Lawrence Berkeley National Laboratory
Recent Work

Title
DC Power Distribution in Commercial Buildings

Permalink
https://escholarship.org/uc/item/8kr0r321

Authors
Gerber, Daniel
Vossos, Evangelos
Feng, Wei
et al.

Publication Date
2019-08-09

Peer reviewed
DC Power Distribution in Commercial Buildings

Why DC?
- **Energy Simulation**
 - Develop detailed converter loss models to help compare AC and DC.
 - Results determined from market cost data, grid tariffs, and Monte-Carlo analysis.
 - First cost is higher for DC.
 - Given the enormous efficiency savings, the payback period is less than a year.
 - End-use costs, installation costs, and other soft costs are not considered.

- **Techno-Economic Analysis**
 - Determine first cost difference through product data and estimated quantity.
 - Determine operating cost from the energy simulation and CA electricity tariffs.
 - Estimate economic benefits of DC distribution with life cycle cost (LCC) and payback period (PPB).

- **Experimental Load Modification**
 - Modify common AC plug loads for a DC input.
 - Measure efficiency savings with DC.
 - Determine how each type of load should be modified to benefit most from DC.

Potential Benefits
- Simpler power electronics: better cost and reliability.
- Reliable microgrid islanding through power electronics allows for low-cost disaster resiliency.
- Improved power quality.
- Combined data and power allows for communications.

Technology and Market Trends
- DC-based distributed generation such as photovoltaic and wind.
- On-site DC electrical storage.
- The most efficient types of loads are natively-DC (LEDs, electronics, EV charging, induction stoves, and variable speed motors in HVAC and water heating).
- Power electronics.
- DC Power Standards: USB, Ethernet.
- Communications.

Analysis Approach

AC vs. DC

Energy Loss for Medium-Size Commercial ZNE Building

- **Energy Simulation**
 - 12% baseline efficiency savings with DC.
 - More savings with high solar and battery capacity.
 - AC building loss is dominated by the poor efficiency of load packaged rectifiers.
 - DC building loss dominated by the grid-tie inverter.

- **Techno-Economic Analysis**
 - Results determined from market cost data, grid tariffs, and Monte-Carlo analysis.
 - First cost is higher for DC.
 - Given the enormous efficiency savings, the payback period is less than a year.
 - End-use costs, installation costs, and other soft costs are not considered.

- **Experimental Load Modification**
 - Modified AC loads to take a DC input.
 - Demonstrated savings with DC input.

Results

- **Energy Loss Chart**
 - Grid-Tie Inverter
 - Battery Converter
 - Solar Converter
 - Load Converter
 - Wiring
 - Battery Chemistry

- **Payback Calculation**
 - Payback = \(\frac{\text{First Cost of AC System} - \text{First Cost of DC System}}{(1 + \text{Discount Rate})^n} \)

- **Table: Average LCC Savings**

Future Research
- Develop detailed converter loss models to help compare AC and DC.
- Develop a DC Design Tool to help building designers compare.
- Field test upcoming and developed DC buildings.

Contact - dgerb@lbl.gov
Website - dc.lbl.gov

We thank U.S. DOE and CEC for supporting this work!