
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Coarse-to-Fine Natural Language Processing

Permalink
https://escholarship.org/uc/item/8kp924f2

Author
Petrov, Slav Orlinov

Publication Date
2009

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8kp924f2
https://escholarship.org
http://www.cdlib.org/

Coarse-to-Fine Natural Language Processing

by

Slav Orlinov Petrov

Diplom (Freie Universität Berlin) 2004

A dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:

Professor Dan Klein, Chair
Professor Michael I. Jordan

Professor Thomas L. Griffiths

Fall 2009

Coarse-to-Fine Natural Language Processing

Copyright c© 2009

by

Slav Orlinov Petrov

Abstract

Coarse-to-Fine Natural Language Processing

by

Slav Orlinov Petrov

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Dan Klein, Chair

State-of-the-art natural language processing models are anything but compact. Syntactic

parsers have huge grammars, machine translation systems have huge transfer tables, and

so on across a range of tasks. With such complexity come two challenges. First, how can

we learn highly complex models? Second, how can we efficiently infer optimal structures

within them?

Hierarchical coarse-to-fine methods address both questions. Coarse-to-fine approaches

exploit a sequence of models which introduce complexity gradually. At the top of the

sequence is a trivial model in which learning and inference are both cheap. Each subsequent

model refines the previous one, until a final, full-complexity model is reached. Because each

refinement introduces only limited complexity, both learning and inference can be done in

an incremental fashion. In this dissertation, we describe several coarse-to-fine systems.

In the domain of syntactic parsing, complexity is in the grammar. We present a la-

tent variable approach which begins with an X-bar grammar and learns to iteratively refine

grammar categories. For example, noun phrases might be split into subcategories for sub-

jects and objects, singular and plural, and so on. This splitting process admits an efficient

incremental inference scheme which reduces parsing times by orders of magnitude. Fur-

1

thermore, it produces the best parsing accuracies across an array of languages, in a fully

language-general fashion.

In the domain of acoustic modeling for speech recognition, complexity is needed to model

the rich phonetic properties of natural languages. Starting from a mono-phone model, we

learn increasingly refined models that capture phone internal structures, as well as context-

dependent variations in an automatic way. Our approaches reduces error rates compared

to other baseline approaches, while streamlining the learning procedure.

In the domain of machine translation, complexity arises because there and too many

target language word types. To manage this complexity, we translate into target language

clusterings of increasing vocabulary size. This approach gives dramatic speed-ups while

additionally increasing final translation quality.

Professor Dan Klein
Dissertation Committee Chair

2

To my family

i

Contents

Contents ii

List of Figures v

List of Tables vii

Acknowledgements viii

1 Introduction 1

1.1 Coarse-to-Fine Models . 2

1.2 Coarse-to-Fine Inference . 5

2 Latent Variable Grammars for Natural Language Parsing 9

2.1 Introduction . 9

2.1.1 Experimental Setup . 12

2.2 Manual Grammar Refinement . 13

2.2.1 Vertical and Horizontal Markovization 14

2.2.2 Additional Linguistic Refinements 15

2.3 Generative Latent Variable Grammars . 16

2.3.1 Hierarchical Estimation . 19

2.3.2 Adaptive Refinement . 20

2.3.3 Smoothing . 23

2.3.4 An Infinite Alternative . 25

2.4 Inference . 26

2.4.1 Hierarchical Coarse-to-Fine Pruning 27

2.4.2 Objective Functions for Parsing . 34

ii

2.5 Additional Experiments . 38

2.5.1 Baseline Grammar Variation . 39

2.5.2 Final Results WSJ . 40

2.5.3 Multilingual Parsing . 40

2.5.4 Corpus Variation . 42

2.5.5 Training Size Variation . 42

2.6 Analysis . 43

2.6.1 Lexical Subcategories . 44

2.6.2 Phrasal Subcategories . 49

2.6.3 Multilingual Analysis . 50

2.7 Summary and Future Work . 51

3 Discriminative Latent Variable Grammars 58

3.1 Introduction . 58

3.2 Log-Linear Latent Variable Grammars . 59

3.3 Single-Scale Discriminative Grammars . 61

3.3.1 Efficient Discriminative Estimation 61

3.3.2 Experiments . 63

3.4 Multi-Scale Discriminative Grammars . 67

3.4.1 Hierarchical Refinement . 68

3.4.2 Learning Sparse Multi-Scale Grammars 71

3.4.3 Additional Features . 74

3.4.4 Experiments . 76

3.4.5 Analysis . 79

3.5 Summary and Future Work . 81

4 Structured Acoustic Models for Speech Recognition 83

4.1 Introduction . 83

4.2 Learning . 86

4.2.1 The Hand-Aligned Case . 87

4.2.2 Splitting . 88

4.2.3 Merging . 89

4.2.4 Smoothing . 90

4.2.5 The Automatically-Aligned Case . 91

iii

4.3 Inference . 91

4.4 Experiments . 92

4.4.1 Phone Recognition . 93

4.4.2 Phone Classification . 95

4.5 Analysis . 96

4.6 Summary and Future Work . 99

5 Coarse-to-Fine Machine Translation Decoding 101

5.1 Introduction . 101

5.2 Coarse-to-Fine Decoding . 103

5.2.1 Related Work . 104

5.2.2 Language Model Projections . 105

5.2.3 Multipass Decoding . 106

5.3 Inversion Transduction Grammars . 108

5.4 Learning Coarse Languages . 109

5.4.1 Random projections . 110

5.4.2 Frequency clustering . 111

5.4.3 HMM clustering . 111

5.4.4 JCluster . 111

5.4.5 Clustering Results . 112

5.5 Experiments . 112

5.5.1 Clustering . 114

5.5.2 Spacing . 115

5.5.3 Encoding vs. Order . 115

5.5.4 Final Results . 116

5.5.5 Search Error Analysis . 116

5.6 Summary and Future Work . 117

6 Conclusions and Future Work 119

Bibliography 122

iv

List of Figures

1.1 Syntactic parse trees and non-indepedence 3

1.2 Incrementally learned pronoun subcategories 5

1.3 Coarse-to-fine inference charts . 6

1.4 Syntactic parse trees corresponding to different semantic interpretations . . 7

2.1 Parse tree refinement . 17

2.2 Evolution of the determiner tag during hierarchical refinement 20

2.3 Grammar refinement leads to higher parsing accuracies 24

2.4 Refinement vs. projection . 28

2.5 Bracket posterior probabilities . 32

2.6 Baseline grammar vs. final accuracy . 39

2.7 Out-of-domain parsing accracies . 43

2.8 Trainingsize vs. Accuracy . 44

2.9 Number of latent lexical subcategories . 47

2.10 Number of latent phrasal subcategories . 49

3.1 Average number of constructed constituents per sentence 64

3.2 Multi-scale grammar refinements . 68

3.3 Multi-scale grammar derivations . 71

3.4 Multi-scale dynamic programming chart . 72

3.5 Discriminative vs. generative parsing accuracies 77

4.1 Latent variable acoustic model . 85

4.2 Evolution of the /ih/ phone during hierarchical refinement 86

4.3 Phone recognition error for models of increasing size 93

4.4 Phone confusion matrix . 97

v

4.5 Phone contexts and subphone structure of the /l/ phone 98

5.1 Hierarchical clustering of target language vocabulary 104

5.2 Inversion transduction grammar dynamic state projections 105

5.3 Coarse-to-fine pruning using language encoding 106

5.4 Hypothesis combination in inversion transduction models 110

5.5 Coarse language model perplexities . 112

5.6 Coarse language model pruning effectiveness 113

5.7 Optimal number of coarse passes . 114

5.8 Combining order- and encoding-based passes 115

5.9 Final coarse-to-fine machine translation results 118

vi

List of Tables

2.1 Horizontal and vertical markovization . 14

2.2 Grammar sizes, parsing times and accuracies 33

2.3 Different objective functions for parsing with posteriors 35

2.4 Parse sampling results . 37

2.5 Treebanks and standard setups used in our experiments 39

2.6 Final parsing accuracies . 41

2.7 English word class examples . 45

2.8 The most frequent productions of some latent phrasal subcategories 48

2.9 Bulgarian word class examples . 52

2.10 Chinese word class examples . 53

2.11 French word class examples . 54

2.12 German word class examples . 55

2.13 Italian word class examples . 56

3.1 Parsing times for different pruning regimes and grammar sizes 65

3.2 Discriminative vs. generative parsing accuracies 66

3.3 L1 vs. L2 regularization . 67

3.4 Final parsing accuracies . 78

3.5 Generative vs. discriminative phrasal refinemtents 80

3.6 Automatically learned unknown word suffixes 81

4.1 Phone recognition error rates on the TIMIT core test 94

4.2 Phone classification error rates on the TIMIT core test 96

4.3 Number of substates allocated per phone . 99

5.1 Test score analysis . 117

vii

Acknowledgements

This thesis would not have been possible without the support of many wonderful people.

First and foremost, I would like to thank my advisor Dan Klein for his guidance through-

out graduate school and for being a never ending source of support and energy. Dan’s sense

of aesthetics and elegant solutions has shaped the way I see research and will hopefully stay

ingrained in me throughout my career. Dan is unique in too many ways to list here, and

I will always be indebted to him. I will never forget his help in making sense of (bogus)

experimental results over instant messenger at 2 a.m., our all nighters before conference

deadlines, our talk rehearsals before presentations, but also our long (and sometimes very

unfocused) conversations in the office on all kinds of topics. In short, Dan was the best

advisor I could have ever asked for.

I would also like to thank Eugene Charniak, Mary Harper and Fernando Pereira for their

feedback, support, and advice on this and related work, and of course for their reference

letters. I enjoyed our numerous conversations so far, and look forward to many more in the

future. Thanks also to Michael Jordan and Tom Griffiths for some good conversations and

for serving on my committee and providing me with feedback along the way.

When I was trying to decide which graduate school to attend, I received a great piece

of advice from Christos Papadimitriou. He told us to pick the school where we like the

students best, because we will collaborate and learn more from them, rather than from any

professor. I now understand what he meant and fully share his opinion. Graduate school

would not have been the same without the Berkeley Natural Language Processing (NLP)

group. Initially there were four members: Aria Haghighi, John DeNero, Percy Liang and

Alexandre Bouchard-Cote. After a very fun NLP conference that I attended as a computer

vision student, and partially because of the big new monitors in the NLP office, I started

drifting towards the “dark side”. When I came closer, I realized that NLP is actually quite

bright and a lot of fun, and eventually decided to switch fields - a decision I never regretted.

Adam Pauls, David Burkett, John Blitzer and Mohit Bansal must have seen it similarly,

as they joined the group in the following years. Thank you all for a great time, be it at

viii

conferences or during our not so productive NLP lunches. I always enjoyed coming to the

office and chatting with all of you though I usually stayed home when I actually wanted

to get work done. My plan was to work on a project and write a publication with each

one of you, and we almost succeeded. I hope that we will stay in touch and continue our

collaborations no matter scattered around the world we are once we graduate.

The core of this thesis sprung out of a class project with Leon Barrett and Romain

Thibaux, which I presented at the aforementioned conference. I would like to thank both

for helping lay down the foundation of this thesis. Little did I know when I signed up for

a class on “Transfer Learning” that I would end up literally transferring from Computer

Vision to Natural Language Processing. Many thanks to Jitendra Malik who was my advisor

during that time and not only gave me the freedom to explore other research fields but

actively encouraged me to do so. While we only worked together on one project, wisdoms

like “Probabilistic models are often in error, but never in doubt,” will always stay with me.

Thanks to Arlo Faria and Alex Berg the video retrieval model that we worked on at that

time was more often right than in error.

I spent two great summers as an intern. Many thanks to Mark Johnson, Chris Quirk

and Bob Moore with whom I worked on topic modeling for machine translation during

my time at Microsoft. Ryan McDonald and Gideon Mann made me feel so much at home

during my internship at Google that I will be joining them full-time after filing this thesis.

Many thanks also to the machine translation gurus at ISI. I learned a lot about machine

translation from my conversations with David Chiang, Kevin Knight and Daniel Marcu.

Somehow we still haven’t managed to work on a project together despite numerous visits

and plans to collaborate, but I hope we will do so one day. I would also like to thank Hal

Daume, Jason Eisner, Dan Jurafsky, Chris Manning, David McAllester, Ben Taskar and

many others for great conversations at conferences and for their advices and feedback on

this and related work.

Finally, I would like to thank Carlo Tomasi because I wouldn’t have written this thesis

without him. Having now served on the admissions committee a few times, I am fairly cer-

ix

tain that I would not have been offered admission to Berkeley without his recommendation

letter. Carlo gave me the opportunity to work with him on a research project while I was

an exchange student at Duke University and introduced me to conducting research for the

first time. Not only did I learn a tremendous amount from him during that project, but it

is also in part because of our work that I decided to pursue a PhD degree in the US.

And of course, thank you, dear reader, for reading my dissertation. I feel honored and

I hope you will find something useful in it. Besides my academic friends and colleagues, I

would also like to thank my friends and family for helping me stay sane (at least to some

extent) and providing balance in my life.

A big thank you is due to the two “fellas”, Juan Sebastian Lleras and Pascal Michaillat.

Living with them was a blast, especially after we survived the “cold war.” Graduate school

would not have been the same without the two of them. Thank you JuanSe for being

my best friend in Berkeley. I am grateful for the numerous trips that we did together

(especially Colombia, Hawaii and Brazil), the uncountable soccer games that we played or

watched together, and especially the many great conversations we had during those years.

Thank you Pascal for literally being there with me from day one, when we met during the

orientation for international students. I am grateful for the numerous ski trips, cooking

sessions, and lots more. Whenever I make gallettes, I will be thinking about you.

Many thanks also to Konstantinos Daskalakis, who I met during the visit day in the

spring before we started at Berkeley, and who I have stayed close to since. We shared some

classes together, travelled twice for spring break together, did an internship at Microsoft,

and even lived together during that time. Thank you Costis for our good friendship and

for your help with my statements throughout the application process.

Sports were a big part of my graduate school life and I would like to thank all the

members of the Convex Optimizers and Invisible Hands. There were too many to list all,

but Brad Howells and Ali Memarsdaeghi deserve special mention. I will not forget our titles

and the many games that we played together.

Daniel Thalhammer, Victor Victorson and Arnaud Grunwald were always there to ex-

x

plore restaurants, bars and clubs in the city and we had a lot of fun together. Thank you

for dragging me out of Berkeley when I was feeling lazy, and for exploring the best places

to eat good food, drink good (red) wine and listen to good electronic music.

Thanks also to my friends in Berlin, who always made me feel at home when I was there

during the summer or over Christmas. We have known each other since high school and I

hope we will always stay in touch.

Many thanks also to Natalie, who has brought a lot of happiness to my life. I feel like

I spent more time in New York than in Berkeley during the last year. I am glad the long

distance is over now and am looking forward to living with you in New York (and many

other places) in the future. With you, I have been able to grow as a person and I am

grateful for having you in my life. Thank you for being there for me.

My brother Anton deserves many thanks for being my best friend. It would be impos-

sible to list all the things that I am grateful for, and I won’t even attempt it. I know we

will stay always close and that we have many good times ahead of us.

Last but not least, I would like to thank my parents Abi and Orlin for their infinite

support and encouragement. I will always be grateful for the opportunities you gave me

and Anton by moving from Bulgaria to Berlin. Thank you for raising us with a never

ending quest for perfection, and teaching us to believe in ourselves and that we can achieve

everything we want. Thank you for your love and thank you for making me who I am.

xi

Chapter 1

Introduction

The impact of computer systems that can understand natural language would be tremen-

dous. To develop this capability we need to be able to automatically and efficiently analyze

large amounts of text. Manually devised rules are not sufficient to provide coverage to

handle the complex structure of natural language, necessitating systems that can auto-

matically learn from examples. To handle the flexibility of natural language, we use a

statistical approach, where probabilities are assigned to the different readings of a word and

the plausibility of grammatical constructions.

Unfortunately, building and working with rich probabilistic models for real-world prob-

lems has proven to be a very challenging task. Automatically learning highly articulated

probabilistic models poses many estimation challenges. And even if we succeed in learn-

ing a good model, inference can be prohibitively slow. Coarse-to-fine reasoning is an idea

which has enabled great advances in scale, across a wide range of problems in artificial

intelligence. The general idea is simple: when a model is too complex to work with, we

construct simpler approximations thereof and use those to guide the learning or inference

procedures. In computer vision various coarse-to-fine approaches have been proposed, for

example for face detection (Fleuret et al., 2001) or general object recognition (Fleuret et al.,

2001). Similarly, when building a system that can detect humans in images, one might first

search for faces and then for the rest of the torso (Lu et al., 2006). Activity recognition in

1

video sequences can also be broken up into smaller parts at different scales (Cuntoor and

Chellappa, 2007), and similar ideas have also been applied speech recognition (Tang et al.,

2006). Despite the intuitive appeal of such methods, it was not obvious how they might be

applied to natural language processing (NLP) tasks. In NLP, the search spaces are often

highly structured and dynamic programming is used to compute probability distributions

over the output space.

We propose a principled framework in which learning and inference can be seen as

two sides of the same coarse-to-fine coin. On both sides we have a hierarchy of models,

ranging from an extremely simple initial model to a fully refined final model. During

learning, we start with a minimal model and use latent variables to induce increasingly more

refined models, introducing complexity gradually. Because each learning step introduces

only a limited amount of new complexity, estimation is more manageable and requires less

supervision. Our coarse-to-fine strategy leads to better parameter estimates, improving the

state-of-the-art for different domains and metrics.

However, because natural language is complex, our final models will necessarily be

complex as well. To make inference efficient, we also follow a coarse-to-fine regime. We start

with simple, coarse, models that are used to resolve easy ambiguities first, while preserving

the uncertainty over more difficult constructions. The more complex, fine-grained, models

are then used only in those places where their rich expressive power is required. The

intermediate models of the coarse-to-fine hierarchy are obtained by means of clustering

and projection, and allow us to apply models with the appropriate level of granularity

where needed. Our empirical results show that coarse-to-fine inference outperforms other

approximate inference techniques on a range of tasks, because it prunes only low probability

regions of the search space and therefore makes very few search errors.

1.1 Coarse-to-Fine Models

Consider the task of syntactic parsing as a more concrete example. In syntactic parsing

we want to learn a grammar from example parse trees like the one shown in Figure 1.1(a),

2

S

NP

PRP

She

VP

VBD

read

NP

DT

the

NN

book

.

.

(a)

DT NN PRP

9%
6%

All NPs

9%

21%

7%
4%

Subject NPs Object NPs

DT NN PRP DT NN PRP

(b)

Figure 1.1. (a) Syntactic parse trees model grammatical relationships. (b) Distribution
of the internal structure of noun phrase (NP) constructions. Subject NPs use pronouns
(PRPs) more frequently, suggesting that the independence assumptions in a naive context-
free grammar are too strong.

and then to use the grammar to predict the syntactic structure of previously unseen sen-

tences. This analysis is an extremely complex inferential process, which, like recognizing a

face or walking, is effortless to humans. When we hear an utterance, we will be aware of

only one, or at most a few sensible interpretations. However, for a computer there will be

many possible analyses. In the figure, “book” might be interpreted as a verb rather than

a noun, and “read” could be a verb in different tenses, but also a noun. This pervasive

ambiguity leads to combinatorially many analyses, most of which will be extremely unlikely.

In order to automatically learn rich linguistic structures with little or no human super-

vision we first introduce hierarchical latent variable grammars (Chapter 2). Starting from

an extremely simple initial grammar, we use a latent variable approach to automatically

learn a broad coverage grammar. In our coarsest model, we might model words in isolation,

and learn the “book” is either a noun or a verb. In our next more refined model, we may

learn that the probability of “book” being a verb is moderately high in general, but very

small when it is preceded by “the.” Similarly, we would like to learn that the two noun

phrases (NP) in Figure 1.1(a) are not interchangeable, as it is not possible to substitute

the subject NP (“She”) for the object NP (“the book”). We encode these phenomena in a

grammar, which models a distribution over all possible interpretations of a sentence, and

then search for the most probable interpretation.

Syntactic analysis can be used in many ways to enable NLP applications like machine

3

translation, question answering, and information extraction. For example, when translating

from one language to another, it is important to take the word order and the grammatical

relations between the words into account. However, the high level of ambiguity present in

natural language makes learning appropriate grammars difficult, even in the presence of

hand labeled training data. This is in part because the provided syntactic annotation is not

sufficient for modeling the true underlying processes. For example, the annotation standard

uses a single noun phrase (NP) category, but the characteristics of NPs depend highly on the

context. Figure 1.1(b) shows that NPs in subject position have a much higher probability of

being a single pronoun than NPs in object position. Similarly, there is a single pronoun label

(PRP), but only nominative case pronouns can be used in subject position, and accusative

case pronouns in object position. Classical approaches have attempted to encode these

linguistic phenomena by creating semantic subcategories in various ways. Unfortunately,

building a highly articulated model by hand is error prone and labor intensive; it is often

not even clear what the exact set of refinements ought to be.

In contrast, our latent variable approach to grammar learning is much simpler and

fully automated. We model the annotated corpus as a coarse trace of the true underlying

processes. Rather than devising linguistically motivated features or splits, we use latent

variables to refine each label into unconstrained subcategories. Learning proceeds in an

incremental way, resulting in a hierarchy of increasingly refined grammars. We are able

to automatically learn not only the subject/object distinction shown in Figure 1.1(b), but

also many other linguistic effects. Figure 1.2 shows how our algorithm automatically dis-

covers different pronoun subcategories for nominative and accusative case first, and then

for sentence initial and sentence medial placement. The final grammars exhibit most of the

linguistically motivated annotations of previous work, but also many additional refinements,

providing a tighter statistical fit to the observed corpus. Because the model is learned di-

rectly from data and without human intervention, it is applicable to any language, and, in

fact, improves the state-of-the-art in accuracy on all languages with appropriate data sets,

as we will see in Chapter 2 and Chapter 3. In addition to English, these include related

4

PRP

it

he

I

PRP0

it

him

them

PRP0

it

him

them

PRP1

It

he

I

PRP1

It

He

I

PRP2

it

he

they

Figure 1.2. Incrementally learned pronoun (PRP) subcategories for grammatical cases and
placement. Categories are represented by the three most likely words.

languages like German and French, but also syntactically divergent languages like Chinese

and Arabic.

Latent variable approaches are not limited to grammar learning. In acoustic modeling

for speech recognition, one needs to learn how the acoustic characteristics of phones change

depending on context. Traditionally, a decision-tree approach is used, where a series of

linguistic criteria are compared. We will show in Chapter 4 that a latent variable approach

can yield better performance while requiring no supervision. In general, our techniques

will be most applicable to domains that require the estimation of more highly articulated

models than human annotation can provide.

1.2 Coarse-to-Fine Inference

When working with rich structured probabilistic models, it is standard to prune the

search space for efficiency reasons - most commonly using a beam pruning technique. In

beam pruning, only the most likely hypotheses for each sub-unit of the input are kept,

for example the most likely few translations for each span of foreign words in machine

translation (Koehn, 2004), or the most likely constituents for a given span of input words

in syntactic parsing (Collins, 1999). Beam search is of course also widely used in other

fields, such as speech recognition (Van Hamme and Van Aelten, 1996), computer vision

5

In
fl
u
e
n
ti
a
l

m
e
m
b
e
rs o
f

th
e

H
o
u
s
e

W
a
y
s

a
n
d

M
e
a
n
s

C
o
m
m
it
te
e

in
tr
o
d
u
c
e
d

le
g
is
la
ti
o
n

th
a
t

w
o
u
ld

re
s
tr
ic
t

h
o
w

th
e

n
e
w

s
&
l

b
a
ilo
u
t

a
g
e
n
c
y

c
a
n

ra
is
e

c
a
p
it
a
l ;

c
re
a
ti
n
g

a
n
o
th
e
r

p
o
te
n
ti
a
l

o
b
s
ta
c
le to
th
e

g
o
v
e
rn
m
e
n
t ‘s

s
a
le o
f

s
ic
k

th
ri
ft
s .

Figure 1.3. Charts are used to depict the dynamic programming states in parsing. In coarse-
to-fine parsing, the sentence is repeatedly re-parsed with increasingly refined grammars,
pruning away low probability constituents. Finer grammars need to only consider only a
fraction of the enlarged search space (the non-white chart items).

(Bremond and Thonnat, 1988) and planning (Ow and Morton, 1988). While beam pruning

works fairly well in practice, it has the major drawback that the same level of ambiguity

is preserved for all sub-units of the input, regardless of the actual ambiguity of the input.

In other words, the amount of complexity is distributed uniformly over the entire search

space.

Posterior pruning methods, in contrast, use a simpler model to approximate the poste-

rior probability distribution and allocate the complexity where it is most needed: little or

no ambiguity is preserved over easy sub-units of the input, while more ambiguity is allowed

over the more challenging parts of the input. Figure 1.3 illustrates this process. While the

search space grows after every pass, the number of reachable dynamic programing states

(black in the figure) decreases, making inference more efficient. The final model then needs

to consider only a small fraction of the possible search space. Search with posterior pruning

can therefore be seen as search with (a potentially inadmissible) heuristic. While A* search

with an admissible heuristic could be used to regain the exactness guarantees, Pauls and

Klein (2009) show that in practice coarse-to-fine inference with posterior pruning is superior

to search techniques with guaranteed optimality like A*, at least for the tasks considered

in this thesis.

6

S

NP

PRP

They

VP

VBD

solved

NP

the problem

PP

with statistics

.

.

(a)

S

NP

PRP

They

VP

VBD

solved

NP

NP

the problem

PP

with statistics

.

.S

NP

PRP

They

VP

VBD

solved

NP

the problem

PP

with statistics

.

.

(a)

S

NP

PRP

They

VP

VBD

solved

NP

NP

the problem

PP

with statistics

.

.

(b)

Figure 1.4. There can be many syntactic parse trees for the same sentence. Here we are
showing two that are both plausible because they correspond to different semantic meanings.
In (a) statistics are used to solve a problem, while in (b) there is a problem with statistics
that is being solved in an unspecified way. Usually there will be exactly one correct syntactic
parse tree.

in practice coarse-to-fine inference with posterior pruning is superior to search techniques

with guaranteed optimality like A*, at least for tasks like syntactic parsing.

We Chapter 2 we will propose a multipass coarse-to-fine approach to syntactic parsing

where the sentence is rapidly re-parsed with with increasingly refined grammars.

In syntactic parsing, the complexity stems primarily from the size of the grammar, and

inference becomes too slow for practical applications even for modest size grammars. Cen-

tral to coarse-to-fine parsing is a hierarchy of coarse grammars for the pruning passes. While

it is possible to use the hierarchy of grammars that was estimated during learning, we will

show that significantly larger efficiency gains can be obtained by computing grammars ex-

plicitly for pruning. To this end we propose a hierarchical projection scheme which clusters

grammar categories and dynamic programming states to produce coarse approximations of

the grammar of interest.

With coarse-to-fine inference, our parser can process a sentence in less than 200ms

(compared to 60sec per sentence for exact search), without a drop in accuracy. This speed-

up makes the deployment of a parser in larger natural language processing systems possible.

In machine translation, the space of possible translations is very large because natural

languages have many words. However, because words are atomic units, there is not an

obvious way for resolving this problem. We use a hierarchical clustering scheme to induce

7

(b)

Figure 1.4. There can be many syntactic parse trees for the same sentence. Here we are
showing two that are both plausible because they correspond to different semantic meanings.
In (a) statistics are used to solve a problem, while in (b) there is a problem with statistics
that is being solved in an unspecified way. Usually there will be exactly one correct syntactic
parse tree.

We develop a multipass coarse-to-fine approach to syntactic parsing in Chapter 2, where

the sentence is rapidly re-parsed with with increasingly refined grammars. In syntactic

parsing, the complexity stems primarily from the size of the grammar, and inference becomes

too slow for practical applications even for modest size grammars.

Consider the example sentence in Figure 1.4, and its two possible syntactic analyses.

The two parse trees are very similar and differ only in their treatment of the prepositional

phrase (PP) “with statistics”. In Figure 1.4(a) the PP modifies the verb and corresponds to

the reading that statistics are used to solve a problem, while in Figure 1.4(b) the attachment

is to the noun phrase, suggesting that there is a problem with statistics that is being solved

in an unspecified way.1 Except for this (important) difference, the two parse trees are the

same and should be easy to construct because there is little ambiguity in the constructions

that are used. Rather than using our most refined grammar to construct the unambiguous

parts of the analysis, we therefore propose to use coarser models first, and build up our

analysis incrementally.

Central to coarse-to-fine inference will be a hierarchy of coarse models for the pruning

passes. Each model will resolve some ambiguities while preserving others. In terms of

Figure 1.4, the goal would be to preserve the PP-attachment ambiguity as long as possible,
1Note that most sentences have one and only one correct syntactic analysis, the same way they have also

only one semantic meaning.

7

so that the final and best grammar can be used to judge the likelihood of both constructions.

While it would be possible to use a hierarchy of grammars that was estimated during coarse-

to-fine learning, we will show that significantly larger efficiency gains can be obtained by

computing grammars explicitly for pruning. To this end, we will propose a hierarchical

projection scheme which clusters grammar categories and dynamic programming states to

produce coarse approximations of the grammar of interest. With coarse-to-fine inference,

our parser can process a sentence in less than 200ms (compared to 60sec per sentence for

exact search), without a drop in accuracy. This speed-up makes the deployment of a parser

in larger natural language processing systems possible.

In Chapter 5 we will apply the same set of techniques and intuitions to the task of

machine translation. In machine translation, the space of possible translations is very large

because natural languages have many words. However, because words are atomic units,

there is not an obvious way for resolving this problem. We use a hierarchical clustering

scheme to induce latent structure in the search space and thereby obtain simplified lan-

guages. We then translate into a sequence of simplified versions of the target language,

having only a small number of word tokens and prune away words that are unlikely to

occur in the translation. This results in 50-fold speed-ups at the same level of accuracy,

alleviating one of the major bottlenecks in machine translation. Alternatively, one can

obtain significant improvements in translation quality at the same speed. In general, our

techniques will be most applicable to domains that involve computing posterior probability

distributions over structured domains with complex dynamic programs.

Throughout this thesis, there will be a particular emphasis on designing elegant, stream-

lined models that are easy to understand and analyze, but nonetheless maximize accuracy

and efficiency.

8

Chapter 2

Latent Variable Grammars for

Natural Language Parsing

2.1 Introduction

As described in Chapter 1, parsing is the process of analyzing the syntactic structure

of natural language sentences and will be fundamental for building systems that can un-

derstand natural languages. Probabilistic context-free grammars (PCFGs) underlie most

high-performance parsers in one way or another (Charniak, 2000; Collins, 1999; Charniak

and Johnson, 2005; Huang, 2008). However, as demonstrated in Charniak (1996) and Klein

and Manning (2003a), a PCFG which simply takes the empirical rules and probabilities

off of a treebank does not perform well. This naive grammar is a poor one because its

context-freedom assumptions are too strong in some places (e.g. it assumes that subject

and object NPs share the same distribution) and too weak in others (e.g. it assumes that

long rewrites are not decomposable into smaller steps). Therefore, a variety of techniques

have been developed to both enrich and generalize the naive grammar, ranging from simple

tree annotation and category splitting (Johnson, 1998; Klein and Manning, 2003a) to full

lexicalization and intricate smoothing (Collins, 1999; Charniak, 2000).
0The material in this chapter was originally presented in Petrov et al. (2006) and Petrov and Klein (2007).

9

In this chapter, we investigate the learning of a grammar consistent with a treebank at

the level of evaluation categories (such as NP, VP, etc.) but refined based on the likelihood

of the training trees. Klein and Manning (2003a) addressed this question from a linguistic

perspective, starting with a Markov grammar and manually refining categories in response

to observed linguistic trends in the data. For example, the category NP might be split into

the subcategory NPˆS in subject position and the subcategory NPˆVP in object position.

Matsuzaki et al. (2005) and also Prescher (2005) later exhibited an automatic approach

in which each category is split into a fixed number of subcategories. For example, NP

would be split into NP-1 through NP-8. Their exciting result was that, while grammars

quickly grew too large to be managed, a 16-subcategory induced grammar reached the

parsing performance of Klein and Manning (2003a)’s manual grammar. Other work has

also investigated aspects of automatic grammar refinement; for example, Chiang and Bikel

(2002) learn annotations such as head rules in a constrained declarative language for tree-

adjoining grammars.

We present a method that combines the strengths of both manual and automatic ap-

proaches while addressing some of their common shortcomings. Like Matsuzaki et al. (2005)

and Prescher (2005), we induce refinements in a fully automatic fashion. However, we use a

more sophisticated split-merge approach that allocates subcategories adaptively where they

are most effective, like a linguist would. The grammars recover patterns like those discussed

in Klein and Manning (2003a), heavily articulating complex and frequent categories like NP

and VP while barely splitting rare or simple ones (see Section 2.6 for an empirical analysis).

Empirically, hierarchical splitting increases the accuracy and lowers the variance of

the learned grammars. Another contribution is that, unlike previous work, we investigate

smoothed models, allowing us to refine grammars more heavily before running into the

oversplitting effect discussed in Klein and Manning (2003a), where data fragmentation out-

weighs increased expressivity. Our method is capable of learning grammars of substantially

smaller size and higher accuracy than previous grammar refinement work, starting from a

simpler initial grammar. Because our latent variable approach is fairly language indepen-

dent we are able to learn grammars directly for any language that has a treebank. We

10

exhibit the best parsing numbers that we are aware of on several metrics, for several do-

mains and languages, without any language dependent modifications. The performance can

be further increased by combining our parser with non-local methods such as feature-based

discriminative reranking (Charniak and Johnson, 2005; Huang, 2008).

Unfortunately, grammars that are sufficiently complex to handle the grammatical struc-

ture of natural language are often challenging to work with in practice because of their size.

To address this problem, we introduce an approximate coarse-to-fine inference procedure

that greatly enhances the efficiency of our parser, without loss in accuracy. Our method

considers the refinement history of the final grammar, projecting it onto its increasingly

refined prior stages. For any projection of a grammar, we give a new method for effi-

ciently estimating the projection’s parameters from the source PCFG itself (rather than

a treebank), using techniques for infinite tree distributions (Corazza and Satta, 2006) and

iterated fixpoint equations. We then use a multipass approach where we parse with each

refinement in sequence, much along the lines of Charniak et al. (2006), except with much

more complex and automatically derived intermediate grammars. Thresholds are automat-

ically tuned on held-out data, and the final system parses up to 100 times faster than the

baseline PCFG parser, with no loss in test set accuracy.

We also consider the well-known issue of inference objectives in refined PCFGs. As in

many model families (Steedman, 2000; Vijay-Shankar and Joshi, 1985), refined PCFGs have

a derivation / parse distinction. The refined PCFG directly describes a generative model

over derivations, but evaluation is sensitive only to the coarser treebank categories. While

the most probable parse problem is NP-complete (Sima’an, 2002), several approximate

methods exist, including n-best reranking by parse likelihood, the labeled bracket algorithm

of Goodman (1996), and a variational approximation introduced in Matsuzaki et al. (2005).

We present experiments which explicitly minimize various evaluation risks over a candidate

set using samples from the refined PCFG, and relate those conditions to the existing non-

sampling algorithms. We demonstrate that minimum risk objective functions that can be

computed in closed form are superior for maximizing F1, yielding significantly higher results.

11

2.1.1 Experimental Setup

In this and the following chapter we will consider a supervised training regime, where

we are given a set of sentences annotated with constituent information in form of syntactic

parse trees, and want to learn a model that can produce such parse trees for new, previously

unseen sentences. Such training sets are referred to as treebanks and consist of several 10,000

sentences. They exist for a number languages because of their large utility, and despite being

labor intensive to create due to the necessary expert knowledge. In the following, we will

often refer to the Wall Street Journal (WSJ) portion of the Penn Treebank, however, our

latent variable approach is language independent and we will present an extensive set of

additional experiments on a diverse set of languages ranging from German over Bulgarian

to Chinese in Section 2.5.

As it is standard, we give results in form of labeled recall (LR), labeled precision (LP)

and exact match (EX). Labeled recall is computed as the quotient of the number of correct

nonterminal constituents in the guessed tree and the number of nonterminal constituents

in the correct tree. Labeled precision is the number of correct nonterminal constituents

in the guessed parse tree divided by the total number of nonterminal constituents in the

guessed tree. These two metrics are necessary because the guessed parse tree and the

correct parse tree do not need to have the same number of nonterminal constituents because

of unary rewrites. Often times we will combine those two figures of merit by computing

their harmonic mean (F1). Exact match finally measure the percentage of complete correct

guessed trees.

It should be noted that these figures of merit are computed on the nonterminals ex-

cluding the preterminal (part of speech) level. This is standard practice and serves two

purposes. Firstly, early parsers often required a separate part of speech tagger to process

the input sentence and would focus only on predicting pure constituency structure. Sec-

ondly, including the easy to predict part of speech level would artificially boost the final

parsing accuracies, obfuscating some of the challenges.

Finally a note on the significance of the results that are to follow. Some of the differences

12

in parsing accuracy that will be reported might appear negligible, as one might be tempted

to attribute them to statistical noise. However, because of the large number of test sentences

(and therefore even larger number of evaluation constituents), many authors have shown

with paired t-tests that differences as small as 0.1% are statistically significant. Of course, to

move science forward we will need larger improvements than 0.1%. One of the contributions

of this work will therefore indeed be very significantly improved parsing accuracies for a

number of languages, but what will be even more noteworthy, is that the same simple model

will be able to achieve state-of-the-art performance on all tested languages.

2.2 Manual Grammar Refinement

The traditional starting point for unlexicalized parsing is the raw n-ary treebank gram-

mar read from training trees (after removing functional tags and null elements). In order to

obtain a cubic time parsing algorithm (Lari and Young, 1990), we first binarize the trees as

shown in Figure 2.1. For each local tree rooted at an evaluation category A, we introduce

a cascade of new nodes labeled A so that each has two children. We use a right branching

binarization, as we found the differences between binarization schemes to be small.

This basic grammar is imperfect in two well-known ways. First, many rule types have

been seen only once (and therefore have their probabilities overestimated), and many rules

which occur in test sentences will never have been seen in training (and therefore have their

probabilities underestimated – see Collins (1999) for an analysis).1 One successful method

of combating this type of sparsity is to markovize the right-hand sides of the productions

(Collins, 1999). Rather than remembering the entire horizontal history when binarizing an

n-ary production, horizontal markovization tracks only the previous h ancestors.

The second, and more major, deficiency is that the observed categories are too coarse to

adequately render the expansions independent of the contexts. For example, subject noun

phrase (NP) expansions are very different from object NP expansions: a subject NP is 8.7

times more likely than an object NP to expand as just a pronoun. Having separate symbols
1Note that in parsing with the unsplit grammar, not having seen a rule doesn’t mean one gets a parse

failure, but rather a possibly very weird parse (Charniak, 1996).

13

Horizontal Markov Order
Vertical Order h = 0 h = 1 h = 2 h =∞

v = 1 No annotation
63.6 72.4 73.3 73.4
(98) (575) (2243) (6899)

v = 2 Parents
72.6 79.4 80.6 79.5
(992) (2487) (5611) (11259)

v = 3 Grandparents
75.0 80.8 81.0 79.9

(4001) (7137) (12406) (19139)

Table 2.1. Horizontal and Vertical Markovization: F1 parsing accuracies and grammar
sizes (number of nonterminals).

for subject and object NPs allows this variation to be captured and used to improve parse

scoring. One way of capturing this kind of external context is to use parent annotation, as

presented in Johnson (1998). For example, NPs with S parents (like subjects) will be marked

NPˆS, while NPs with VP parents (like objects) will be NPˆVP. Parent annotation is also

useful for the pre-terminal (part-of-speech) categories, even if most tags have a canonical

category. For example, NNS tags occur under NP nodes (only 234 of 70855 do not, mostly

mistakes). However, when a tag somewhat regularly occurs in a non-canonical position,

its distribution is usually distinct. For example, the most common adverbs directly under

ADVP are also (1599) and now (544). Under VP, they are n’t (3779) and not (922). Under

NP, only (215) and just (132), and so on.

2.2.1 Vertical and Horizontal Markovization

Both parent annotation (adding context) and RHS markovization (removing it) can

be seen as two instances of the same idea. In parsing, every node has a vertical history,

including the node itself, parent, grandparent, and so on. A reasonable assumption is that

only the past v vertical ancestors matter to the current expansion. Similarly, only the

previous h horizontal ancestors matter. It is a historical accident that the default notion

of a treebank PCFG grammar takes v = 1 (only the current node matters vertically) and

h =∞ (rule right hand sides do not decompose at all). In this view, it is unsurprising that

increasing v and decreasing h have historically helped.

Table 2.1 presents a grid of horizontal and vertical markovizations of the grammar. The

14

raw treebank grammar corresponds to v = 1, h = ∞ (the upper right corner), while the

parent annotation in Johnson (1998) corresponds to v = 2, h = ∞, and the second-order

model in Collins (1999), is broadly a smoothed version of v = 2, h = 2. Table 2.1 also shows

number of grammar categories resulting from each markovization scheme. These counts in-

clude all the intermediate categories which represent partially completed constituents. The

general trend is that, in the absence of further annotation, more vertical annotation is better

– even exhaustive grandparent annotation. This is not true for horizontal markovization,

where the second-order model was superior. The best entry, v = 3, h = 2, has an F1 of

81.0, already a substantial improvement over the baseline.

2.2.2 Additional Linguistic Refinements

In this section, we will discuss some of linguistically motivated annotations presented in

Klein and Manning (2003a). These annotations increasingly refine the grammar categories,

but since we expressly do not smooth the grammar, not all splits are guaranteed to be

beneficial, and not all sets of useful splits are guaranteed to co-exist well. In particular,

while v = 3, h = 2 markovization is good on its own, it has a large number of categories

and does not tolerate further splitting well. Therefore, we base all further exploration in

this section on the v = 2, h = 2 grammar. Although it does not necessarily jump out of the

grid at first glance, this point represents the best compromise between a compact grammar

and useful markov histories.

In the raw grammar, there are many unaries, and once any major category is constructed

over a span, most others become constructible as well us- ing unary chains. Such chains

are rare in real treebank trees: unary rewrites only appear in very specific contexts, for

example S complements of verbs where the S has an empty, controlled subject. It would

therefore be natural to annotate the trees so as to confine unary productions to the contexts

in which they are actually appropriate. This annotation was also particularly useful at the

preterminal level. One distributionally salient tag conflation in the Penn treebank is the

identification of demonstratives (that, those) and regular determiners (the, a). Splitting DT

tags based on whether they were only children captured this distinction. The same unary

15

annotation was also effective when applied to adverbs, distinguishing, for example, as well

from also. Beyond these cases, unary tag marking was detrimental.

The Penn tag set also conflates various grammatical distinctions that are commonly

made in traditional and generative grammar, and from which a parser could hope to get

useful information. For example, subordinating conjunctions (while, as, if), complementiz-

ers (that, for), and prepositions (of, in, from) all get the tag IN. Many of these distinctions

are captured by parent annotation (subordinating conjunctions occur under S and preposi-

tions under PP), but some are not (both subordinating conjunctions and complementizers

appear under SBAR). Also, there are exclusively noun-modifying prepositions (of), pre-

dominantly verb-modifying ones (as), and so on. The annotation SPLIT-IN does a We

therefore perform a linguistically motivated 6-way split of the IN tag.

The notion that the head word of a constituent can affect its behavior is a useful one.

However, often the head tag is as good (or better) an indicator of how a constituent will

behave. We found several head annotations to be particularly effective. Most importantly,

the VP category is very overloaded in the Penn treebank, most severely in that there is no

distinction between finite and infinitival VPs. To allow the finite/non-finite distinction, and

other verb type distinctions, we annotated all VP nodes with their head tag, merging all

finite forms to a single tag VBF. In particular, this also accomplished Charniak’s gerund-VP

marking (Charniak, 1997).

These three annotations are examples of the types of information that can be encoded in

the node labels in order to improve parsing accuracy. Overall, Klein and Manning (2003a)

were able to improve test set F1 is 86.3%, which is already higher than early lexicalized

models, though of course lower than state-of-the-art lexicalized parsers.

2.3 Generative Latent Variable Grammars

Alternatively, rather than devising linguistically motivated features or splits, we can

use latent variables to automatically learn a more highly articulated model than the naive

CFG embodied by the training treebank. In all of our learning experiments we start from

16

FRAG

RB

Not

NP

DT

this

NN

year

.

.

(a)

ROOT

FRAG

FRAG

RB

Not

NP

DT

this

NN

year

.

.

(b)

ROOT

FRAGˆROOT

FRAGˆROOT

RB-U

Not

NPˆFRAG

DT

this

NN

year

.

.

(c)

ROOT

FRAG-x

FRAG-x

RB-x

Not

NP-x

DT-x

this

NN-x

year

.-x

.

(d)

Figure 2.1. The original parse tree (a) gets binarized (b), and then either manually anno-
tated (c) or refined with latent variables (d).

a minimal X-bar style grammar, which has vertical order v = 0 and horizontal order h = 1.

Since we will evaluate our grammar on its ability to recover the treebank’s nonterminals,

we must include them in our grammar. Therefore, this initialization is the absolute mini-

mum starting grammar that includes the evaluation nonterminals (and maintains separate

grammar categories for each of them).2 It is a very compact grammar: 98 nonterminals (45

part of speech tags, 27 phrasal categories and the 26 intermediate categories which were

added during binarization), 236 unary rules, and 3840 binary rules. This grammar turned

out to be the starting point for our approach despite its simplicity, because adding latent

variable refinements on top of a richer grammar quickly leads to an overfragmentation of

the grammar.

Latent variable grammars then augment the treebank trees with latent variables at each

node, splitting each treebank category into unconstrained subcategories. For each observed

category A we now have a set of latent subcategories Ax. For example, NP might be split

into NP1 through NP8. This creates a set of (exponentially many) derivations over split

categories for each of the original parse trees over unsplit categories, see Figure 2.1.

The parameters of the refined productions Ax → By Cz, where Ax is a subcategory of

A, By of B, and Cz of C, can then be estimated in various ways; past work on grammars

with latent variables has investigated various estimation techniques. Generative approaches

have included basic training with expectation maximization (EM) (Matsuzaki et al., 2005;
2If our purpose was only to model language, as measured for instance by perplexity on new text, it could

make sense to erase even the labels of the treebank to let EM find better labels by itself, giving an experiment
similar to that of Pereira and Schabes (1992).

17

Prescher, 2005), as well as a Bayesian nonparametric approach (Liang et al., 2007). Dis-

criminative approaches (Henderson, 2004) and Chapter 3 are also possible, but we focus

here on a generative, EM-based split and merge approach, as the comparison is only be-

tween estimation methods, since Smith and Johnson (2007) show that the model classes are

the same.

To obtain a grammar from the training trees, we want to learn a set of rule probabilities

β over the latent subcategories that maximize the likelihood of the training trees, despite the

fact that the original trees lack the latent subcategories. The Expectation-Maximization

(EM) algorithm allows us to do exactly that. Given a sentence w and its parse tree T ,

consider a nonterminal A spanning (r, t) and its children B and C spanning (r, s) and (s, t).

Let Ax be a subcategory of A, By of B, and Cz of C. Then the inside and outside prob-

abilities Pin(r, t, Ax) def= P (wr:t|Ax) and Pout(r, t, Ax) def= P (w1:rAxwt:n) can be computed

recursively:

Pin(r, t, Ax) =
∑
y,z

β(Ax → ByCz)Pin(r, s, By)Pin(s, t, Cz) (2.1)

Pout(r, s, By) =
∑
x,z

β(Ax → ByCz)Pout(r, t, Ax)Pin(s, t, Cz) (2.2)

Pout(s, t, Cz) =
∑
x,y

β(Ax → ByCz)Pout(r, t, Ax)Pin(r, s, By) (2.3)

Although we show only the binary component here, of course there are both binary and

unary productions that are included. In the Expectation step, one computes the posterior

probability of each refined rule and position in each training set tree T :

P (r, s, t, Ax → ByCz|w, T) ∝ Pout(r, t, Ax)β(Ax → ByCz)Pin(r, s, By)Pin(s, t, Cz) (2.4)

In the Maximization step, one uses the above probabilities as weighted observations to

update the rule probabilities:

β(Ax → ByCz) :=
#{Ax → ByCz}∑

y′,z′ #{Ax → By′Cz′}
(2.5)

Note that, because there is no uncertainty about the location of the brackets, this formula-

tion of the inside-outside algorithm is linear in the length of the sentence rather than cubic

(Pereira and Schabes, 1992).

18

2.3.1 Hierarchical Estimation

In principle, we could now directly estimate grammars with a large number of latent

subcategories, as done in (Matsuzaki et al., 2005). However, EM is only guaranteed to

find a local maximum of the likelihood, and, indeed, in practice it often gets stuck in a

suboptimal configuration. If the search space is very large, even restarting may not be

sufficient to alleviate this problem. One workaround is to manually specify some of the

subcategories. For instance, Matsuzaki et al. (2005) start by refining their grammar with

the identity of the parent and sibling, which are observed (i.e. not latent), before adding

latent variables.3 If these manual refinements are good, they reduce the search space for

EM by constraining it to a smaller region. On the other hand, this pre-splitting defeats

some of the purpose of automatically learning latent subcategories, leaving to the user the

task of guessing what a good starting grammar might be, and potentially introducing overly

fragmented subcategories.

Instead, we take a fully automated, hierarchical approach where we repeatedly split

and re-train the grammar. In each iteration we initialize EM with the results of the smaller

grammar, splitting every previous subcategory in two and adding a small amount of ran-

domness (1%) to break the symmetry. The results are shown in Figure 2.3. Hierarchical

splitting leads to better parameter estimates over directly estimating a grammar with 2k

subcategories per observed category. While the two procedures are identical for only two

subcategories (F1: 76.1%), the hierarchical training performs better for four subcategories

(83.7% vs. 83.2%). This advantage grows as the number of subcategories increases (88.4%

vs. 87.3% for 16 subcategories). This trend is to be expected, as the possible interactions

between the subcategories grows as their number grows. As an example of how staged

training proceeds, Figure 2.2 shows the evolution of the subcategories of the determiner

(DT) tag, which first splits demonstratives from determiners, then splits quantificational

elements from demonstratives along one branch and definites from indefinites along the

other.
3In other words, in the terminology of Klein and Manning (2003a), they begin with a (vertical order=2,

horizontal order=1) baseline grammar.

19

DT
the (0.50) a (0.24) The (0.08)

that (0.15) this (0.14) some (0.11)

this (0.39)
that (0.28)
That (0.11)

this (0.52)
that (0.36)

another (0.04)

That (0.38)
This (0.34)
each (0.07)

some (0.20)
all (0.19)

those (0.12)

some (0.37)
all (0.29)

those (0.14)

these (0.27)
both (0.21)
Some (0.15)

the (0.54) a (0.25) The (0.09)

the (0.80)
The (0.15)
a (0.01)

the (0.96)
a (0.01)

The (0.01)

The (0.93)
A(0.02)
No(0.01)

a (0.61)
the (0.19)
an (0.10)

a (0.75)
an (0.12)
the (0.03)

Figure 2.2. Evolution of the DT tag during hierarchical splitting and merging. Shown are
the top three words for each subcategory and their respective probability.

Because EM is a local search method, it is likely to converge to different local maxima

for different runs. In our case, the variance is higher for models with few subcategories;

because not all dependencies can be expressed with the limited number of subcategories,

the results vary depending on which one EM selects first. As the grammar size increases,

the important dependencies can be modeled, so the variance decreases.

2.3.2 Adaptive Refinement

It is clear from all previous work that creating more (latent) refinements can increase

accuracy. On the other hand, oversplitting the grammar can be a serious problem, as

detailed in Klein and Manning (2003a). Adding subcategories divides grammar statistics

into many bins, resulting in a tighter fit to the training data. At the same time, each bin

gives a less robust estimate of the grammar probabilities, leading to overfitting. Therefore,

it would be to our advantage to split the latent subcategories only where needed, rather

than splitting them all as in Matsuzaki et al. (2005). In addition, if all categories are split

equally often, one quickly (four split cycles) reaches the limits of what is computationally

feasible in terms of training time and memory usage.

Consider the comma POS tag. We would like to see only one sort of this tag because, de-

spite its frequency, it always produces the terminal comma (barring a few annotation errors

in the treebank). On the other hand, we would expect to find an advantage in distinguish-

ing between various verbal categories and NP types. Additionally, splitting categories like

20

the comma is not only unnecessary, but potentially harmful, since it needlessly fragments

observations of other categories’ behavior.

It should be noted that simple frequency statistics are not sufficient for determining

how often to split each category. Consider the closed part-of-speech classes (e.g. DT,

CC, IN) or the nonterminal ADJP. These categories are very common, and certainly do

contain subcategories, but there is little to be gained from exhaustively splitting them before

even beginning to model the rarer categories that describe the complex inner correlations

inside verb phrases. Our solution is to use a split-merge approach broadly reminiscent of

ISODATA, a classic clustering procedure (Ball and Hall, 1967). Alternatively, instead of

explicitly limiting the number of subcategories, we could also use an infinite model with

a sparse prior that allocates subcategories indirectly and on the fly when the amount of

training data increases. We formalize this idea in Section 2.3.4.

To prevent oversplitting, we could also measure the utility of splitting each latent sub-

category individually and then split the best ones first, as suggested by Dreyer and Eisner

(2006) and Headden et al. (2006). This could be accomplished by splitting a single cate-

gory, training, and measuring the change in likelihood or held-out F1. However, not only

is this impractical, requiring an entire training phase for each new split, but it assumes the

contributions of multiple splits are independent. In fact, extra subcategories may need to

be added to several nonterminals before they can cooperate to pass information along the

parse tree. Therefore, we go in the opposite direction; that is, we split every category in two,

train, and then measure for each subcategory the loss in likelihood incurred when removing

it. If this loss is small, the new subcategory does not carry enough useful information and

can be removed. What is more, contrary to the gain in likelihood for splitting, the loss in

likelihood for merging can be efficiently approximated.4

Let T be a training tree generating a sentence w. Consider a node n of T spanning (r, t)

with the label A; that is, the subtree rooted at n generates wr:t and has the label A. In the

latent model, its label A is split up into several latent subcategories, Ax. The likelihood of
4The idea of merging complex hypotheses to encourage generalization is also examined in Stolcke and

Omohundro (1994), who used a chunking approach to propose new productions in fully unsupervised gram-
mar induction. They also found it necessary to make local choices to guide their likelihood search.

21

the data can be recovered from the inside and outside probabilities at n:

P(w, T) =
∑

x

Pin(r, t, Ax)Pout(r, t, Ax) (2.6)

where x ranges over all subcategories of A. Consider merging, at n only, two subcategories

A1 and A2. Since A now combines the statistics of A1 and A2, its production probabilities

are the sum of those of A1 and A2, weighted by their relative frequency p1 and p2 in the

training data. Therefore the inside score of A is:

Pin(r, t, A) = p1Pin(r, t, A1) + p2Pin(r, t, A2) (2.7)

Since A can be produced as A1 or A2 by its parents, its outside score is:

Pout(r, t, A) = Pout(r, t, A1) + Pout(r, t, A2) (2.8)

Replacing these quantities in (2.6) gives us the likelihood Pn(w, T) where these two subcate-

gories and their corresponding rules have been merged, around only node n. The summation

is now over the subcategory considered for merging and all the other original subcategories.

We approximate the overall loss in data likelihood due to merging A1 and A2 everywhere

in all sentences wi by the product of this loss for each local change:

∆merge(A1, A2) =
∏

i

∏
n∈Ti

Pn(wi, Ti)
P(wi, Ti)

(2.9)

This expression is an approximation because it neglects interactions between instances of

a subcategory at multiple places in the same tree. These instances, however, are often far

apart and are likely to interact only weakly, and this simplification avoids the prohibitive

cost of running an inference algorithm for each tree and subcategory. Note that the par-

ticular choice of merging criterion is secondary, because we iterate between splitting and

merging: if a particular split is (incorrectly) re-merged in a given round, we will be able

to learn the same split in the next round again. Many alternative merging criteria could

be used instead, and some might lead to slightly smaller grammars, however, in our ex-

periments we found the final accuracies not to be affected. We refer to the operation of

splitting subcategories and re-merging some them based on likelihood loss as a split-merge

22

(SM) cycle. SM cycles allow us to progressively increase the complexity of our grammar,

giving priority to the most useful extensions.

In our experiments, merging was quite valuable. Depending on how many splits were

reversed, we could reduce the grammar size at the cost of little or no loss of performance,

or even a gain. We found that merging 50% of the newly split subcategories dramatically

reduced the grammar size after each splitting round, so that after 6 SM cycles, the grammar

was only 17% of the size it would otherwise have been (1043 vs. 6273 subcategories), while

at the same time there was no loss in accuracy (Figure 2.3). Actually, the accuracy even

increases, by 1.1% at 5 SM cycles. Furthermore, merging makes large amounts of splitting

possible. It allows us to go from 4 splits, equivalent to the 24 = 16 subcategories of

Matsuzaki et al. (2005), to 6 SM iterations, which takes a day to run on the Penn Treebank.

The numbers of splits learned turned out to not be a direct function of category frequency;

the numbers of subcategories for both lexical and nonlexical (phrasal) tags after 6 SM cycles

are given in Figure 2.9 and Figure 2.10.

2.3.3 Smoothing

Splitting nonterminals leads to a better fit to the data by allowing each subcategory to

specialize in representing only a fraction of the data. The smaller this fraction, the higher

the risk of overfitting. Merging, by allowing only the most beneficial subcategories, helps

mitigate this risk, but it is not the only way. We can further minimize overfitting by forcing

the production probabilities from subcategories of the same nonterminal to be similar. For

example, a noun phrase in subject position certainly has a distinct distribution, but it

may benefit from being smoothed with counts from all other noun phrases. Smoothing the

productions of each subcategory by shrinking them towards their common base category

gives us a more reliable estimate, allowing them to share statistical strength.

We perform smoothing in a linear way (Lindstone, 1920). The estimated probability of

a production px = P(Ax → By Cz) is interpolated with the average over all subcategories

23

 76

 78

 80

 82

 84

 86

 88

 90

 92

 200 400 600 800 1000 1200 1400 1600

F1

Total number of grammar categories

Parsing accuracy on the WSJ development set

G1

G2

G3
G4

G1

G2

G3

G4
G5

G6 G7

50% Merging and Smoothing
50% Merging

Splitting but no Merging
Flat Training

Figure 2.3. Hierarchical training leads to better parameter estimates. Merging reduces
the grammar size significantly, while preserving the accuracy and enabling us to do more
SM cycles. Parameter smoothing leads to even better accuracy for grammars with high
complexity. The grammars range from extremely compact (an F1 of 78% with only 147
nonterminal categories) to extremely accurate (an F1 of 90.2% for our largest grammar
with only 1140 nonterminals).

of A.

p′x = (1− α)px + αp̄, where p̄ =
1
n

∑
x

px (2.10)

Here, α is a small constant: we found 0.01 to be a good value, but the actual quan-

tity was surprisingly unimportant. Because smoothing is most necessary when production

statistics are least reliable, we expect smoothing to help more with larger numbers of sub-

categories. This is exactly what we observe in Figure 2.3, where smoothing initially hurts

(subcategories are quite distinct and do not need their estimates pooled) but eventually

helps (as subcategories have finer distinctions in behavior and smaller data support).

Figure 2.3 also shows that parsing accuracy increases monotonically with each addi-

tional split-merge round until the sixth cycle. When there is no parameter smoothing, the

additional seventh refinement cycle leads to a small accuracy loss, indicating that some

overfitting is starting to occur. Parameter smoothing alleviates this problem, but cannot

further improve parsing accuracy, indicating that we have reached an appropriate level of

24

refinement for the given amount of training data. We present additional experiments on

the effects of varying amounts of training data and depth of refinement in Section 2.5.

We also experimented with a number of different smoothing techniques, but found

little or no difference between them. Similar to the merging criterion, the exact choice of

smoothing technique was secondary: it is important that there is smoothing, but not how

the smoothing is done.

2.3.4 An Infinite Alternative

In the previous sections we saw that a very important question when learning a PCFG

is how many grammar categories ought to be allocated to the learning algorithm based

on the amount of available training data. So far, we used a split-merge approach in or-

der to explicitly control the number of subcategories per observed grammar category, and

to use parameter smoothing to additionally counteract overfitting. The question of “how

many clusters?” has been tackled in the Bayesian nonparametrics literature via Dirich-

let process (DP) mixture models (Antoniak, 1974). DP mixture models have since been

extended to hierarchical Dirichlet processes (HDPs) and infinite hidden Markov models

(HDP-HMMs) (Teh et al., 2006; Beal et al., 2002) and applied to many different types of

clustering/induction problems in NLP (Johnson et al., 2006; Goldwater et al., 2006).

In Liang et al. (2007) we present the hierarchical Dirichlet process PCFG (HDP-PCFG),

a nonparametric Bayesian model of syntactic tree structures based on Dirichlet processes.

Specifically, an HDP-PCFG is defined to have an infinite number of symbols; the Dirichlet

process (DP) prior penalizes the use of more symbols than are supported by the training

data. Note that “nonparametric” does not mean “no parameters”; rather, it means that

the effective number of parameters can grow adaptively as the amount of data increases,

which is a desirable property of a learning algorithm.

As models increase in complexity, so does the uncertainty over parameter estimates. In

this regime, point estimates are unreliable since they do not take into account the fact that

there are different amounts of uncertainty in the various components of the parameters.

25

The HDP-PCFG is a Bayesian model which naturally handles this uncertainty. We present

an efficient variational inference algorithm for the HDP-PCFG based on a structured mean-

field approximation of the true posterior over parameters. The algorithm is similar in form

to EM and thus inherits its simplicity, modularity, and efficiency. Unlike EM, however, the

algorithm is able to take the uncertainty of parameters into account and thus incorporate

the DP prior.

On synthetic data, our HDP-PCFG can recover the correct grammar without having

to specify its complexity in advance. We also show that our HDP-PCFG can be applied to

full-scale parsing applications and demonstrate its effectiveness in learning latent variable

grammars. For limited amounts of training data, the HDP-PCFG learns more compact

grammars than our split-merge approach, demonstrating the strengths of the Bayesian

approach. However, its final parsing accuracy falls short of our split-merge approach when

the entire treebank is used, indicating that merging and smoothing are superior alternatives

in that case (because of their simplicity and our better understanding of how to work with

them). The interested reader is referred to Liang et al. (2007) for a more detailed exposition

of the infinite HDP-PCFG.

2.4 Inference

In the previous section we introduced latent variable grammars, which provide a tight

fit to an observed treebank by introducing a hierarchy of refined subcategories. While the

refinements improve the statistical fit and increase the parsing accuracy, they also increase

the grammar size and thereby make inference (the syntactic analysis of new sentences)

computationally expensive and slow.

In general, grammars that are sufficiently complex to handle the grammatical struc-

ture of natural language will unfortunately be challenging to work with in practice because

of their size. We therefore compute pruning grammars by projecting the (fine-grained)

grammar of interest onto coarser approximations that are easier to deal with. In our multi-

pass approach, we repeatedly pre-parse the sentence with increasingly more refined pruning

26

grammars, ruling out large portions of the search space. At the final stage, we have several

choices for how to extract the final parse tree. To this end, we investigate different objective

functions and demonstrate that parsing accuracy can be increased by using a minimum risk

objective that maximizes the expected number of correct grammar productions, and also

by marginalizing out the hidden structure that is introduced during learning.

2.4.1 Hierarchical Coarse-to-Fine Pruning

At inference time, we want to use a given grammar to predict the syntactic structure

of previously unseen sentences. Because large grammars are expensive to work with (in

terms of memory requirements but especially in terms of computation), it is standard to

prune the search space in some way. In the case of lexicalized grammars, the unpruned

chart often will not even fit in memory for long sentences. Several proven techniques exist.

Collins (1999) combines a punctuation rule which eliminates many spans entirely, and then

uses span-synchronous beams to prune in a bottom-up fashion. Charniak et al. (1998)

introduces best-first parsing, in which a figure-of-merit prioritizes agenda processing. Most

relevant to our work are Goodman (1997) and Charniak and Johnson (2005) which use a

pre-parse phase to rapidly parse with a very coarse, unlexicalized treebank grammar. Any

item X:[i, j] with sufficiently low posterior probability in the pre-parse triggers the pruning

of its lexical variants in a subsequent full parse.

Charniak et al. (2006) introduces multi-level coarse-to-fine parsing, which extends the

basic pre-parsing idea by adding more rounds of pruning. In their work, the extra pruning

was with grammars even coarser than the raw treebank grammar, such as a grammar in

which all nonterminals are collapsed. We propose a novel multi-stage coarse-to-fine method

which is particularly natural for our hierarchical latent variable grammars, but which is, in

principle, applicable to any grammar. As in Charniak et al. (2006), we construct a sequence

of increasingly refined grammars, reparsing with each refinement. The contributions of our

method are that we derive sequences of refinements in a new way (Section 2.4.1), we consider

refinements which are themselves complex, and, because our full grammar is not impossible

to parse with, we automatically tune the pruning thresholds on held-out data.

27

G0

G1

G2

G3

G4

G5

G6

X-bar =

G =

π
i

DT:

DT-0: DT-1:

the

that

this

this

0 1 2 3 4

That

5 6 7

some

some

8 9 10 11

these

12 13

the

the

the

14 15

The

16

a

a

17

Figure 2.4. Hierarchical refinement proceeds top-down while projection recovers coarser
grammars. The top word for the first refinements of the determiner tag (DT) is shown
where space permits.

It should be noted that other techniques for improving inference could also be applied

here. In particular, A* parsing techniques (Klein and Manning, 2003b; Haghighi et al.,

2007) appear very appealing because of their guaranteed optimality. However, Pauls and

Klein (2009) clearly demonstrate that posterior pruning methods typically lead to greater

speedups than their more cautious A* analogues, while producing little to no loss in parsing

accuracy.

Projections

In our method, which we call hierarchical coarse-to-fine parsing, we consider a sequence

of PCFGs G0, G1, . . . Gn = G, where each Gi is a refinement of the preceding grammar

Gi−1 and G is the full grammar of interest. Each grammar Gi is related to G = Gn by a

projection πn→i or πi for brevity. A projection is a map from the nonterminal (including

preterminal) category of G onto a reduced domain. A projection of grammar categories

induces a projection of rules and therefore entire non-weighted grammars (see Figure 2.4).

In our case, we also require the projections to be sequentially compatible, so that πi→j =

πk→j ◦ πi→k. That is, each projection is itself a coarsening of the previous projections. In

particular, we take the projection πi→j to be the map that refined categories in round i to

their earlier identities in round j.

It is straightforward to take a projection π and map a CFG G to its induced projection

28

π(G). What is less obvious is how the probabilities associated with the rules of G should

be mapped. In the case where π(G) is more coarse than the treebank originally used to

train G, and when that treebank is available, it is easy to project the treebank and directly

estimate, say, the maximum-likelihood parameters for π(G). This is the approach taken by

Charniak et al. (2006), where they estimate what in our terms are projections of the raw

treebank grammar from the treebank itself.

However, treebank estimation has several limitations. First, the treebank used to train

G may not be available. Second, if the grammar G is heavily smoothed or otherwise

regularized, its own distribution over trees may be far from that of the treebank. Third, we

may wish to project grammars for which treebank estimation is problematic, for example,

grammars which are more refined than the observed treebank grammars. Fourth, and most

importantly, the meanings of the refined categories can and do drift between refinement

stages, and we will be able to prune more without making search errors when the pruning

grammars are as close as possible to the final grammar. Our method effectively avoids all of

these problems by rebuilding and refitting the pruning grammars on the fly from the final

grammar.

Estimating Projected Grammars

Fortunately, there is a well worked-out notion of estimating a grammar from an infinite

distribution over trees (Corazza and Satta, 2006). In particular, we can estimate parameters

for a projected grammar π(G) from the tree distribution induced by G (which can itself be

estimated in any manner). The earliest work that we are aware of on estimating models from

models in this way is that of Nederhof (2005), who considers the case of learning language

models from other language models. Corazza and Satta (2006) extend these methods to

the case of PCFGs and tree distributions.

The generalization of maximum likelihood estimation is to find the estimates for π(G)

with minimum KL divergence from the tree distribution induced by G. Since π(G) is a

grammar over coarser categories, we fit π(G) to the distribution G induces over π-projected

29

trees: P(π(T)|G). Since the math is worked out in detail in Corazza and Satta (2006),

including questions of when the resulting estimates are proper, we refer the reader to their

excellent presentation for more details. The proofs of the general case are given in Corazza

and Satta (2006), but the resulting procedure is quite intuitive.

Given a (fully observed) treebank, the maximum-likelihood estimate for the probability

of a rule A→ BC would simply be the ratio of the count of A to the count of the configura-

tion A→ BC. If we wish to find the estimate which has minimum divergence to an infinite

distribution P(T), we use the same formula, but the counts become expected counts:

P(A→ BC) =
EP(T)[A→ BC]

EP(T)[A]
(2.11)

with unaries estimated similarly. In our specific case, A,B, and C are categories in

π(G), and the expectations are taken over G’s distribution of π-projected trees, P(π(T)|G).

Corazza and Satta (2006) do not specify how one might obtain the necessary expectations,

so we give two practical methods below.

Calculating Projected Expectations

Concretely, we can now estimate the minimum divergence parameters of π(G) for any

projection π and PCFG G if we can calculate the expectations of the projected categories

and productions according to P(π(T)|G). The simplest option is to sample trees T from G,

project the samples, and take average counts off of these samples. In the limit, the counts

will converge to the desired expectations, provided the grammar is proper. However, we

can exploit the structure of our projections to obtain the desired expectations much more

simply and efficiently.

First, consider the problem of calculating the expected counts of a category A in a tree

distribution given by a grammar G, ignoring the issue of projection. These expected counts

30

obey the following one-step equations (assuming a unique root category):

c(root) = 1 (2.12)

c(A) =
∑

B→αAβ

P(αAβ|B)c(B) (2.13)

Here, α, β, or both can be empty, and a production A→ γ appears in the sum once for each

A it contains. In principle, this linear system can be solved in any way.5 In our experiments,

we solve this system iteratively, with the following recurrences:

c0(A) ←

 1 if A = root

0 otherwise
(2.14)

ci+1(A) ←
∑

B→αAβ

P(αAβ|B)ci(B) (2.15)

Note that, as in other iterative fixpoint methods, such as policy evaluation for Markov de-

cision processes (Sutton and Barto, 1998), the quantities ck(A) have a useful interpretation

as the expected counts ignoring nodes deeper than depth k (i.e. the roots are all the root

category, so c0(root) = 1). This iteration may of course diverge if G is improper, but, in

our experiments this method converged within around 25 iterations; this is unsurprising,

since the treebank contains few nodes deeper than 25 and our base grammar G seems to

have captured this property.

Once we have the expected counts of the categories in G, the expected counts of their

projections A′ = π(A) according to P(π(T)|G) are given by c(A′) =
∑

A:π(A)=A′ c(A). Rules

can be estimated directly using similar recurrences, or given by one-step equations:

c(A→ γ) = c(A)P(γ|A) (2.16)

This process very rapidly computes the estimates for a projection of a grammar (i.e. in a

few seconds for our largest grammars), and is done once during initialization of the parser.
5Whether or not the system has solutions depends on the parameters of the grammar. In particular, G

may be improper, though the results of Chi (1999) imply that G will be proper if it is the maximum-likelihood
estimate of a finite treebank.

31

In
flu

en
tia

l
m

em
be

rs of th
e

H
ou

se
W

ay
s

an
d

M
ea

ns
C

om
m

itt
ee

in
tr

od
uc

ed
le

gi
sl

at
io

n
th

at
w

ou
ld

re
st

ric
t

ho
w

th
e

ne
w

s&
l

ba
ilo

ut
ag

en
cy

ca
n

ra
is

e
ca

pi
ta

l ;
cr

ea
tin

g
an

ot
he

r
po

te
nt

ia
l

ob
st

ac
le to th
e

go
ve

rn
m

en
t ‘s

sa
le of

si
ck

th
rif

ts .

G
−1 G0=X-bar

G1 G2

G3 G4

G5

G6=G

Output

Figure 2.5. Bracket posterior probabilities (black = high) for the first sentence of our
development set during coarse-to-fine pruning. Note that we compute the bracket posteriors
at a much finer level but are showing the unlabeled posteriors for illustration purposes. No
pruning is done at the finest level G6 = G but the minimum risk tree is returned instead.

Hierarchical Projections

Recall that our final, refined grammars G come, by their construction process, with

an ontogeny of grammars Gi where each grammar is a (partial) splitting of the preceding

one. This gives us a natural chain of projections πi→j which projects backwards along this

ontogeny of grammars (see Figure 2.4). Of course, training also gives us parameters for the

grammars, but only the chain of projections is needed. Note that the projected estimates

need not (and in general will not) recover the original parameters exactly, nor would we

want them to. Instead they take into account any smoothing, subcategory drift, and so

on which occurred by the final grammar. In Section 2.4.1, we show that the reconstructed

projections are better than the original intermediate grammars, both at parsing and at

pruning.

Starting from the base grammar, we run the projection process for each stage in the

sequence, calculating πi (chained incremental projections would also be possible). For the

remainder of the paper, except where noted otherwise, all coarser grammars’ estimates are

these reconstructions, rather than those originally learned.

32

G0 G1 G2 G3 G4 G5 G6

Nonterminals 98 147 219 329 498 742 1140
Productions 3,700 8,300 19,600 52,400 126,100 298,200 531,200
No pruning 52 min 79 min 99 min 187 min 288 min 864 1612 min
X-bar pruning 8 min 11 min 14 min 22 min 30 min 68 min 111 min
C-to-F (original) 8 min 10 min 13 min 17 min 22 min 29 min 35 min
C-to-F (projected) 6 min 8 min 10 min 11 min 12 min 13.5 min 15 min
F1 for above 64.8 78.0 85.2 87.7 89.7 90.6 91.2
C-to-F (lossy) 6 min 7 min 8 min 8.5 min 9 min 9.5 min 10 min
F1 for above 64.3 77.8 84.9 87.5 89.4 90.4 91.1

Table 2.2. Grammar sizes, parsing times and accuracies for latent variable grammars PCFGs
with and without hierarchical coarse-to-fine parsing on our development set (1578 sentences
with 40 or less words from section 22 of the Penn Treebank).

Pruning Experiments

As demonstrated by Charniak et al. (2006) parsing times can be greatly reduced by

pruning chart items that have low posterior probability under a simpler grammar. Char-

niak et al. (2006) pre-parse with a sequence of grammars which are coarser than (parent-

annotated) treebank grammars. However, we also work with grammars which are already

heavily split, up to half as split as the final grammar, because we found the computational

cost for parsing with the simple X-bar grammar to be insignificant compared to the costs

for parsing with more refined grammars.

For a final grammar G = Gn, we compute estimates for the n projections

Gn−1, . . . , G0 =X-Bar, where Gi = πi(G) as described above. Additionally we project

to a grammar G−1 in which all nonterminals, except for the preterminals, have been col-

lapsed. During parsing, we start of by exhaustively computing the inside/outside scores

with G−1. At each stage, chart items with low posterior probability are removed from the

chart, and we proceed to compute inside/outside scores with the next, more refined gram-

mar, using the projections πi→i−1 to map between grammar categories in Gi and Gi−1. In

each pass, we skip chart items whose projection into the previous stage had a probability

below a stage-specific threshold, until we reach G = Gn (after seven passes in our case).

For G, we do not prune but instead return the minimum risk tree, as will be described in

Section 2.4.2.

33

Figure 2.5 shows the (unlabeled) bracket posteriors after each pass and demonstrates

that most constructions can be ruled out by the simpler grammars, greatly reducing the

amount of computation for the following passes. The pruning thresholds were empirically

determined on a held out set by computing the most likely tree under G directly (without

pruning) and then setting the highest pruning threshold for each stage that would not prune

the optimal tree. This setting also caused no search errors on the test set. We found our

projected grammar estimates to be significantly better suited for pruning than the original

grammar estimates which were learned during the hierarchical training. Table 2.2 shows

the tremendous reduction in parsing time (all times are cumulative) and gives an overview

over grammar sizes and parsing accuracies. In particular, in our Java implementation on

a 3GHz processor, it is possible to parse the 1578 development set sentences (of length 40

or less) in less than 900 seconds with an F1 of 91.2% (no search errors), or, by pruning

more, in 600 seconds at 91.1%. For comparison, the Feb. 2006 release of the Charniak and

Johnson (2005) parser runs in 1150 seconds on the same machine with an F1 of 90.7%.

2.4.2 Objective Functions for Parsing

A refined PCFG is a grammar G over nonterminal categories of the form A-x where A is

an evaluation category (such as NP) and x is some indicator of a subcategory, such as a par-

ent annotation. G induces a derivation distribution P(T |G) over trees T labeled with refined

categories. This distribution in turn induces a parse distribution P(T ′|G) = P(π(T)|G) over

(projected) trees with unsplit evaluation categories, where P(T ′|G) =
∑

T :T ′=π(T) P(T |G).

We now have several choices of how to select a tree given these posterior distributions over

trees. In this section, we present experiments with the various options and explicitly relate

them to parse risk minimization (Titov and Henderson, 2006).

34

Production score:

r(A → BC, i, k, j) =
∑

x

∑
y

∑
z

Pout(Ax, i, j)P(Ax → By Cz)Pin(By, i, k)Pin(Cy, k, j)

Variational: q(A → BC, i, k, j) = r(A → BC, i, k, j)P
x Pout(Ax,i,j)Pin(Ax,i,j) TG = argmax

T

∏
e∈T

q(e)

Max-Rule-Sum: q(A → BC, i, k, j) = r(A → BC, i, k, j)
Pin(root,0,n) TG = argmax

T

∑
e∈T

q(e)

Max-Rule-Product: q(A → BC, i, k, j) = r(A → BC, i, k, j)
Pin(root,0,n) TG = argmax

T

∏
e∈T

q(e)

Table 2.3. Different objectives for parsing with posteriors, yielding comparable results.
A,B, C are nonterminal categories, x, y, z are latent subcategories and i, j, k are between-
word indices. Hence (Ax, i, j) denotes a constituent labeled with Ax spanning from i to j.
Furthermore, we write e = (A → B C, i, j, k) for brevity. See text for details.

Minimum Bayes Risk Parsing

The decision-theoretic approach to parsing would be to select the parse tree which

minimizes our expected loss according to our beliefs:

T ∗P = argmin
TP

∑
TT

P(TT |w,G)L(TP , TT) (2.17)

where TT and TP are “true” and predicted parse trees. Here, our loss is described by the

function L whose first argument is the predicted parse tree and the second is the gold parse

tree. Reasonable candidates for L include zero-one loss (exact match), precision, recall,

F1 (specifically EVALB here), and so on. Of course, the naive version of this process is

intractable: we have to loop over all (pairs of) possible parses. Additionally, it requires

parse likelihoods P(TP |w,G), which are tractable, but not trivial, to compute for refined

grammars. There are two options: limit the predictions to a small candidate set or choose

methods for which dynamic programs exist.

For arbitrary loss functions, we can approximate the minimum-risk procedure by taking

the min over only a set of candidate parses TP . In some cases, each parse’s expected risk

can be evaluated in closed form. Exact match (likelihood) has this property. In general,

however, we can approximate the expectation with samples from P(T |w,G). The method

35

for sampling derivations of a PCFG is given in Finkel et al. (2006). It requires a single

inside-outside computation per sentence and is then efficient per sample. Note that for

refined grammars, a posterior parse sample can be drawn by sampling a derivation and

projecting away the subcategories.

Figure 2.4 shows the results of the following experiment. We constructed 10-best lists

from the full grammar G in Section 4.2. We then took the same grammar and extracted

500-sample lists using the method of Finkel et al. (2006). The minimum risk parse candidate

was selected for various loss functions. As can be seen, in most cases, risk minimization

reduces test-set loss of the relevant quantity. Exact match is problematic, however, because

500 samples is often too few to draw a match when a sentence has a very flat posterior, and

so there are many all-way ties.6 Since exact match permits a non-sampled calculation of the

expected risk, we show this option as well, which is substantially superior. This experiment

highlights that the correct procedure for exact match is to find the most probable parse.

Alternative Objective Functions

An alternative approach to reranking candidate parses is to work with inference criteria

which admit dynamic programming solutions. Table 2.3 shows three possible objective

functions which use the easily obtained posterior marginals of the parse tree distribution.

Interestingly, while they have fairly different decision theoretic motivations, their closed-

form solutions are similar.

One option is to maximize likelihood in an approximate distribution. Matsuzaki et al.

(2005) present a Variational approach, which approximates the true posterior over parses

by a cruder, but tractable sentence-specific one. In this approximate distribution there is

no derivation / parse distinction and one can therefore optimize exact match by selecting

the most likely derivation.

Instead of approximating the tree distribution we can use an objective function that

decomposes along parse posteriors. The labeled brackets algorithm of Goodman (1996) has
65,000 samples do not improve the numbers appreciably.

36

Objective LP LR F1 EX
BEST DERIVATION

Viterbi Derivation 89.6 89.4 89.5 37.4
RERANKING

Random 87.6 87.7 87.7 16.4
Precision (sampled) 91.1 88.1 89.6 21.4
Recall (sampled) 88.2 91.3 89.7 21.5
F1 (sampled) 90.2 89.3 89.8 27.2
Exact (sampled) 89.5 89.5 89.5 25.8
Exact (non-sampled) 90.8 90.8 90.8 41.7
Exact/F1 (oracle) 95.3 94.4 95.0 63.9

DYNAMIC PROGRAMMING
Variational 90.7 90.9 90.8 41.4
Max-Rule-Sum 90.5 91.3 90.9 40.4
Max-Rule-Product 91.2 91.1 91.2 41.4

Table 2.4. A 10-best list from our best G can be reordered as to maximize a given objective
either using samples or, under some restricting assumptions, in closed form.

such an objective function. In its original formulation this algorithm maximizes the number

of expected correct nodes, but instead we can use it to maximize the number of correct rules

(the Max-Rule-Sum algorithm). A worrying issue with this method is that it is ill-defined

for grammars which allow infinite unary chains: there will be no finite minimum risk tree

under recall loss (you can always reduce the risk by adding one more cycle). We implement

Max-Rule-Sum in a CNF-like grammar family where above each binary production is

exactly one unary production (possibly a self-loop). With this constraint, unary chains

are not a problem. As might be expected, this criterion improves bracket measures at the

expense of exact match.

We found it optimal to use a third approach, in which rule posteriors are multiplied

instead of added. This corresponds to choosing the tree with greatest chance of having all

rules correct, under the (incorrect) assumption that the rules correctness are independent.

This Max-Rule-Product algorithm does not need special treatment of infinite unary

chains because it is optimizing a product rather than a sum. While these three methods

yield very similar results (see Figure 2.4), the Max-Rule-Product algorithm consistently

outperformed the other two.

Overall, the closed-form options were superior to the reranking ones, except on exact

37

match, where the gains from correctly calculating the risk outweigh the losses from the

truncation of the candidate set.

Note that there are two factors contributing to the improved accuracy of the Max-Rule-

Product algorithm over extracting the Viterbi derivation (∆F1=1.7%): (i) the change in

objective function and (ii) the marginalization of the latent structure, which aggregates

the probability mass that is spread out over a potentially large number of derivations that

correspond to the same parse tree. To separate out those two effects, we used the Max-

Rule-Product objective function but computed the highest scoring derivation rather than

parse. This gave an F1 score of 90.6, indicating that two thirds of the gains are coming from

the alternative objective function (roughly 1.1%) and one third from marginalizing out the

latent structure (roughly 0.6%).

2.5 Additional Experiments

We trained grammars for a variety of languages and ran experiments respecting the

standard splits on the corpora described in Table 2.5. Starting from an X-bar grammar, we

trained latent variable grammars for 6 split and merge rounds, as described in Section 4.2.

To better deal with unknown and rare words, we extract a small number of features from

the word and then compute approximate tagging probabilities. A word is classified into

one of 50 unknown word categories based on the presence of features such as capital letters,

digits, and dashes7 and its tagging probability is given by: P′(word|tag) = k P̂(class|tag)

where k is a constant representing P(word|class) and can simply be dropped. Rare words

are modeled using a combination of their known and unknown distributions.

At inference time, we used the Max-Rule-Product algorithm from Section 2.4.2 to

marginalize out the latent structure. The hierarchical coarse-to-fine pruning procedure

described in Section 2.4.1 was applied in order to speed up parsing, as it was shown to

produce very few search errors, while greatly accelerating inference. The EVALB parseval

reference implementation, available from Sekine and Collins (1997), was used for scoring.
7For English we additionally use a list of suffixes.

38

Training Set Development Set Test Set
ENGLISH-WSJ

Sections 2 -21 Section 22 Section 23
(Marcus et al., 1993)
ARABIC “Mona Diab” splits8

(Maamouri et al., 2007) (a.k.a. Johns Hopkins 2005 Workshop)
BULGARIAN 11,549 cross- 2,496
(Simov et al., 2004) sentences validation sentences
CHINESE Articles 1-270, Articles Articles
(Xue et al., 2002) 400-1151 301-325 271-300
FRENCH9 Sentences Sentences Sentences
(Abeillé et al., 2003) 1-18,609 18,610-19,609 19,609-20,610
GERMAN Sentences Sentences Sentences
(Skut et al., 1997) 1-18,602 18,603-19,602 19,603-20,602
ITALIAN 10-fold cross-validation
(Lesmo et al., 2002) (see also EVALITA10shared task)

Table 2.5. Treebanks and standard setups used in our experiments.

 65
 70
 75
 80
 85
 90

 0 1 2 3 4 5 6

F1

SM cycles

Baseline grammar vs. final parsing accuracy

v=1, h=0
v=2, h=1

Figure 2.6. Starting with a simple baseline grammar is advantageous because imposing too
much initial structure causes overfragmentation in the long run.

2.5.1 Baseline Grammar Variation

As in the case of manual grammar refinement, we can vary the level of markovization

applied to the treebank before extracting the baseline grammar. Starting with a structurally

annotated grammar (less markovization), gives a higher starting point, while starting with

a minimal X-Bar grammar pre-imposes fewer restrictions and gives more flexibility to the

learning algorithm. As Figure 2.6 shows, the final performance is more than 2% higher when

starting with an X-Bar grammar (vertical markovization=1, horizontal markovization=0);
8See http://nlp.stanford.edu/software/parser-arabic-data-splits.shtml
9Cross validation is used due to the small size of the treebank, see http://evalita.fbk.eu/

10This setup contains only sentences without annotation errors, as in Arun and Keller (2005).

39

2.5.2 Final Results WSJ

By using a split-merge strategy and beginning with the barest possible initial structure,

our method reliably learns PCFGs that are remarkably good at parsing. As one can see

in Table 2.6, the resulting English parser ranks among the best lexicalized parsers, beating

the one of Charniak and Johnson (2005), but falling short of discriminative systems that

take the output of parsers as input features (Charniak and Johnson, 2005; Huang, 2008).

2.5.3 Multilingual Parsing

Most research on parsing has focused on English and parsing performance on other

languages is generally significantly lower.11 Recently, there have been some attempts to

adapt parsers developed for English to other languages (Levy and Manning, 2003; Cowan

and Collins, 2005). Adapting lexicalized parsers to other languages in not a trivial task as

it requires at least the specification of head rules, and has had limited success. Adapting

unlexicalized parsers appears to be equally difficult: Levy and Manning (2003) adapt the

unlexicalized parser of Klein and Manning (2003a) to Chinese, but even after significant

efforts on manually choosing category splits, only modest performance gains are reported.

In contrast, automatically learned grammars like the ones presented here require only

a treebank for training and no additional human input. One has therefore reason to be-

lieve that their performance will generalize better across languages than the performance

of parsers that have been hand tailored to English. Table 2.6 shows that automatically

inducing latent structure is a technique that generalizes well across language boundaries

and results in state of the art performance for an array of very different languages. How-

ever, the final accuracies fall well short of the accuracy on English. Some experiments

in Section 2.5.5 suggest that this discrepancy cannot be explained with the smaller size
11Of course, cross-linguistic comparison of results is complicated by differences in corpus annotation

schemes and sizes, and differences in linguistic characteristics.
12This is the performance of the lexicalized parser only.
13This is the performance of the reranking-parser from http://www.cog.brown.edu/mj/software.htm.
14Sun and Jurafsky (2004) report better performance, however they assume gold POS tags (p.c.).
15Arun and Keller (2005) report results on a different test set. These figures are on the standard test set,

A. Arun (p.c.).

40

≤ 40 words all
Parser LP LR EX LP LR EX

ENGLISH
Charniak and Johnson (2005)12 90.3 90.1 39.6 89.7 89.6 37.2
Split-Merge Generative Parser 90.8 90.6 38.8 90.2 90.1 36.6

ENGLISH (reranked)
Charniak and Johnson (2005)13 92.4 91.6 46.6 91.8 91.0 44.0
Huang (2008) 92.8 91.8 46.2 92.2 91.2 43.5

ARABIC
Bikel (2004) 76.0 75.4 - 73.4 72.5 -
Split-Merge Generative Parser 79.0 78.0 20.7 76.4 75.3 15.7

BULGARIAN
Chanev et al. (2007) - F1 80.4
Split-Merge Generative Parser 82.4 81.4 12.8 82.1 81.1 12.5

CHINESE14

Bikel (2004) 82.9 79.6 - 80.6 77.5 -
Split-Merge Generative Parser 86.9 85.7 37.8 84.8 82.6 32.5

FRENCH
Arun and Keller (2005)15 78.2 80.1 21.2 74.6 76.6 16.4
Split-Merge Generative Parser 80.7 81.4 22.0 77.2 78.7 17.5

GERMAN
Dubey (2005) F1 76.3 -
Split-Merge Generative Parser 80.8 80.7 43.6 80.1 80.1 42.4

ITALIAN
Bikel (2004) 73.7 74.7 18.6 70.5 71.2 15.4
Split-Merge Generative Parser 79.0 79.3 27.4 75.6 75.7 22.8

Table 2.6. Generative latent variable grammars achieve state-of-the-art parsing perfor-
mance on a variety of languages.

of the foreign treebanks, but is more likely due to language intrinsic characteristics, and

annotation standards. We investigate the learned subcategories in Section 2.6.

Note that we explicitly did not attempt to adapt the parser to the new languages, to

illustrate the general utility of latent variable grammars. Rather, we applied our model di-

rectly to each of the treebanks, using the same model hyperparameters (merging percentage

and smoothing factor, pruning thresholds, unknown word features) as for English. This only

underestimates the potential performance of our model. In fact, augmenting the unknown

model with language specific suffix features can boost performance by several percentage

points.16 See also Petrov and Klein (2008c) for a set of experiments on parsing the different
16Unpublished results by B. Crabbé (on French), and M. Harper (on Chinese), (p.c.).

41

German treebanks, and in particular on recovering the grammatical function tags present

in those treebanks in addition to pure syntactic structures.

2.5.4 Corpus Variation

Related to cross language generalization is the generalization across domains for the

same language. It is well known that a model trained on the Wall Street Journal loses

significantly in performance when evaluated on the Brown Corpus (see Gildea (2001) for

more details and the exact setup of their experiment, which we duplicated here). Recently

McClosky et al. (2006) came to the conclusion that this performance drop is not due to

overfitting the WSJ data. Figure 2.7 shows the performance on the Brown corpus dur-

ing hierarchical training. While the F1 score on the WSJ is rising we observe a drop in

performance after the 5th iteration, suggesting that some overfitting might be occurring.

We observe similar trends on the Genia corpus (Tateisi et al., 2005), a corpus of abstracts

from the biomedical domain, reaching our best performance of 78.9% (on the full test

set) after 5 split-merge rounds. See (Clegg and Shepherd, 2007) for an extensive study

comparing the parsing performance of different parsers on this domain. As in the case

of language adaptation, parsing performance on out of domain data is easiest to increase

by improving the part-of-speech (POS) tagging accuracy (McClosky and Charniak, 2008).

This is unsurprising, given the fact the POS tagging accuracy falls to below 83% on the

Genia corpus (compared to above 96% on the WSJ). Future work will investigate methods

of incorporating unlabeled data from the target domain for improving tagging and parsing

accuracy.

2.5.5 Training Size Variation

It is also interesting to know how many sentences need to be manually parsed to create

a training corpus that enables the learning of accurate grammars. Figure 2.8 shows how

parsing accuracy varies in the presence of different amounts of training data. Surprisingly,

even if we restrict ourselves to only the first 10% of the WSJ (roughly 4,000 sentences), we

42

 79

 80

 81

 82

 83

 84

 85

F1

Grammar Size

Out of domain performance on Brown Corpus

G3

G4

G5 G6

Latent Variable PCFGs
Charniak and Johnson (2005) reranking parser

Charniak and Johnson (2005) generative parser

Figure 2.7. Parsing accuracy starts dropping after 5 training iterations on the Brown
corpus, while it is improving on the WSJ, indicating overfitting.

can achieve a parsing accuracy of almost 85%, rivaling the performance of early lexicalized

parsers that were trained on the entire treebank. Parsing accuracy rises quite steeply

when we add more training data, but levels off at about 70% of the training data (28,000

sentences). The last 12,000 sentences add only about 0.3% of accuracy.

It is also interesting to observe that in the presence of moderate amounts of training data

(10,000 sentences), refining the grammars too heavily (5 or 6 rounds) leads to overfitting

(despite smoothing and merging of the least useful splits). Only when there is sufficient

empirical evidence, is it viable to refine the grammars heavily.

This experiment also partially addresses the question about the performance gap be-

tween parsing English and parsing other languages. While the WSJ is about twice as big

as the treebanks for other languages, the sheer size of the treebank does not explain why

parsing performance on English is so much higher. It is more likely that there are lan-

guage specific explanations causing the difference in accuracy and simply labeling more

data will not be sufficient to bring parsing accuracy into the 90% range for other languages.

Differences in annotation standards, probably also contribute to the disparity.

2.6 Analysis

So far, we have presented a split-merge method for learning to iteratively refine basic

categories like NP and VP into automatically induced subcategories (in the original sense of

Chomsky (1965)). This approach gives parsing accuracies of up to 91.2% on the development

43

 84
 85
 86
 87
 88
 89
 90
 91

100%80%60%40%20%

F1
Percentage of WSJ used for training

Parsing accuracy on the WSJ development set

G6
G5
G4

Figure 2.8. Parsing accuracy on the WSJ increases when more training data is used for
learning the grammar. However, the last 30% of training data add only 0.3 in F1 score.

set, substantially higher than previous category-refining approaches, while starting from an

extremely simple base grammar. However, in general, any automatic induction system is in

danger of being entirely uninterpretable. In this section, we examine the learned grammars,

discussing what is learned. We focus particularly on connections with the linguistically

motivated refinements of Klein and Manning (2003a), which we do generally recover.

Inspecting a large grammar by hand is difficult, but fortunately, our baseline grammar

has less than 100 nonterminal categories, and even our most complicated grammar has only

1043 total (sub)categories. It is therefore relatively straightforward to review the broad

behavior of a grammar. In this section, we review a randomly-selected grammar for English

after 4 SM cycles that produced an F1 score of 89.11 on the development set. We feel it is

reasonable to present only a single grammar because all the grammars are very similar. For

example, after 4 SM cycles, the F1 scores of the 4 trained grammars have a variance of only

0.024, which is tiny compared to the deviation of 0.43 obtained by Matsuzaki et al. (2005).

Furthermore, these grammars allocate splits to nonterminals with a variance of only 0.32,

so they agree to within a single latent subcategory. We also present some examples of the

learned subcategories for other languages at the end of the section.

2.6.1 Lexical Subcategories

One of the original motivations for lexicalization of parsers is the fact that part-of-speech

(POS) tags are usually far too general to encapsulate a word’s syntactic behavior. In the

44

IN
IN-0 In With After
IN-1 In For At
IN-2 in for on
IN-3 of for on
IN-4 from on with
IN-5 at for by
IN-6 by in with
IN-7 for with on
IN-8 If While As
IN-9 because if while
IN-10 whether if That
IN-11 that like whether
IN-12 about over between
IN-13 as de Up
IN-14 than ago until
IN-15 out up down

VBZ
VBZ-0 gives sells takes
VBZ-1 comes goes works
VBZ-2 includes owns is
VBZ-3 puts provides takes
VBZ-4 says adds Says
VBZ-5 believes means thinks
VBZ-6 expects makes calls
VBZ-7 plans expects wants
VBZ-8 is ’s gets
VBZ-9 ’s is remains
VBZ-10 has ’s is
VBZ-11 does Is Does

NNP
NNP-0 Jr. Goldman INC.
NNP-1 Bush Noriega Peters
NNP-2 J. E. L.
NNP-3 York Francisco Street
NNP-4 Inc Exchange Co
NNP-5 Inc. Corp. Co.
NNP-6 Stock Exchange York
NNP-7 Corp. Inc. Group
NNP-8 Congress Japan IBM
NNP-9 Friday September August
NNP-10 Shearson D. Ford
NNP-11 U.S. Treasury Senate
NNP-12 John Robert James
NNP-13 Mr. Ms. President
NNP-14 Oct. Nov. Sept.
NNP-15 New San Wall

JJS
JJS-0 largest latest biggest
JJS-1 least best worst
JJS-2 most Most least

RB
RB-0 recently previously still
RB-1 here back now
RB-2 very highly relatively
RB-3 so too as
RB-4 also now still
RB-5 however Now However
RB-6 much far enough
RB-7 even well then
RB-8 as about nearly
RB-9 only just almost
RB-10 ago earlier later
RB-11 rather instead because
RB-12 back close ahead
RB-13 up down off
RB-14 not Not maybe
RB-15 n’t not also

DT
DT-0 the The a
DT-1 A An Another
DT-2 The No This
DT-3 The Some These
DT-4 all those some
DT-5 some these both
DT-6 That This each
DT-7 this that each
DT-8 the The a
DT-9 no any some
DT-10 an a the
DT-11 a this the

CD
CD-0 1 50 100
CD-1 8.50 15 1.2
CD-2 8 10 20
CD-3 1 30 31
CD-4 1989 1990 1988
CD-5 1988 1987 1990
CD-6 two three five
CD-7 one One Three
CD-8 12 34 14
CD-9 78 58 34
CD-10 one two three
CD-11 million billion trillion

PRP
PRP-0 It He I
PRP-1 it he they
PRP-2 it them him

RBR
RBR-0 further lower higher
RBR-1 more less More
RBR-2 earlier Earlier later

Table 2.7. The most frequent three words in the subcategories of several part-of-speech
tags. See text for discussion.

45

limit, each word may well have its own unique syntactic behavior, especially when, as in

modern parsers, semantic selectional preferences are lumped in with traditional syntactic

trends. However, in practice, and given limited data, the relationship between specific words

and their syntactic contexts may be best modeled at a level more fine than POS tag but

less fine than lexical identity.

In our model, POS tags are refined just like any other grammar category: the sub-

categories for several tags are shown in Table 2.7, along with their three most frequent

members. In most cases, the categories are recognizable as either classic subcategories or

an interpretable division of some other kind.

Nominal categories are the most heavily refined (see Figure 2.9), and have the splits

which are most semantic in nature (though not without syntactic correlations). For ex-

ample, plural common nouns (NNS) divide into the maximum number of categories (16).

One category consists primarily of dates, whose typical parent is an NP subcategory whose

typical parent is a root S, essentially modeling the temporal noun annotation discussed in

Klein and Manning (2003a). Another category specializes in capitalized words, preferring

as a parent an NP with an S parent (i.e. subject position). A third category specializes

in monetary units, and so on. These kinds of syntactico-semantic categories are typical,

and, given distributional clustering results like those of Schuetze (1998), unsurprising. The

singular nouns are broadly similar, if slightly more homogenous, being dominated by cate-

gories for stocks and trading. The proper noun category (NNP, shown) also splits into the

maximum 16 categories, including months, countries, variants of Co. and Inc., first names,

last names, initials, and so on.

Verbal categories are also heavily split. Verbal subcategories sometimes reflect syntactic

selectional preferences, sometimes reflect semantic selectional preferences, and sometimes

reflect other aspects of verbal syntax. For example, the present tense third person verb

subcategories (VBZ) are shown. The auxiliaries get three clear categories: do, have, and be

(this pattern repeats in other tenses), as well a fourth category for the ambiguous ’s. Verbs

of communication (says) and propositional attitudes (believes) that tend to take inflected

sentential complements dominate two classes, while control verbs (wants) fill out another.

46

 0

 10

 20

 30

 40

 50

 60

 70

#
L

S
R

P
SY

M

,
U

H$
T

O
R

B
S

FW
’’

-R
R

B
-

W
D

T
W

P$E
X.

-L
R

B
-

W
R

B
PD

T
PO

S
W

P
R

B
R

M
D

PR
P$

PR
P:

JJ
S

JJ
R

C
C

N
N

PSD
T

V
B

P
V

B
ZINC
D

V
B

D
V

B
V

B
G

R
B

V
B

N
N

N
N

N
SJJ

N
N

P

N
um

be
r

of
 la

te
nt

 s
ub

ca
te

go
ri

es

Observed lexical categories

Figure 2.9. Number of latent lexical subcategories determined by our split-merge procedure
after 6 SM cycles.

As an example of a less-refined category, the superlative adjectives (JJS) are split into

three categories, corresponding principally to most, least, and largest, with most frequent

parents NP, QP, and ADVP, respectively. The relative adjectives (JJR) are split in the

same way. Relative adverbs (RBR) are split into a different three categories, corresponding

to (usually metaphorical) distance (further), degree (more), and time (earlier). Personal

pronouns (PRP) are well-divided into three categories, roughly: nominative case, accusative

case, and sentence-initial nominative case, which each correlate very strongly with syntactic

position. As another example of a specific trend which was mentioned by Klein and Manning

(2003a), adverbs (RB) do contain splits for adverbs under ADVPs (also), NPs (only), and

VPs (not).

Functional categories generally show fewer splits, but those splits that they do exhibit

are known to be strongly correlated with syntactic behavior. For example, determiners

(DT) divide along several axes: definite (the), indefinite (a), demonstrative (this), quan-

tificational (some), negative polarity (no, any), and various upper- and lower-case distinc-

tions inside these types. Here, it is interesting to note that these distinctions emerge in

a predictable order (see Figure 2.2 for DT splits), beginning with the distinction between

demonstratives and non-demonstratives, with the other distinctions emerging subsequently;

47

ADVP
ADVP-0 RB-13 NP-2 RB-13 PP-3 IN-15 NP-2
ADVP-1 NP-3 RB-10 NP-3RBR-2 NP-3 IN-14
ADVP-2 IN-5 JJS-1 RB-8RB-6 RB-6 RBR-1
ADVP-3 RBR-0 RB-12 PP-0 RP-0
ADVP-4 RB-3 RB-6 ADVP-2 SBAR-8 ADVP-2 PP-5
ADVP-5 RB-5 NP-3 RB-10 RB-0
ADVP-6 RB-4 RB-0 RB-3 RB-6
ADVP-7 RB-7 IN-5 JJS-1 RB-6
ADVP-8 RB-0 RBS-0 RBR-1 IN-14
ADVP-9 RB-1 IN-15 RBR-0

SINV
SINV-0 VP-14 NP-7 VP-14 VP-15 NP-7 NP-9

VP-14 NP-7 .-0
SINV-1 S-6 ,-0 VP-14 NP-7 .-0

S-11 VP-14 NP-7 .-0

Table 2.8. The most frequent three productions of some latent phrasal subcategories.

this echoes the result of Klein and Manning (2003a), where the authors chose to distinguish

the demonstrative contrast, but not the additional ones learned here.

Another very important distinction, as shown in Klein and Manning (2003a), is the

various subdivisions in the preposition class (IN). Learned first is the split between subor-

dinating conjunctions like that and proper prepositions. Then, subdivisions of each emerge:

wh-subordinators like if, noun-modifying prepositions like of, predominantly verb-modifying

ones like from, and so on.

Many other interesting patterns emerge, including many classical distinctions not specif-

ically mentioned or modeled in previous work. For example, the wh-determiners (WDT)

split into one class for that and another for which, while the wh-adverbs align by reference

type: event-based how and why vs. entity-based when and where. The possessive particle

(POS) has one class for the standard ’s, but another for the plural-only apostrophe. As a

final example, the cardinal number nonterminal (CD) induces various categories for dates,

fractions, spelled-out numbers, large (usually financial) digit sequences, and others.

48

 0

 5

 10

 15

 20

 25

 30

 35

 40

R
O

O
T

L
STX

W
H

A
D

JP
R

R
C

SB
A

R
Q

IN
T

J
W

H
A

D
V

P
U

C
P

N
A

C
FR

A
G

C
O

N
JPSQ

W
H

PP
PR

T
SI

N
V

N
X

PR
N

W
H

N
P

Q
P

SB
A

R
A

D
JPS

A
D

V
PPPV
P

N
P

N
um

be
r

of
 la

te
nt

 s
ub

ca
te

go
ri

es

Figure 2.10. Number of latent phrasal subcategories determined by our split-merge proce-
dure after 6 SM cycles.

2.6.2 Phrasal Subcategories

Analyzing the splits of phrasal nonterminals is more difficult than for lexical categories,

and we can merely give illustrations. We show some of the top productions of two categories

in Table 2.8.

A nonterminal split can be used to model an otherwise uncaptured correlation between

that category’s external context (e.g. its parent category) and its internal context (e.g. its

child categories). A particularly clean example of a split correlating external with internal

contexts is the inverted sentence category (SINV), which has only two subcategories (see

Figure 2.10), one which usually has the ROOT category as its parent (and which has

sentence final punctuation as its last child), and a second subcategory which occurs in

embedded contexts (and does not end in punctuation). Such patterns are common, but

often less easy to predict. For example, possessive NPs get two subcategories, depending on

whether their possessor is a person / country or an organization. The external correlation

turns out to be that people and countries are more likely to possess a subject NP, while

organizations are more likely to possess an object NP.

Nonterminal splits can also be used to relay information between distant tree nodes,

though untangling this kind of propagation and distilling it into clean examples is not

49

trivial. As one example, the subcategory S-12 (matrix clauses) occurs only under the

ROOT category. S-12’s children usually include NP-8, which in turn usually includes PRP-

0, the capitalized nominative pronouns, DT-{1,2,6} (the capitalized determiners), and so

on. This same propagation occurs even more frequently in the intermediate categories,

with, for example, one subcategory of NP category specializing in propagating proper noun

sequences.

Verb phrases, unsurprisingly, also receive a full set of subcategories, including categories

for infinitive VPs, passive VPs, several for intransitive VPs, several for transitive VPs with

NP and PP objects, and one for sentential complements. As an example of how lexical splits

can interact with phrasal splits, the two most frequent rewrites involving intransitive past

tense verbs (VBD) involve two different VPs and VBDs: VP-14 → VBD-13 and VP-15 →

VBD-12. The difference is that VP-14s are main clause VPs, while VP-15s are subordinate

clause VPs. Correspondingly, VBD-13s are verbs of communication (said, reported), while

VBD-12s are an assortment of verbs which often appear in subordinate contexts (did, began).

Other interesting phenomena also emerge. For example, intermediate categories, which

in previous work were very heavily, manually split using a Markov process, end up encoding

processes which are largely Markov, but more complex. For example, some classes of adverb

phrases (those with RB-4 as their head) are ‘forgotten’ by the VP intermediate grammar.

The relevant rule is the very probable VP-2 → VP-2 ADVP-6; adding this ADVP to a

growing VP does not change the VP subcategory. In essence, at least a partial distinction

between verbal arguments and verbal adjuncts has been learned (as exploited in Collins

(1999), for example).

2.6.3 Multilingual Analysis

As we saw in Section 2.5.3, latent variable grammars achieve state-of-the-art perfor-

mance on a wide array of syntactically very different languages. We analyzed and compared

the learned subcategories for different languages and found many similarities. As in the case

of English, the learned subcategories exhibit interesting linguistic interpretations. Table 2.9

50

to Table 2.12 show selected subcategories for a number of different part-of-speech (POS)

categories from randomly selected grammars after four split-merge cycles. Where applica-

ble (most notably for Bulgarian and German) we see subcategories for different cases and

genders. A particularly clean example is the determiner category (ART) for German. We

should note here that some of the POS tags in the Bulgarian treebank have been annotated

with gender information already (indicated by a dashed line in the table), while we auto-

matically learn those distinction for others, for example for the personal demonstratives

(PDA).17 Across all languages, we see subcategories for years, months, days, job titles, first

and last names, locations, etc. Often times subcategories for verbs taking particular types

of arguments will emerge.

2.7 Summary and Future Work

In this chapter we presented latent variable grammars, which allow fast, accurate pars-

ing, in multiple languages and domains. Starting from an observed, but coarse, treebank

we induce a hierarchy of increasingly refined grammars. We use a split-merge approach

to learn a tight fit to the training data, while controlling the grammar size. Parameter

smoothing is furthermore applied to overcome data fragmentation and improve generaliza-

tion performance. The resulting grammars are not only significantly more accurate, than

that of previous work, but also much smaller. While all this is accomplished with only

automatic learning, the resulting grammar is human-interpretable. It shows most of the

manually introduced annotations discussed by previous work, but also learns other linguistic

phenomena.

We also presented a coarse-to-fine inference procedure, which gives tremendous speed-

ups over direct inference in the most refined model. In our multipass approach, we re-

peatedly re-parse with increasingly more refined grammars, ruling out large portions of

the search space. While our inference scheme is approximate, it produces very few search
17 In a separate experiment, we removed the gender annotation and trained our model on this simplified tag

set. As one might expect, many of the learned subcategories automatically recovered the gender distinctions.

51

BULGARIAN
Pda-1 tak�v - -

masculine demonstratives that m-s - -
Pda-2 takava Takava -

feminine demonstratives that f-s That f-s -
Pda-3 takiva Takiva -

plural demonstratives these f-p These f-p -
Pda-5 Tak�v Takova Takiva

capitalized demonstratives That m-s That n-s These f-p

Md-0 poveqe mnogo poveqeto
augmentative adverbials more a lot more

Md-1 Mnogo Poveqe Na�-mnogo
capitalized augm. adverbials A lot More The most

Md-4 malko Malko Na�-malko
diminutive adverbials little Little the least

Vpiicao-1 slu�il potil nad�val
transitive verbs served sweated hoped

Vpiicao-3 mog�l mogli mogla
forms of “can” could could could

Vpiicao-4 v�rveli prekal�vala otival
intransitive verbs walked overdid went

Ncmsi-0 mesec dekemvri �nuari
months month decemeber january

Ncmsi-3 v�pros dogovor otgovor
types of statements question contract answer

Ncmsi-4 student pensioner in�ener
jobs masculine student m retiree m engineer m

Ncfsi-0 �ena baba ma�ka
feminine family members woman grandmother mother

Ncfsi-3 studentka pensionerka uqitelka
jobs feminine student f retiree f teacher f

Name-0 Kostov Bux Filqev
last names Kostov Bush Filchev

Name-3 Sofi� Plovdiv Teksas
city names Sofia Plovdiv Texas

Name-4 Evropa B�lgari� �goslavi�
country names Europe Bulgaria Yugoslavia

Name-7 Levski Dondukov Rakovski
street names Levski Dondukov Rakovski

Momsi-0 roman numbers II XIX XX

Momsi-1 masculine
vtori treti peti

second m third m fifth m

Momsi-4 digits 12 11 15
Mofsi-0 years 2001 2000 2002

Mofsi-3 feminine
vtora p�rva treta

second f first f third f

Mofsi-4 digits 1 10 2

Table 2.9. The most frequent words, their translations and grammatical classification for
several Bulgarian POS tags ({masculine, feminine, neuter}-{singular, plural}).

52

CHINESE
NN-4 地区 国家 省

locations region country province

NN-6 投资 经济 生产
economic concepts investment economy production

NN-8 市场 政府 工业
market market government industry

NN-14 电 记者 图
“beginning of news story” by wire reporter picture

NT-0 二０００年 一九九五年 一九九六年
years 2000 1995 1996

NT-5 今年 去年 明年
relative years this year last year next year

NT-6 一日 １日 十五日
days 21st 22nd 15th

NT-12 十一月 六月 十月
months November June October

NR-5 北京 上海 广州
chinese cities Beijing Shanghai Guangzhou

NR-5 刚果 香港 中国
country names Congo Hong Kong China

NR-7 美 英 日
abbr. country names America Britain Japan

VV-5 发展 增加 增长
improvement verbs develop increase grow

VV-9 让 使 令
forms of “make” let cause force

VV-6 希望 认为 想
sentential argument wish believe think

VV-12 起来 出来 下来
directional verbs come up come out come down

Table 2.10. The most frequent words, their translations and grammatical classification for
several Chinese POS tags ({masculine, feminine, neuter}-{singular, plural}).

53

FRENCH
D-0 les la le

determiners the m/f-p the f-s the m-s

D-2 Le La Les
capitalized determiners The m-s The f-s The m/n-p

D-2 le l’ cette
feminine determiners the f-s the f-s this f-s

D-3 deux trois un
spelled out numbers two three one

D-6 numbers 1 50 40

PRO-0 qui que où
relative pronouns who that where

PRO-2 un même autre
indefinite one same other

PRO-3 celui celle ceux
demonstatives that m-s that f-s that m/f-p

PRO-6 dont - -
possesive whose - -

ADV-1 plus moins environ
quantity more less about

ADV-3 Ainsi Enfin Pourtant
sentence initial Thus Finally Though

ADV-5 au à en
prepositions to to in

ADV-9 negation ne Ne N’

C-0 et ou -
coordinating conjunctions and or -

C-1 que - -
that that - -

C-6 Mais Et Or
capitalized conjunctions But And And yet

NN-4 président ministre politique
jobs President Minister Politician

NN-7 France Bretagne Unis
locations France Brittany United

NN-10 de d’ des
from from from from

NN-11 M. Mr Mme
titles Mr. Mr. Mrs.

NN-13 % milliards millions
units % billion million

NN-14 janvier décembre juillet
month names January December July

Table 2.11. The most frequent words, their translations and grammatical classification for
several French POS tags ({masculine, feminine}-{singular, plural}).

54

GERMAN
ART-1 die der das

nominative determiners the f-s-n the m-s-n the n-s-n

ART-0 Die Der Das
capitalized determiners The f-s-n The m-s-n The n-s-n

ART-2 der des eines
genitive determiners the f-s-g the m/n-s-g a m/n-s-g

ART-5 einem einen einer
dative determiners a m/n-s-d a m/n-p-d a f-s-d

ART-7 den die einen
accusative determiners the m/n-s-a the f-s-a a m/n-s-a

PPER-0 ihm mir ihr
dative pronouns him dat me dat her dat

PPER-1 ihn ihnen uns
accusative pronouns him acc them acc us acc

PPER-3 er sie es
nominative pronouns he she it

PPER-4 Sie Er Es
nominative pronouns She He It

ADV-0 sonntags samstags montags
weekdays sundays saturdays mondays

ADV-1 abend morgen oben
times of the day evening morning above

ADV-4 So Da Dann
capitalized adverbs That That Then

ADV-6 aber dann jedoch
adverbs but then however

NN-4 Bürgermeister Präsident Trainer
jobs mayor president coach

NN-7 Stadt Platz Strasse
locations city square street

NN-11 Samstag Sonnatg Dienstag
weekdays Saturday Sunday Tuesday

NN-14 Juni Juli Mai
month names June July May

NE-1 first names Peter Michael Klaus
NE-4 city names Düsseldorf Frankfurt München
NE-7 country names USA Schweiz EG
NE-15 news agencies dpa de AP
NE-13 political parties CDU SPD FDP
CARD-0 sports results 6:4 2:1 1:0
CARD-1 year numbers 1992 1993 1991

CARD-3 spelled out numbers
zwei drei fünf
two three five

CARD-5 round numbers 100 20 50

Table 2.12. The most frequent words, their translations and grammatical classification
for several German POS tags ({masculine, feminine, neuter}-{singular, plural}-
{nominative, genitive, dative, accusative}).

55

ITALIAN
ART-2 una un’ un

indefinite articles a f-s a f-s a m-s

ART-4 la La lo
definite articles singular the f-s The f-s the m-p

ART-6 le i gli
definite articles plural the f-p the m-p the m-p

ART-9 della alla dalla
contracted prepositions from the f-s to the f-s from the f-s

ART-13 dell’ all’ dall’
contracted prepositions before vowel from the f-s to the f-s from the f-s

NOU-4 anni giorni metri
unit nouns years days meters

NOU-7 articoli leggi cose
things articles laws things

NOU-13 Tirana Valona Albania
places Tirana Valona Albania

PREP-1 al alla all’
to + artcle to the m-s to the f-s to the m-s

PREP-3 del della dell’
from + artcle from the m-s from the f-s from the m-s

PREP-5 In A Per
sentence initial In To For

VMA-1 visto fatto stato
past participle seen done been

VMA-3 applicano serve osservano
present tense apply serve observe

VMA-7 servente dominante esistenti
present participle serving dominating existing

VMA-10 vedere fare pagare
infinitives to see to do to pay

NUM-0 small numbers 1 2 3

NUM-1 spelled out numbers
due tre sei
two three six

NUM-2 round numbers 50 20 10
NUM-3 arbitrary numbers 832 940 874

Table 2.13. The most frequent words, their translations and grammatical classification for
several Italian POS tags ({masculine, feminine, neuter}-{singular, plural}).

56

errors in practice because we compute a hierarchy of grammars specifically for pruning, by

minimizing the KL divergence between the induced tree distributions. Finally, we inves-

tigated different objective functions for parse selection and showed that the appropriate

risk-minimizing methodology significantly improves parsing accuracy.

The parser along with grammars for a number of languages is publicly available at

http://nlp.cs.berkeley.edu and is being actively used by other researchers. It has

been adapted to other languages, for example French (Crabbé and Candito, 2008) and

Chinese (Huang and Harper, 2009), or used in systems for sentence segmentation (Favre

et al., 2008), and most notably in the currently best syntactic machine translation system

(Chiang et al., 2009). But there also lots of other promising avenues worth exploring. For

example, different parsers seem to be making very different errors, and it has been shown

that parsing accuracy can be significantly improved by combining n-best lists from different

systems (Zhang et al., 2009). However, as demonstrated by Huang (2008) n-best lists have

only limited variety and the combination really should be done on the parse forests instead.

To further boost performance on out-of-domain text, techniques like the one presented in

McClosky et al. (2006) and Huang and Harper (2009) could be extended. Finally, one way

of improving parsing performance for resource-poor languages, is by exploiting parallel data

and good parsers from a resource-rich langauge. Burkett and Klein (2008) present such a

multilingual parsing systems, however, their system works only in the presence of labeled

bitexts and it would be exciting to extend their work to work with less supervision.

57

Chapter 3

Discriminative Latent Variable

Grammars

3.1 Introduction

As we saw in the previous chapter, learning a refined latent variable grammar involves

the estimation of a set of grammar parameters θ on latent annotations despite the fact

that the original trees lack the latent annotations. In the previous chapter, we considered

generative grammars, where the parameters θ are set to maximize the joint likelihood of

the training sentences and their parse trees. In this section we will consider discriminative

grammars, where the parameters θ are set to maximize the likelihood of the correct parse

tree (vs. all possible trees) given a sentence.

The motivations for this endeavor are at least two fold. Since the grammars are not

used for language modeling, but instead for parse tree prediction and discrimination, the

discriminative training criterion is actually the more suitable one. One can therefore hope

that training the grammars specifically for their discrimination utility will result in more

accurate grammars. Furthermore, it is reasonable to assume that some generatively learned

splits will have little discriminative utility, unnecessarily increasing the grammar size. As
0The material in this chapter was originally presented in Petrov and Klein (2008a,b).

58

we will see, both of these intuitions are correct, and our final discriminative grammars will

be more accurate despite having few parameters than their generative counterparts.

3.2 Log-Linear Latent Variable Grammars

In a log-linear framework, our latent variable grammars can be parametrized by a vector

θ which is indexed by productions X → γ (Johnson, 2001). The conditional probability of

a derivation tree t given a sentence w is proportional to the product of the weights of its

productions f(t):

Pθ(t|w) =
1

Z(θ, w)

∏
X→γ∈t

eθX→γ =
1

Z(θ, w)
eθTf(t) (3.1)

where Z(θ, w) is the partition function and f(t) is a vector indicating how many times each

production occurs in the derivation t. The score of a parse T is then the sum of the scores

of its derivations:

P (T |w) =
∑
t∈T

P (t|w) (3.2)

The inside/outside algorithm (Lari and Young, 1990) gives us an efficient way of sum-

ming over an exponential number of derivations. Given a sentence w spanning the words

w1, w2, . . . , wn = w1:n, the inside and outside scores of a (split) category A spanning (i, j)

are computed by summing over all possible children B and C spanning (i, k) and (k, j)

respectively:1

Sin(A, i, j) =
∑

A→BC

∑
i<k<j

φA→BC × Sin(B, i, k)× Sin(C, k, j)

Sout(A, i, j) =
∑

B→CA

∑
1≤k<i

φB→CA × Sout(B, k, j)× Sin(C, k, i) +

∑
B→AC

∑
j<k≤n

φB→AC × Sout(B, i, k)× Sin(C, j, k), (3.3)

where we use φA→BC = eθA→BC . In the generative case these scores correspond to the

inside and outside probabilities Sin(A, i, j) = Pin(A, i, j) def= P(wi:j |A) and Sout(A, i, j) =

Pout(A, i, j) def= P(w1:iAwj:n) (Lari and Young, 1990). The scores lack this probabilistic
1Although we show only the binary component, of course both binary and unary productions are included.

59

interpretation in the discriminative case, but they can nonetheless be normalized in the

same way as probabilities to produce the expected counts of productions needed at training

time. The posterior probability of a production A→ BC spanning (i, j) with split point k

in a sentence is easily expressed as:

〈A→ BC, i, j, k〉 ∝ Sout(A, i, j)× φA→BC × Sin(B, i, k)× Sin(C, k, j) (3.4)

While generative grammars with latent variables can be seen as tree structured hidden

Markov models, discriminative grammars with latent variables in contrast can be seen as

conditional random fields (Lafferty et al., 2001) over trees. In the generative case, learning

involves maximizing the log joint likelihood of the training sentences w and parse trees T :

Ljoint(θ) = log
∏

i

Pθ(wi, Ti) = log
∏

i

∑
t:Ti

Pθ(wi, t), (3.5)

where t are derivations (over split categories) corresponding to the observed parse tree (over

unsplit categories). In the discriminative case, we maximize the log conditional likelihood:

Lcond(θ) = log
∏

i

Pθ(Ti|wi) = log
∏

i

∑
t:Ti

eθTf(t)

Z(θ, wi)
(3.6)

We directly optimize this non-convex objective function using a numerical gradient based

method (LBFGS (Nocedal and Wright, 1999) in our implementation).2 Fitting the log-linear

model involves the following derivatives:

∂Lcond(θ)
∂θX→γ

=
∑

i

(
Eθ [fX→γ(t)|Ti]− Eθ[fX→γ(t)|wi]

)
, (3.7)

where the first term is the expected count of a production in derivations corresponding to the

correct parse tree and the second term is the expected count of the production in all parses.

Both expectations can be computed with variants of Equation 3.4. Note that because there

are latent subcategories on the observed parse trees, we are not only taking an expectation

over the counts in the denominator but also over the counts in the numerator. The challenge
2 Alternatively, maximum conditional likelihood estimation can also be seen as a special case of maximum

likelihood estimation, where P(w) is assumed to be the empirical one and not learned. The conditional
likelihood optimization can therefore be addressed by an EM algorithm which is similar to the generative case.
However, while the E-Step remains the same, the M-Step involves fitting a log-linear model, which requires
optimization, unlike the joint case, which can be done analytically using relative frequency estimators. This
EM algorithm typically converges to a comparable local maximum as direct optimization of the objective
function but requires 3-4 times more iterations.

60

in estimating discriminative grammars is that the computation of some quantities requires

repeatedly taking expectations over all parses of all sentences in the training set. We will

discuss ways to make their computation on large data sets practical in the next section.

3.3 Single-Scale Discriminative Grammars

In this section we will consider a discriminative version of the grammars presented in

the previous chapter. The model will be the same, but we will use conditional likelihood for

estimating the model parameters, and the rule scores won’t be required to be probabilities

(and sum to one).

We can learn discriminative latent variable grammars in an iterative fashion. As in

Chapter 2, we start with a simple X-bar grammar from an input treebank. The parameters

θ of the grammar (production log-weights for now) are estimated in a log-linear framework

by maximizing the log conditional likelihood Lcond, see Equation 3.6.3 We directly optimize

this non-convex objective function by hill climbing along the gradient in Equation 3.7 Once

the base grammar has been estimated, all categories are split in two, meaning that all binary

productions are split in eight. We then add some random noise to break symmetries and

estimate the next level of the grammar hierarchy. Note, however, that asides from initial-

ization, the new grammar parameters are in no way tied to the parameters of the previous

grammar in the hierarchy. We therefore refer to these grammars as single-scale discrimi-

native grammars. We will present an alternative model, called multi-scale discriminative

grammars, where the parameters are inherited in Section 3.4

3.3.1 Efficient Discriminative Estimation

Computing the partition function in Equation 3.6 requires parsing of the entire training

corpus. Even with recent advances in parsing efficiency and fast CPUs, parsing the entire

corpus repeatedly remains prohibitive. Fast parsers like (Charniak and Johnson, 2005) or

the one presented in the previous chapter can parse several sentences per second, but parsing
3We consider different regularization penalties in Section 3.3.2.

61

the 40,000 training sentences still requires more than 5 hours on a fast machine. Even in

a parallel implementation, parsing the training corpus several hundred times, as necessary

for discriminative training, would and, in fact, did in the case of maximum margin training

(Taskar et al., 2004), require weeks. Generally speaking, there are two ways of speeding up

the training process: reducing the total number of training iterations and reducing the time

required per iteration.

Hierarchical Estimation

The number of training iterations can be reduced by training models of increasing com-

plexity in a hierarchical fashion. For example in mixture modeling (Ueda et al., 2000) and

machine translation (Brown et al., 1993), a sequence of increasingly more complex models

is constructed and each model is initialized with its (simpler) predecessor. In our case,

we begin with the unsplit X-Bar grammar and iteratively split each category in two and

re-train the grammar. In each iteration, we initialize with the results of the smaller gram-

mar, splitting each annotation category in two and adding a small amount of randomness

to break symmetry. In addition to reducing the number of training iterations, hierarchical

training has been shown to lead to better parameter estimates (Section 2.3.1). However,

even with hierarchical training, large-scale discriminative training will remain impractical,

unless we can reduce the time required to parse the training corpus.

Feature-Count Approximation

High-performance parsers have employed coarse-to-fine pruning schemes, where the sen-

tence is rapidly pre-parsed with increasingly more complex grammars (see Section 2.4 or

(Charniak et al., 2006)). Any constituent with sufficiently low posterior probability triggers

the pruning of its refined variants in subsequent passes. While this method has no theoret-

ical guarantees, we saw that it can lead to a 100-fold speed-up without producing search

errors in Chapter 2.

Instead of parsing each sentence exhaustively with the most complex grammar in each

62

iteration, we can approximate the expected feature counts by parsing in a hierarchical

coarse-to-fine scheme. We start by parsing exhaustively with the X-Bar grammar and then

prune constituents with low posterior probability (e−10 in our experiments).4 We then

continue to parse with the next more refined grammar, skipping over constituents whose

less refined predecessor has been pruned. After parsing with the most refined grammar,

we extract expected counts from the final (sparse) chart. The expected counts will be

approximations because many small counts have been set to zero by the pruning procedure.

Even though this procedure speeds-up each training iteration tremendously, training

remains prohibitively slow. We can make repeated parsing of the same sentences signifi-

cantly more efficient by caching the pruning history from one training iteration to the next.

Instead of computing each stage in the coarse-to-fine scheme for every pass, we can compute

it once when we start training a grammar and update only the final, most refined scores in

every iteration. Cached pruning has the positive side effect of constraining subcategories

to refine their predecessors, so that we do not need to worry about issues like subcategory

drift and projections Section 2.4.1.

As only extremely unlikely items are removed from the chart, pruning has virtually no

effect on the conditional likelihood. Pruning more aggressively leads to a training procedure

reminiscent of contrastive estimation (Smith and Eisner, 2005), where the denominator is

restricted to a neighborhood of the correct parse tree (rather than containing all possible

parse trees). In our experiments, pruning more aggressively did not hurt performance for

grammars with few subcategories, but limited the performance of grammars with many

subcategories.

3.3.2 Experiments

To empirically verify the utility of discriminative training and to evaluate the efficiency

of our training procedure, we trained grammars on the WSJ section of the Penn Treebank

using the standard setup presented in Table 2.5. We pre-processed (binarized) the training
4Even a tighter threshold produced no search errors on a held out set in Chapter 2. We enforce that the

gold parse is always reachable.

63

 0

 5000

 10000

 15000

 20000

168421

C
on

st
ru

ct
ed

 c
on

st
itu

en
ts

pe
r

se
nt

en
ce

Number of latent subcategories

No pruning
Coarse-to-fine pruning
Precomputed pruning

Figure 3.1. Average number of constructed constituents per sentence. Without pruning,
the number of constituents grows exponentially and quickly leaves the plotted area.

set trees as described in Section 2.5 to produce an right-branching X-bar grammar and then

trained discriminative latent variable grammars as described above. For our lexicon, we used

a simple approach where rare words (seen five times or less during training) are replaced by

one of 50 unknown word tokens based on a small number of word-form features. To parse

new sentences with a grammar, we compute the posterior distribution over productions at

each span and extract the tree with the maximum expected number of correct productions

Section 2.4.2.

Efficiency

The average number of constituents that are constructed while parsing a sentence is

a good indicator for the efficiency of our cached pruning scheme.5 Figure 3.1 shows the

average number of chart items that are constructed per sentence. Coarse-to-fine pruning

refers to hierarchical pruning without caching Section 2.4 and while it is better than no-

pruning, it still constructs a large number of constituents for heavily refined grammars. In

contrast, with cached pruning the number of constructed chart items stays roughly constant

(or even decreases) when the number of subcategories increases. The reduced number of

constructed constituents results in a 10-fold reduction of parsing time, see Figure 3.1, and

makes discriminative training on a large scale corpus computationally feasible.

We found that roughly 100-150 training iterations were needed for LBFGS to converge
5The other main factor determining the parsing time is the grammar size.

64

Parsing time coarse-to-fine cached pruning
1 subcategory 350 min 30 min
2 subcategories 390 min 40 min
4 subcategories 434 min 44 min
8 subcategories 481 min 47 min
16 subcategories 533 min 52 min

Table 3.1. Parsing times for different pruning regimes and grammar sizes.

after each split. Distributing the training over several machines is straightforward as each

sentence can be parsed independently of all other sentences. Starting from an unsplit X-Bar

grammar we were able to hierarchically train a 16 subcategory grammar in three days using

eight CPUs in parallel.6

It should be also noted that we can expedite training further by training in an interleaved

mode, where after splitting a grammar we first run generative training for some time (which

is very fast) and then use the resulting grammar to initialize the discriminative training.

In such a training regime, we only needed around 50 iterations of discriminative training

until convergence, significantly speeding up the training, while maintaining the same final

performance.

Regularization

Regularization is often necessary to prevent discriminative models from overfitting on

the training set. Surprisingly enough, we found that no regularization was necessary when

training on the entire training set, even in the presence of an abundance of features. During

development we trained on subsets of the training corpus and found that regularization

was crucial for preventing overfitting. This result is in accordance with (Liang et al., 2007)

where a variational Bayesian approach was found to be beneficial for small training sets but

performed on par with EM for large amounts of training data.

Regularization is achieved by adding a penalty term to the conditional log likelihood

function Lcond(θ). This penalty term is often a weighted norm of the parameter vector and
6Memory limitations prevent us from learning grammars with more subcategories, a problem that could

be alleviated by merging back the least useful splits as in Section 2.3.2.

65

Exact match F1-score
generative discriminative generative discriminative

1 subcategory 7.6 7.8 64.8 67.3
2 subcategories 14.6 20.1 76.4 80.8
4 subcategories 24.6 31.3 83.7 85.6
8 subcategories 31.4 37.0 86.6 87.8
16 subcategories 35.8 39.4 88.7 89.3

Table 3.2. Discriminative training is superior to generative training for exact match and
for F1-score when the same model and feature sets are used.

thereby penalizes large parameter values. We investigated L1 and L2 regularization:

L′cond(θ) = Lcond(θ)−
1
2

∑
X→γ

|θX→γ |
σ

L′′cond(θ) = Lcond(θ)−
∑
X→γ

(
θX→γ

σ

)2

(3.8)

where the regularization parameter σ is tuned on a held out set. In the L2 case, the

penalty term is a convex and differentiable function of the parameters and hence can be

easily intergrated into our training procedure. In the L1 case, however, the penalty term

is discontinuous whenever some parameter equals zero. To handle the discontinuinty of the

gradient, we used the orthant-wise limited-memory quasi-Newton algorithm of (Andrew

and Gao, 2007).

Table 3.3 shows that while there is no significant performance difference in models

trained with L1 or L2 regularization, there is significant difference in the number of training

iterations and the sparsity of the parameter vector. L1 regularization leads to extremely

sparse parameter vectors (96% of the parameters are zero in the 16 subcategory case), while

no parameter value becomes exactly zero with L2 regularization. It remains to be seen how

this sparsity can be exploited, as these zeros become ones when exponentiated in order to

be used in the computation of inside and outside scores.

Final Test Set Results

Table 3.2 shows a comparison of generative and discriminative grammars for different

numbers of subcategories. Discriminative training is superior to generative training for exact

match as well as for F1-score for all numbers of subcategories. For our largest grammars,

we see absolute improvements of 3.63% and 0.61% in exact match and F1 score respectively.

66

L1 regularization L2 regularization
F1-score Exact # Feat. # Iter. F1-score Exact # Feat. # Iter.

1 subcat. 67.3 7.8 23 K 44 67.4 7.9 35 K 67
2 subcat. 80.8 20.1 74 K 108 80.3 19.5 123 K 132
4 subcat. 85.6 31.3 147 K 99 85.7 31.5 547 K 148
8 subcat. 87.8 37.0 318 K 82 87.6 36.9 2,983 K 111
16 subcat. 89.3 39.4 698 K 75 89.1 38.7 11,489 K 102

Table 3.3. L1 regularization produces sparser solutions and requires fewer training iterations
than L2 regularization.

The better performance is due to better parameter estimates, as the model classes defined

by the generative and discriminative model (probabilistic vs. weighted CFGs) are equivalent

(Smith and Johnson, 2007) and the same feature sets were used in all experiments.

Our test set parsing F1-score of 88.8/88.3 (40 word sentences/all sentences) is bet-

ter than most other systems, including basic generative latent variable grammars (Mat-

suzaki et al., 2005) (F1-score of 86.7/86.1) and even some fully lexicalized systems (Collins,

1999) (F1-score of 88.6/88.2), but falls short of the very best systems (Charniak and John-

son, 2005), or the split & merge grammars presented in Chapter 2, which achieve ac-

curacies above 90%. However, many of the techniques used in (Charniak and Johnson,

2005) and Chapter 2 are orthogonal to what we presented in this section (additional non-

local/overlapping features, merging of unnecessary splits) and we will see how they could

be incorporated into our discriminative model in the next section.

3.4 Multi-Scale Discriminative Grammars

As we saw in the previous section, discriminative latent variables give better perfor-

mance than their generative counterparts when the same set of grammar categories (and

productions) is used. However, the number of grammar parameters grows exponentially

when the all grammar categories are split exhaustively. In the generative case, this issue

was partially addressed by merging back the least useful splits (Section 2.3.2). But still,

each time the number of grammar categories is doubled, the number of binary productions

is increased by a factor of eight. As a result, while our final grammars used few categories,

67

+7.3

+5.0
+7.3 +12

+2.1

Single-scale productions
+5.0 +5.0 +7.3

+2.1 +2.1 +2.1 +2.1

Multi-scale productions

+2.1

+12

+5.0

DT ! the

00

1

010 011
+5.0+5.0+7.3+12

DT ! the

000 100 101 110 111001 010 011
+2.1 +2.1+2.1+2.1

θr̄ θr̂

00

0

*

1

1001 11

0

*

01

DT000 ! the
DT001 ! the
DT010 ! the
DT011 ! the
DT100 ! the
DT101 ! the
DT110 ! the
DT111 ! the

DT00 ! the
DT010 ! the
DT011 ! the

DT1 ! the}
}

+12

Figure 3.2. Multi-scale refinement of the DT → the production. The multi-scale grammar
can be encoded much more compactly than the equally expressive single scale grammar by
using only the shaded features along the fringe.

the number of total active (non-zero) productions was still substantial (see Section 3.4.4).

In addition, it is reasonable to assume that some generatively learned splits have little dis-

criminative utility. In this section, we present a discriminative approach which addresses

both of these limitations.

We introduce multi-scale grammars (Petrov and Klein, 2008b), in which some produc-

tions reference fine categories, while others reference coarse categories (see Figure 3.3).

We use the general framework of hidden variable CRFs (Lafferty et al., 2001; Koo and

Collins, 2005), where gradient-based optimization maximizes the likelihood of the observed

variables, here parse trees, summing over log-linearly scored derivations. With multi-scale

grammars, it is natural to refine productions rather than categories. As a result, a category

such as NP can be complex in some regions of the grammar while remaining simpler in

other regions. Additionally, we exploit the flexibility of the discriminative framework both

to improve the treatment of unknown words as well as to include span features (Taskar

et al., 2004), giving the benefit of some input features integrally in our dynamic program.

Our multi-scale grammars are 3 orders of magnitude smaller than the fully-split baseline

grammar and 20 times smaller than the generative split-merge grammars from Chapter 2.

In addition, we exhibit the best parsing numbers on several metrics, for several domains

and languages.

3.4.1 Hierarchical Refinement

Grammar refinement becomes challenging when the number of subcategories is large.

If each category is split into k subcategories, each (binary) production will be split into

68

k3. The resulting memory limitations alone can prevent the practical learning of highly

split grammars (Matsuzaki et al., 2005). This issue was partially addressed in Chapter 2,

where we repeatedly split categories and re-merged some splits if the gains were too small.

However, while the grammars are indeed compact at the (sub-)category level, they are still

dense at the production level, which we address here.

As in Chapter 2, we arrange our subcategories into a hierarchy, as shown in Figure 3.2.

In practice, the construction of the hierarchy is tightly coupled to a split-based learning

process (see Section 3.4.2). We use the naming convention that an original category A

becomes A0 and A1 in the first round; A0 then becoming A00 and A01 in the second round,

and so on. We will use x̂ � x to indicate that the subscript or subcategory x is a refinement

of x̂.7 We will also say that x̂ dominates x, and x will refer to fully refined subcategories. The

same terminology can be applied to (binary) productions, which split into eight refinements

each time the subcategories are split in two.

The core observation leading to multi-scale grammars is that when we look at the

refinements of a production, many are very similar in weight. It is therefore advantageous

to record productions only at the level where they are distinct from their children in the

hierarchy.

A multi-scale grammar is a grammar in which some productions reference fine categories,

while others reference coarse categories. As an example, consider the multi-scale grammar

in Figure 3.3, where the NP category has been split into two subcategories (NP0, NP1) to

capture subject and object distinctions. Since it can occur in subject and object position,

the production NP → it has remained unsplit. In contrast, in a single-scale grammar, two

productions NP0 → it and NP1 → it would have been necessary. We use * as a wildcard,

indicating that NP∗ can combine with any other NP, while NP1 can only combine with

other NP1. Whenever subcategories of different granularity are combined, the resulting

constituent takes the more specific label.

In terms of its structure, a multi-scale grammar is a set of productions over varyingly

refined symbols, where each production is associated with a weight. Consider the refinement
7Conversely, x̂ is a coarser version of x, or, in the language of Section 2.4.1, x̂ is a projection of x.

69

of the production shown in Figure 3.2. The original unsplit production (at top) would

naively be split into a tree of many subproductions (downward in the diagram) as the

grammar categories are incrementally split. However, it may be that many of the fully

refined productions share the same weights. This will be especially common in the present

work, where we go out of our way to achieve it (see Section 3.4.2). For example, in Figure 3.2,

the productions DTx → the have the same weight for all categories DTx which refine DT1.8

A multi-scale grammar can capture this behavior with just 4 productions, while the single-

scale grammar has 8 productions. For binary productions the savings will of course be much

higher.

In terms of its semantics, a multi-scale grammar is simply a compact encoding of a

fully refined latent variable grammar, in which identically weighted refinements of produc-

tions have been collapsed to the coarsest possible scale. Therefore, rather than attempting

to control the degree to which categories are split, multi-scale grammars simply encode

productions at varying scales. It is hence natural to speak of refining productions, while

considering the categories to exist at all degrees of refinement. Multi-scale grammars enable

the use of coarse (even unsplit) categories in some regions of the grammar, while requiring

very specific subcategories in others, as needed. As we will see in the following, this flexibil-

ity results in a tremendous reduction of grammar parameters, as well as improved parsing

time, because the vast majority of productions end up only partially split.

Since a multi-scale grammar has productions which can refer to different levels of the

category hierarchy, there must be constraints on their coherence. Specifically, for each

fully refined production, exactly one of its dominating coarse productions must be in the

grammar. More formally, the multi-scale grammar partitions the space of fully refined base

rules such that each r maps to a unique dominating rule r̂, and for all base rules r′ such that

r̂ � r′, r′ maps to r̂ as well. This constraint is always satisfied if the multi-scale grammar

consists of fringes of the production refinement hierarchies, indicated by the shading in

Figure 3.2.

A multi-scale grammar straightforwardly assigns scores to derivations in the correspond-
8We define dominating productions and refining productions analogously as for subcategories.

70

itsaw

 VP0

NP1V*

 S*

 NP0

V0 NP*

hersaw

 VP0

NP1V*

 S*

 NP0

V0 NP1

 VP0

NP1V*

 S*

VP*NP0

her

NP1

she

NP0

it

NP*

saw

V0

Lexicon:

Grammar:

 VP* VP*

she

NP0

it

NP*

Figure 3.3. In multi-scale grammars, the categories exist at varying degrees of refinement.
The grammar in this example enforces the correct usage of she and her, while allowing the
use of it in both subject and object position.

ing fully refined single scale grammar: simply map each refined derivation rule to its dom-

inating abstraction in the multi-scale grammar and give it the corresponding weight. The

fully refined grammar is therefore trivially (though not compactly) reconstructable from its

multi-scale encoding.

It is possible to directly define a derivational semantics for multi-scale grammars which

does not appeal to the underlying single scale grammar. However, in the present work, we

use our multi-scale grammars only to compute expectations of the underlying grammars in

an efficient, implicit way.

3.4.2 Learning Sparse Multi-Scale Grammars

We now consider how to discriminatively learn multi-scale grammars by iterative split-

ting productions. There are two main concerns. First, because multi-scale grammars are

most effective when many productions share the same weight, sparsity is very desirable. In

the present work, we exploit L1-regularization, though other techniques such as structural

zeros (Mohri and Roark, 2006) could also potentially be used. Second, training requires

repeated parsing, so we use coarse-to-fine chart caching to greatly accelerate each iteration.

71

V P
S

N P
SN PD T N N V B D D T N NV Pi k j S 0 → N P 1 V P 0 1I(S0, i, j) I(S11, i, j)

Figure 3.4. A multi-scale chart can be used to efficiently compute inside/outside scores
using productions of varying specificity.

Hierarchical Training

Multi-scale grammars can be trained in similar fashion to single-scale grammars (Sec-

tion 3.3). Training again proceeds in an iterative fashion (see Figure 3.2), however, when

splitting an already refined grammar, we only split productions whose log-weight in the pre-

vious grammar deviates from zero.9 This creates a refinement hierarchy over productions.

Each newly split production r is given a unique feature, as well as inheriting the features

of its parent productions r̂ � r:

φr = exp
(∑

r̂�r

θr̂

)
The parent productions r̂ are then removed from the grammar and the new features are

fit as described above. We detect that we have split a production too far when all child

production features are driven to zero under L1 regularization. In such cases, the children

are collapsed to their parent production, which forms an entry in the multi-scale grammar.

Efficient Multi-Scale Inference

In order to compute the expected counts needed for training, we need to parse the

training set, score all derivations and compute posteriors for all subcategories in the re-

finement hierarchy. The inside/outside algorithm (Lari and Young, 1990) is an efficient

dynamic program for summing over derivations under a context-free grammar. It is fairly

straightforward to adapt this algorithm to multi-scale grammars, allowing us to sum over
9L1-regularization drives more than 95% of the feature weights to zero in each round.

72

an exponential number of derivations without explicitly reconstructing the underlying fully

split grammar.

For single-scale latent variable grammars, the inside score Sin(Ax, i, j) of a fully refined

category Ax spanning 〈i, j〉 is computed by summing over all possible productions r = Ax →

By Cz with weight φr, spanning 〈i, k〉 and 〈k, j〉 respectively:10

Sin(Ax, i, j) =
∑

r

φr

∑
k

Sin(By, i, k)Sin(Cz, k, j)

Note that this involves summing over all relevant fully refined grammar productions.

The key quantities we will need are marginals of the form Sin(Ax, i, j), the sum of the

scores of all fully refined derivations rooted at any Ax dominated by Ax and spanning

〈i, j〉. We define these marginals in terms of the standard inside scores of the most refined

subcategories Ax:

Sin(Ax, i, j) =
∑
x≺x

Sin(Ax, i, j)

When working with multi-scale grammars, we expand the standard three-dimensional

chart over spans and grammar categories to store the scores of all subcategories of the

refinement hierarchy, as illustrated in Figure 3.4. This allows us to compute the scores

more efficiently by summing only over rules r̂ = Ax̂ → Bŷ Cẑ � r:

Sin(Ax, i, j) =
∑

r̂

∑
r≺r̂

φr

∑
k

Sin(By, i, k)Sin(Cz, k, j)

=
∑

r̂

φr̂

∑
r≺r̂

∑
k

Sin(By, i, k)Sin(Cz, k, j)

=
∑

r̂

φr̂

∑
y≺ŷ

∑
z≺ẑ

∑
k

Sin(By, i, k)Sin(Cz, k, j)

=
∑

r̂

φr̂

∑
k

∑
y≺ŷ

Sin(By, i, k)
∑
z≺ẑ

Sin(Cz, k, j)

=
∑

r̂

φr̂

∑
k

Sin(Bŷ, i, k)Sin(Cẑ, k, j)

Of course, some of the same quantities are computed repeatedly in the above equation and

can be cached in order to obtain further efficiency gains. Due to space constraints we omit
10These scores lack any probabilistic interpretation, but can be normalized to compute the necessary

expectations for training, see Section 3.2.

73

these details, and also the computation of the outside score, as well as the handling of unary

productions.

Feature Count Approximations

Estimating discriminative grammars is challenging, as it requires repeatedly taking ex-

pectations over all parses of all sentences in the training set. To make this computation

practical on large data sets, we use the same approach as Section 3.3.1, where we used

caching to handle the repeated parsing of the same sentences. Rather than computing the

entire coarse-to-fine history in every round of training, the pruning history is cached be-

tween training iterations, effectively avoiding the repeated calculation of similar quantities

and allowing the efficient approximation of feature count expectations.

3.4.3 Additional Features

The discriminative framework gives us a convenient way of incorporating additional,

overlapping features. We investigate two types of features: unknown word features (for pre-

dicting the part-of-speech tags of unknown or rare words) and span features (for determining

constituent boundaries based on individual words and the overall sentence shape).

Unknown Word Features

Building a parser that can process arbitrary sentences requires the handling of previously

unseen words. Typically, a classification of rare words into word classes is used (Collins,

1999). In such an approach, the word classes need to be manually defined a priori, for

example based on discriminating word shape features (suffixes, prefixes, digits, etc.).

While this component of the parsing system is rarely talked about, its importance should

not be underestimated: when using only one unknown word class, final parsing performance

drops several percentage points. Some unknown word features are universal (e.g. digits,

dashes), but most of them will be highly language dependent (prefixes, suffixes), making

additional human expertise necessary for training a parser on a new language. It is therefore

74

beneficial to automatically learn what the discriminating word shape features for a language

are. The discriminative framework allows us to do that with ease. In our experiments we

extract prefixes and suffixes of length ≤ 3 and add those features to words that occur 25

times or less in the training set. These unknown word features make the latent variable

grammar learning process more language independent than in previous work.

Span Features

There are many features beyond local tree configurations which can enhance parsing

discrimination; Charniak and Johnson (2005) presents a varied list. In reranking, one can

incorporate any such features, of course, but even in our dynamic programming approach

it is possible to include features that decompose along the dynamic program structure,

as shown by Taskar et al. (2004). We use non-local span features, which condition on

properties of input spans (Taskar et al., 2004). We illustrate our span features with the

following example and the span 〈1, 4〉:

0 “ 1 [Yes 2 ” 3 ,] 4 he 5 said 6 . 7

We first added the following lexical features:

• the first (Yes), last (comma), preceding (“) and following (he) words,

• the word pairs at the left edge 〈“,Yes〉, right edge 〈comma,he〉, inside border

〈Yes,comma〉 and outside border 〈“,he〉.

Lexical features were added for each span of length three or more. We used two groups

of span features, one for natural constituents and one for synthetic ones.11 We found this

approach to work slightly better than anchoring the span features to particular constituent

labels or having only one group.

We also added shape features, projecting the sentence to abstract shapes to capture

global sentence structures. Punctuation shape replaces every non-punctuation word with x

and then further collapses strings of x to x+. Our example becomes #‘‘x’’,x+.#, and the
11Synthetic constituents are nodes that are introduced during binarization.

75

punctuation feature for our span is ‘‘[x’’,]x. Capitalization shape projects the example

sentence to #.X..xx.#, and .[X..]x for our span. Span features are a rich source of

information and our experiments should be seen merely as an initial investigation of their

effect in our system.

3.4.4 Experiments

We ran experiments on a variety of languages and corpora using the standard train-

ing and test splits, as described in Table 2.5. In each case, we start with a completely

unannotated X-bar grammar, obtained from the raw treebank by a simple right-branching

binarization scheme (Section 2.5). We then train multi-scale grammars of increasing latent

complexity as described in Section 3.4.2, directly incorporating the additional features from

Section 3.4.3 into the training procedure. Hierarchical training starting from a raw tree-

bank grammar and proceeding to our most refined grammars took three days in a parallel

implementation using 8 CPUs. At testing time we marginalize out the hidden structure and

extract the tree with the highest number of expected correct productions, as in Section 2.4.2.

We compare to a baseline of single-scale discriminative latent variable grammars Sec-

tion 3.3. We also compare our discriminative multi-scale grammars to their generative

split-merge cousins (Chapter 2), which produce the state-of-the-art figures in terms of ac-

curacy and efficiency on many corpora, see Table 2.6.

Sparsity

One of the main motivations behind multi-scale grammars was to create compact gram-

mars. Figure 3.5 shows parsing accuracies vs. grammar sizes. Focusing on the grammar

size for now, we see that multi-scale grammars are extremely compact - even our most

refined grammars have less than 50,000 active productions. This is 20 times smaller than

the generative split-merge grammars, which use explicit category merging. The graph also

shows that this compactness is due to controlling production sparsity, as the single-scale

discriminative grammars are two orders of magnitude larger.

76

90

85

80

75

100000010000010000

Pa
rs

in
g

ac
cu

ra
cy

 (
F1

)

Number of grammar productions

Discriminative Multi-Scale Grammars
+ Lexical Features

+ Span Features
Generative Split-Merge Grammars

Flat Discriminative Grammars

Figure 3.5. Discriminative multi-scale grammars give similar parsing accuracies as genera-
tive split-merge grammars, while using an order of magnitude fewer rules.

Accuracy

Figure 3.5 shows development set results for English. In terms of parsing accuracy,

multi-scale grammars significantly outperform discriminatively trained single-scale latent

variable grammars and perform on par with the generative split-merge grammars. The

graph also shows that the unknown word and span features each add about 0.5% in final

parsing accuracy. Note that the span features improve the performance of the unsplit base-

line grammar by 8%, but not surprisingly their contribution gets smaller when the grammars

get more refined. Section 3.4.5 contains an analysis of some of the learned features, as well

as a comparison between discriminatively and generatively trained grammars.

Efficiency

In Section 2.4 we demonstrated how the idea of coarse-to-fine parsing (Charniak et al.,

1998, 2006) can be used in the context of latent variable models. In coarse-to-fine parsing

the sentence is rapidly pre-parsed with increasingly refined grammars, pruning away unlikely

chart items in each pass. In their work the grammar is projected onto coarser versions, which

are then used for pruning. Multi-scale grammars, in contrast, do not require projections.

The refinement hierarchy is built in and can be used directly for coarse-to-fine pruning.

77

≤ 40 words all
Parser F1 EX F1 EX

ENGLISH-WSJ
Single-Scale Discriminative Parser 88.8 35.7 88.3 33.1
Charniak et al. (2005) 90.3 39.6 89.7 37.2
Split-Merge Generative Parser 90.6 39.1 90.1 37.1
Multi-Scale Discriminative w/o span features 89.7 39.6 89.2 37.
Multi-Scale Discriminative w/ span features 90.0 40.1 89.4 37.7

ENGLISH-WSJ (reranked)
Huang (2008) 92.3 46.2 91.7 43.5

ENGLISH-BROWN
Charniak et al. (2005) 84.5 34.8 82.9 31.7
Split-Merge Generative Parser 84.9 34.5 83.7 31.2
Multi-Scale Discriminative w/o span features 85.3 35.6 84.3 32.
Multi-Scale Discriminative w/ span features 85.6 35.8 84.5 32.3

ENGLISH-BROWN (reranked)
Charniak et al. (2005) 86.8 39.9 85.2 37.8

FRENCH
Arun and Keller (2005) 79.2 21.2 75.6 16.4
Multi-Scale Discriminative w/o span features 80.1 24.2 77.2 19.2
Split-Merge Generative Parser 81.0 37.8 77.9 17.5

GERMAN
Dubey (2005) F1 76.3 -
Split-Merge Generative Parser 80.8 40.8 80.1 39.1
Multi-Scale Discriminative w/o span features 81.5 45.2 80.7 43.9

Table 3.4. Our final test set parsing accuracies compared to the best previous work on
English, French and German.

Each production in the grammar is associated with a set of hierarchical features. To obtain

a coarser version of a multi-scale grammar, one therefore simply limits which features in

the refinement hierarchy can be accessed. In our experiments, we start by parsing with

our coarsest grammar and allow an additional level of refinement at each stage of the

pre-parsing. Compared to the generative parser from Chapter 2, parsing with multi-scale

grammars requires the evaluation of 29% fewer productions, decreasing the average parsing

time per sentence by 36% to 0.36 sec/sentence.

78

Final Results

For each corpus we selected the grammar that gave the best performance on the devel-

opment set to parse the final test set. Table 3.4 summarizes our final test set performance,

showing that multi-scale grammars achieve state-of-the-art performance on most tasks. On

WSJ-English, the discriminative grammars perform on par with the generative grammars

from Chapter 2, falling slightly short in terms of F1, but having a higher exact match score.

When trained on WSJ-English but tested on the Brown corpus, the discriminative gram-

mars clearly outperform the generative grammars, suggesting that the highly regularized

and extremely compact multi-scale grammars are less prone to overfitting. All those meth-

ods fall short of reranking parsers like Charniak and Johnson (2005) and Huang (2008),

which, however, have access to many additional features, that cannot be used in our dy-

namic program.

When trained on the French and German treebanks, our multi-scale grammars achieve

the best figures we are aware of, without any language specific modifications. This confirms

that latent variable models are well suited for capturing the syntactic properties of a range

of languages, and also shows that discriminative grammars are still effective when trained

on smaller corpora.

3.4.5 Analysis

It can be illuminating to see the subcategories that are being learned by our discrimi-

native multi-scale grammars and to compare them to generatively estimated latent variable

grammars. Compared to the generative case, the lexical categories in the discriminative

grammars are substantially less refined. For example, in the generative case, the nomi-

nal categories were fully refined, while in the discriminative case, fewer nominal clusters

were heavily used. One reason for this can be seen by inspecting the first two-way split in

the NNP tag. The generative model split into initial NNPs (San, Wall) and final NNPs

(Francisco, Street). In contrast, the discriminative split was between organizational enti-

ties (Stock, Exchange) and other entity types (September, New, York). This constrast is

79

N
P

V
P

P
P

S SB
A

R

A
D

JP

A
D

V
P

Q
P

P
R

N

Generative
32 24 20 12 12 12 8 7 5

subcategories
Discriminative

19 32 20 14 14 8 7 9 6
production parameters

Table 3.5. Complexity of highly split phrasal categories in generative and discriminative
grammars. Note that subcategories are compared to production parameters, indicating
that the number of parameters grows cubicly in the number of subcategories for generative
grammars, while growing linearly for multi-scale grammars.

unsurprising. Generative likelihood is advantaged by explaining lexical choice – New and

York occur in very different slots. However, they convey the same information about the

syntactic context above their base NP and are therefore treated the same, discriminatively,

while the systematic attachment distinctions between temporals and named entities are

more predictive.

Analyzing the syntactic and semantic patterns learned by the grammars shows similar

trends. In Table 3.5 we compare the number of subcategories in the generative split-

merge grammars to the average number of features per unsplit production with that phrasal

category as head in our multi-scale grammars after 5 split (and merge) rounds. These

quantities are inherently different: the number of features should be roughly cubic in the

number of subcategories. However, we observe that the numbers are very close, indicating

that, due to the sparsity of our productions, and the efficient multi-scale encoding, the

number of grammar parameters grows linearly in the number of subcategories. Furthermore,

while most categories have similar complexity in those two cases, the complexity of the two

most refined phrasal categories are flipped. Generative grammars split NPs most highly,

discriminative grammars split the VP. This distinction seems to be because the complexity

of VPs is more syntactic (e.g. complex subcategorization), while that of NPs is more lexical

(noun choice is generally higher entropy than verb choice).

It is also interesting to examine the automatically learned word class features. Table 3.6

shows the suffixes with the highest weight for a few different categories across the three

languages that we experimented with. The learning algorithm has selected discriminative

80

ENGLISH GERMAN FRENCH

Adjectives
-ous -los -ien
-ble -bar -ble
-nth -ig -ive

Nouns
-ion -tät -té
-en -ung -eur
-cle -rei -ges

Verbs
-ed -st -ées
-s -eht -é

Adverbs -ly -mal -ent
Numbers -ty -zig —

Table 3.6. Automatically learned suffixes with the highest weights for different languages
and part-of-speech tags.

suffixes that are typical derviational or inflectional morphemes in their respective languages.

Note that the highest weighted suffixes will typically not correspond to the most common

suffix in the word class, but to the most discriminative.

Finally, the span features also exhibit clear patterns. The highest scoring span features

encourage the words between the last two punctuation marks to form a constituent (exclud-

ing the punctuation marks), for example ,[x+]. and :[x+]. Words between quotation

marks are also encouraged to form constituents: ‘‘[x+]’’ and x[‘‘x+’’]x. Span features

can also discourage grouping words into constituents. The features with the highest nega-

tive weight involve single commas: x[x,x+], and x[x+,x+]x and so on (indeed, such spans

were structurally disallowed by the Collins (1999) parser).

3.5 Summary and Future Work

In this chapter we presented discriminatively trained latent variable grammars giving

state-of-the-art parsing performance on a variety of languages and corpora. We showed how

the grammar size can be dramatically reduced by using a multi-scale approach. Multi-scale

grammars have significantly fewer parameters compared to a single-scale baseline, but also

compared to methods like split-merge estimation Chapter 2. Because fewer parameters are

estimated, multi-scale grammars may also be less prone to overfitting, as suggested by a

cross-corpus evaluation experiment. Furthermore, the discriminative framework enables the

81

seamless integration of additional, overlapping features, such as span features and unknown

word features. Such features further improve parsing performance and make the latent

variable grammars very language independent.

While the generative and discriminative grammars that we have presented achieve

roughly the same parsing accuracies, a first analysis shows that they make very different

errors. It would therefore be interesting to combine many grammars in a larger system and

do joint inference over both models (potentially also including a third, lexicalized grammar).

Additionally, the models could be trained to agree, utilizing additional unlabeled data with

the goal of further improving (out-of-domain) performance.

82

Chapter 4

Structured Acoustic Models for

Speech Recognition

4.1 Introduction

In speech recognition we want to convert an acoustic signal to a sequence of words. A

robust speech recognition system could significantly alter the way we interact with com-

puters and enable a plethora of new applications. Speech recognition, however, is a very

difficult task for many reasons. One of the main challenges is even though while each word

has only one (or at most a few) valid orthographic and phonetic transcriptions, the acoustic

characteristics of its utterance will vary greatly. Not only will different speakers pronounce

the same word differently depending on dialect, gender, or age, but the same speaker might

utter the same word differently depending on mood and context.

In this chapter we will look at acoustic modeling for speech recognition, where the goal is

to capture and model the different ways a phone1 can be pronounced depending on context

and speaker. Starting with basic phones that linguists have agreed upon (similar to the

part-of-speech and phrasal categories in the previous chapters), we will learn increasingly
0The material in this chapter was originally presented in Petrov et al. (2007).
1Phones (or phonemes) are the smallest linguistically distinct units of sound.

83

refined models that capture phone-internal as well as context-dependent variations (similar

to the distinctions between subject and object noun phrases).

Continuous density hidden Markov models (HMMs) underlie most automatic speech

recognition (ASR) systems in some form. While the basic algorithms for HMM learning

and inference are quite general, acoustic models of speech standardly employ rich speech-

specific structures to improve performance. For example, it is well known that a monophone

HMM with one state per phone is too coarse an approximation to the true articulatory and

acoustic process. The HMM state space is therefore refined in several ways. To model phone-

internal dynamics, phones are split into beginning, middle, and end subphones (Jelinek,

1976). To model cross-phone coarticulation, the states of the HMM are refined by splitting

the phones into context-dependent triphones. These states are then re-clustered (Odell,

1995) and the parameters of their observation distributions are tied back together (Young

and Woodland, 1994). Finally, to model complex emission densities, states emit mixtures

of multivariate Gaussians. This standard structure is shown schematically in Figure 4.1.

While this rich structure is phonetically well-motivated and empirically successful, so much

structural bias may be unnecessary, or even harmful. For example, we saw in the domain

of syntactic parsing with probabilistic context-free grammars (PCFGs) in Chapter 2, that

automatically induced grammar refinements can outperform sophisticated methods which

exploit substantial manually articulated structure.

In this chapter, we consider an automatic coarse-to-fine, data-driven approach to learn-

ing HMM structure for acoustic modeling, analogous to the coarse-to-fine approach taken

in the previous two chapters for learning PCFGs. We start with a minimal monophone

HMM in which there is a single state for each (context-independent) phone. Moreover, the

emission model for each state is a single multivariate Gaussian (over the standard MFCC

acoustic features). We then iteratively refine this minimal HMM through state splitting,

adding complexity as needed. States in the refined HMMs are always substates of the orig-

inal HMM and are therefore each identified with a unique base phone. States are split,

estimated, and (perhaps) merged, based on a likelihood criterion. Our model never allows

84

Traditional: Start begin end Endmid begin endmid

d7 = c(#-d-ae)

begin endmid begin endmid

ae3 = c(d-ae-d) d13 = c(ae-d-#)

Our Model: Start
a d

End
a d a d

d ae d

b c b c b c

Figure 4.1. Comparison of the standard model to our model (here shown with k = 4
subphones per phone) for the word dad. The dependence of subphones across phones in
our model is not shown, while the context clustering in the standard model is shown only
schematically.

explicit Gaussian mixtures, though substates may develop similar distributions and thereby

emulate such mixtures.

In principle, discarding the traditional structure can either help or hurt the model.

Incorrect prior splits can needlessly fragment training data and incorrect prior tying can

limit the model’s expressivity. On the other hand, correct assumptions can increase the

efficiency of the learner. Empirically, we show that our automatic approach outperforms

classic systems on the task of phone recognition on the TIMIT data set. In particular, it out-

performs standard state-tied triphone models like Young and Woodland (1994), achieving

a phone error rate of 26.4% versus 27.7%. In addition, our approach gives state-of-the-art

performance on the task of phone classification on the TIMIT data set, suggesting that our

learned structure is particularly effective at modeling phone-internal structure. Indeed, our

error rate of 21.4% is outperformed only by the recent structured margin approach of Sha

and Saul (2006). It remains to be seen whether these positive results on acoustic modeling

will facilitate better word recognition rates in a large vocabulary speech recognition system.

We also consider the structures learned by the model. Subphone structure is learned,

similar to, but richer than, standard begin-middle-end structures. Cross-phone coarticula-

tion is also learned, with classic phonological classes often emerging naturally.

Many aspects of this work are intended to simplify rather than further articulate the

acoustic process. It should therefore be clear that the basic techniques of splitting, merging,

85

next

previous

th

dh

p

t

b

g

dx

w

r

l

s

z

sh

f

cl

vcl

m

n

ng

l

r

er

0

(a)

next

previous

th

dh

p

t

b

g

dx

w

r

l

s

z

sh

f

cl

vcl

m

n

ng

l

r

er

0 1

(b)

next

previous

th

dh

p

t

b

g

dx

w

r

l

s

z

sh

f

cl

vcl

m

n

ng

l

r

er

0

3
2

1

(c)

next

previous

th

dh

p

t

b

g

dx

w

r

l

s

z

sh

f

cl

vcl

m

n

ng

l

r

er

1

6

0

3

47

25

(d)

Figure 4.2. Iterative refinement of the /ih/ phone with 1, 2, 4, 8 substates.

and learning using EM are not in themselves new for ASR. Nor is the basic latent induction

method new, as we will using the same techniques as we used for parsing in Chapter 2.

What is novel is (1) the construction of an automatic system for acoustic modeling with

substantially streamlined structure, (2) the investigation of variational inference for such

a task, (3) the analysis of the kinds of structures learned by such a system, and (4) the

empirical demonstration that such a system is not only competitive with the traditional

approach, but can indeed outperform even very recent work on some preliminary measures.

4.2 Learning

In the following, we propose a greatly simplified model that does not impose any manu-

ally specified structural constraints. Traditionally, phones are split into context-dependent

triphones and further refined into beginning, middle, and end subphones, a process which

can be seen as a form of structural bias. Instead of specifying structure a priori, we use

the Expectation-Maximization (EM) algorithm for HMMs (Baum-Welch) to automatically

induce the structure in a way that maximizes data likelihood. Following our coarse-to-fine

paradigm, we start with a minimal model and iteratively refine the structure until a desired

complexity is reached.

86

In general, our training data consists of sets of acoustic observation sequences and phone

level transcriptions r, which specify a sequence of phones from a set of phones Y , but do not

label each time frame with a phone. We refer to an observation sequence as x = x1, . . . , xT ,

where xi ∈ R39 are standard MFCC features (Davis and Mermelstein, 1980). We wish to

induce an HMM over a set of states S for which we also have a function π : S → Y that

maps every state in S to a phone in Y . Note that in the usual formulation of the EM

algorithm for HMMs, one is interested in learning HMM parameters θ that maximize the

likelihood of the observations P(x|θ); in contrast, we aim to maximize the joint probability

of our observations and phone transcriptions P(x, r|θ) or observations and phone sequences

P(x,y|θ) (see below). We now describe this relatively straightforward modification of the

EM algorithm.

4.2.1 The Hand-Aligned Case

For clarity of exposition we first consider a simplified scenario in which we are given

hand-aligned phone labels y = y1, . . . , yT for each time t, as is the case for the TIMIT

dataset. In the hand-aligned case each observation sequence o = o1, . . . , oT comes labeled

with a phone sequence x = x1, . . . , xT and we build an HMM with states s = s1, . . . , sT , such

that each state st at time t maps to the corresponding phone π(st) = xt. Our procedure

does not require such extensive annotation of the training data and in fact gives better

performance when the exact transition point between phones are not pre-specified but

learned.

We define forward and backward probabilities (Rabiner, 1989) in the following way: the

forward probability is the probability of observing the sequence x1, . . . , xt with transcription

y1, . . . , yt and ending in state s at time t:

αt(s) = P(x1, . . . , xt, y1, . . . yt, st = s|λ),

and the backward probability is the probability of observing the sequence xt+1, . . . , xT with

transcription yt+1, . . . , yT , given that we start in state s at time t:

βt(s) = P(xt+1, . . . , xT , yt+1, . . . , yT |st = s, λ),

87

where λ are the model parameters. As usual, we parameterize our HMMs with ass′ , the

probability of transitioning from state s to s′, and bs(x) ∼ N (µs,Σs), the probability

emitting the observation x when in state s.

These probabilities can be computed using the standard forward and backward recur-

sions (Rabiner, 1989), except that at each time t, we only consider states st for which

π(st) = yt, because we have hand-aligned labels for the observations. These quantities also

allow us to compute the posterior counts necessary for the E-step of the EM algorithm.

4.2.2 Splitting

One way of inducing arbitrary structural annotations would be to split each HMM

state in into m substates, and re-estimate the parameters for the split HMM using EM.

This approach has two major drawbacks: for larger m it is likely to converge to poor

local optima, and it allocates substates uniformly across all states, regardless of how much

annotation is required for good performance.

To avoid these problems, we apply a hierarchical parameter estimation strategy similar

in spirit to the work of Sankar (1998) and Ueda et al. (2000), but here applied to HMMs

rather than to GMMs. Beginning with the baseline model, where each state corresponds

to one phone, we repeatedly split and re-train the HMM. This strategy ensures that each

split HMM is initialized “close” to some reasonable maximum.

Concretely, each state s in the HMM is split in two new states s1, s2 with π(s1) =

π(s2) = π(s). We initialize EM with the parameters of the previous HMM, splitting every

previous state s in two and adding a small amount of randomness ε ≤ 1% to its transition

and emission probabilities to break symmetry:

as1s′ ∝ ass′ + ε,

bs1(o) ∼ N (µs + ε,Σs),

and similarly for s2. The incoming transitions are split evenly.

88

We then apply the EM algorithm described above to re-estimate these parameters before

performing subsequent split operations.

4.2.3 Merging

Since adding substates divides HMM statistics into many bins, the HMM parameters

are effectively estimated from less data, which can lead to overfitting. Therefore, it would

be to our advantage to split substates only where needed, rather than splitting them all.

We realize this goal by merging back those splits s → s1s2 for which, if the split were

reversed, the loss in data likelihood would be smallest. We approximate the loss in data

likelihood for a merge s1 s2 → s with the following likelihood ratio (see also Section 2.3.2):

∆(s1 s2 → s) =
∏

sequences

∏
t

Pt(x,y)
P(x,y)

.

Here P(x,y) is the joint likelihood of an emission sequence x and associated state sequence

y. This quantity can be recovered from the forward and backward probabilities using

P(x,y) =
∑

s:π(s)=yt

αt(s) · βt(s).

Pt(x,y) is an approximation to the same joint likelihood where states s1 and s2 are merged.

We approximate the true loss by only considering merging states s1 and s2 at time t, a

value which can be efficiently computed from the forward and backward probabilities. The

forward score for the merged state s at time t is just the sum of the two split scores:

α̂t(s) = αt(s1) + αt(s2),

while the backward score is a weighted sum of the split scores:

β̂t(s) = p1βt(s1) + p2βt(s2),

where p1 and p2 are the relative (posterior) frequencies of the states s1 and s2.

Thus, the likelihood after merging s1 and s2 at time t can be computed from these

merged forward and backward scores as:

P t(x,y) = α̂t(s) · β̂t(s) +
∑
s′

αt(s′) · βt(s′)

89

where the second sum is over the other substates of xt, i.e. {s′ : π(s′) = xt, s
′ /∈ {s1, s2}}.

This expression is an approximation because it neglects interactions between instances of the

same states at multiple places in the same sequence. In particular, since phones frequently

occur with multiple consecutive repetitions, this criterion may vastly overestimate the actual

likelihood loss. As such, we also implemented the exact criterion, that is, for each split, we

formed a new HMM with s1 and s2 merged and calculated the total data likelihood. This

method is much more computationally expensive, requiring a full forward-backward pass

through the data for each potential merge, and was not found to produce noticeably better

performance. Therefore, all experiments use the approximate criterion.

In our experiments, merging was quite valuable. Depending on how many splits were

reversed, we could reduce the model size at the cost of little or no loss of performance, or

even a gain.

4.2.4 Smoothing

Splitting states leads to a better fit to the data by allowing each annotation to specialize

in representing only a fraction of the data. The smaller this fraction, the higher the risk of

overfitting. Merging helps reduce this risk, but it is not the only option. We can further

minimize overfitting by forcing the emission and transition probabilities from subphones of

the same phone to be similar.

We applied two types of smoothing in our experiments. Firstly, all Gaussians were

endowed with weak inverse Wishart priors with zero mean and identity prior covariance.

This mainly prevents the Gaussians from becoming degenerate due to data sparsity for

large numbers of states. We additionally experimented with tying the states that map to

the same phone together by smoothing their transition and emission parameters towards

each other. However, the latter smoothing did not seem to have any beneficial effects.

90

4.2.5 The Automatically-Aligned Case

It is straightforward to generalize the hand-aligned case to the case where the phone

transcription is known, but no frame level labeling is available. The main difference is that

the phone boundaries are not known in advance, which means that there is now additional

uncertainty over the phone states. The forward and backward recursions must thus be

expanded to consider all state sequences that yield the given phone transcription. We can

accomplish this with standard Baum-Welch training.

4.3 Inference

An HMM over refined subphone states s ∈ S naturally gives posterior distributions

P(s|x) over sequences of states s. We would ideally like to extract the transcription r of

underlying phones which is most probable according to this posterior2. The transcription

is two stages removed from s. First, it collapses the distinctions between states s which

correspond to the same phone y = π(s). Second, it collapses the distinctions between where

phone transitions exactly occur. Viterbi state sequences can easily be extracted using the

basic Viterbi algorithm. On the other hand, finding the best phone sequence or transcription

is intractable.

As a compromise, we extract the phone sequence (not transcription) which has highest

probability in a variational approximation to the true distribution (Jordan et al., 1999). Let

the true posterior distribution over phone sequences be P(y|x). We form an approximation

Q(y) ≈ P(y|x), where Q is an approximation specific to the sequence x and factorizes as:

Q(y) =
∏

t

q(t, xt, yt+1).

We would like to fit the values q, one for each time step and state-state pair, so as to make

Q as close to P as possible:

min
q

KL(P(y|x)||Q(y)).

2Remember that by “transcription” we mean a sequence of phones with duplicates removed.

91

The solution can be found analytically using Lagrange multipliers:

q(t, y, y′) =
P(Yt = y, Yt+1 = y′|x)

P(Yt = y|x)
.

where we have made the position-specific random variables Yt explicit for clarity. This

approximation depends only on our ability to calculate posteriors over phones or phone-

phone pairs at individual positions t, which is easy to obtain from the state posteriors, for

example:

P(Yt = y,Yt+1 = y′|x) =∑
s:π(s)=y

∑
s′:π(s′)=y′

αt(s)ass′bs′(xt)βt+1(s′)

P(x)

Finding the Viterbi phone sequence in the approximate distribution Q, can be done with

the Forward-Backward algorithm over the lattice of q values.

4.4 Experiments

We tested our model on the TIMIT database, using the standard setups for phone recog-

nition and phone classification. We partitioned the TIMIT data into training, development,

and (core) test sets according to standard practice (Lee and Hon, 1989; Gunawardana et al.,

2005; Sha and Saul, 2006). In particular, we excluded all dialect sentences (marked as sa

sentences in the training data) and mapped the 61 phonetic labels in TIMIT down to 48

classes before training our HMMs. At evaluation, these 48 classes were further mapped

down to 39 classes, again in the standard way. Error rates will be used for evaluation pur-

poses, and it should be noted that perfect phone recognition error rates are not necessary

for perfect word level transcriptions, as many errors can be corrected by the word level

model which can take into account more context.

MFCC coefficients were extracted from the TIMIT source as in Sha and Saul (2006), in-

cluding delta and delta-delta components. For all experiments, our system and all baselines

92

we implemented used full covariance when parameterizing emission models.3 All Gaussians

were endowed with weak inverse Wishart priors with zero mean and identity covariance.4

4.4.1 Phone Recognition

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

 0.38

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Ph
on

e
R

ec
og

ni
tio

n
E

rr
or

 R
at

e

Total number of HMM states

Splitting only
Splitting and Merging

Splitting and Merging, Automatic Alignment

Figure 4.3. Phone recognition error for models of increasing size.

In the task of phone recognition, we fit an HMM whose output, with subsequent states

collapsed, corresponds to the training transcriptions. In the TIMIT data set, each frame is

manually phone-annotated, so the only uncertainty in the basic setup is the identity of the

(sub)states at each frame.

We therefore began with a single state for each phone, in a fully connected HMM (except

for special treatment of dedicated start and end states). We incrementally trained our model

as described in Section 4.2, with up to 6 split-merge rounds. We found that reversing 25%

of the splits yielded good overall performance while maintaining compactness of the model.

We decoded using the variational decoder described in Section 4.3. The output was then

scored against the reference phone transcription using the standard string edit distance.

During both training and decoding, we used “flattened” emission probabilities by expo-

nentiating to some 0 < γ < 1. We found the best setting for γ to be 0.2, as determined by
3Most of our findings also hold for diagonal covariance Gaussians, albeit the final error rates are 2-3%

higher.
4Following our previous work with PCFGs (Chapter Chapter 2), we experimented with smoothing the

substates towards each other to prevent overfitting, but we were unable to achieve any performance gains.

93

Method Error Rate
State-Tied Triphone HMM (Young and Woodland, 1994) 27.7%1

Gender Dependent Triphone HMM (Lamel and Gauvain, 1993) 27.1%1

This Work 26.4%
Bayesian Triphone HMM (Ming and Smith, 1998) 25.6%
Heterogeneous classifiers (Halberstadt and Glass, 1998) 24.4%

Table 4.1. Phone recognition error rates on the TIMIT core test from Glass (2003).
1These results are on a slightly easier test set.

tuning on the development set. This flattening compensates for the non-independence of the

frames, partially due to overlapping source samples and partially due to other unmodeled

correlations.

Figure 4.3 shows the recognition error as the model grows in size. In addition to the

basic setup described so far (split and merge), we also show a model in which merging

was not performed (split only). As can be seen, the merging phase not only decreases the

number of HMM states at each round, but also improves phone recognition error at each

round.

We also compared our hierarchical split only model with a model where we directly

split all states into 2k substates, so that these models had the same number of states as a

a hierarchical model after k split and merge cycles. While for small k, the difference was

negligible, we found that the error increased by 1% absolute for k = 5. This trend is to

be expected, as the possible interactions between the substates grows with the number of

substates.

Also shown in Figure 4.3, and perhaps unsurprising, is that the error rate can be further

reduced by allowing the phone boundaries to drift from the manual alignments provided

in the TIMIT training data. The split and merge, automatic alignment line shows the

result of allowing the EM fitting phase to reposition each phone boundary, giving absolute

improvements of up to 0.6%.

We investigated how much improvement in accuracy one can gain by computing the

variational approximation introduced in Section 4.3 versus extracting the Viterbi state

sequence and projecting that sequence to its phone transcription. The gap varies, but on

94

a model with roughly 1000 states (5 split-merge rounds), the variational decoder decreases

error from 26.5% to 25.6%. The gain in accuracy comes at a cost in time: we must run a

(possibly pruned) Forward-Backward pass over the full state space S, then another over the

smaller phone space Y . In our experiments, the cost of variational decoding was a factor of

about 3, which may or may not justify a relative error reduction of around 4%.

The performance of our best model (split and merge, automatic alignment, and vari-

ational decoding) on the test set is 26.4%. A comparison of our performance with other

methods in the literature is shown in Table 4.1. Despite our structural simplicity, we out-

perform state-tied triphone systems like Young and Woodland (1994), a standard baseline

for this task, by nearly 2% absolute. However, we fall short of the best current systems.

4.4.2 Phone Classification

Phone classification is the fairly constrained task of classifying in isolation a sequence

of frames which is known to span exactly one phone. In order to quantify how much of our

gains over the triphone baseline stem from modeling context-dependencies and how much

from modeling the inner structure of the phones, we fit separate HMM models for each

phone, using the same split and merge procedure as above (though in this case only manual

alignments are reasonable because we test on manual segmentations). For each test frame

sequence, we compute the likelihood of the sequence from the forward probabilities of each

individual phone HMM. The phone giving highest likelihood to the input was selected. The

error rate is a simple fraction of test phones classified correctly.

Table 4.2 shows a comparison of our performance with that of some other methods in

the literature. A minimal comparison is to a GMM with the same number of mixtures per

phone as our model’s maximum substates per phone. While these models have the same

number of total Gaussians, in our model the Gaussians are correlated temporally, while in

the GMM they are independent. Enforcing begin-middle-end HMM structure (see HMM

Baseline) increases accuracy somewhat, but our more general model clearly makes better

use of the available parameters than those baselines.

95

Method Error Rate
GMM Baseline (Sha and Saul, 2006) 26.0%
HMM Baseline (Gunawardana et al., 2005) 25.1%
SVM (Clarkson and Moreno, 1999) 22.4%
Hidden CRF (Gunawardana et al., 2005) 21.7%
This Work 21.4%
Large Margin GMM (Sha and Saul, 2006) 21.1%

Table 4.2. Phone classification error rates on the TIMIT core test.

Indeed, our best model achieves a surprising performance of 21.4%, greatly outperform-

ing other generative methods and achieving performance competitive with state-of-the-art

discriminative methods. Only the recent structured margin approach of Sha and Saul (2006)

gives a better performance than our model. The strength of our system on the classification

task suggests that perhaps it is modeling phone-internal structure more effectively than

cross-phone context.

4.5 Analysis

While the overall phone recognition and classification numbers suggest that our system

is broadly comparable to and perhaps in certain ways superior to classical approaches, it is

illuminating to investigate what is and is not learned by the model.

Figure 4.4 gives a confusion matrix over the substitution errors made by our model.

The majority of the confusions are within natural classes. Some particularly frequent and

reasonable confusions arise between the consonantal /r/ and the vocalic /er/ (the same

confusion arises between /l/ and /el/, but the standard evaluation already collapses this

distinction), the reduced vowels /ax/ and /ix/, the voiced and voiceless alveolar sibilants

/z/ and /s/, and the voiced and voiceless stop pairs. Other vocalic confusions are generally

between vowels and their corresponding reduced forms. Overall, 76% of the substitutions

are within the broad classes shown in the figure.

We can also examine the substructure learned for the various phones. Figure 4.2 shows

the evolution of the phone /ih/ from a single state to 8 substates during split/merge (no

merges were chosen for this phone), using hand-alignment of phones to frames. These figures

96

iy ix eh ae ax uw uh aa ey ay oy aw ow er el r w y m n ng dx jh ch z s zh hh v f dh th b p d t g k si
l

iy ix eh ae ax uw uh aa ey ay oy aw ow er el r w y m n ng dx jh ch z s zh hh
v f

dh th b p d t g k si
l

iy
ix
eh
ae
ax
uw
uh
aa
ey
ay
oy
aw
ow
er
el
r
w
y
m
n
ng
dx
jh
ch
z
s
zh
hh
v
f
dh
th
b
p
d
t
g
k
sil

iy
ix

eh
ae
ax
uw
uh
aa
ey
ay
oy
aw
ow
er
el
r

w
y

m
n

ng
dx
jh

ch
z
s

zh
hh

v
f

dh
th
b
p
d
t

g
k

sil

Hypothesis

R
ef

er
en

ce

vowels/semivowels

nasals/flaps

strong fricatives

weak fricatives

stops

Figure 4.4. Phone confusion matrix. 76% of the substitutions fall within the shown classes.

were simplified from the complete state transition matrices as follows: (1) adjacent phones’

substates are collapsed, (2) adjacent phones are selected based on frequency and inbound

probability (and forced to be the same across figures), (3) infrequent arcs are suppressed.

In the first split, (b), a sonorant / non-sonorant distinction is learned over adjacent phones,

along with a state chain which captures basic duration (a self-looping state gives an expo-

nential model of duration; the sum of two such states is more expressive). Note that the

natural classes interact with the chain in a way which allows duration to depend on context.

In further refinements, more structure is added, including a two-track path in (d) where

one track captures the distinct effects on higher formants of r-coloring and nasalization.

Figure 4.5 shows the corresponding diagram for /l/, where some merging has also occurred.

Different natural classes emerge in this case, with, for example, preceding states partitioned

into front/high vowels vs. rounded vowels vs. other vowels vs. consonants. Following states

show a front/back distinction and a consonant distinction, and the phone /m/ is treated

97

next

previous

eh

ow

ao

aa

ey

iy

ix

v

f

k

m

ow

ao

aa

ey

iy

ih

ae

ix

z

f

s

1

4

3
5

62

0

p

Figure 4.5. Phone contexts and subphone structure. The /l/ phone after 3 split-merge
iterations is shown.

specially, largely because the /lm/ sequence tends to shorten the /l/ substantially. Note

again how context, internal structure, and duration are simultaneously modeled. Of course,

it should be emphasized that post hoc analysis of such structure is a simplification and

prone to seeing what one expects; we present these examples to illustrate the broad kinds

of patterns which are detected.

As a final illustration of the nature of the learned models, Table 4.3 shows the number

of substates allocated to each phone by the split/merge process (the maximum is 32 for

this stage) for the case of hand-aligned (left) as well as automatically-aligned (right) phone

boundaries. Interestingly, in the hand-aligned case, the vowels absorb most of the complex-

ity since many consonantal cues are heavily evidenced on adjacent vowels. However, in the

automatically-aligned case, many vowel frames with substantial consontant coloring are re-

allocated to those adjacent consonants, giving more complex consonants, but comparatively

less complex vowels.

98

Vowels
aa 31 32
ae 32 17
ah 31 8
ao 32 23
aw 18 6
ax 18 3
ay 32 28
eh 32 16
el 6 4
en 4 3
er 32 31
ey 32 30
ih 32 11
ix 31 16
iy 31 32
ow 26 10

oy 4 4
uh 5 2
uw 21 8
Consonants
b 2 32
ch 13 30
d 2 14
dh 6 31
dx 2 3
f 32 32
g 2 15
hh 3 5
jh 3 16
k 30 32
l 25 32
m 25 25
n 29 32

ng 3 4
p 5 24
r 32 32
s 32 32
sh 30 32
t 24 32
th 8 11
v 23 11
w 10 21
y 3 7
z 31 32
zh 2 2

Other
epi 2 4
sil 32 32
vcl 29 30
cl 31 32

Table 4.3. Number of substates allocated per phone. The left column gives the number of
substates allocated when training on manually aligned training sequences, while the right
column gives the number allocated when we automatically determine phone boundaries.

4.6 Summary and Future Work

In this chapter, we presented a minimalist, automatic approach for building an accurate

acoustic model for phonetic classification and recognition. Our model does not require

any a priori phonetic bias or manual specification of structure, but rather induces the

structure in an automatic and streamlined fashion. Starting from a minimal monophone

HMM, we automatically learn models that achieve highly competitive performance. On the

TIMIT phone recognition task our model clearly outperforms standard state-tied triphone

models like Young and Woodland (1994). For phone classification, our model achieves

performance competitive with the state-of-the-art discriminative methods (Sha and Saul,

2006), despite being generative in nature. This result together with our analysis of the

context-dependencies and substructures that are being learned, suggests that our model is

particularly well suited for modeling phone-internal structure.

It does, of course remain to be seen if and how these benefits can be scaled to larger

systems. The most obvious next application of the coarse-to-fine paradigm is at inference, or

decoding, time. When searching for the most likely word transcription, a very large phoneme

99

lattice needs to be constructed, which could be pruned with coarse-to-fine techniques, and

could greatly speed-up the speech recognition pipeline.

100

Chapter 5

Coarse-to-Fine Machine

Translation Decoding

5.1 Introduction

In machine translation we want to translate sentences from a source language, say

French, into a target language, say English. Building such a system involves learning a

translation model from a large bilingual corpus,1 and then using this model to translate

previously unseen sentences from the source language into the target language. While the

estimation of the translation model is in itself a complex and unsolved problem, that could

be addressed with coarse-to-fine learning techniques, in this chapter we will focus on how

to accelerate the translation process once the model has been learned.

In this chapter we will use a synchronous context-free grammar (CFG) as our translation

model. Synchronous CFGs are analogous to CFGs, except that each synchronous CFG

production is a pair of CFG productions (meaning there are two left hand sides and two right

hand sides). Decoding with a synchronous CFG translation model is very efficient, requiring

only a variant of the CKY algorithm. As in monolingual parsing, dynamic programming

items are simply indexed by a source language span and a syntactic label. However, to
0The material in this chapter was originally presented in Petrov et al. (2008).
1A bilingual corpus is simply a set of sentence pairs which are translations of each other.

101

improve the fluency of such models, the synchronous CFG is typically intersected with

an n-gram language model. The addition of n-gram language model scoring significantly

increases the complexity of the algorithm, because items must now be distinguished by their

initial and final few target language words for purposes of later combination. This situation

is shown in Figure 5.2 and is described in greater detail below.

This lexically exploded search space is a root cause of inefficiency in decoding, and

several methods have been suggested to combat it. The approach most relevant to this work

is Zhang and Gildea (2008), which begins with an initial bigram pass and uses the resulting

chart to guide a final trigram pass. Substantial speed-ups are obtained, but computation

is still dominated by the initial bigram pass. The key challenge is that unigram models

are too poor to prune well, but bigram models are already huge. In short, the problem is

that there are too many words in the target language. Here, we propose a new, coarse-to-

fine, multipass approach which allows much greater speed-ups by translating into abstracted

languages. That is, rather than beginning with a low-order model of a still-large language,

we exploit language projections, hierarchical clusterings of the target language, to effectively

reduce the size of the target language. In this way, initial passes can be very quick, with

complexity phased in gradually.

Central to coarse-to-fine language projection is the construction of sequences of word

clusterings (see Figure 5.1). The clusterings are deterministic mappings from words to

clusters, with the property that each clustering refines the previous one. There are many

choice points in this process, including how these clusterings are obtained and how much

refinement is optimal for each pass. We demonstrate that likelihood-based hierarchical

EM training Chapter 2 and cluster-based language modeling methods (Goodman, 2001)

are superior to both rank-based and random-projection methods. Note that unlikely in the

parsing scenario Chapter 2 where the projection state space was obvious and we only needed

to estimate the parameters of the model, here we are explicitly constructing projections with

coarse-to-fine pruning in mind. In addition, we demonstrate that more than two passes are

beneficial and show that our computation is equally distributed over all passes. In our

102

experiments, passes with less than 16-cluster language models are most advantageous, and

even a single pass with just two word clusters can reduce decoding time greatly.

To follow related work and to focus on the effects of the language model, we present

translation results under an inversion transduction grammar (ITG) translation model (Wu,

1997) trained on the Europarl corpus (Koehn, 2005), described in detail in Section 5.3,

and using a trigram language model. For evaluation purposes we use the standard BLEU

metric (Papineni et al., 2002). The main idea behind BLEU is that the closer a machine

translation is to a professional human translation, the better it is. To compute the closeness

of a candidate translation to a reference translation, a weighted n-gram comparison is done

between both translations. However, because the evaluation is based on n-gram comparison

with reference sentences, it is possible to make sentences with completely different meaning

by switching words/n-grams and still get high scores. However, it is unlikely that this

will happen unintentionally. Many authors have shown (with human subject studies) that

BLEU scores are difficult to compare across different model formalisms and training setups,

but are highly indicative for comparison within the same model class. Typically differences

greater than 0.3 points are considered as significant.

We show that, on a range of languages, our coarse-to-fine decoding approach greatly

outperforms baseline beam pruning and bigram-to-trigram pruning on time-to-BLEU plots,

reducing decoding times by up to a factor of 50 compared to single pass decoding. In

addition, coarse-to-fine decoding increases BLEU scores by up to 0.4 points. This increase

is a mixture of improved search and subtly advantageous coarse-to-fine effects which are

further discussed below.

5.2 Coarse-to-Fine Decoding

In coarse-to-fine decoding, we create a series of initially simple but increasingly complex

search problems. We then use the solutions of the simpler problems to prune the search

spaces for more complex models, reducing the total computational cost.

103

these

one

we

they

the

a

that

for

states

report

of

to

also

been

will

must

0 1

00 01

000 001 010 011 100 101 110 111

10 11

Figure 5.1. An example of hierarchical clustering of target language vocabulary (see Sec-
tion 5.4). Even with a small number of clusters our divisive HMM clustering (Section 5.4.3)
captures sensible syntactico-semantic classes.

5.2.1 Related Work

Taken broadly, the coarse-to-fine approach is not new to machine translation (MT) or

even syntactic MT. Many common decoder precomputations can be seen as coarse-to-fine

methods, including the A*-like forward estimates used in the Moses decoder (Koehn et al.,

2007). In an ITG framework like ours, Zhang and Gildea (2008) consider an approach in

which the results of a bigram pass are used as an A* heuristic to guide a trigram pass. In

their two-pass approach, the coarse bigram pass becomes computationally dominant. Our

work differs in two ways. First, we use posterior pruning rather than A* search. Unlike A*

search, posterior pruning allows multipass methods. Not only are posterior pruning methods

simpler (for example, there is no need to have complex multipart bounds), but they can be

much more effective. For example, in monolingual parsing, posterior pruning methods like

the one presented in Chapter 2 or in Goodman (1997); Charniak et al. (2006); Pauls and

Klein (2009) have led to greater speedups than their more cautious A* analogues (Klein

and Manning, 2003b; Haghighi et al., 2007), though at the cost of guaranteed optimality.

Second, we focus on an orthogonal axis of abstraction: the size of the target language.

The introduction of abstract languages gives better control over the granularity of the search

space and provides a richer set of intermediate problems, allowing us to adapt the level of

refinement of the intermediate, coarse passes to minimize total computation.

Beyond coarse-to-fine approaches, other related approaches have also been demonstrated

for syntactic MT. For example, Venugopal et al. (2007) considers a greedy first pass with a

104

LM
 O

rd
er

Bits in language model

the,report-NP-these,states

1

π
2

3

2 3

the-NP-states0-NP-1 01-NP-10 010-NP-100

0,1-NP-0,1 01,10-NP-00,10 010,100-NP-000,100

...

...

∞

Figure 5.2. Possible state projections π for the target noun phrase “the report for these
states” using the clusters from Figure 5.1. The number of bits used to encode the target
language vocabulary is varied along the x-axis. The language model order is varied along
the y-axis.

full model followed by a second pass which bounds search to a region near the greedy results.

Huang and Chiang (2007) searches with the full model, but makes assumptions about the

the amount of reordering the language model can trigger in order to limit exploration.

5.2.2 Language Model Projections

When decoding in a syntactic translation model with an n-gram language model, search

states are specified by a grammar nonterminal X as well as the the n-1 left-most target side

words ln−1, . . . , l1 and right-most target side words r1, . . . , rn−1 of the generated hypoth-

esis. We denote the resulting lexicalized state as ln−1, . . . , l1-X-r1, . . . , rn−1. Assuming a

vocabulary V and grammar symbol set G, the state space size is up to |V |2(n−1)|G|, which

is immense for a large vocabulary when n > 1. We consider two ways to reduce the size of

this search space. First, we can reduce the order of the language model. Second, we can

reduce the number of words in the vocabulary. Both can be thought of as projections of

the search space to smaller abstracted spaces. Figure 5.2 illustrates those two orthogonal

axes of abstraction.

Order-based projections are simple. As shown in Figure 5.2, they simply strip off the ap-

propriate words from each state, collapsing dynamic programming items which are identical

from the standpoint of their left-to-right combination in the lower order language model.

105

0-X-0

11-X-10 10-X-11 11-X-1100-X-11 10-X-1011-X-01 01-X-1010-X-00 11-X-00 10-X-0100-X-00 01-X-00 00-X-01

1-X-0 0-X-1 1-X-1

2-Bit Pass

1-Bit Pass

 < t ? < t ? < t ? < t ? < t ? < t ? < t ? < t ?

< t ?< t ? < t ? < t ?

01-X-1100-X-1001-X-01

Figure 5.3. Example of state pruning in coarse-to-fine decoding using the language encoding
projection (see Section 5.2.2). During the coarse one-bit word cluster pass, two of the four
possible states are pruned. Every extension of the pruned one-bit states (indicated by the
grey shading) are not explored during the two-bit word cluster pass.

However, having only order-based projections is very limiting. Zhang and Gildea (2008)

found that their computation was dominated by their bigram pass. The only lower-order

pass possible uses a unigram model, which provides no information about the interaction of

the language model and translation model reorderings. We therefore propose encoding-based

projections. These projections reduce the size of the target language vocabulary by deter-

ministically projecting each target language word to a word cluster. This projection extends

to the whole search state in the obvious way: assuming a bigram language model, the state

l-X-r projects to c(l)-X-c(r), where c(·) is the deterministic word-to-cluster mapping.

In our multipass approach, we will want a sequence c1 . . . cn of such projections. This

requires a hierarchical clustering of the target words, as shown in Figure 5.1. Each word’s

cluster membership can be represented by an n-bit binary string. Each prefix of length

k declares that word’s cluster assignment at the k-bit level. As we vary k, we obtain a

sequence of projections ck(·), each one mapping words to a more refined clustering. When

performing inference in a k-bit projection, we replace the detailed original language model

over words with a coarse language model LMk over the k-bit word clusters. In addition, we

replace the phrase table with a projected phrase table, which further increases the speed

of projected passes. In Section 5.4, we describe the various clustering schemes explored, as

well as how the coarse LMk are estimated.

5.2.3 Multipass Decoding

Unlike previous work, where the state space exists only at two levels of abstraction

(i.e. bigram and trigram), we have multiple levels to choose from (Figure 5.2). Because we

106

use both encoding-based and order-based projections, our options form a lattice of coarser

state spaces, varying from extremely simple (a bigram model with just two word clusters)

to nearly the full space (a trigram model with 10 bits or 1024 word clusters).

We use this lattice to perform a series of coarse passes with increasing complexity.

More formally, we decode a source sentence multiple times, in a sequence of state spaces

S0, S1, . . . , Sn=S, where each Si is a refinement of Si−1 in either language model order,

language encoding size, or both. The state spaces Si and Sj (i < j) are related to each

other via a projection operator πj→i(·) which maps refined states deterministically to coarser

states.2

We start by decoding an input x in the simplest state space S0. In particular, we

compute the chart of the posterior distributions p0(s) = P (s|x) for all states s ∈ S0. These

posteriors will be used to prune the search space S1 of the following pass. States s whose

posterior falls below a threshold t trigger the removal of all more refined states s′ in the

subsequent pass (see Figure 5.3). This technique is posterior pruning, and is different from

A* methods in two main ways. First, it can be iterated in a multipass setting, and, second,

it is generally more efficient with a potential cost of increased search errors (see Section 5.2.1

for more discussion).

Looking at Figure 5.2, multipass coarse-to-fine decoding can be visualized as a walk from

a coarse point somewhere in the lower left to the most refined point in the upper right of the

grid. Many coarse-to-fine schedules are possible. In practice, we might start decoding with

a 1-bit word bigram pass, followed by an 3-bit word bigram pass, followed by a 5-bit word

trigram pass and so on (see Section 5.5.3 for an empirical investigation). In terms if time,

we show that coarse-to-fine gives substantial speed-ups. There is of course an additional

memory requirement, but it is negligible. As we will see in our experiments (Section 5.5)

the largest gains can be obtained with extremely coarse language models. In particular, the

largest coarse model we use in our best multipass decoder uses a 4-bit encoding and hence

has only 16 distinct words (or at most 4096 trigrams).
2We also require the projections to be sequentially compatible, so that πi→j(·) = πk→j(·) ◦πi→k(·). That

is, each projection is itself a coarsening of the previous projection.

107

5.3 Inversion Transduction Grammars

While our approach applies in principle to a variety of machine translation systems

(phrase-based or syntactic), we will use the inversion transduction grammar (ITG) approach

of Wu (1997) to facilitate comparison with previous work (Zens and Ney, 2003; Zhang and

Gildea, 2008) as well as to focus on language model complexity. ITGs are a subclass of

synchronous context-free grammars (SCFGs) where there are only three kinds of rules.

Preterminal unary productions produce terminal strings on both sides (words or phrases):

X → e/f . Binary in-order productions combine two phrases monotonically (X → [Y Z]).

Finally, binary inverted productions invert the order of their children (X → 〈Y Z〉). These

productions are associated with rewrite weights in the standard way.

Without a language model, SCFG decoding is just like (monolingual) CFG parsing. The

dynamic programming states are specified by iXj , where 〈i, j〉 is a source sentence span and

X is a nonterminal. The only difference is that whenever we apply a CFG production on

the source side, we need to remember the corresponding synchronous production on the

target side and store the best obtainable translation via a backpointer. See Wu (1996) or

Melamed (2004) for a detailed exposition.

Once we integrate an n-gram language model, the state space becomes lexicalized

and combining dynamic programming items becomes more difficult. Each state is now

parametrized by the initial and final n−1 words in the target language hypothesis:

ln−1, ..., l1-iXj-r1, ..., rn−1. Whenever we combine two dynamic programming items, we

need to score the fluency of their concatentation by incorporating the score of any language

model features which cross the target side boundaries of the two concatenated items (Chi-

ang, 2005). Decoding with an integrated language model is computationally expensive for

two reasons: (1) the need to keep track of a large number of lexicalized hypotheses for

each source span, and (2) the need to frequently query the large language model for each

hypothesis combination.

Multipass coarse-to-fine decoding can alleviate both computational issues. We start

by decoding in an extremely coarse bigram search space, where there are very few pos-

108

sible translations. We compute standard inside/outside probabilities (iS/oS), as follows.

Consider the application of non-inverted binary rule: we combine two items lb-iBk-rb and

lc-kCj-rc spanning 〈i, k〉 and 〈k, j〉 respectively to form a larger item lb-iAj-rc, spanning

〈i, j〉. The inside score of the new item is incremented by:

iS(lb-iAj-rc) += p(X → [Y Z]) · iS(lb-iBk-rb) · iS(lc-kCj-rc) · LM(rb, lc)

This process is also illustrated in Figure 5.4. Of course, we also loop over the split point

k and apply the other two rule types (inverted concatenation, terminal generation). We

omit those cases from this exposition, as well as the update for the outside pass; they are

standard and similar. Once we have computed the inside and outside scores, we compute

posterior probabilities for all items:

p(la-iAj-ra) =
iS(la-iAj-ra)oS(la-iAj-ra)

iS(root)

where iS(root) is sum of all translations’ scores. States with low posteriors are then pruned

away. We proceed to compute inside/outside score in the next, more refined search space,

using the projections πi→i−1 to map between states in Si and Si−1. In each pass, we skip

all items whose projection into the previous stage had a probability below a stage-specific

threshold. This process is illustrated in Figure 5.3. When we reach the most refined search

space S∞, we do not prune, but rather extract the Viterbi derivation instead.3

5.4 Learning Coarse Languages

Central to our encoding-based projections (see Section 5.2.2) are hierarchical clusterings

of the target language vocabulary. In the present work, these clusterings are each k-bit

encodings and yield sequences of coarse language models LMk and phrasetables PTk.
3Other final decoding strategies are possible, of course, including variational methods and minimum-risk

methods (Zhang and Gildea, 2008).

109

lb-iAj -rc lb-iBk-rb lc-kCj-rc

rclb

+

lb rc

+=

iS(lb-iAj -rc) += iS(lb-iBk-rb) · iS(lc-kCj-rc)LM(rb, lc) ·p(X→[Y Z]) ·

lcrb

Figure 5.4. Monotonic combination of two hypotheses during the inside pass involves scoring
the fluency of the concatenation with the language model.

Given a hierarchical clustering, we estimate the corresponding LMk from a corpus ob-

tained by replacing each token in a target language corpus with the appropriate word cluster.

As with our original refined language model, we estimate each coarse language model using

the SRILM toolkit (Stolcke, 2002). The phrasetables PTk are similarly estimated by replac-

ing the words on the target side of each phrase pair with the corresponding cluster. This

procedure can potentially map two distinct phrase pairs to the same coarse translation. In

such cases we keep only one coarse phrase pair and sum the scores of the colliding originals.

There are many possible schemes for creating hierarchical clusterings. Here, we consider

several divisive clustering methods, where coarse word clusters are recursively split into

smaller subclusters.

5.4.1 Random projections

The simplest approach to splitting a cluster is to randomly assign each word type to

one of two new subclusters. Random projections have been shown to be a good and compu-

tationally inexpensive dimensionality reduction technique, especially for high dimensional

data (Bingham and Mannila, 2001). Although our best performance does not come from

random projections, we still obtain substantial speed-ups over a single pass fine decoder

when using random projections in coarse passes.

110

5.4.2 Frequency clustering

In frequency clustering, we allocate words to clusters by frequency. At each level, the

most frequent words go into one cluster and the rarest words go into another one. Concretely,

we sort the words in a given cluster by frequency and split the cluster so that the two halves

have equal token mass. This approach can be seen as a radically simplified version of Brown

et al. (1992). It can, and does, result in highly imbalanced cluster hierarchies.

5.4.3 HMM clustering

As we saw in Chapter 2 likelihood-based hierarchical EM training was very effective for

coarse-to-fine parsing. We can adopt the same approach here by identifying each cluster

with a latent state in an HMM and determinizing the emissions so that each word type

is emitted by only one state. When splitting a cluster s into s1 and s2, we initially clone

and mildly perturb its corresponding state. We then use EM to learn parameters, which

splits the state, and determinize the result. Specifically, each word w is assigned to s1 if

P (w|s1) > P (w|s2) and s2 otherwise. Because of this determinization after each round of

EM, a word in one cluster will be allocated to exactly one of that cluster’s children. This

process not only guarantees that the clusters are hierarchical, it also avoids the state drift

discussed in Section 2.4.1. Because the emissions are sparse, learning is very efficient. An

example of some of the words associated with early splits can be seen in Figure 5.1.

5.4.4 JCluster

Goodman (2001) presents a clustering scheme which aims to minimize the entropy of a

word given a cluster. This is accomplished by incrementally swapping words between clus-

ters to locally minimize entropy.4 This clustering algorithm was developed with a slightly

different application in mind, but fits very well into our framework, because the hierarchical

clusters it produces are trained to maximize predictive likelihood.
4The software for this clustering technique is available at http://research.microsoft.com/~joshuago/.

111

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0 1 2 3 4 5 6 7 8 9 10

P
er

p
le

x
it

y

Number of bits in coarse language model

HMM
JCluster

Frequency
Random

Figure 5.5. Results of coarse language model perplexity experiment (see Section 5.4.5).
HMM and JClustering have lower perplexity than frequency and random clustering for all
number of bits in the language encoding.

5.4.5 Clustering Results

We applied the above clustering algorithms to our monolingual language model data to

obtain hierarchical clusters. We then trained coarse language models of varying granular-

ity and evaluated them on a held-out set. To measure the quality of the coarse language

models we use perplexity (exponentiated cross-entropy).5 Figure 5.5 shows that HMM clus-

tering and JClustering have lower perplexity than frequency and random based clustering

for all complexities. In the next section we will present a set of machine translation experi-

ments using these coarse language models; the clusterings with better perplexities generally

produce better decoders.

5.5 Experiments

We ran our experiments on the Europarl corpus (Koehn, 2005) and show results on

Spanish, French and German to English translation. We used the setup and preprocessing

steps detailed in the 2008 Workshop on Statistical Machine Translation.6 Our baseline

decoder uses an ITG with an integrated trigram language model. Phrase translation pa-

rameters are learned from parallel corpora with approximately 8.5 million words for each of
5We assumed that each cluster had a uniform distribution over all the words in that cluster.
6See http://www.statmt.org/wmt08 for details.

112

 28

 28.2

 28.4

 28.6

 28.8

 29

 29.2

 29.4

 100 1000 10000 100000

B
L

E
U

Total time in seconds

HMM
JCluster

Frequence
Random

Single pass (no clustering)

Figure 5.6. Coarse-to-fine decoding with HMM or JClustering coarse language models
reduce decoding times while increasing accuracy.

the language pairs. The English language model is trained on the entire corpus of English

parliamentary proceedings provided with the Europarl distribution. We report results on

the 2000 development test set sentences of length up to 126 words (average length was 30

words).

Our ITG translation model is broadly competitive with state-of-the-art phrase-based-

models trained on the same data. For example, on the Europarl development test set, we

fall short of Moses (Koehn et al., 2007) by less than one BLEU point. On Spanish-English

we get 29.47 BLEU (compared to Moses’s 30.40), on French-English 29.34 (vs. 29.95), and

23.80 (vs. 24.64) on German-English. These differences can be attributed primarily to the

substantially richer distortion model used by Moses.

The multipass coarse-to-fine architecture that we have introduced presents many choice

points. In the following, we investigate various axes individually. We present our findings

as BLEU-to-time plots, where the tradeoffs were generated by varying the complexity and

the number of coarse passes, as well as the pruning thresholds and beam sizes. Unless

otherwise noted, the experiments are on Spanish-English using trigram language models.

When different decoder settings are applied to the same model, MERT weights (Och, 2003)

from the unprojected single pass setup are used and are kept constant across runs. In

particular, the same MERT weights are used for all coarse passes; note that this slightly

113

 0

 50

 100

 150

 200

 250

 300

1-2-3-f1-3-f2-3-f1-f2-f3-f4-ff

T
o

ta
l

ti
m

e
in

 m
in

u
te

s

Language model bits for coarse passes

fine
4 bits
3 bits
2 bits
1 bit

Figure 5.7. Many passes with extremely simple language models produce the highest
speed-ups.

disadvantages the multipass runs, which use MERT weights optimized for the single pass

decoder.

5.5.1 Clustering

In section Section 5.4, HMM clustering and JClustering gave lower perplexities than

frequency and random clustering when using the same number of bits for encoding the

language model. To test how these models perform at pruning, we ran our decoder several

times, varying only the clustering source. In each case, we used a 2-bit trigram model

as a single coarse pass, followed by a fine output pass. Figure 5.6 shows that we can

obtain significant improvements over the single-pass baseline regardless of the clustering.

To no great surprise, HMM clustering and JClustering yield better results, giving a 30-fold

speed-up at the same accuracy, or improvements of about 0.3 BLEU when given the same

time as the single pass decoder. We discuss this increase in accuracy over the baseline in

Section 5.5.5. Since the performance differences between those two clustering algorithms

are negligible, we will use the simpler HMM clustering in all subsequent experiments.

114

 28

 28.2

 28.4

 28.6

 28.8

 29

 29.2

 29.4

 29.6

 100 1000 10000 100000

B
L

E
U

Total time in seconds

Encoding+Order
Order

Encoding
Single pass

Figure 5.8. A combination of order-based and encoding-based coarse-to-fine decoding yields
the best results.

5.5.2 Spacing

Given a hierarchy of coarse language models, all trigam for the moment, we need to

decide on the number of passes and the granularity of the coarse language models used in

each pass. Figure 5.7 shows how decoding time varies for different multipass schemes to

achieve the same translation quality. A single coarse pass with a 4-bit language model cuts

decoding time almost in half.7 However, one can further cut decoding time by starting

with even coarser language models. In fact, the best results are achieved by decoding in

sequence with 1-, 2- and 3-bit language models before running the final fine trigram pass.

Interestingly, in this setting, each pass takes about the same amount of time. This is in

accordance with our observations in the parsing chapter (Chapter 2), where coarse-to-fine

inference with multiple passes of roughly equal complexity produced tremendous speed-ups.

5.5.3 Encoding vs. Order

As described in Section 5.2, the language model complexity can be reduced either by

decreasing the vocabulary size (encoding-based projection) or by lowering the language

model order from trigram to bigram (order-based projection). Figure 5.7 shows that both

approaches alone yield comparable improvements over the single pass baseline. Fortunately,
7A coarse pass with a 5-bit language model yields essentially no improvement over the single pass baseline.

115

the two approaches are complimentary, allowing us to obtain further improvements by

combining both. We found it best to first do a series of coarse bigram passes, followed by

a fine bigram pass, followed by a fine trigram pass.

5.5.4 Final Results

Figure 5.9 compares our multipass coarse-to-fine decoder using language refinement to

single pass decoding on three different languages. On each language we get significant

improvements in terms of efficiency as well as accuracy. Overall, we can achieve up to

50-fold speed-ups at the same accuracy, or alternatively, improvements of 0.4 BLEU points

over the best single pass run.

In absolute terms, our decoder translates on average about two Spanish sentences per

second at the highest accuracy setting.8 This compares favorably to the Moses decoder

(Koehn et al., 2007), which takes almost three seconds per sentence.

5.5.5 Search Error Analysis

In multipass coarse-to-fine decoding, we noticed that in addition to computational sav-

ings, BLEU scores tend to improve. A first hypothesis is that coarse-to-fine decoding simply

improves search quality, where fewer good items fall off the beam compared to a simple fine

pass. However, this hypothesis turns out to be incorrect. Table 5.1 shows the percentage

of test sentences for which the BLEU score or log-likelihood changes when we switch from

single pass decoding to coarse-to-fine multipass decoding. Only about 30% of the sentences

get translated in the same way (if much faster) with coarse-to-fine decoding. For the rest,

coarse-to-fine decoding mostly finds translations with lower likelihood, but higher BLEU

score, than single pass decoding.9 An increase of the underlying objectives of interest when

pruning despite an increase in model-score search errors has also been observed in mono-

lingual coarse-to-fine syntactic parsing (Charniak et al., 1998). This effect may be because
8Of course, the time for an average sentence is much lower, since long sentences dominate the overall

translation time.
9We compared the influence of multipass decoding on the TM score and the LM score; both decrease.

116

LL
> = <

B
L
E

U > 3.6% - 26.3%
= 1.5% 29.6 % 12.9 %
< 2.2% - 24.1%

Table 5.1. Percentage of sentences for which the BLEU score/log-likelihood improves/drops
during coarse-to-fine decoding (compared to single pass decoding).

coarse-to-fine approximates certain minimum Bayes risk objective. It may also be an effect

of model intersection between the various passes’ models. In any case, both possibilities are

often perfectly desirable. It is also worth noting that the number of search errors incurred

in the coarse-to-fine approach can be dramatically reduced (at the cost of decoding time) by

increasing the pruning thresholds. However, the fortuitous nature of coarse-to-fine search

errors seems to be a substantial and desirable effect.

5.6 Summary and Future Work

In this chapter we have presented a coarse-to-fine machine translation decoder which

utilizes a novel encoding-based language projection in conjunction with order-based projec-

tions to achieve substantial speed-ups. Unlike A* methods, a posterior pruning approach

allows multiple passes, which we found to be very beneficial for total decoding time. When

aggressively pruned, coarse-to-fine decoding can incur additional search errors, but we found

those errors to be fortuitous more often than harmful. Our framework applies equally well

to other translation systems, though of course interesting new challenges arise when, for

example, the underlying SCFGs become more complex.

It would also be interesting to apply the coarse-to-fine paradigm when learning trans-

lation models. We could envision a system in which the (the most refined) monolingual

grammars from Chapter 2 serve as coarse starting points for more refined bilingual gram-

mars. To make learning of such complex models feasible, we could apply feature count

approximation techniques similar to the ones used to estimate discriminative grammars in

Chapter 3.

117

 28

 28.2

 28.4

 28.6

 28.8

 29

 29.2

 29.4

 29.6

 100 1000 10000

B
L

E
U

Total time in seconds

Spanish

Coarse-To-Fine
Fine Baseline

 28

 28.2

 28.4

 28.6

 28.8

 29

 29.2

 29.4

 100 1000 10000

B
L

E
U

Total time in seconds

French

Coarse-To-Fine

Fine Baseline

 22

 22.5

 23

 23.5

 24

 100 1000 10000

B
L

E
U

Total time in seconds

German

Coarse-To-Fine

Fine Baseline

Figure 5.9. Coarse-to-fine decoding is faster than single pass decoding with a trigram
language model and leads to better BLEU scores on all language pairs and for all parameter
settings.

118

Chapter 6

Conclusions and Future Work

We presented a principled framework for coarse-to-fine learning and inference. During

learning, we start with a minimal initial model and induce increasingly refined substructures

in an incremental way. We demonstrated the effectiveness of this learning paradigm in

two domains: (i) in syntactic parsing we learned state-of-the-art generative (Chapter 2)

and discriminative (Chapter 3) latent variable grammars for a variety of languages, with

smaller grammars and less supervision than previous work; (ii) in acoustic modeling for

speech recognition (Chapter 4) we learned models for phone classification and recognition

that outperform related models which have been trained with significantly more supervision.

We then framed inference as a coarse-to-fine search problem, where a complex (heavily

refined) search space is projected onto a hierarchy of simpler (coarser) spaces, that are used

to guide the search procedure. For syntactic parsing we showed that 100-fold speed-ups

can be achieved by computing grammars specifically for pruning, obtained by hierarchical

clustering of the dynamic programming states (Chapter 2). The same idea also applied to

machine translation (Chapter 5) decoding, where we translate into a sequence of abstracted

version of English, for example with 2, 4, or 8 word (classes).

Going forward, there are two main ways for extending this line of work. On the one

hand, we can use the syntactic parser presented in Chapter 2 and Chapter 3 as a black-box

component that analyzes the input to larger natural language processing systems. On the

119

other hand, we can envision extending the coarse-to-fine framework to build larger natural

language processing systems where syntactic analysis is just the first, coarse analysis step.

To date, NLP applications have typically avoided deep structural and semantic analysis

of the input text for two reasons: computational limitations and lack of accurate models

of deeper linguistic phenomena. The time is ripe for a change as computers are powerful

and cheap, and parsers for many languages are now readily available. We have released

a software tool for syntactic parsing1 so that our research results can be of direct use to

other researchers in NLP and related fields. It is exciting to see that our parser has been

downloaded several hundred times, and is a central component in multiple state-of-the-art

translation systems, including the winner of the 2008 NIST machine translation competition

(Chiang et al., 2009). Of course, machine translation is just one example application where

syntactic information has already been shown to lead to improved performance. Other

downstream applications that could benefit from syntactic analysis are document under-

standing, information extraction, or question answering. We believe that syntactic analysis

will eventually be used in most, if not all, NLP applications.

However, we also believe that we will see even more benefits when the analysis com-

ponent is more closely integrated into the final application system. Rather than viewing

parsing as a standalone task performed by a separate module, the analysis should be per-

formed with a specific task in mind, as very different analyses might be required for different

applications. For information extraction, where we only want to extract particular facts,

analyzing the relationships between different objects might be sufficient. For machine trans-

lation, in contrast, where want to preserve the meaning as closely as possible, a very rich

semantic representation might be required. A closer integration within the final application

will enable deeper and more appropriate analysis that goes beyond pure syntactic structure

and involves lexical semantics and meaning representation.

The work presented in this thesis has advanced the state-of-the-art in a number of NLP

domains, but is just a small step towards the ultimate goal of designing systems that allow
1Available at http://nlp.cs.berkeley.edu.

120

us to interact with computers in the same way that we do with humans, which in turn

would enable a plethora of new opportunities.

121

Bibliography

A. Abeillé, L. Clément, and A. Kinyon. Building a treebank for French. In 2nd International
Conference on Language Resources and Evaluation, 2003.

G. Andrew and J. Gao. Scalable training of L1-regularized log-linear models. In ICML ’07,
2007.

C. E. Antoniak. Mixtures of Dirichlet processes with applications to Bayesian nonparametric
problems. Annals of Statistics, 2, 1974.

A. Arun and F. Keller. Lexicalization in crosslinguistic probabilistic parsing: the case of
french. In ACL ’05, 2005.

G. Ball and D. Hall. A clustering technique for summarizing multivariate data. Behavioral
Science, 1967.

M. Beal, Z. Ghahramani, and C. Rasmussen. The infinite hidden Markov model. In NIPS
’02, 2002.

D. Bikel. On the parameter space of generative lexicalized statistical parsing models. PhD
thesis, University of Pennsylvania, 2004.

E. Bingham and H.i Mannila. Random projection in dimensionality reduction: applications
to image and text data. In KDD ’01, 2001.

F. Bremond and M. Thonnat. Tracking multiple nonrigid objects in video sequences. TCS,
1988.

P. Brown, V. Della Pietra, P. deSouza, J. Lai, and R. Mercer. Class-based n-gram models
of natural language. Computational Linguistics, 1992.

P. F. Brown, S. A. D. Pietra, V. J. D. Pietra, and R. L. Mercer. The mathematics of
statistical machine translation. Computational Lingusitics, 19(2), 1993.

D. Burkett and D. Klein. Two languages are better than one (for syntactic parsing). In
EMNLP ’08, 2008.

A. Chanev, K. Simov, P. Osenova, and S. Marinov. The bultreebank: Parsing and conver-
sion. In RANLP ’07, 2007.

E. Charniak. A maximum–entropy–inspired parser. In NAACL ’00, 2000.

E. Charniak. Tree-bank grammars. In AAAI ’96, 1996.

122

E. Charniak. Statistical parsing with a context-free grammar and word statistics. In AI
’97, 1997.

E. Charniak and M. Johnson. Coarse-to-Fine N-Best Parsing and MaxEnt Discriminative
Reranking. In ACL’05, 2005.

E. Charniak, S. Goldwater, and M. Johnson. Edge-based best-first chart parsing. 6th

Workshop on Very Large Corpora, 1998.

E. Charniak, M. Johnson, D. McClosky, et al. Multi-level coarse-to-fine PCFG Parsing. In
HLT-NAACL ’06, 2006.

Z. Chi. Statistical properties of probabilistic context-free grammars. In Computational
Linguistics, 1999.

D. Chiang. A hierarchical phrase-based model for statistical machine translation. In ACL
’05, 2005.

D. Chiang and D. Bikel. Recovering latent information in treebanks. In COLING ’02, 2002.

D. Chiang, W. Wang, and K. Knight. 11,001 new features for statistical machine translation.
In NAACL ’09, 2009.

N. Chomsky. Aspects of the Theory of Syntax. MIT Press, 1965.

P. Clarkson and P. Moreno. On the use of Support Vector Machines for phonetic classifica-
tion. In ICASSP ’99, 1999.

A. Clegg and A. Shepherd. Benchmarking natural-language parsers for biological applica-
tions using dependency graphs. BMC Bioinformatics, 2007.

M. Collins. Head-Driven Statistical Models for Natural Language Parsing. PhD thesis,
UPenn., 1999.

A. Corazza and G. Satta. Cross-entropy and estimation of probabilistic context-free gram-
mars. In HLT-NAACL ’06, 2006.

B. Cowan and M. Collins. Morphology and reranking for the statistical parsing of Spanish.
In HLT-EMNLP ’05, 2005.

B. Crabbé and M. Candito. Expériences dánalyse syntaxique du francais. In TALN ’08,
2008.

N. Cuntoor and R. Chellappa. Coarse-to-fine event model for human activities. In ICASSP
’07, 2007.

S. B. Davis and P. Mermelstein. Comparison of parametric representation for monosyllabic
word recognition in continuously spoken sentences. IEEE Transactions on Acoustics,
Speech, and Signal Processing, 28(4), 1980.

M. Dreyer and J. Eisner. Better informed training of latent syntactic features. In EMNLP
’06, 2006.

A. Dubey. What to do when lexicalization fails: parsing German with suffix analysis and
smoothing. In ACL ’05, 2005.

123

B. Favre, D. Hakkani-Tür, S. Petrov, and D. Klein. Efficient sentence segmentation using
syntactic features. In SLT ’08, 2008.

J. Finkel, C. Manning, and A. Ng. Solving the problem of cascading errors: approximate
Bayesian inference for lingusitic annotation pipelines. In EMNLP ’06, 2006.

F. Fleuret, D. Geman, and X. Fan. Coarse-to-fine face detection. IJCV, 2001.

W. N. Francis and H. Kucera. Manual of information to accompany a standard corpus of
present-day edited American English. Technical report, Brown University, 2002.

D. Gildea. Corpus variation and parser performance. EMNLP ’01, 2001.

J. Glass. A probabilistic framework for segment-based speech recognition. Computer Speech
and Language, 17(2), 2003.

S. Goldwater, T. Griffiths, and M. Johnson. Contextual dependencies in unsupervised word
segmentation. In ACL ’06, 2006.

J. Goodman. A bit of progress in language modeling. Technical report, Microsoft Research,
2001.

J. Goodman. Parsing algorithms and metrics. ACL ’96, 1996.

J. Goodman. Global thresholding and multiple-pass parsing. In EMNLP ’97, 1997.

A. Gunawardana, M. Mahajan, A. Acero, and J. Platt. Hidden Conditional Random Fields
for phone recognition. In Eurospeech ’05, 2005.

A. Haghighi, J. DeNero, and D. Klein. A* search via approximate factoring. In NAACL
’07, 2007.

A. K. Halberstadt and J. R. Glass. Heterogeneous measurements and multiple classifiers
for speech recognition. In ICSLP ’98, 1998.

W. III Headden, E. Charniak, and M. Johnson. Learning phrasal categories. In EMNLP
’06, 2006.

J. Henderson. Discriminative training of a neural network statistical parser. In ACL ’04,
2004.

L. Huang. Forest reranking: Discriminative parsing with non-local features. In ACL ’08,
2008.

L. Huang and D. Chiang. Forest rescoring: Faster decoding with integrated language
models. In ACL ’07, 2007.

Z. Huang and M. Harper. Self-training pcfg grammars with latent annotations across lan-
guages. In EMNLP ’09, 2009.

F. Jelinek. Continuous speech recognition by statistical methods. Proceedings of the IEEE,
1976.

M. Johnson. Joint and conditional estimation of tagging and parsing models. In ACL ’01,
2001.

124

M. Johnson. PCFG models of linguistic tree representations. Computational Linguistics,
24, 1998.

M. Johnson, T. Griffiths, and S. Goldwater. Adaptor grammars: A framework for specifying
compositional nonparametric Bayesian models. In NIPS ’06, 2006.

M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul. An introduction to variational
methods for graphical models. Learning in Graphical Models, 1999.

D. Klein and C. Manning. Accurate unlexicalized parsing. In ACL ’03, 2003a.

D. Klein and C. Manning. A* parsing: fast exact viterbi parse selection. In NAACL ’03,
2003b.

P. Koehn. Europarl: A parallel corpus for statistical machine translation. In MT Summit,
2005.

P. Koehn. Pharaoh: a beam search decoder for phrase-based statistical machine translation
models. In AMTA ’04, 2004.

P. Koehn, H. Hoang, et al. Moses: Open source toolkit for statistical machine translation.
In ACL ’07, 2007.

T. Koo and M. Collins. Hidden-variable models for discriminative reranking. In EMNLP
’05, 2005.

J. Lafferty, A. McCallum, and F. Pereira. Conditional Random Fields: Probabilistic models
for segmenting and labeling sequence data. In ICML ’01, 2001.

L. Lamel and J. Gauvain. Cross-lingual experiments with phone recognition. In ICASSP
’93, 1993.

K. Lari and S. Young. The estimation of stochastic context-free grammars using the inside-
outside algorithm. Computer Speech and Language, 1990.

K. F. Lee and H. W. Hon. Speaker-independent phone recognition using Hidden Markov
Models. IEEE Transactions on Acoustics, Speech, and Signal Processing, 37(11), 1989.

L. Lesmo, V. Lombardo, and C. Bosco. Treebank development: the TUT approach. In
ICON ’02, 2002.

R. Levy and C. Manning. Is it harder to parse Chinese, or the Chinese treebank? In ACL
’03, 2003.

P. Liang, S. Petrov, M. I. Jordan, and D. Klein. The infinite PCFG using hierarchical
Dirichlet processes. In EMNLP ’07, 2007.

G.J. Lindstone. Tracking multiple nonrigid objects in video sequences. Note on the general
case of the Bayes-Laplace formula for inductive and a posteriori probabilities, 1920.

H. Lu, K. Plataniotis, and A. Venetsanopoulos. Coarse-to-fine pedestrian localization and
silhouette extraction for the gait challenge data sets. In ICME ’06, 2006.

M. Maamouri, A. Bies, S. Kulick, F. Gadeche, and W. Mekki. Arabic treebank 3(a) - v2.6.
ldc2007e65. In Linguistic Data Consortium, 2007.

125

M. Marcus, B. Santorini, and M. Marcinkiewicz. Building a large annotated corpus of
English: The Penn Treebank. In Computational Linguistics, 1993.

T. Matsuzaki, Y. Miyao, and J. Tsujii. Probabilistic CFG with latent annotations. In ACL
’05, 2005.

D. McClosky and E. Charniak. Self-training for biomedical parsing. In ACL ’08, 2008.

D. McClosky, E. Charniak, and M. Johnson. Reranking and self-training for parser adap-
tation. In ACL ’06, 2006.

I. D. Melamed. Statistical machine translation by parsing. In ACL ’04, 2004.

J. Ming and F.J. Smith. Improved phone recognition using Bayesian triphone models. In
ICASSP ’98, 1998.

M. Mohri and B. Roark. Probabilistic context-free grammar induction based on structural
zeros. In HLT-NAACL ’06, 2006.

M.-J. Nederhof. A general technique to train language models on language models. In
Computational Linguistics, 2005.

J. Nocedal and S. J. Wright. Numerical Optimization. Springer, 1999.

F. Och. Minimum error rate training in statistical machine translation. In ACL ’03, 2003.

J. J. Odell. The Use of Context in Large Vocabulary Speech Recognition. PhD thesis,
University of Cambridge, 1995.

P. Ow and T. Morton. Filtered beam search in scheduling. IJPR, 1988.

K Papineni, S. Roukos, T. Ward, and W.-J. Zhu. BLEU: a method for automatic evaluation
of machine translation. In ACL ’02, 2002.

A. Pauls and D. Klein. Hierarchical search for parsing. In NAACL ’09, 2009.

F. Pereira and Y. Schabes. Inside-outside reestimation from partially bracketed corpora.
In ACL ’92, 1992.

S. Petrov and D. Klein. Improved inference for unlexicalized parsing. In HLT-NAACL ’07,
2007.

S. Petrov and D. Klein. Discriminative log-linear grammars with latent variables. In NIPS
’08, 2008a.

S. Petrov and D. Klein. Sparse multi-scale grammars for discriminative latent variable
parsing. In EMNLP ’08, 2008b.

S. Petrov and D. Klein. Parsing german with latent variable grammars. In Parsing German
Workshop at ACL ’08, 2008c.

S. Petrov, L. Barrett, R. Thibaux, and D. Klein. Learning accurate, compact, and inter-
pretable tree annotation. In ACL ’06, 2006.

126

S. Petrov, A. Pauls, and D. Klein. Learning structured models for phone recognition. In
EMNLP ’07, 2007.

S. Petrov, A. Haghighi, and D. Klein. Coarse-to-fine syntactic machine translation using
language projections. In EMNLP ’08, 2008.

D. Prescher. Inducing head-driven PCFGs with latent heads: Refining a tree-bank grammar
for parsing. In ECML’05, 2005.

L. Rabiner. A Tutorial on hidden Markov models and selected applications in speech
recognition. In IEEE, 1989.

A. Sankar. Experiments with a Gaussian merging-splitting algorithm for HMM training for
speech recognition. In DARPA Speech Recognition Workshop ’98, 1998.

H. Schuetze. Automatic word sense discrimination. Computational Linguistics, 1998.

S. Sekine and M. Collins. EVALB bracket scoring program. 1997.

F. Sha and L. K. Saul. Large margin Gaussian mixture modeling for phonetic classification
and recognition. In ICASSP ’06, 2006.

K. Sima’an. Computatoinal complexity of probabilistic disambiguation. Grammars, 5, 2002.

K. Simov, P. Osenova, A. Simov, and M. Kouylekov. Design and implementation of the
bulgarian hpsg-based treebank. Research on Language and Computation, 2, 2004.

W. Skut, B. Krenn, T. Brants, and H. Uszkoreit. An annotation scheme for free word order
languages. In ANLP ’97, 1997.

N. A. Smith and J. Eisner. Contrastive estimation: Training log-linear models on unlabeled
data. In ACL ’05, 2005.

N. A. Smith and M. Johnson. Weighted and probabilistic context-free grammars are equally
expressive. Computational Lingusitics, 2007.

M. Steedman. The Syntactic Process. The MIT Press, Cambridge, Massachusetts, 2000.

A. Stolcke. SRILM – an extensible language modeling toolkit. In ICSLP ’02, 2002.

A. Stolcke and S. Omohundro. Inducing probabilistic grammars by bayesian model merging.
In Grammatical Inference and Applications, 1994.

H. Sun and D. Jurafsky. Shallow semantic parsing of Chinese. In HLT-NAACL ’04, 2004.

R. Sutton and A. Barto. Reinforcement Learning: An Introduction. MIT Press, 1998.

Y. Tang, W. Liu, H. Zhang, B. Xu, and G. Ding. One-pass coarse-to-fine segmental speech
decoding algorithm. In ICASSP ’06, 2006.

B. Taskar, D. Klein, M. Collins, D. Koller, and C. Manning. Max-margin parsing. In
EMNLP ’04, 2004.

Y. Tateisi, A. Yakushiji, T. Ohta, and J. Tsujii. Syntax annotation for the genia corpus.
In IJNLP ’05, October 2005.

127

Y. W. Teh, M. I. Jordan, M. Beal, and D. Blei. Hierarchical Dirichlet processes. Journal
of the American Statistical Association, 101, 2006.

I. Titov and J. Henderson. Loss minimization in parse reranking. In EMNLP ’06, 2006.

N. Ueda, R. Nakano, Z. Ghahramani, and G. E. Hinton. Split and merge EM algorithm for
mixture models. Neural Computation, 12(9), 2000.

H. Van Hamme and F. Van Aelten. An adaptive-beam pruning technique for continuous
speech recognition. In ICSLP ’96, 1996.

A. Venugopal, A. Zollmann, and S. Vogel. An efficient two-pass approach to synchronous-
CFG driven statistical MT. In HLT-NAACL ’07, 2007.

K. Vijay-Shankar and A. Joshi. Some computational properties of Tree Adjoining Gram-
mars. In ACL ’85, 1985.

D. Wu. Stochastic inversion transduction grammars and bilingual parsing of parallel cor-
pora. In Computational Linguistics, 1997.

D. Wu. A polynomial-time algorithm for statistical machine translation. In ACL ’96, 1996.

N. Xue, F.-D. Chiou, and M. Palmer. Building a large scale annotated Chinese corpus. In
COLING ’02, 2002.

S. J. Young and P. C. Woodland. State clustering in HMM-based continuous speech recog-
nition. Computer Speech and Language, 8(4), 1994.

R. Zens and H. Ney. A comparative study on reordering constraints in statistical machine
translation. In ACL ’03, 2003.

H. Zhang and D. Gildea. Efficient multi-pass decoding for synchronous context free gram-
mars. In ACL ’08, 2008.

H. Zhang, M. Zhang, C. L. Tan, and H. Z. Li. K-best combination of syntactic parsers. In
EMNLP ’09, 2009.

128

