sil_width class attribute generated by the pam function in the R 

cluster library, this process was repeated for a series of candidate K values [2,…,20] 

and the final model fit was selected from the model of value k which maximizes 

silhouette width, and by extension explanatory power. 

Projection onto two-dimensional space 

After generation of clusters, examination of the clustering distribution by 

visualization is generally suggested as a best practice to ensure proposed clusters are 

robust. Projection of higher-dimensional datasets onto a two-dimensional space for 

visualization is an important task in many applications and has been a frequent task in 

machine learning research. Most recently, a popular algorithm called t-distributed 
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stochastic neighbor embedding, or “t-SNE”, has seen widespread acceptance into 

dimension-reduction and visualization tasks (Maaten and Hinton 2008). Briefly, the t-

SNE achieves dimensionality reduction by generating two sets of pairwise 

dissimilarities, one for the original dataset and one for a set of low-dimensional “map 

point” counterparts (for original data, dissimilarity is a normalized Euclidean 

distance, for low-dimensional map points, Euclidean distance). Both sets of 

dissimilarity measures are then subjected to minimization of a cost function based on 

Shannon entropy in order to find the map point configuration that contains the highest 

fidelity to dissimilarities observed in the data. Some additional tweaks are required to 

adequately calibrate the normalization parameters, but this is left to the original work 

(Maaten and Hinton 2008). 

This procedure is implemented with the dissimilarity matrix previously described, 

using the Rtsne package from the Rtsne library in R. 

Feature importance scores 

Feature importances were inferred by calculating a ratio of cosine similarity for each 

feature via evaluation of within-dataset similarity versus within-group similarity. 

Because clustering produces groups that are likely of different lengths, to calculate 

dot-products for feature vectors a random sampling approach is used, so that for each 

feature 𝑥 the following algorithm is used: 
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Cosine similarity ratio for feature importance 

1. Subset the feature vector 𝐱 into two random samples 𝐚 and 𝐛. 

2. Calculate cosine similarity 1:I times with 

𝑐𝑜𝑠(𝜃%) =
𝑎 ⋅ 𝑏

∥ 𝑎 ∥∥ 𝑏 ∥ 

3. The average cosine similarity is then 

𝑐𝑜𝑠(𝜃QVV) =<𝑐
�

%>(

𝑜𝑠(𝜃%)/𝐼 

4. Repeat steps 1-3 for a subset of the data within each group J = {1,2} for all 𝑠%1, 

so that 

𝑐𝑜𝑠(𝜃�PS\+) =<𝑐
�

%>(

𝑜𝑠(𝜃%()/2𝐼 +<𝑐
�

%>(

𝑜𝑠(𝜃%M)/2𝐼 

5. Calculate the similarity ratio 

𝑟(𝑥) =
𝑐𝑜𝑠(𝜃�PS\+)
𝑐𝑜𝑠(𝜃QVV)

 

6. Repeat for all features. 

 

This approach provides a ratio centered at 1 (zero difference in sampled similarities 

between all-data or group-data), and ratios above 1 provide a convenient measure of 

features that are particularly clustered within groups versus the random sample, akin 
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to similar methods using cosine similarity as a distance measure for document 

clustering (Huang 2008). 

Results 

Optimal cluster size 

Silhouette width calculations indicate highest explanatory power at k=2 and an 

immediate loss on addition of further clusters, with gradual improvement in fit as 

clusters are added. Overall silhouette width is low-moderate in explanatory power by 

general interpretive guidelines (Rousseeuw 1987). 

 

Figure 3-3. Silhouette width versus # of medoids evaluated. 
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Reduced parameter space projection 

Parameter reduction using t-SNE indicates an efficient capture of clustering from the 

PAM algorithm, an expected result given the similar methodologies of Euclidean 

distance minimization. Clusters are well-defined with only small evidence of mixing 

across boundaries. 

 

Figure 3-4. t-SNE projection of survey data into a 2-dimensional space. Projection 

methodology is described in methods above. X and Y axes are synthetic mappings of 

original dataset. Clusters defined by partition-around-medoid methods were used to 

color map points post-hoc and were not used in the t-SNE process. 
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Distributions between clusters 

Numerous features of the dataset are immediately evident upon examination of how 

2-medoid clustering separated the survey data into group 1 (hereafter, ‘G1’) and 

group 2 (hereafter, ‘G2’). Results indicate good support for the hypothesis that a 

primary division of respondents into two categories exist: larger-scale, higher-capital 

growers, typically conducting operations of greater than 25ha, and smaller, less-

capitalized farms, typically conducting operations of smaller than 12 ha. 

Demographics and farm characteristics 

First, respondents from G1 tend to be concentrated in central regions and overall 

manage larger farms and almost all of the largest farms (25-50 ha, 50+ha), whereas 

G2 growers are primarily found in the north and south reaches of the surveyed area 

and are primarily smaller farms (0-5ha, 5-12ha) (Figure 3-5). 
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Figure 3-5. Survey response histogram densities. Facet A plots counts of respondents 

in each group by location in administrative districts. Facet B plots counts of 

respondents in each group by farm size category. Response counts are presented as 

empty bars for group 1 and full bars for group 2. 

As expected, Juglans regia is the near-universal choice for rootstock in both groups, 

and only a few instances of respondents from G1 who use Juglans nigra or Vlach 

rootstocks (although, conversationally, several growers expressed an interest in 

obtaining Vlach rootstocks as potentially resistant to Phytophthora). A differentiation 

in preferred or established scion wood cultivars is present in the data, as G1 growers 

responded with a higher proportion of “Chandler” cultivars versus G2 growers, who 

more frequently responded as using “Serr”.  
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Figure 3-6. Survey response histogram densities. Facet A plots proportions of 

respondents in each group by their reported plantings of rootstock varieties. Facet B 

plots proportions of respondents in each group by their reported use of scion varieties. 

Response proportions are presented as empty bars for group 1 and full bars for group 

2.  

Examination of density plots indicates differences between groups in terms of 

productivity, and an overall trend of higher yield in G1 versus G2 respondents. 
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Figure 3-7. Survey response density for crop yield, measured as the estimated kg/ha 

yield of marketable crop in the 2017 season. Response densities are presented as 

empty for group 1 and full for group 2. 

Disease attitudes and practices 

There is not a very strong trend in differences between groups in attitudes towards the 

severity of Phytophthora as an on-farm issue or the relative efficacy of management 

solutions to Phytophthora control, although a somewhat reduced belief in 

Phytophthora as a severe issue and an increased belief in the effectiveness of 

management solutions may be present in G1 growers (Figure 3-8, facets A and B). A 

stark difference emerges in the responses addressing preparedness to implement 

management and technological solutions, as respondents in G2 present as 
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considerably more pessimistic about their own abilities. Additional differences are 

evident in the actual strategies respondents take towards control of Phytophthora on 

their farms (Figure 3-8, facet D), with a majority of G1 growers responding as using 

chemical strategies or both chemical and management strategies but rarely 

management on their own, while the majority of G2 growers report using 

management alone or both strategies, but rarely chemical strategies on their own. 

 

Figure 3-8. Survey response histogram densities. Facets A, B, and C plot proportions 

of respondents in each group by their response to the questions: A - “How severe do 

you think the problem of Phytophthora in walnut production is?” (1 Low, 2 Moderate, 

3 High, 4 Severe), B - “Do you believe that the solutions that exist today are effective 

for controlling Phytophthora?” (1 Not effective, 2 Somewhat effective, 3 Moderately 
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effective, 4 Very effective), C - “How prepared do you feel for implementing these 

solutions?” (1 Not prepared, 2 Somewhat prepared, 3 Moderately prepared, 4 Very 

prepared), D - “What kinds of treatment do you use for Phytophthora control?” (1 

Cultural, 2 Chemical, 3 Both). Response proportions are presented as empty bars for 

group 1 and full bars for group 2. 

Only slight differences are evident in a series of questions addressing the progression 

of disease control via a replanting cycle (Figure 3-9), with both groups reporting 

fairly strong evidence that Phytophthora disease is widespread, growers frequently 

address tree death via tree removal and replanting in the same soil, only sometimes 

use disease mitigation strategies before replanting, and these strategies, when used, 

sometimes fail. 
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Figure 3-9. Survey binary response histograms, presented as proportions of 

respondents indicating “Yes” to the following questions: A - “Do you have plants 

damaged by Phytophthora species?”, B - “Have you had to replant trees after disease-

related death in recent years?”, C - “If you replant, do you apply a treatment before 

planting again?”, D - “If you apply a treatment, does the problem reappear?”. 

Response proportions are presented as empty bars for group 1 and full bars for group 

2. 

Irrigation management 

Stark differences between groups in their utilization of information for farm 

management begin to fully emerge in the irrigation data, especially with regards to 

the use of information systems to monitor and control irrigation (Figure 3-10). 
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Respondents in G1 overwhelmingly use information-gathering technologies to obtain 

information about the irrigation states of their farms, and actively use this information 

to guide decision making on when and how much to irrigate, while fewer than half of 

respondents in G2 reported any use of information system use. 

 

Figure 3-10. Survey binary response histograms, presented as proportions of 

respondents indicating “Yes” to the following questions: A - “Do you use a system to 

provide evapotranspiration rates?”, B - “Do you use instruments to monitor 

irrigation?”, C - “Do you use them to decide when to irrigate?”, D - “Do you use 

weather station forecasts?”. Response proportions are presented as empty bars for 

group 1 and full bars for group 2. 
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Soil and fertility management 

Divisions in information-collection patterns continue in responses to soil management 

questions, as a majority of G1 and minority of G2 respondents use chemical, physical, 

organic matter, and soil pH testing as information foundations in their management 

systems (Figure 3-11). 

 

Figure 3-11. Survey binary response histograms, presented as proportions of 

respondents indicating “Yes” to the following questions: A - “Do you obtain physical 

analysis information for your soils?”, B - “Do you obtain chemical analysis 

information for your soils?”, C - “Do you obtain soil organic matter level information 
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for your soils?”, D - “Do you obtain pH level information for your soils?”. Response 

proportions are presented as empty bars for group 1 and full bars for group 2. 

While a relatively equal proportion of responses reported using Urea as a nitrogen 

source, respondents from G1 appear to more frequently use a more diverse source of 

fertilizers, both as nitrogen inputs and as general organic amendments for soil 

management (Figure 3-12). 

 

Figure 3-12. Survey binary response histograms, presented as proportions of 

respondents indicating a positive response to the following questions (responses A, B, 

and C, were obtained from a multiple-response question) : A, B, C - “Which nitrogen 

fertilizers do you use as nitrogen inputs?”, D - “Do you amend your soils with organic 



 94 

amendments?”. Response proportions are presented as empty bars for group 1 and 

full bars for group 2. 

Information preferences 

Across all categories of information sources, respondents in G1 more often reported 

any answer other than “Never” to questions regarding the frequency of their use of 

different information sources to guide their decision-making processes. The most 

frequent information-source across all groups was the use of smartphones or the 

internet, while some from G2 reported use of journals from information. 

 

Figure 3-13. Survey histogram densities of the proportion of respondents indicating 

responses to the question, “How often does your operation use the following source 
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of information for making decisions about walnut management?”: A. Smartphone, B. 

Internet, C. Journal, D. Books, E. Television. Responses were given on the scale: 1 

Never, 2 Less than one time a month, 3 One to two times a month, 4 More than once 

a week. Response proportions are presented as empty bars for group 1 and full bars 

for group 2. 

In particular, via follow-up questioning, the specific journals “RED Agricola” and 

“Revista del Campo”, extension-funded agronomist publications, were favored by G1 

respondents as sources of management information, whereas G2 respondents rarely 

used either information source. 

 

Figure 3-14. Survey binary response histograms indicating responses to the question, 

“Does your operation use the following journal for making decisions on your farm 
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about Walnut management?” (decomposed from a multiple-response questions). 

Response proportions are presented as empty bars for group 1 and full bars for group 

2. 

Information obtained from direct communication with other persons was most often 

obtained from consultants by G1 respondents, while government agents / 

extensionists were most frequently consulted by G2 (although at a lower rate than the 

utilization of consultants by G1). 

 

Figure 3-15. Survey binary response histograms, presented as proportions of 

respondents indicating a positive response to the following questions (responses A, B, 

C, D, were obtained from a multiple-response question): “If you have a question 
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about pathogen control, who do you consult?” Response proportions are presented as 

empty bars for group 1 and full bars for group 2. 

Feature importance rankings 

 

Figure 3-16. Feature importance ranks. Features (y-axis) are plotted against their 

relative importance (x-axis), as calculated by a cosine similarity ratio. Variables 

above a cosine similarity ratio of 1 are presented. 
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Cosine similarity ratios calculated for each feature indicate a cluster of around 20 

strongly-defined features, primarily related to management of irrigation, disease 

control, and use of instrumentation for informing management choices. Use of 

driplines for irrigation, noted above as a management choice favored by G2 growers, 

application of Aliette, a counter-Phytophthora prophylaxis, reappearance of 

Phytophthora issues after replanting, irrigation water source (well versus surface), and 

the perceived scale of Phytophthora as a pressing issue were highly discriminating 

factors (Figure 3-16). 

Discussion 

Segregation of operational characteristics 

This strong demographic divide illustrates a point made many times elsewhere in 

literature studying the modern evolutions of agricultural demographics - not just that 

there are clear strata in persons and capitalization within farming systems, but that 

increasingly these strata are being pushed towards opposite ends of small-large farm 

size and low-high capitalization axes. In consequence, it’s particularly evident that, 

independent of any further data regarding the respondents’ agricultural practices or 

attitudes themselves, the foundational management abilities of each group are likely 

divergent, whether via access to capital, equipment, or inputs. 
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Differing attitudes towards information and technology 

The clear divisions in information use patterns between groups supports prior work 

finding that the access to and use of agronomic information can be widely 

heterogeneous, not just from the point of view of providing information, but from 

attitudes to whether the information is inherently useful (Garforth et al. 2003). In 

particular, agronomic systems which most benefit from the input of expert 

knowledge, whether via inherent system-based knowledge, knowledge obtained from 

static information sources, or external consultants, may be most vulnerable to 

stratification based on underlying divisions of information ‘ability’, as observed in 

other contexts (Birner and Anderson 2007, Hall et al. 2001). 

While both groups sought out the advice of external consultants, G1 tended to utilize 

private consulting services and G2 growers tended to utilize government 

extensionists, a subsidized service, suggesting that there may be additional network-

level effects on information dissemination and capture by these groups, as prior work 

has noted differences in behavior and information sourcing in public extensionists 

versus private consultants (Kidd et al. 2000). 

Capitalization and risk 

Underlying currents of capitalization-driven separation can be found in many aspects 

of this study system. At the outset, the generally lower land size, lower yields, and 

higher use of external supplemental income reasonably places respondents in the G2 

cluster in less-capitalized systems. Unsurprisingly, growers in this system tended to 
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report a lower and less diverse use of fertility inputs, chemical inputs, irrigation 

monitoring technology, advanced irrigation application systems, and fewer analytical 

measures to evaluate soil conditions. 

All of these features are well-established as behavioral characteristics of growers with 

access to more capital, whereby land managers with lower access to resources and 

land-improvement capital are more likely to make management choices that reduce or 

fail to increase their land productivity or stimulate negative feedback loops in their 

system’s biologies (Daberkow and McBride 2003). 

Potential consequences for extension activity 

These findings bring strong focus to the imperative on extensionists and researchers 

to consider the socioeconomic conditions of agricultural systems targeted for 

technology or information transfer, and agricultural research more generally. 

Clustering patterns in this system definitively outline divisions in attitudes, resource 

access, and information channels between the two farm types. 

A broader recognition is underway, especially among those in the agricultural 

sciences, of the responsibility of the scientific community to consider their role as 

participants within socio-environmental systems, and especially of the role scientific 

research and outreach activities can play in shaping these systems in a dynamic way 

(Ashby and Sperling 1995, MacMillan and Benton 2014). Case studies demonstrating 

the inadvertent shaping of economic systems by land-grant universities in California 

illustrate this point in agricultural contexts, where the relationship between scientific 
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communities and land management practitioners can be particularly strong (George 

and Clawson 2014, Chatterjee, Dinar, and González-Rivera 2016). 

The defined groups discovered by survey in this work provide an opportunity to 

consider how technology transfer activities should proceed. While the problems faced 

by growers in finding effective and long-term solutions to Phytophthora management 

in their systems are significant, and basic scientific work should be conducted on 

potential strategies for control and mitigation of pathogens, it is evident from this 

work that a segment of the industry is better-prepared to integrate new solutions and 

technologies into their management systems than another. 

Further, unconsidered release of new technologies via means or channels most 

convenient to research institutions may be implicitly biased towards supporting more-

technologized growers over others, as evidenced by the divisions in preferential use 

of both technology and information for management decisions among growers in this 

system. If current issues with diseases such as Phytophthora worsen, perhaps along 

with other environ- and climate-dependent pathogens, these divisions may be 

exacerbated. Synergistic interactions between shifting climactic factors and pathogen-

pathogen interactions or use of opportunistic infection opportunities may pose 

continuing issues to growers’ abilities to manage their orchards, especially under 

conditions that limit capital or infrastructural investments. 
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Appendices – Chapter 1 

Appendix 1: Original computing environment 

This document and all figures, tables, and supporting analyses were generated using 

R Statistical Software and RMarkdown. The generative RMarkdown file and 

associated R scripts for data manipulation and analysis are available at 

https://github.com/graemebaird/orei_ucsc. As reproducibility best practice, the 

computing environment used to generate this document is detailed below. 

R version 3.5.1 (2018-07-02) 

**Platform:** x86_64-apple-darwin15.6.0 (64-bit) 

attached base packages: stats4, grid, stats, graphics, grDevices, utils, datasets, 

methods and base 

other attached packages: bindrcpp(v.0.2.2), ggcorrplot(v.0.1.2), DALEX(v.0.2.4), 

shadowtext(v.0.0.4), partykit(v.1.2-2), libcoin(v.1.0-1), party(v.1.3-1), 

strucchange(v.1.5-1), sandwich(v.2.5-0), zoo(v.1.8-4), modeltools(v.0.2-22), 

mvtnorm(v.1.0-8), forcats(v.0.3.0), stringr(v.1.3.1), purrr(v.0.2.5), readr(v.1.1.1), 

tidyr(v.0.8.1), tibble(v.1.4.2), tidyverse(v.1.2.1), dplyr(v.0.7.6), ggthemes(v.4.0.1), 

mapdata(v.2.3.0), maps(v.3.3.0), ggmap(v.2.7.900), pander(v.0.6.3), shapleyR(v.0.1), 

reshape2(v.1.4.3), ggplot2(v.3.1.0), combinat(v.0.0-8), checkmate(v.1.8.5), 

mlr(v.2.13), ParamHelpers(v.1.11), magrittr(v.1.5) and openxlsx(v.4.1.0) 
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loaded via a namespace (and not attached): TH.data(v.1.0-9), colorspace(v.1.3-2), 

deldir(v.0.1-15), rjson(v.0.2.20), rprojroot(v.1.3-2), proxy(v.0.4-22), yaImpute(v.1.0-

30), rstudioapi(v.0.7), ggpubr(v.0.1.8), lubridate(v.1.7.4), coin(v.1.2-2), 

xml2(v.1.2.0), codetools(v.0.2-15), splines(v.3.5.1), knitr(v.1.20), Formula(v.1.2-3), 

jsonlite(v.1.5), broom(v.0.5.0), cluster(v.2.0.7-1), png(v.0.1-7), shiny(v.1.1.0), 

compiler(v.3.5.1), httr(v.1.3.1), backports(v.1.1.2), assertthat(v.0.2.0), Matrix(v.1.2-

14), lazyeval(v.0.2.1), cli(v.1.0.0), later(v.0.7.5), htmltools(v.0.3.6), tools(v.3.5.1), 

coda(v.0.19-2), gtable(v.0.2.0), agricolae(v.1.2-8), glue(v.1.3.0), gmodels(v.2.18.1), 

fastmatch(v.1.1-0), Rcpp(v.1.0.0), parallelMap(v.1.3), cellranger(v.1.1.0), 

spdep(v.0.8-1), gdata(v.2.18.0), nlme(v.3.1-137), inum(v.1.0-0), rvest(v.0.3.2), 

mime(v.0.5), miniUI(v.0.1.1.1), breakDown(v.0.1.6), gtools(v.3.8.1), XML(v.3.98-

1.16), LearnBayes(v.2.15.1), MASS(v.7.3-51.1), scales(v.1.0.0), promises(v.1.0.1), 

hms(v.0.4.2), parallel(v.3.5.1), expm(v.0.999-3), RColorBrewer(v.1.1-2), 

BBmisc(v.1.11), yaml(v.2.2.0), gridExtra(v.2.3), rpart(v.4.1-13), stringi(v.1.2.4), 

AlgDesign(v.1.1-7.3), highr(v.0.7), klaR(v.0.6-14), boot(v.1.3-20), zip(v.1.0.0), 

spData(v.0.2.9.4), RgoogleMaps(v.1.4.2), rlang(v.0.3.0.1), pkgconfig(v.2.0.2), 

bitops(v.1.0-6), evaluate(v.0.11), lattice(v.0.20-35), bindr(v.0.1.1), labeling(v.0.3), 

tidyselect(v.0.2.4), factorMerger(v.0.3.6), plyr(v.1.8.4), R6(v.2.2.2), multcomp(v.1.4-

8), ALEPlot(v.1.1), pillar(v.1.3.0), haven(v.2.0.0), withr(v.2.1.2), sp(v.1.3-1), 

survival(v.2.43-1), modelr(v.0.1.2), crayon(v.1.3.4), questionr(v.0.7.0), 

rmarkdown(v.1.10), jpeg(v.0.1-8), readxl(v.1.1.0), data.table(v.1.11.4), pdp(v.0.7.0), 

digest(v.0.6.17), xtable(v.1.8-3), httpuv(v.1.4.5) and munsell(v.0.5.0) 
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Appendix 2: Sampling dates 

  1a 1b 2a 2b 3a 3b 4a 4b 5a 5b 6a 6b 7a 7b 8a 8b 
2011-
11-01 

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

2011-
12-15 

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

2012-
01-27 

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

2012-
03-05 

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

2012-
04-26 

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

2012-
07-03 

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

2012-
07-17 

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

2012-
08-01 

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

2012-
08-15 

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

2012-
08-29 

2 4 4 3 2 4 4 4 0 0 0 0 0 0 0 0 

2012-
09-14 

4 4 4 4 4 4 4 4 0 0 0 0 0 0 0 0 

2012-
10-04 

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

2012-
11-09 

0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 

2012-
12-13 

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

2013-
01-30 

4 4 4 4 4 4 4 4 4 4 4 4 3 4 4 4 

2013-
03-21 

4 4 4 4 4 4 4 4 4 4 4 4 3 4 4 4 

2013-
04-19 

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

2013-
05-15 

4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 
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2013-
05-22 

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

2013-
06-04 

4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 

2013-
06-27 

3 0 4 0 3 0 4 0 4 0 4 0 4 0 3 0 

2013-
08-15 

4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 

2013-
09-09 

0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 

2013-
10-16 

4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 

2014-
01-27 

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

2014-
02-25 

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

2014-
04-23 

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

2014-
06-05 

4 4 4 2 4 4 4 4 4 3 4 4 4 4 4 4 

2014-
06-20 

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

2014-
07-01 

4 3 4 4 4 4 4 3 4 4 3 3 4 4 4 4 

2014-
07-18 

4 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 

2014-
08-04 

4 4 4 4 4 4 4 4 0 0 0 0 0 0 0 0 

2014-
09-10 

4 4 4 4 4 4 4 4 4 4 4 3 4 4 4 4 

2014-
11-17 

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

2015-
01-23 

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

2015-
02-27 

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

2015-
03-23 

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 
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2015-
04-29 

4 4 4 4 4 4 4 4 4 4 4 4 4 3 4 4 

2015-
05-27 

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

2015-
06-26 

4 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 

2015-
07-21 

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

2015-
09-04 

3 4 4 4 4 4 4 4 4 3 4 4 4 4 4 4 

2015-
11-12 

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

2016-
01-27 

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

2016-
02-24 

4 4 4 4 4 3 4 4 4 4 4 4 4 4 4 4 

2016-
03-23 

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

2016-
04-13 

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

Table provides observations per date, per treatment. 



 107 

Appendix 3: Additional Shapley value visualizations 

 

Shapley values (x axis, shading) and interaction Shapley values (the sum of two 
values, y-axis) plotted. 
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Shapley values (x axis, shading) and interaction Shapley values (the sum of two 
values, y-axis) plotted. 
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Shapley values (x axis, shading) and interaction Shapley values (the sum of two 
values, y-axis) plotted. 
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Shapley values (x axis) and interaction Shapley values (the sum of two values, y-axis) 
plotted, faceted by crop. 
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Shapley values (x axis, shading) and interaction Shapley values (the sum of two 
values, y-axis) plotted. 
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Appendix 4: Full RF feature importance 

 

Feature importances, measured as error loss on permutation, for the entire suite of 
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original and transformed parameters evaluated in the RF model fit. Higher values 

indicate a greater importance of the parameters to the overall model. 

Appendix 5: RF residuals 

The majority of RF model residuals reside within a region of <10 mg NO3 / kg dry 

soil, and 90% of predictions capture a range of <25 mg NO3 / kg dry soil. The largest 

residuals, in excess of 100 mg NO3 / kg dry soil, occur when large mineralization 

peaks in data are entirely uncaptured by smoother estimates produced by RF 

predictions. 
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Appendices - Chapter 2  

Appendix 1: Original computing environment 

This document and all figures, tables, and supporting analyses were generated using 

R Statistical Software and RMarkdown. The generative RMarkdown file and 

associated R scripts for data manipulation and analysis are available at 

https://github.com/graemebaird/asd_syn. As reproducibility best practice, the 

computing environment used to generate this document is detailed below. 

R version 3.5.1 (2018-07-02) 

**Platform:** x86_64-apple-darwin15.6.0 (64-bit) 

attached base packages: grid, stats, graphics, grDevices, utils, datasets, methods 

and base 

other attached packages: bindrcpp(v.0.2.2), VIM(v.4.7.0), data.table(v.1.11.4), 

colorspace(v.1.3-2), readr(v.1.1.1), bnlearn(v.4.4), bnstruct(v.1.0.4), igraph(v.1.2.2), 

Matrix(v.1.2-14), bitops(v.1.0-6), rgdal(v.1.3-4), sp(v.1.3-1), mice(v.3.3.0), 

lattice(v.0.20-35), reshape(v.0.8.8), janitor(v.1.1.1), dplyr(v.0.7.6), ggthemes(v.4.0.1), 

mapdata(v.2.3.0), maps(v.3.3.0), ggmap(v.2.7.900), pander(v.0.6.3), shapleyR(v.0.1), 

reshape2(v.1.4.3), ggplot2(v.3.1.0), combinat(v.0.0-8), checkmate(v.1.8.5), 

mlr(v.2.13), ParamHelpers(v.1.11), magrittr(v.1.5) and openxlsx(v.4.1.0) 

loaded via a namespace (and not attached): minqa(v.1.2.4), rjson(v.0.2.20), 

class(v.7.3-14), rio(v.0.5.10), rprojroot(v.1.3-2), codetools(v.0.2-15), splines(v.3.5.1), 
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robustbase(v.0.93-3), knitr(v.1.20), nloptr(v.1.0.4), broom(v.0.5.0), png(v.0.1-7), 

rgeos(v.0.3-28), graph(v.1.60.0), compiler(v.3.5.1), backports(v.1.1.2), 

assertthat(v.0.2.0), lazyeval(v.0.2.1), htmltools(v.0.3.6), tools(v.3.5.1), gtable(v.0.2.0), 

glue(v.1.3.0), fastmatch(v.1.1-0), Rcpp(v.1.0.0), parallelMap(v.1.3), carData(v.3.0-2), 

cellranger(v.1.1.0), nlme(v.3.1-137), lmtest(v.0.9-36), laeken(v.0.5.0), 

stringr(v.1.3.1), lme4(v.1.1-18-1), pan(v.1.6), DEoptimR(v.1.0-8), MASS(v.7.3-51.1), 

zoo(v.1.8-4), scales(v.1.0.0), hms(v.0.4.2), parallel(v.3.5.1), BBmisc(v.1.11), 

yaml(v.2.2.0), curl(v.3.2), gridExtra(v.2.3), rpart(v.4.1-13), stringi(v.1.2.4), 

randomForest(v.4.6-14), e1071(v.1.7-0), BiocGenerics(v.0.28.0), boot(v.1.3-20), 

zip(v.1.0.0), RgoogleMaps(v.1.4.2), rlang(v.0.3.0.1), pkgconfig(v.2.0.2), 

evaluate(v.0.11), purrr(v.0.2.5), bindr(v.0.1.1), labeling(v.0.3), tidyselect(v.0.2.4), 

plyr(v.1.8.4), R6(v.2.2.2), mitml(v.0.3-6), pillar(v.1.3.0), haven(v.2.0.0), foreign(v.0.8-

70), withr(v.2.1.2), survival(v.2.43-1), abind(v.1.4-5), nnet(v.7.3-12), tibble(v.1.4.2), 

crayon(v.1.3.4), car(v.3.0-2), jomo(v.2.6-4), rmarkdown(v.1.10), jpeg(v.0.1-8), 

readxl(v.1.1.0), Rgraphviz(v.2.26.0), forcats(v.0.3.0), vcd(v.1.4-4), digest(v.0.6.17), 

tidyr(v.0.8.1), stats4(v.3.5.1) and munsell(v.0.5.0) 

Appendix 2: Structure: weighted partially directed acyclic graph 

Table continues below 

  Diam Yield Wilt 

Vert soil 

CFU 

Soil Temp 

Thr 

Soil 

Temp 

Diam 0 100 100 2 0 0 
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Yield 0 0 0 0 0 0 

Wilt 0 100 0 1 0 0 

Vert soil CFU 0 7 3 0 0 0 

Soil Temp Thr 89 100 100 0 0 0 

Soil Temp 100 100 100 0 0 0 

Soil H2O Avg 100 88 28 2 0 0 

Soil H2O 100 11 100 2 0 0 

Eh-h >200mV 100 0 100 3 0 0 

Rice bran 0 0 0 0 0 0 

Cover Crop 0 0 0 0 0 0 

Molass 0 0 0 0 0 0 

Vert Plant 0 100 40 0 0 0 

Must cake 0 0 0 0 0 0 

Vert Inf % 100 12 100 0 0 0 

Vert suppr 0 0 0 0 0 0 

Carbon rate 11 82 28 0 0 0 

Soil Temp X C 0 0 100 3 0 0 

Soil Temp X 

Eh 

0 0 100 1 0 0 
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Soil T Thr X C 0 0 100 0 0 0 

Table continues below 

  

Soil H2O 

Avg 

Soil 

H2O 

Eh-h 

>200mV 

Rice 

bran 

Cover 

Crop Molass 

Diam 0 0 0 0 0 0 

Yield 0 0 0 0 0 0 

Wilt 0 0 0 0 0 0 

Vert soil 

CFU 

0 0 0 0 0 0 

Soil Temp 

Thr 

0 0 0 0 0 0 

Soil Temp 0 0 1 0 0 0 

Soil H2O 

Avg 

0 0 89 0 0 0 

Soil H2O 0 0 15 0 0 0 

Eh-h 

>200mV 

0 0 0 0 0 0 

Rice bran 0 0 0 0 0 0 

Cover Crop 0 0 0 0 0 0 

Molass 0 0 0 0 0 0 
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Vert Plant 0 0 0 0 0 0 

Must cake 0 0 0 0 0 0 

Vert Inf % 0 0 0 0 0 0 

Vert suppr 0 0 3 0 0 0 

Carbon rate 0 0 4 0 0 0 

Soil Temp X 

C 

0 0 4 0 0 0 

Soil Temp X 

Eh 

0 0 99 0 0 0 

Soil T Thr X 

C 

0 0 0 0 0 0 

Table continues below 

  Vert Plant Must cake Vert Inf % 

Vert 

suppr 

Carbon 

rate 

Diam 0 0 0 0 0 

Yield 0 0 0 0 0 

Wilt 0 0 0 0 0 

Vert soil 

CFU 

0 0 0 0 0 
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Soil Temp 

Thr 

0 0 0 0 0 

Soil Temp 0 0 0 58 0 

Soil H2O Avg 0 0 0 0 0 

Soil H2O 0 0 0 0 0 

Eh-h 

>200mV 

0 0 0 0 0 

Rice bran 0 0 0 0 0 

Cover Crop 0 0 0 0 0 

Molass 0 0 0 0 0 

Vert Plant 0 0 0 0 0 

Must cake 0 0 0 0 0 

Vert Inf % 0 0 0 0 0 

Vert suppr 0 0 0 0 0 

Carbon rate 0 0 0 0 0 

Soil Temp X 

C 

0 0 0 0 0 

Soil Temp X 

Eh 

0 0 0 14 0 
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Soil T Thr X 

C 

0 0 0 0 0 

  

Soil Temp 

X C 

Soil Temp X 

Eh 

Soil T Thr 

X C 

Diam 0 0 0 

Yield 0 0 0 

Wilt 0 0 0 

Vert soil 

CFU 

0 0 0 

Soil Temp 

Thr 

0 0 0 

Soil Temp 0 0 0 

Soil H2O Avg 0 0 0 

Soil H2O 0 0 0 

Eh-h 

>200mV 

0 0 0 

Rice bran 0 0 0 

Cover Crop 0 0 0 

Molass 0 0 0 

Vert Plant 0 0 0 
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Must cake 0 0 0 

Vert Inf % 0 0 0 

Vert suppr 0 0 0 

Carbon rate 0 0 0 

Soil Temp X 

C 

0 0 0 

Soil Temp X 

Eh 

0 0 0 

Soil T Thr X 

C 

0 0 0 
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Appendix 3: Gaussian Bayesian diagnostics 
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Appendix 4: Raw data correlations 

  

Variable correlations. 
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Appendix 5 

 

Variable densities. 
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Appendix Ch3 

Appendix 1: Original computing environment 

This document and all figures, tables, and supporting analyses were generated using 

R Statistical Software and RMarkdown. The generative RMarkdown file and 

associated R scripts for data manipulation and analysis are available at 

https://github.com/graemebaird/pucv_nogal (Ed note: repository not public yet). As 

reproducibility best practice, the computing environment used to generate this 

document is detailed below. 

R version 3.5.1 (2018-07-02) 

**Platform:** x86_64-apple-darwin15.6.0 (64-bit) 

attached base packages: stats, graphics, grDevices, utils, datasets, methods and 

base 

other attached packages: bindrcpp(v.0.2.2), shadowtext(v.0.0.4), tidyr(v.0.8.1), 

openxlsx(v.4.1.0), rgeos(v.0.3-28), scales(v.1.0.0), ggthemes(v.4.0.1), pander(v.0.6.3), 

mice(v.3.3.0), lattice(v.0.20-35), factoextra(v.1.0.5), NbClust(v.3.0), reshape(v.0.8.8), 

dplyr(v.0.7.6), magrittr(v.1.5), ggplot2(v.3.1.0), Rtsne(v.0.13) and cluster(v.2.0.7-1) 

loaded via a namespace (and not attached): tidyselect(v.0.2.4), purrr(v.0.2.5), 

splines(v.3.5.1), colorspace(v.1.3-2), htmltools(v.0.3.6), yaml(v.2.2.0), pan(v.1.6), 

survival(v.2.43-1), rlang(v.0.3.0.1), jomo(v.2.6-4), pillar(v.1.3.0), nloptr(v.1.0.4), 

glue(v.1.3.0), withr(v.2.1.2), sp(v.1.3-1), bindr(v.0.1.1), plyr(v.1.8.4), stringr(v.1.3.1), 



 126 

munsell(v.0.5.0), gtable(v.0.2.0), zip(v.1.0.0), codetools(v.0.2-15), evaluate(v.0.11), 

forcats(v.0.3.0), labeling(v.0.3), knitr(v.1.20), parallel(v.3.5.1), broom(v.0.5.0), 

Rcpp(v.1.0.0), backports(v.1.1.2), lme4(v.1.1-18-1), digest(v.0.6.17), stringi(v.1.2.4), 

ggrepel(v.0.8.0), grid(v.3.5.1), rprojroot(v.1.3-2), tools(v.3.5.1), lazyeval(v.0.2.1), 

tibble(v.1.4.2), crayon(v.1.3.4), pkgconfig(v.2.0.2), MASS(v.7.3-51.1), Matrix(v.1.2-

14), assertthat(v.0.2.0), minqa(v.1.2.4), rmarkdown(v.1.10), rstudioapi(v.0.7), 

rpart(v.4.1-13), mitml(v.0.3-6), R6(v.2.2.2), nnet(v.7.3-12), nlme(v.3.1-137) and 

compiler(v.3.5.1) 

Appendix 2: Survey table 

Question Type Response range Responses 

Region Factor 4,5,6,7,8,13 4. Coquimbo, 5. 

Valparaíso, 6. 

O´Higgins, 7. Maule, 

8. Biobio, 13. 

Metropolitana 

Farm size category Ordinal 1,2,3,4 1 - Less than 5, 2 - 

Between 5 and 12, 3 - 

Between 12 and 50, 4 - 

More than 50 

Date Date Date NA 

Locality Factor Name NA 
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Total farm size Numeric Ha NA 

Area of walnut 

production 

Numeric Ha NA 

Area of management 

unit 

Numeric Ha NA 

Year of planting Integer # NA 

Land use before 

planting to walnuts 

Factor 1,2,3,4,5,6,7,8 1 Grassland, 2 Forest, 

3 Cereals, 4 Deciduous 

trees, 5 Non-deciduous 

trees, 6 Avocado, 7 

Horticultural crops, 8 

Other 

Distance between trees 

within rows 

Numeric m NA 

Distance between trees 

between rows 

Numeric m NA 

Yield in 2016 harvest Numeric kg NA 

Rootstock Factor 1,2,3,4,5 1 Franco, 2 Juglans 

nigra, 3 Paradox, 4 

Vlach, 5 Other 
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Scion variety Factor 1,2,3 1 Serr, 2 Chandler, 3 

Other 

Dose of nitrogen 

applied 

Numeric units N / Ha NA 

Sources of nitrogen, 

rates applied, dates 

applied 

Open 

ended 

Open ended NA 

Source of water Factor 1,2,3 1 Surface, 2 

Subterranean, 3 Both 

Name of canal (if 

surface) 

Character Name NA 

Depth of well (if 

aquifer) 

Numeric # NA 

Use of instruments to 

monitor irrigation? 

Binary Yes / no NA 

Instruments Factor 1,2,3,4,5,6 1 Calicata, 2 Flow 

meter, 3 Moisture 

sensor, 4 Bomb 

presiometer, 5 

Meteorological station, 

6 Other 
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If another instrument, 

which? 

Character Name NA 

Do you use them to 

decide when to irrigate 

Binary Yes / no NA 

Have your instruments 

been calibrated? 

Binary Yes / no NA 

Do you use a system to 

provide 

evapotranspiration 

rates? 

Binary Yes / no NA 

How do you make the 

decision of when and 

how much to irrigate? 

Open 

ended 

Open ended NA 

System of irrigation 

used 

Factor 1,2,3,4,5,6 1 Flood, 2 Furrow, 3 

Sprinkler, 4 Drip, 5 

Microsprinklers, 6 

Californian 

If it’s drip, indicate 

number of lines 

Numeric # NA 
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Do you measure the 

conductivity of your 

water? 

Binary Yes / no NA 

If yes, what is the EC of 

your water 

Numeric # NA 

If no, is your water 

saline? 

Factor Yes / No / Don’t 

know 

NA 

If you don’t know, an 

estimated range 

Factor 1,2,3 1 Very saline, 2 

Somewhat saline, 3 

Not saline 

Do you cultivate plants 

between hills? 

Binary Yes / no NA 

Which? Character Open ended NA 

Do you know when the 

flush of root growth is 

on your farm? 

Binary Yes / no NA 

When (period in year) Date Time of year NA 

How many days did 

you irrigate in 

September? 

Integer # NA 
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Volume irrigated Numeric # NA 

How many days did 

you irrigate in October? 

Integer # NA 

Volume irrigated Numeric # NA 

How many days did 

you irrigate in 

November? 

Integer # NA 

Volume irrigated Numeric # NA 

How many days did 

you irrigate in the 

summer? 

Integer # NA 

Volume irrigated Numeric # NA 

How many days did 

you irrigate in the fall? 

Integer # NA 

Volume irrigated Numeric # NA 

How many passes with 

heavy equipment per 

season? 

Integer # NA 

Do you subsoil till 

before planting? 

Factor Yes / No / Don’t 

know 

NA 
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If yes, with what do you 

till? 

Factor 1,2,3,4 1 Backhoe, 2 Ripper, 3 

Bulldozer, 4 Other 

Depth of subsoil tillage Numeric cm NA 

Do you use hills? Binary Yes / no NA 

Height of hills Numeric cm NA 

Chemical analysis of 

soil 

Binary Yes / no NA 

Physical analysis of soil Binary Yes / no NA 

What texture does your 

soil have? 

Factor 1,2,3,4,5 1 Sandy, 2 Sandy 

loam, 3 Loam, 4 Clay 

loam, 5 Clay 

Do you know what the 

organic matter % is in 

your soil? 

Binary Yes / no NA 

If yes, how much? Numeric # NA 

Do you add organic 

amendments to your 

soil? 

Binary Yes / no NA 

How many times a 

year? 

Integer Open ended NA 
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Type of organic 

amendment 

Factor 1,2,3,4,5,6 1. Humus, 2.. 

Compost, 3 Bird 

manure, 4 Livestock 

manure, 5 Small 

livestock manure, 6 

Residues 

Do you know the pH of 

your soil? 

Binary Yes / no NA 

What range do you 

have? 

Factor 1,2,3,4,5 1 Very acid 4.5 - 5.5, 2 

Acid 5.5 - 6.5, 3 

Neutral 6.5 - 7.5, 4 

Basic 7.5 - 8.5, 5 

Alkaline 8.5 - 10 

Do you know what the 

drainage is like on your 

farm? 

Binary Yes / no NA 

How is it? Factor 1,2,3 1. Good, 2 Normal, 3 

Poor 

Do you have plants 

damaged by 

Phytophthora species? 

Factor Yes / No / Don’t 

know 

NA 
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Have you perceive the 

problems of 

Phytophthora on your 

farm? 

Factor 1,2,3,4 1 Low, 2 Moderate, 3 

High, 4 Severe 

What kinds of treatment 

do you use for 

Phytophthora control? 

Factor 1,2,3 1 Cultural, 2 Chemical, 

3 Both 

If it’s chemical, what 

product do you use? 

Character Open ended NA 

If it’s cultural, what 

method do you use? 

Open 

ended 

Open ended NA 

Have you had to replant 

trees after disease-

related death in recent 

years? 

Binary Yes / no NA 

If yes, how many 

hectares were affected? 

Numeric # NA 

If yes, after taking out 

trees do you apply some 

kind of treatment? 

Binary Yes / no NA 

Which Character Open ended NA 



 135 

If you apply a 

treatment, does the 

problem reappear? 

Binary Yes / no NA 

If yes, after how many 

years? 

Numeric # NA 

Are the solutions that 

exist today (chemical 

products, rootstock, 

irrigation monitoring) 

are effective for 

controlling 

Phytophthora? 

Ordinal 1,2,3,4 1 Not effective, 2 

Somewhat effective, 3 

Moderately effective, 4 

Very effective 

Are you prepared to 

implement these 

solutions? 

Ordinal 1,2,3,4 1 Not prepared, 2 

Somewhat prepared, 3 

Moderately prepared, 4 

Very prepared 

If you have a question 

about pathogen control, 

who do you consult? 

Factor 1,2,3,4,5,6,7 1 Input vendor, 2 

Agent of government 

institution, 3 NGO, 4 

University or 

researcher, 5 Family or 
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neighbors, 6 Purchaser, 

7 Independent 

consultants 

Other than the persons 

mentioned, are there 

any other sources of 

information? 

Factor 1,2,3,4,5,6,7 1 Input vendor, 2 

Agent of government 

institution, 3 NGO, 4 

University or 

researcher, 5 Family or 

neighbors, 6 Purchaser, 

7 Independent 

consultants 

Who do you consider 

the most reliable 

sources of information? 

Factor 1,2,3,4,5,6,7 1 Input vendor, 2 

Agent of government 

institution, 3 NGO, 4 

University or 

researcher, 5 Family or 

neighbors, 6 Purchaser, 

7 Independent 

consultants 

Do you participate in 

any program that 

Factor 1,2,3,4,5,6,7,8,9,10 1 SAT, 2 PRODESAL, 

3 ChileNut, 4 Chilean 
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provides information or 

solutions for producers? 

Walnut Commission, 5 

INIA group of 

technology transfer, 6 

INDAP, 7 Corfo 

program 

Do you use any other 

source of information 

for managing your 

walnuts? 

Factor 1,2,3,4,5,6,7,8,9,10 1 Books, 2 Journals, 3 

Internet, 4 Television 

programs, 5 National 

agronomy magazine, 6 

Radio, 7 Smartphone 

How often do you use 

books? 

Factor 1,2,3,4 1 Never, 2 Less than 

one time a month, 3 

One to two times a 

month, 4 More than 

once a week 

Books most used Open 

ended 

Open ended NA 

How often do you use 

journals? 

Factor 1,2,3,4 1 Never, 2 Less than 

one time a month, 3 

One to two times a 
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month, 4 More than 

once a week 

Journals most used Open 

ended 

Open ended NA 

How often do you use 

the internet? 

Factor 1,2,3,4 1 Never, 2 Less than 

one time a month, 3 

One to two times a 

month, 4 More than 

once a week 

Sites most visited Open 

ended 

Open ended NA 

How often do you use 

television programs? 

Factor 1,2,3,4 1 Never, 2 Less than 

one time a month, 3 

One to two times a 

month, 4 More than 

once a week 

Programs watched most 

often 

Open 

ended 

Open ended NA 

Radio Factor 1,2,3,4 1 Never, 2 Less than 

one time a month, 3 

One to two times a 
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month, 4 More than 

once a week 

Radio shows most used Open 

ended 

Open ended NA 

Smartphone 

applications 

Factor 1,2,3,4 1 Never, 2 Less than 

one time a month, 3 

One to two times a 

month, 4 More than 

once a week 

Application most used Open 

ended 

Open ended NA 

Appendix 3: Survey numbers 

  1 2 3 4 

4 9 4 2 1 

5 7 2 3 5 

6 0 1 5 11 

7 1 0 8 8 

8 4 4 7 5 

13 1 0 4 4 
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Appendix 4: Silhouette of clusters 
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