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ABSTRACT OF THE DISSERTATION

Cognitive Consequences of Physical Assembly

by

William P. McCarthy

Doctor of Philosophy in Cognitive Science

University of California San Diego, 2024

Professor Judith E. Fan, Co-Chair
Professor David J. Kirsh, Co-Chair

The modern world is densely populated by physical structures that were designed

and made by people, from transient arrangements like stacks of books and sandwiches, to

enduring constructions like bridges and skyscrapers. Physical assembly– the construction

of a new object from existing parts– accounts for some of the most complex acts of human

cognition. What are the core cognitive processes that underlie this ability? The study

of physical assembly presents unique opportunities and challenges because it relies on

interactions between multiple cognitive processes, including perception, working memory,

planning, and action selection. This dissertation introduces new experimental methods to

xiii



investigate these processes, by characterizing the impact of physical assembly experience on

our ability to build. Moreover, it explores far-reaching consequences of assembly experience

on cognition, including the ability to remember objects, as well as the language we use

to communicate about them. Over three chapters, I investigate three consequences of

assembly experience. In Chapter 1, I investigate how practice assembling objects changes

the procedures we use to construct them, finding that people learn to build more quickly

and accurately, and use increasingly consistent procedures to do so. In Chapter 2, I

explore how assembling objects impacts our memory of those objects, finding that how

well we remember an object depends crucially on the way we encode it during assembly.

In Chapter 3, I go beyond the consequences of assembly for individuals to ask how shared

assembly experience impacts how collaborators communicate about objects, and find that

people coordinate on linguistic conventions for referring to increasingly abstract procedures

over time. These results comprise a set of ways that people– individually and collectively–

leverage prior assembly experience to improve their ability to build, elucidating one of

the most pervasive and complex human behaviors. By clarifying the impact of a creative,

generative behavior on our representations of the things we make, these findings have

implications for understanding how we relate to the world of constructed objects we

inhabit, and the development of technologies that help people create more effectively.
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Introduction

1



0.1 Physical construction

The modern world is densely populated by physical structures that were designed

and made by people, from transient arrangements like stacks of books and sandwiches, to

enduring constructions like bridges and skyscrapers. Physical construction encompasses a

range of behaviors, from simple actions to complex construction efforts coordinated across

large groups of people, and can be a critical act of survival or an act of creative expression

(Korn, 2015). Physical construction is also the primary means by which humans reorganize

their environments. We live in worlds of constructed objects, so much so that it is rare

to be in an environment that does not contain many objects that were built by people.

Characterizing the cognitive mechanisms that underlie physical construction is not only

crucial for understanding how we perform this pervasive activity, but also how we relate

to the world around us.

As well as being an important activity in its own right, physical construction presents

a unique set of opportunities for scientists studying the mind. Even the simplest acts of

creation draw on a wide range of cognitive mechanisms, including planning, perception,

working memory, and motor control, raising the possibility of studying the interactions

between these mechanisms in the context of a more complex behavior. The fact that people

can acquire construction skills over relatively short timescales (compared to say, language)

is also beneficial– studying how construction ability improves in response to specific kinds

of experience can help isolate the contribution of specific cognitive mechanisms. Moreover,

physical construction– by definition– generates durable outputs, which can be used as

objective indicators of ability, as well as rich readouts of underlying cognitive processes

(Bainbridge et al., 2019; Fan et al., 2023). These features make physical construction

an ideal test bed for studying how cognitive processes interact to give rise to complex

behaviors.

2



0.2 The challenges of studying physical construction

The study of physical construction has been held back by a number of methodological

challenges. The computational complexity of construction tasks is particularly problematic.

Even in simple, discretized domains, the number of valid “moves” from any state can

be vast (Cortesa et al., 2017). For example, consider deciding your next move when a

building a lego structure– there are tens of possible blocks that can be placed in several

orientations in hundreds of possible locations. Branching factors as large as these lead to

a combinatorial explosion in the state space, making them challenging even for state of

the art algorithms (Bapst et al., 2019), let alone for interpretable algorithms that might

be used to model human cognition (van Opheusden & Ma, 2019). It is quite telling that,

while physical construction was well represented in early AI research (Winograd, 1971;

Winston, 1970), the attention it received dwindled until recently (Bapst et al., 2019),

relative to more formal domains like games.

The relationships between the myriad cognitive processes involved in construction

make it a potentially fruitful domain to study but also make it a thorny one. Building

something not only requires planning a sequence of actions, but also reasoning about

the physical properties of the intermediate states: Will it be able to stand unsupported?

How firmly will you need to push to attach the next piece? Can it handle that force

without breaking? Keeping track of what you have built so far requires perception, and

memory– two processes that are known to interact with each other (Lee & Rudebeck, 2010;

Silva et al., 2006) and both change with expertise (Chase & Simon, 1973). Disentangling

the individual contributions of cognitive capacities is typically achieved using a series

of controlled experiments, however the feasibility of running such experiments in the

context of actual physical construction is questionable. Experimental control is difficult to

achieve in a domain where participants are constantly interacting with and changing their

environments (Kirsh, 1995). Consider trying to control for perceptual exposure. People will

3



see different things depending on how they approach the problem and what actions they

take. Measuring the effects of their actions on their perceptual input without intervening

on their behavior is also impractical. For these reasons, cognitive psychology typically

studies processes like perception and memory outside the context of complex, interactive

behaviors, which does provides valuable clues about how they operate in isolation, but not

whether these findings generalize to more complex domains.

On the other hand, prior investigations into physical construction have typically

relied on observational studies (Cortesa et al., 2017; Wolfgang et al., 2001), which have

provided key insights into the cognition of people situated in construction environments

(Zheng & Tversky, 2024), but also required significant recording and coding efforts to

quantify, limiting the precision of the inferences we can draw from these data, and the

rates at which these experiments can scale. In sum, the study of construction tasks present

a trade-off between ecological validity, on the one hand, and controllability, measurement,

and quantifiability, on the other.

0.3 An approach to studying physical construction

What would be needed to study the cognitive mechanisms underlying physical

construction in context, while retaining the ability to test hypotheses about these

mechanisms using controlled experiments? We want study construction behaviors complex

enough to evoke a range of cognitive phenomena. On the other hand, to be able to isolate

specific mechanisms, as well as provide precise computational theories of behavior, we

need a way of restricting the complexity of the behaviors we intend to study. A promising

direction is to take a middle ground and employ construction tasks of a medium-level

complexity– complex enough to evoke a wide range of cognitive phenomena, but tractable

for algorithmic theories (Bapst et al., 2019; van Opheusden & Ma, 2019). In doing so, we

would intentionally lay aside some aspects of real-world construction in order to reduce
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the size of the state space.

Physical assembly– the construction of a specific object from a pre-defined set of

parts– is a promising domain for doing so. Compared to free construction, the limited

set of available parts substantially reduces the number of actions available in any step,

massively reducing the state space (Shelton et al., 2022). Consider, for example, the

number of ways someone can construct specific IKEA desk, compared to constructing any

desk from planks of wood. The goal of creating a specific object may rule out mechanisms

crucial for more open-ended construction, but in doing so allows for precise quantification

of accuracy. Assembly is also particularly amenable to experimental control; task difficulty

can be systematically varied by changing the target object and sets of provided parts and

the compositionality of assembled parts also allows for hierarchical relationships between

parts, objects, and sets of objects, making it an ideal stimulus domain for measuring

learning and generalization.

Compared to ‘yes-no’ or categorical responses typical in cognitive psychology

experiments, and even to the outputs of generative tasks, construction behavior is

immensely complex. Quantifying variance in the way people build therefore poses a

challenge. The behavior of two people precisely following the same set of IKEA instructions

might involve the same parts being attached in the same order, but appear very different

to an observer. The way each person implements an action through motor commands

might be very different, depending on factors like body size, strength, and physical ability.

Judging two actions as equivalent requires considering them at some particular level of

abstraction, for example treating all actions where part A is connected to part B as the

same. By choosing a level of abstraction we make the explicit decision to abstract away

from, say, the motor planning involved in physical construction, simplifying the task in a

way that makes observing relationships between other cognitive mechanisms tractable.

Even after simplifying construction sequences into sequences of discrete actions,

measurement and quantification of those actions is still a methodological challenge. Virtual
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environments provide a simple solution to this problem, by making it trivial to record

and measure anything occurring on screen, including the entire sequences of actions

performed on every part, the locations of all parts, and timing between actions. Virtual

environments also make it easy to compare performance of humans and AI systems,

and enable online deployment, making it feasible to collect the large datasets needed

to measure variance in behavior. The particular choice of virtual environment and user

interface– 2D or 3D, whether physics is implemented, how objects are interacted with–

determines which cognitive processes get abstracted out. Most however, will rule out

complex motor control and various kinds of situated cognition (Hutchins, 1995), which

despite playing an important role in physical construction, are a source of confounds in

controlled experiments that can are better to eliminate when asking targeted questions.

Furthermore, experimenters retain control over what is visually present on screen at any

time, making it easy to control for things like visual exposure at a specified level of

abstraction (e.g. at the level of which parts were visible at any time).

0.4 What can we learn using this approach?

If we had the tools to study physical construction in this way, what questions would

be most pressing to ask?

As well as making physical construction challenging to study, the computational

complexity of physical construction also makes it cognitively interesting: how are people

able to plan far into the future when there are so many different actions we could take at

any point in the construction process? Focusing on tasks of mid-level complexity allows us

to consider interpretable algorithmic theories (van Opheusden & Ma, 2019), including those

explored for other domains involving multi-step decision making (Huys et al., 2015; Solway

& Botvinick, 2012, 2015). Even in these simpler domains, researchers have identified that

people adopt strategies to make efficient use of their limited cognitive resources (Callaway
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et al., 2018; Lieder & Griffiths, 2020), and, more generally, the way you represent a task

has a crucial implications for the way you plan (Ho et al., 2022). A common finding in

these areas is that expertise in a domain changes your representation of the task (Botvinick,

2008; Simon & Chase, 1988; Tomov et al., 2020) enabling people to plan further ahead

(van Opheusden et al., 2023). How does expertise affect how you represent a construction

task and plan how to build something? Generalizing from other domains is risky, because

the way we represent a construction task is highly intertwined with our representations

of the objects involved. Expertise is also known to change the structure of perceptual

representations (Chase & Simon, 1973; Gobet & Simon, 1998; Sheridan & Reingold, 2017),

providing multiple routes for experience to shape our behavior. The most valuable step

towards understanding how experience shapes assembly behavior is to gather data in this

domain.

If assembly experience really does impact our representations of objects it could

have far-reaching implications for how we relate to the world of constructed objects we

inhabit. As even passive visual exposure is enough to the way people represent objects

and their parts (Austerweil & Griffiths, 2013; Orbán et al., 2008), it will be critical to

disentangle the contributions of visual exposure and other cognitive processes involved in

construction. Recent lines of work have explored how aspects of other kinds of generative

behavior– drawing, writing, etc.,– can impact perceptual abilities. Handwriting experience,

for example, improves children’s ability to recognize letters (Li & James, 2016), and

drawing objects can lead people to discriminate more accurately discriminate between

them (Fan et al., 2020). The mechanisms behind these improvements vary. Handwriting

experience is effective both because it leads to the generation of variable visual output

(Li & James, 2016), and because it links visual processing with motor experience (James,

2017; Zemlock et al., 2018). While suggesting that other generative tasks may result in

perceptual changes, these findings also suggest that the mechanisms underlying these

changes could be domain specific, highlighting the importance of studying representational
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changes in context. Studying physical assembly directly allows us to do so, while also

asking more targeted questions about how generative behaviors impact perceptual abilities.

Making things has been shown to not only impact how we perceive things, but also how we

remember them (James, 2017; Wammes et al., 2016). Does physical construction impact

memory, and if so, how? Building something is not just a behavior but also a highly

immersive way of interacting with the world. Multiple lines of prior work have shown that

active engagement impacts our ability to remember the things we interact with (Bonwell

& Eison, 1991; Chi, 2009; Craik & Lockhart, 1972; Markant et al., 2016), suggesting

that building something may have substantial impact on our memory for objects we

create. Disentangling the contributions of active engagement and perceptual exposure on

our representations of objects will be crucial for understanding how assembly experience

impacts objects.

The most impressive feats of human construction are made not by individuals,

but by people working together. Characterizing the full range of human construction

will therefore require an understanding of how we are able to coordinate in these tasks.

Perhaps our most powerful tool for coordinating behavior is natural language, which we

use to define shared goals (Clark, 1996), identify objects relevant to achieving our goals

(Clark & Wilkes-Gibbs, 1986), and even convey a means by which to achieve them through

instructions. Furthermore, the language of people who work together also becomes more

efficient over time, both on large timescales through acquisition of technical language

(Goodwin, 2015), and on shorter timescales through formation of conventions (Clark &

Wilkes-Gibbs, 1986; Garrod & Doherty, 1994). In the context of construction tasks, people

use language, and more implicit communication like gesture, to coordinate on shared

actions (Zheng & Tversky, 2024). However, the ways in which collaborators refer to more

extended sequences of actions have been underexplored, as has the role of experience in

shaping this process.
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0.5 Contribution of the dissertation

In this dissertation I present a methodological approach for studying the cognitive

mechanisms that underlie our ability to build. I present a novel task paradigm for studying

physical assembly– concretely, a simulated 2D physics environment in which people can

construct block towers in a web browser. This tool enables the collection of precise

behavioral data in the context of controlled experiments involving physical construction

tasks. In the following three chapters, I leverage variants of this tool probe cognitive

consequences of physical assembly.

In Chapter 1, I introduce the physical construction environment, along with a

suite of metrics to measure fine-grained changes in assembly behavior that go beyond the

state of the final reconstruction. I ask how practice assembling the same object multiple

times changes the way people build it. I find that people are able to learn to build more

accurately and quickly across repeated attempts, and that these improvements reflected

group-level convergence on a tiny fraction of possible viable procedures. This chapter

demonstrates that the way people build things depends on their assembly experience, and

that even a small amount of practice is enough to shift their behavior. In doing so, it

also validates the use of our tool as a way of influencing and measuring assembly behavior

in the context of a controlled experiment. This work was originally published in and is

re-printed here with minor edits.

In Chapter 2, I leverage the physical assembly task domain to ask how downstream

representations of objects are affected by experience making things. At a high level, this

chapter tests the hypothesis that active engagement with visual objects leads to better

memory of those objects, compared to more passive viewing. The use of a generative

task domain provides a unique perspective on this question; as well as asking whether or

not participants recognize the objects they have built, I can get more precise readouts of

the contents of their memory by asking them to build towers from memory. Generalizing
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findings from word and concept memory (Bonwell & Eison, 1991; Chi, 2009; Craik &

Lockhart, 1972; Markant et al., 2016), we would predict that assembling an object leads

to stronger memories than passive viewing. In initial experiments I find precisely the

opposite; building a tower appears to lead to weaker recognition and recall. I explore why

over a series of further experiments, and find that mnemonic benefits only accrue when

creators form holistic visual representations of the thing they have built. The work in this

chapter is in preparation for submission and is reprinted here with minor edits.

In Chapter 3, I explore how people are able to collaborate on complex physical

assembly tasks, by asking how people are able to coordinate on mental representations of

things they are making together. Extending my tools for studying physical assembly to a

collaborative setting, I ask people to work together to solve related physical assembly tasks.

By limiting communication to a one-way linguistic messages, I encourage participants to

form compact representations of target scenes, and expose a human-interpretable channel

for observation of these representations. I find that the language participants use to

refer to objects they know how to build becomes more efficient over time, and present a

computational model that simultaneously captures the internal acquisition of procedural

abstractions, as well as coordination of language used to refer to these abstractions. The

work in this chapter has been submitted for publication and is currently in review and is

reprinted here with minor edits.

In isolation, these three chapters further our understanding of cognitive mechanisms

that underlie our ability to build simple objects. Together, they paint a picture of how we

bootstrap our ability to build things by leveraging prior experience, providing a crucial

piece of the story of how the most impressive feats of human construction are possible.
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Chapter 1

Consistency and variation in reasoning
about physical assembly
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Abstract

The ability to reason about how things were made is a pervasive aspect of how humans

make sense of physical objects. Such reasoning is especially useful for a range of everyday

tasks, from assembling a piece of furniture to making a sandwich and knitting a sweater.

What enables people to reason in this way even about novel objects, and how do people

draw upon prior experience with an object to continually refine their understanding of

how to create it? To explore these questions, we developed a virtual task environment to

investigate how people come up with step-by-step procedures for recreating block towers

whose composition was not readily apparent, and analyzed how the procedures they used

to build them changed across repeated attempts. Specifically, participants (N=105) viewed

2D silhouettes of 8 unique block towers in a virtual environment simulating rigid-body

physics, and aimed to reconstruct each one in less than 60 seconds. We found that people

built each tower more accurately and quickly across repeated attempts, and that this

improvement reflected both group-level convergence upon a tiny fraction of all possible

viable procedures, as well as error-dependent updating across successive attempts by the

same individual. Taken together, our study presents a scalable approach to measuring

consistency and variation in how people infer solutions to physical assembly problems.

Keywords: planning; spatial reasoning; intuitive physics; construction; action
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Humans have populated much of the world with physical artifacts of their own

design, from sand castles to skyscrapers. Taken together, these structures exemplify the

human capacity to interact with the physical world in creative, yet goal-directed ways.

This creative capacity also manifests in many everyday tasks, from assembling a piece of

furniture to making a sandwich and knitting a sweater. In these scenarios, people rely

upon their ability to not only judge the static properties of objects (e.g., their size, shape,

weight), but also to infer the process by which objects are made (e.g., the parts they

consist of and how to arrange them). What cognitive mechanisms enable people to engage

in such reasoning about complex objects, and how do people draw upon prior experience

with an object to continually refine their understanding of how to create it?

Perhaps the most basic requirement is a general-purpose and intuitive understanding

of how material objects interact in the physical world, a suite of abilities known as intuitive

physics (McCloskey, 1983). That is, even without performing formal calculations, people

can make reasonably accurate predictions about how objects will behave in a variety

of settings (Kubricht et al., 2017; Smith et al., 2018). A prominent proposal argues

that generating these predictions relies on mental simulation, perhaps reflecting a noisy

approximation to real-world physical dynamics (Battaglia et al., 2013; Hamrick et al., 2015;

Hegarty, 2004; Sanborn et al., 2013; Schwartz & Black, 1999; Smith & Vul, 2013). Recent

work has explored the role that simulation plays when people plan single interventions

on physical scenes — for example, joining two blocks together to stabilize a block tower

(Hamrick et al., 2018) or causing an object to move into a target zone (Allen et al., 2020;

Dasgupta et al., 2018).

However, the role of physically grounded mental simulation has yet to be fully

explored in the context of the multi-step action sequences required to assemble a complex

object (Kirsh, 1995; Kurth-Nelson et al., 2023; Schwartenbeck et al., 2021). This gap

in knowledge at least in part reflects the methodological challenges posed by measuring

behaviors as open-ended as physical assembly while maintaining a sufficient degree of
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experimental control (Cortesa et al., 2017, 2018; Wolfgang et al., 2001).

Recent advances in the study of multi-step planning and decision making in other

settings suggest promising ways forward (Daw et al., 2011; Huys et al., 2015; Solway &

Botvinick, 2012, 2015). To the degree that these “grid-world” environments used often in

this work sacrifice physical realism, they do so in favor of empirical and formal tractability

(van Opheusden & Ma, 2019; van Opheusden et al., 2017, 2023). Nevertheless, as the state

space grows, the computational cost of conducting thorough mental simulations over the

full set of possibilities becomes prohibitive (Callaway et al., 2018; Hamrick et al., 2015;

Huys et al., 2015; Solway & Botvinick, 2012, 2015). Prior work has found evidence that

humans use a variety of strategies to reduce the cost of planning, such as pruning the

search space (i.e., circumventing expensive but irrelevant action sequences (Huys et al.,

2012)) and learning procedural abstractions to generate hierarchically organized plans

(Botvinick & Weinstein, 2014; Dezfouli & Balleine, 2013; Éltető & Dayan, 2023; Huys et al.,

2015; Xia & Collins, 2020). However, it remains unknown which, if any, of these strategies

are ones that humans use when attempting to solve physical assembly problems, in which

transitions between states are governed by physical constraints (e.g., stability, friction)

rather than arbitrary rules (Daw et al., 2011). A valuable step towards bridging this gap

would be the development of experimental methods for exploring human assembly behavior

in task environments with a greater degree of physical realism than those commonly used

to probe multi-step decision making.

An additional benefit of developing such methods would be the opportunity to

investigate the impact of experience, building on a long tradition of work investigating

changes in problem solving behavior accompanying the acquisition of expertise (Campitelli

& Gobet, 2004; Chase & Simon, 1973; Sheridan & Reingold, 2017; Van Harreveld et al.,

2007). For example, experience might be linked to changes in both how people encode

state information and how they search over the space of possible solutions. Classic and

contemporary work using board games suggests that experts display both a pronounced
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ability to plan further ahead in games than novices and to mentally represent the

configuration of game pieces in visual memory with higher fidelity (Chase & Simon,

1973; Gobet & Simon, 1998; Sheridan & Reingold, 2017; van Opheusden et al., 2023).

Moreover, prior work using video games that impose substantial demands on rapid spatial

reasoning (e.g., Tetris) has found that experience might also improve the fluency with

which participants explore alternative states and determine the value of potential actions

(Maglio & Kirsh, 1996). In principle, these experience-dependent changes might also apply

to the domain of physical assembly, which would suggest that the underlying learning

mechanisms generalize beyond the problem contexts in which they were initially proposed.

On the other hand, it might be that there are important differences between reasoning

domains: for example, problem-solving experience might have a stronger impact on how

state information is encoded in less physically realistic game environments, such as board

games, but a more modest impact in physical settings, where the mechanisms for encoding

physical state are more stable across the lifespan (Baillargeon, 1995; Spelke & Kinzler,

2007).

Here we introduce a task paradigm for investigating how people reason about

physical assembly in a virtual environment that is simple enough to provide a high degree

of experimental control and formal tractability, but expressive enough to engage multi-step

planning and understanding of core physical concepts (e.g., stability, mass, and friction).

We report our findings from an exploratory study in which participants aimed to construct

a series of 2D block towers from a set of rectangular blocks of varying sizes. We restricted

the set of possible actions to placements of a fixed set of parts, enabling straightforward

comparison of building procedures across participants. We further investigated how practice

reconstructing a tower impacts the procedures participants subsequently used to build

that tower across repeated attempts. Our approach takes inspiration from recent studies

in which participants were asked to build copies of actual LEGO structures from LEGO

bricks (Cortesa et al., 2018; Shelton et al., 2022). Findings from this line of work suggest
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that people converged upon shared strategies for building these LEGO structures layer by

layer, consistent with a bias towards shared layer-wise subgoals that also corresponded to

physical subunits of the structures themselves (Shelton et al., 2022).

As in this prior work, we go beyond simple measures of assembly performance to

characterize the action-by-action procedures people used to build each structure. However,

our methodological approach differs in three key ways: First, because the current study

aims to investigate the role of experience in assembly behavior, here we ask participants

to build the same structures multiple times, allowing us to ask how practice influences

the procedures that people use. Second, in order to put greater pressure on participants’

ability to reason about how an object could be made, in a context where there is a large

number of possible solutions, we presented participants with silhouettes of the block towers

they sought to build. Third, in order to support high-throughput measurement of these

open-ended behaviors, we developed a virtual assembly environment embedded in a web

application to enable the concurrent participation of many individuals.
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Figure 1.1. (A) Schematic of task display. The left window contained a target silhouette,
and the right contained a building environment with gridlines. (B) For each participant
the 8 silhouettes were randomly assigned to conditions, 4 in repeated and 4 in control. (C)
Repeated towers were attempted 4 times, interleaved among other towers. Control towers
were attempted twice, once at the beginning and once at the end of each session.
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1.1 Method

The goal of our experiment was to investigate how people’s strategies for solving

physical reasoning tasks shift as they gain experience. To achieve this goal, we developed

a web-based environment in which people could construct various block towers under

simulated rigid-body physics. To provide participants with a specific goal, we considered

the space of physical assembly tasks– namely, those in which people must create an exact

replica of a target structure given the set of components used to construct it. However,

such straightforward assembly tasks permit only a small range of solutions and can be

solved using a simple strategy of copying block for block (Cortesa et al., 2017). To explore

how strategies change with experience, we needed a task that permitted a large range

of solutions. Therefore, rather than display target towers as a configuration of blocks

that could be copied, we showed participants silhouettes of target towers and asked them

to create any configuration of blocks that matched the silhouette shown. This required

participants to infer which blocks to use, where to place them, and in what order. On each

trial, participants aimed to reconstruct a target tower in less than 60 seconds using a fixed

inventory of rectangular blocks. Over the course of an experimental session, participants

built each tower either two or four times, allowing us to assess whether additional practice

reconstructing a specific tower led to greater improvement than general practice with the

task.

1.1.1 Participants

Based on data from pilot studies we estimated that between 100-150 participants

would be sufficient to obtain reasonably precise estimates of our measures of consistency

and variability. In the end, we successfully recruited 107 U.S.-based participants from

Amazon Mechanical Turk. After accounting for technical issues during data acquisition

(i.e., missing data), data from 105 participants were retained (49 female, mean age =
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36.8 years). Participants provided informed consent in accordance with the institution’s

Institutional Review Board.

1.1.2 Stimuli

To identify a set of block towers that were non-trivial to reconstruct, we randomly

sampled a large number of stable configurations of 8-16 blocks, then manually selected 8 of

these that could be reconstructed in many different ways (Fig. 1.1B). We started with an

inventory of five types of rectangular blocks that varied in their dimensions (i.e., 1x2, 2x1,

2x2, 2x4, 4x2). To generate configurations of blocks, we partially filled an 8x8 rectilinear

grid, bottom to top, by sampling random blocks in random x-locations, then randomly

selected several blocks to be removed. We simulated the construction of each tower in

a physics engine (Pybox2d), rejecting any tower that was unstable at any point during

the construction process. To select towers that required planning ahead, we manually

identified 8 configurations that included holes and/or overhanging blocks, and verified that

these towers could be reconstructed in many different ways (59-7128 minimum unique

solutions, mean = 2418).

1.1.3 Design

To more thoroughly characterize the effects of practice on physical construction

ability, we wanted to be able to distinguish improvements resulting from general task

experience from improvements resulting from practice reconstructing a specific tower. For

each participant, we therefore randomly split the 8 block towers into 2 sets containing

4 towers each: a control set and a repeated set (Fig. 1.1 B). Participants reconstructed

towers over four consecutive rounds. In the first (1st) and final (4th) rounds, participants

reconstructed all 8 towers in a randomized order. In the middle two rounds (2nd and 3rd),

participants reconstructed only the 4 repeated towers, also in a randomized order. Thus

there were a total of 24 trials in each session: 8 first attempts, 2 rounds of 4 repeated
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attempts, and 8 final attempts. In subsequent comparisons between the first and final

attempts on each tower, we combine data from both the repeated sets (built 4 times)

and control sets (built 2 times). In analyses of fine-grained changes in behavior across

successive attempts on the same tower, we restrict our analysis to the repeated sets.

1.1.4 Task Procedure

On each trial, participants were presented with two adjacent display windows: On

the left, a target block tower was presented as a silhouette centered on the floor in a 18x13

rectilinear grid environment (Fig. 1.1A); on the right, they were provided with an empty

building environment and the inventory of blocks that was used to generate the towers.

Participants’ goal was to build a tower that matched the shape of the target

silhouette in less than 60 seconds using any combination of the blocks provided. To select a

specific block type, they clicked on its image in the block inventory. Then, by hovering the

mouse cursor over the building environment, a translucent block would appear, showing

where the block would be placed when they clicked again. Blocks could be placed on any

level surface in the building environment (i.e., either the floor or on top of another block).

To minimize the intrusion of low-level motor noise in block placement, the location of each

block ‘snapped’ to a visible grid.

After the placement of each block, participants’ towers became subject to gravity,

simulated using Matter.js. Thus, if their tower was not sufficiently stable, single blocks

or even the entire tower could fall over. After 60 seconds had elapsed or if any block fell,

the trial immediately ended and participants moved onto the next tower. We truncated

trials on which any block fell for two main reasons: first, to ensure that all recorded block

placements could in principle form part of a forward plan to build the target silhouette,

rather than reflect online corrections for error; and second, to strongly incentivize the

production of stable towers. Participants were rewarded for both accuracy and speed:

the more accurate their reconstructions, the larger the monetary bonus they received. If
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participants perfectly reconstructed the target silhouette, they could earn an additional

bonus for speed.

1.1.5 Statistical Analysis Procedure

Our primary statistical approach involved fitting linear mixed-effects models

mirroring, as close as possible, the structure of the experimental design. This included

fixed effects for round and condition, as well as their interaction, and random intercepts for

participant and tower. We then compared this full model to a series of nested models that

had some of the predictors removed, typically starting with the interaction term, then the

effect of condition. To select a model we calculated the Akaike Information Criterion (AIC)

for each model, selecting the most complex model for which AIC substantially dropped

relative to the subsequent simpler model. Full parameter estimates for selected models

are reported in Supplemental Materials. For statistics outside of the model, we report

confidence intervals generated using bootstrap resampling over 1000 iterations. In each

bootstrap iteration we resampled participants with replacement from the entire sample,

including all data from each participant every time they were sampled.

1.2 Results

1.2.1 Change in reconstruction accuracy across attempts

We first needed a measure of reconstruction accuracy that tracked how well the

towers participants built matched the silhouette they were attempting to reconstruct.

Reconstructions are accurate insofar as they coincide with the same region as the target

silhouette, while not extending beyond it. We therefore selected a metric that takes

into account both recall (i.e., the proportion of the target silhouette that coincided

with the participants’ reconstruction) and precision (i.e., the proportion of participants’

reconstruction that coincided with the target silhouette). As stable towers existed in a
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gridworld, we could compute precision and recall directly by comparing the bitmaps of

squares occupied by the target silhouette and reconstruction. The F1 score takes the

harmonic mean of these values to provide a measure that lies in the range [0, 1] and reflects

the degree to which the participants’ reconstruction coincided with the target silhouette:

F1 =
2

(recall−1 + precision−1)

In their first attempts, participants’ reconstructions were moderately accurate,

suggesting that they were engaged with the task but not at ceiling performance (control:

F1 = 0.790, 95% CI: [0.776, 0.803]; repeated: F1 = 0.800, 95% CI: [0.786, 0.814]). To

evaluate changes in reconstruction accuracy over time, we fit a linear mixed-effects model

predicting F1 score from attempt (first, final) and condition (repeated, control) as fixed

effects, including random intercepts for participant and tower (Supplemental Table 1.1).

We found a main effect of attempt (b = 0.0759, t = 6.99, p < 0.001), showing that

participants’ reconstruction accuracy reliably improved between their first and final

attempts (Fig. 1.2A). We found no reliable effect of condition (b = 0.00803, t = 0.737,

p = 0.461), and no evidence of an interaction between attempt and condition (b = 0.0182,

t = 1.19, p = 0.235), suggesting that these improvements were at least in part explained

by general effects of task practice.

In particular, participants may have learned how to more consistently place blocks

that are fully contained within the silhouettes, resulting in fewer ‘off-by-one’ errors. To

explore this possibility, we visualized the spatial distribution of block placements by

constructing a heatmap of block placements, averaged across participants (Fig. 1.3). This

heatmap suggested that participants did place a greater proportion of blocks outside

of target locations in their first attempts than in their final attempts. To evaluate this

possibility, we defined the spatial error for a given tower on a given attempt as the

root-mean-squared cityblock distance between each location in the heatmap and the edge
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Figure 1.2. (A) Reconstruction accuracy across all four rounds, with first and final
attempts of each tower labeled. (B) Build time across attempts, separated by perfect
(F1 = 1) and imperfect reconstructions. Error bars represent 95% CI.

of the target silhouette (zero if within the silhouette), weighted by the value at each

location in the heatmap. We then computed the mean change in spatial error between

their first and final attempts, which revealed that participants generally made fewer and

less extreme errors in their final attempts than in their first attempts (m = −0.625, 95%

CI: [−1.08,−0.209], p = 0.012).
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Figure 1.3. (A) 8 target silhouettes used in the experiment. (B,C) Heatmap
representations of the spatial distribution of block placements for each tower, for first and
final attempts. The intensity of each cell reflects the proportion of participants who placed
a block in that location.
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1.2.2 Change in reconstruction fluency across attempts

In addition to placing blocks more precisely, participants may have also produced

more accurate reconstructions by improving in their ability to place more blocks within

the time available on each trial. To evaluate this possibility, we modeled the change in the

number of blocks used between the first and final attempts using a linear mixed-effects

model otherwise identical in structure to that previously used to analyze accuracy, however

we excluded trials which were truncated due to blocks falling (Supplemental Tables 1.2-1.3).

This analysis revealed a strong main effect of attempt (b = 1.19, t = 7.41, p < 0.001),

showing that participants were able to consistently use more blocks in their final attempt.

There was no evidence of an effect of condition (b = 0.0425, t = 0.264, p = 0.792) nor of

an interaction between attempt number and condition (b = 0.167, t = 0.735, p = 0.463).

There are at least two potential explanations for how participants were able to place

more blocks in their final attempt: first, their fluency with the construction task interface

may have improved, allowing them to select and place more blocks per unit of time; second,

they may have been able to recall previously used procedures for building a given tower,

and thus required less preparation time to devise an action plan prior to placing their

first block. We estimated task fluency by computing the mean time between successive

block placements within a single trial. We estimated preparation time by computing the

time between trial onset and the placement of the first block. We found that task fluency

increased (b = −1.34, t = −13.548, p < 0.001; Supplemental Table 1.4) and preparation

time decreased (b = −2.24, t = −8.64, p < 0.001; Supplemental Table 1.5) between first

and final attempts, suggesting that participants’ improved accuracy may reflect changes

in both.

To measure how quickly participants completed their reconstructions, we measured

the amount of time elapsed between the start of each trial and the final block placement

on that trial, again omitting trials which were truncated due to falling blocks. In their
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first attempts, participants used nearly all of the time allotted (control: 51.8s, 95%

CI: [51.1, 52.7]; repeated: 52.2s, 95% CI: [51.6, 52.8]), and appeared to use less time to

build each tower across attempts (Fig. 1.2B). To evaluate changes in build time between

the first and final attempt, we fit a linear mixed-effects model including attempt (first,

final) and condition (repeated, control) as fixed effects, including random intercepts for

participant and tower (Supplemental Table 1.6). This analysis revealed a main effect of

attempt (b = −1.92, t = −4.25, p < 0.001) but not of condition (b = −0.704, t = −1.80,

p = 0.0725). In exploratory analyses, we discovered that 22.4% of all trials contained

perfect reconstructions (i.e., F1 = 1) of the target silhouette. When we included an

additional binary variable in our regression model indicating whether a trial contained

a perfect reconstruction, we discovered that these ‘perfect’ reconstructions took reliably

less time than imperfect reconstructions (b = −3.81, t = −4.47, p < 0.001). Moreover,

a reliable interaction between attempt number and this binary variable revealed that

decreases in build time from first to final attempts were greater for perfect reconstructions

(b = −5.04, t = −5.10, p < 0.001). Together, these findings suggest that the greatest

increases in speed occurred once participants had discovered a way of producing a perfect

reconstruction.

1.2.3 Change in reconstruction procedures across attempts

Having established that participants build more accurately and quickly across

successive attempts, we then investigated the changes to participants’ construction

procedures that underlie this improved performance. An increase in speed and decrease

in preparation time are consistent with the possibility that participants reused previous

procedures to successfully reconstruct each tower; however, these holistic measures only

indirectly bear on this question. We therefore derived two measures of similarity between

the actions performed across different building attempts (Fig. 1.4A).

Each action consists of an individual block placement, represented by a 4-vector
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Figure 1.4. (A) Example comparison between building procedures on successive attempts.
Numbers on blocks indicate the order in which they were placed. Sequence dissimilarity
(top) compares building procedures on an action-by-action basis (i.e. block n to block n).
Actions involving different sized blocks placed further apart are judged as more distant.
Set dissimilarity (bottom) minimizes the mean distance between actions by ignoring order
and pairing similar actions together. (B) Magnitude of change in sequences of actions
(gray) and sets of actions (dark green) across successive build attempts. Shaded area
represents baseline distributions. (C) Magnitude of change in sets of actions as a function
of accuracy (F1) on previous attempt, for each pair of successive attempts of a given tower.
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[x, y, w, h], where 0 ≤ x ≤ 15, 0 ≤ y ≤ 13 represents the coordinates of the bottom-left

corner of the current block and where (w, h) ∈ {(1, 2), (2, 1), (2, 2), (2, 4), (4, 2)} represent

its width and height, respectively. Each procedure consists of the full sequence of such

actions performed on a given reconstruction attempt. We define the “sequence dissimilarity”

between any pair of action sequences as the mean Euclidean distance between corresponding

pairs of [x, y, w, h] action vectors (Fig. 1.4A, top). When two sequences are of different

lengths, we evaluate this metric over the first k actions in both, where k represents the

length of the shorter sequence. This ‘sequence’ measure compares the dissimilarity of

procedures on an action-by-action basis, and hence assumes that when ‘similar’ plans

are executed, actions are performed in exactly the same order. However, we might also

consider procedures to be ‘similar’ when they involve similar shaped blocks placed in

similar locations, regardless of the order in which blocks are placed. To obtain a measure

of similarity between procedures that is robust to differences in the order in which actions

are performed, we also derived a measure of dissimilarity between the sets of actions

performed, using the Kuhn-Munkres algorithm to identify the one-to-one mapping between

actions from each attempt that minimizes the mean Euclidean distance between them

(Fig. 1.4A, bottom). This “set dissimilarity” measure has the advantage of being sensitive

to correspondences between similar actions performed in different attempts, even when

they were performed in a different order.

We first sought to determine whether participants reused aspects of their own prior

attempts when reconstructing towers. We calculated the sequence and set dissimilarities

between participants’ consecutive attempts at each tower (Fig. 1.4B, solid). To estimate the

expected dissimilarity between attempts, we created a baseline distribution of dissimilarity

values between participants’ 2nd, 3rd, and 4th attempts at a each tower with ‘prior attempts’

(i.e. 1st, 2nd, and 3rd) from a different, randomly sampled participant. We repeated the

process 1000 times, permuting participants separately for each tower (Fig. 1.4B, shaded).

We found that participants’ procedures were more similar to their own prior attempts
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than to other participants’ (p < 0.001 for each pair of consecutive repetitions, for both

sequence and set dissimilarity), suggesting that participants did reuse aspects of their own

prior solutions to reconstruct each tower.

To assess whether participants used increasingly similar procedures across consecutive

attempts, we fit both sequence and set action dissimilarities with a linear mixed-effects

model including fixed effects for attempt pair, the accuracy of the previous attempt,

and the dissimilarity type (sequence or set), as well as random intercepts for tower and

participant (Supplemental Table 1.7). We found that attempt pair was negatively related

to dissimilarity for both dissimilarity measures (b = −0.186, t = −7.40, p < 0.001;

Fig. 1.4B), suggesting that participants became increasingly consistent in the procedures

they used to reconstruct each tower across repeated attempts. In other words, the actions

in participants’ later attempts (i.e. attempts 3 and 4) were more similar to each other

than the actions in earlier attempts (i.e. 1 and 2). As this result holds for set as well

as sequence dissimilarity, it suggests a genuine increase in the consistency between the

actions taken by participants, regardless of the specific order in which they performed.

A potential explanation for this convergence in procedures is that, as participants

uncover increasingly successful procedures for recreating a tower, they may be less likely

to dramatically change their strategy in later attempts. To the extent that accuracy on

prior attempts is related to how much participants alter their procedure in subsequent

attempts, we would predict that more successful procedures are more likely to be reused

than unsuccessful ones. Consistent with this prediction, we found a strong negative

relationship between accuracy on the most recent attempt and how much they changed

their procedure (b = −0.6426, t = −4.054, p < 0.001; Fig. 1.4C), such that participants

updated their procedure to a greater extent when their previous attempt was less successful.

Taken together, these results suggest that people can make efficient use of prior experience

to update their procedures accordingly.
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1.2.4 Consistency and variability in procedures across
individuals

Our results so far show that participants employ increasingly accurate and internally

consistent procedures for reconstructing each tower, raising a natural question concerning

the degree to which procedures used by different participants coincide with one another.

While the analyses above suggest some variation in the actions that participants performed,

they do not reveal whether participants were biased towards a small set of solutions for

each tower, or whether they instead discovered a wide variety of completely different

solutions. We therefore visualized the distribution of procedures used by all participants

by constructing a map of trajectories over intermediate states visited between the start

and end of their reconstruction (Fig. 1.5), where each state is defined by the shape of the

reconstruction up to that point. Under this definition, reconstructions that are composed

of different blocks but share the same shape are treated as occupying the same state, but

are reached by taking distinct trajectories.

Even in their first attempts, many participants appeared to traverse the same

states when reconstructing each target silhouette (Fig. 1.6), hinting at broad consistency

in the procedures people use to perform this task. Additional simulations suggested that

at most 2.2% of the total number of possible solutions to each tower were represented

in our dataset (i.e., 435 unique trajectories across all towers out of 19,677 discovered via

random sampling). To estimate how strongly participants were biased towards the same

of subsequences, we computed the Gini index (G) over the number of traversals of each

sequence of states across all participants:

G =
n∑

i=1

n∑
j=1

|xi − xj| ∗ (2
n∑

i=1

n∑
j=1

xj)
−1

where n is the number of states and xi and xj represents the number of times

states i and j were visited, respectively. G can be thought of as the average difference in
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the number of times each subsequence was traversed, normalized by the total number of

sequences of that length (summed twice to account for differences in both directions) to

lie in the range [0, 1]. It largest when there are a small number of frequently traversed

subsequences, and smallest when all subsequences were traversed an equal number of

times.

To estimate how strongly human procedures concentrate on the same sequences

of states at different timescales, we next extracted n-gram representations for all state

trajectories, each defined by n successive states, for 1 ≤ n ≤ 10, then calculated Gn for

each of these n-gram frequency distributions (Fig. 1.7 A). To provide a baseline, we also

constructed a random-policy agent that samples blocks and viable locations (i.e., within

silhouette, maintaining stability) with equal probability. We used this random-policy agent

to generate a null distribution of 1000 Gini values, each computed from 105 random-policy

agents identified by unique random seeds. When comparing the mean observed G for

human trajectories to this null distribution, we found that human state trajectories were

reliably more concentrated on fewer n-grams than the random-policy agents, across n-

grams of all lengths, for both first attempts (Z-score = 21.6) and final ones (mean Z-score

= 42.7; Fig. 1.7B). These results show that a policy of selecting random viable actions is

insufficient to explain patterns of human action selection in this task.

Insofar as participants are biased to discover similar solutions over time, we may

expect the Gini index to grow between the first and final attempts. To evaluate this

possibility, we fit human Gini values with a linear mixed-effects model including attempt

number, linear and quadratic terms for n, as well as random intercepts for target towers

and participants (Supplemental Table 1.8). This analysis revealed a positive effect of

attempt number (b = 0.112, t = 6.02, p < 0.001), suggesting that participants converged

on a smaller set of procedures across attempts, and this convergence applied to n-grams

over action sequences of all lengths (Fig. 1.7B).

While participants’ convergence towards a smaller number of state sequences might
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Figure 1.7. (A) To estimate the degree of bias towards certain trajectories we extracted
all subsequences of states of a certain length and measured how concentrated construction
behavior was on a small number of sequences. (B) Gini index for n-grams of action
sequences in first and final attempts, compared to those of a random-policy agent. Higher
Gini index reflects a smaller number of frequently appearing action sequences. (C)
Variability between sets of actions performed by different participants in first and final
attempts. Each line segment represents a different tower.

point to greater consistency in the parts of the towers participants were choosing to

reconstruct, it might instead be a necessary consequence of participants building more

accurate and hence more consistent reconstructions. To distinguish these possibilities, we

repeated the previous analysis but only on trials where participants perfectly reconstructed

the target tower. We found that Gini values still increased from first to final attempt

(b = 0.175, t = 5.68, p < 0.001; Supplemental Table 1.9), confirming that convergence

in trajectories was not simply a consequence of more accurate reconstructions, but also

reflected more consistent ways of reconstructing each tower.

Although such convergence is one signature of using similar procedures, the above

analysis is insensitive to cases where two participants reconstruct a silhouette by placing

the same blocks in the same locations, yet place these blocks in a different order. To

address this limitation, we examined the distribution of dissimilarities between the sets of

actions performed by different participants, and found that the variance of this distribution

was smaller on final attempts than in first attempts, for all target towers (t(7) = 10.603,

p < 0.001; Fig. 1.7C). Taken together, these results indicate that despite the relatively
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high state-space complexity of this task, people share systematic biases toward similar

solutions even in their first attempts, and tend to update their strategies across repeated

attempts in similar ways, converging on a more similar set of solutions over time.

1.3 Discussion

In this paper, we investigated how people reason about physical assembly problems

and update their approach to solving them over time. Specifically, we developed a web-

based environment where participants aimed to reconstruct a set of 2D block towers,

and measured how accurately and quickly they could do so across successive attempts at

building each tower. We found that participants achieved strong performance even on

their first attempts and improved substantially with additional practice. Moreover, our

findings suggest that low-level changes in motor fluency were insufficient to fully explain

this improvement. Instead, improvement was driven by genuine changes in the decisions

made by participants about how to build each tower, with participants updating their

procedures to a greater degree when their prior attempt had been less successful. In

addition, although there were many possible ways of reconstructing each tower, we found

that the procedures participants used to initially construct these towers were strikingly

consistent across individuals. Moreover, participants converged on increasingly similar

procedures across attempts, suggesting shared biases toward similar approaches to solving

these assembly problems.

What accounts for the consistency in participants’ assembly behavior, especially

given that for some towers there were as many as several thousand valid ways to reconstruct

them? One possibility is that shared mechanisms for physical understanding lead to similar

mental simulations in planning (Proffitt & Gilden, 1989; Smith & Vul, 2013; Spelke

& Kinzler, 2007). Alternatively, the consistency we see in people’s initial strategies

might have been driven more by participants’ use of simple rules and heuristics (e.g., to
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build layer by layer; (Shelton et al., 2022)). While our random agent baseline simulates

the minimum level of consistency expected under the physical constraints of the task,

alternative algorithms could be used to evaluate specific hypotheses concerning the source

of homogeneity in participants’ solutions. For example, one possibility is that people build

“greedily,” initially prioritizing larger blocks that cover more of the silhouette, but gradually

updating the value of these initial actions in light of whether their reconstruction was

ultimately successful (Barto et al., 1995).

Another possibility is that the consistency we observed reflects a tendency for

participants to decompose these towers into visual parts in similar ways, and that these

parts form the basis for how they then build these towers. Supposing visual organization

does serve to structure construction behavior, what characterizes the parts that people

favor? Identifying the parts that people use to parse visual objects has long been a central

target for classical theories of perceptual organization, which have emphasized spatial

and shape-based cues to parthood (Hoffman & Richards, 1984; Palmer, 1977; Schyns &

Murphy, 1994; Tversky & Hemenway, 1984; Wertheimer, 1923). Building on this tradition,

a related notion is that the parts people use to parse a complex visual object are those

that are easy to identify and remember (e.g., according to Gestalt or other principles), and

can be used to form more compressed representations of other, similar objects (Biederman,

1987). In other words, people confronting an assembly problem may invoke a mental

library containing these useful part concepts to imagine a compact motor program that

could be executed to generate the target object from those parts (Ellis et al., 2020; Lake

et al., 2015; Tian et al., 2020; *Wong et al., 2022). On this view, the value placed on parts

that appear in different objects suggests a route by which prior experience with specific

objects guides the kinds of representational primitives that emerge. Future studies could

test these ideas by manipulating the prevalence of different parts in the set of objects

people are asked to build, and measuring the impact of exposure to these parts on the

assembly procedures they converge upon.
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A major focus of the current study was on how practice building an object affects

a person’s approach to building it later. To what degree does such building experience not

only affect how people build it later, but also its underlying mental representation, such

that they perceive or remember it differently? This question has been explored in prior

work investigating other visual production modalities, such as drawing (Fan et al., 2018;

Wammes et al., 2016) and handwriting (James, 2017; James, 2010). For example, in one

recent study, participants who repeatedly produced drawings of similar objects (e.g., beds

and chairs) were better able to discriminate them in a subsequent categorization task,

relative to control objects that were not repeatedly drawn (Fan et al., 2018). Moreover, this

drawing practice was accompanied by changes in patterns of connectivity between visual

and parietal cortex, suggesting a potential neural substrate for experience to intervene upon

as people improve their ability to transform the contents of a perceptual representation

into representational actions (Fan et al., 2020). A promising direction for future work is to

test the degree to which practice plays a similar role in the context of physical assembly,

thus providing a measure of how strongly these production-driven learning consequences

generalize beyond the domain of drawing and handwriting (Schwartenbeck et al., 2021).

Insofar as they do, such findings would lend support to the notion that, at least in some

contexts, how people internally represent an object is characterized by a fundamental

duality — its correspondence to a static entity with certain perceptual properties, but

also to a generative process that gives rise to it (Fan et al., 2018; Fernandes et al., 2018;

James, 2017; Lake et al., 2015). Regardless, the results of such studies will be invaluable

for advancing our mechanistic understanding of how active and constructive behaviors

relate to learning more generally (Chi & Wylie, 2014).

One limitation of our study as it pertains to real-world physical assembly is the

focus on building 2D block towers in a virtual environment. While our virtual building

environment retained some key aspects of building objects in the physical world, including

the relevance of gravity and friction for reasoning about physical stability, there were
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many other aspects that were not retained in this environment, such as depth information

and the biomechanical details governing how a person would actually need to grip a

3D object in order to maneuver it into place. Future work exploring physical assembly

could overcome these drawbacks by using recently developed 3D virtual environments to

investigate more realistic forms of interaction (Gan et al., 2020, 2021) and could further

connect with research in robotics exploring how data from sight and touch might be

integrated in order to plan complex actions in the real world (Erdogan et al., 2014; Fazeli

et al., 2019; Mason, 2018). The generality and scope of our findings might also be extended

by using a larger and more diverse set of towers, which would support investigation of

the relationship between various properties of these towers (e.g., size, presence of ‘holes’)

and how difficult they are to build. Moreover, in order to test the specific hypotheses

raised earlier concerning the use of hierarchical representations during physical assembly

it will be advantageous to use more complex objects in future studies that more clearly

support hierarchical decomposition (*McCarthy et al., 2021; *Wong et al., 2022). Another

limitation of the current study is the focus on accurate reconstruction of existing physical

structures, rather than reasoning about how to build new ones that satisfy more abstract

design criteria, such as the need to provide “shelter” for another object (Bapst et al., 2019).

Expanding the suite of physical assembly tasks to include these more open-ended design

challenges may provide more direct insight into how humans deploy their general-purpose

understanding of how the physical world works to create new things.

Finally, our paper introduces and validates an approach for investigating how people

learn how to solve physical assembly problems, providing a window into how physical

reasoning and planning interact to achieve specific behavioral goals. Such platforms are

especially valuable for advancing mechanistic theories of cognition because they support

large-scale measurement of complex human behaviors and the evaluation of candidate

cognitive models within the same environment. We hope that our findings will inspire

further development of mechanistic models that display these and other richly complex
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behaviors, and direct comparison of these models’ behavior to that of humans. In the long

run, strong alignment between empirical studies of human and model behavior may lead

to both more robust artificial intelligence and a deeper understanding of human cognition.

1.4 Supplementary Material

1.4.1 Model Parameter Estimates

Accuracy

F1Score ∼ attempt ∗ condition+ (1|participant) + (1|target)

Supplemental Table 1.1 Parameter estimates for linear mixed effects model used to
predict F1 score from attempt (first and final) and condition.

Predictor Estimate Std. Error df t value Pr(> |t|)

Intercept 7.48e− 01 2.37e− 02 12.7 31.5 1.87e− 13∗∗∗

attemptFinal 7.59e− 02 1.09e− 02 1560 7.00 3.95e− 12∗∗∗

conditionRepeated 8.03e− 03 1.09e− 02 1570 0.737 0.461

attemptFinal:conditionRepeated 1.82e− 02 1.54e− 02 1560 1.19 0.235

Number of blocks

numBlocks ∼ attempt ∗ condition+ (1|participant) + (1|target)

Supplemental Table 1.2 Parameter estimates for linear mixed effects model used to
predict number of blocks from attempt (first and final) and condition.

Predictor Estimate Std. Error df t value Pr(> |t|)

Intercept 8.26 0.355 11.1 23.3 8.83e− 11∗∗∗

attemptFinal 1.19 0.160 1.57e3 7.41 2.11e− 13∗∗∗

conditionRepeated 0.0420 0.161 1.57e3 0.264 0.792

attemptFinal:conditionRepeated 0.167 0.227 1.57e3 0.735 0.463
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Supplemental Table 1.3 Parameter estimates for linear mixed effects model used to
predict number of blocks from attempt (first and final) and condition, excluding trials in
which the trial ended early due to a block falling.

Predictor Estimate Std. Error df t value Pr(> |t|)

Intercept 8.83 0.333 12.8 26.5 1.46e− 12∗∗∗

attemptFinal 1.02 0.150 1320 6.83 1.31e− 11∗∗∗

conditionRepeated -0.0160 0.153 1320 -0.105 0.917

attemptFinal:conditionRepeated 0.207 0.212 1320 0.978 0.328

Mean time between block placements

timeBetweenBlocks ∼ attempt+ condition+ (1|participant) + (1|target)

Supplemental Table 1.4 Parameter estimates for linear mixed effects model used to
predict the mean time (seconds) between block placements from attempt (first and final)
and condition.

Predictor Estimate Std. Error df t value Pr(> |t|)

Intercept 6.40 0.327 11.6 19.6 3.18e− 10∗∗∗

attemptFinal -1.34 0.0990 1570 -13.5 < 2e− 16∗∗∗

conditionRepeated -0.161 0.0998 1570 -1.62 0.106

Preparation time

preparationT imeSeconds ∼ attempt ∗ condition+ (1|participant) + (1|target)
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Supplemental Table 1.5 Parameter estimates for linear mixed effects model used to
predict preparation time from attempt (first and final) and condition.

Predictor Estimate Std. Error df t value Pr(> |t|)

Intercept 9.190 0.392 14.7 23.420 4.84e− 13∗∗∗

attemptFinal -2.24 0.260 1570 -8.639 < 2e− 16∗∗∗

conditionRepeated 0.0955 0.261 1570 0.366 0.714

attemptFinal:conditionRepeated -0.618 0.367 1570 -1.684 0.0924

Build time

buildT imeSeconds ∼ attempt ∗ perfectScore + condition + (1|participant) +

(1|target)

Supplemental Table 1.6 Parameter estimates for linear mixed effects model used to
predict total build time (in seconds) from attempt (first and final), condition, and variable
indicating whether the reconstruction was perfect.

Predictor Estimate Std. Error df t value Pr(> |t|)

Intercept 53.0 0.853 14.0 62.1 < 2e− 16∗∗∗

attemptFinal -1.92 0.451 1330 -4.25 2.25e− 05∗∗∗

perfectScore -3.81 0.854 1420 -4.47 8.63e− 06∗∗∗

conditionRepeated -0.704 0.392 1330 -1.80 0.0725

attemptFinal:perfectScore -5.04 0.988 1350 -5.10 3.97e− 07∗∗∗

Action dissimilarity between consecutive attempts

dissimilarity ∼ phasePair + measureType ∗ previousF1 + (1|participant) +

(1|target)
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Supplemental Table 1.7 Parameter estimates for linear mixed effects model used to
predict action dissimilarity from attempt pair, dissimilarity measure, and F1 score of the
previous attempt.

Predictor Estimate Std. Error df t value Pr(> |t|)

Intercept 3.73 0.146 263.1 25.6 < 2e− 16∗∗∗

phasePair -0.186 0.0251 2420 -7.40 1.91e− 13∗∗∗

measureTypeSet -0.482 0.163 2390 -2.96 0.00315

previousF1 -0.643 0.159 2420 -4.05 5.20e− 05∗∗∗

measureTypeSet:previousF1 -1.10 0.199 2390 -5.54 3.37e− 08∗∗∗

Gini coefficients

giniCoefficient ∼ nlevel ∗ attempt+ poly(nlevel,2)

Supplemental Table 1.8 Parameter estimates for linear model used to predict difference
in Gini coefficients from attempt (first and final) and length of action sequence considered
(linear and quadratic) (all trials). df = 155.

Predictor Estimate Std. Error t value Pr(> |t|)

Intercept 0.401 0.0132 30.3 < 2e− 16∗∗∗

sequenceLength -0.0454 0.00213 -21.3 < 2e− 16∗∗∗

attemptFinal 0.112 0.0187 6.02 1.24e− 08∗∗∗

poly(sequenceLength, 2) 0.557 0.0547 10.2 < 2e− 16∗∗∗

nlevel:attemptFinal -0.00926 0.00301 -3.08 0.00247
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Supplemental Table 1.9 Parameter estimates for linear model used to predict difference
in Gini coefficients from attempt (first and final) and length of action sequence considered
(linear and quadratic) (perfect reconstructions only). df = 156.

Predictor Estimate Std. Error t value Pr(> |t|)

Intercept 0.411 0.0218 18.9 < 2e− 16∗∗∗

sequenceLength -0.0411 0.00351 -11.7 < 2e− 16∗∗∗

attemptFinal 0.175 0.0308 5.68 6.32e− 08∗∗∗

sequenceLength:attemptFinal -0.0125 0.00497 -2.52 0.0129
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Chapter 2

How does assembling an object affect
memory for it?
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INTERIM SUMMARY

In Chapter 1, I presented a set of methodological tools for studying physical

construction, including a virtual environment for running physical assembly experiments

in a web browser, and a series of metrics for measuring construction performance and

behavior. These tools allowed me to quantify changes in the procedures people used built

things as they gained experience assembling those objects. I found that people’s ability

to assemble objects improved with experience, and that these improvements reflected

convergence on a small set of strategies. Another way that assembly practice might

influence our ability to build is by impacting the way we represent the objects we intend to

build. In (W. P. McCarthy et al., 2021) I explored the relationship between the procedures

people learn for building an object, and their perceptual decompositions of those objects.

Having found no reliable relationships between the procedures people learn and their

perceptual representations, I turn next to a cognitive mechanism that we have more reason

to suspect of being influenced by interactive behaviors: memory. In the next chapter I

explore how experience building an object impacts our memory of it, through a series of

experiments designed to disentangle the contributions of active engagement from those of

visual exposure.
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Abstract

What impacts what we remember about objects we have just encountered? Influential

theories of learning suggest that more active engagement leads to stronger memories than

passive observation. However, it is not clear which aspects of interaction lead to stronger

memories, nor what kinds of memories are supported by active engagement. Here we

conduct several experiments to investigate the impact of assembling an object on subsequent

recognition and recall performance. We found that reconstructing a block tower by copying

it part-by-part could impair subsequent memory for that tower, compared to passively

viewing that tower. By contrast, when participants initially encoded each tower by building

it from working memory, their subsequent recall was enhanced relative to when they held

the tower in working memory without building it. Together our results suggest a complex

relationship between the nature of our interactions with objects and our subsequent

memories of them.

Keywords: memory; working memory; construction; active learning; encoding

specificity; procedural memory
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2.1 Introduction

To interact with the world in complex ways, we need to remember things about the

objects we have interacted with. Sometimes, all we need to remember about an object is

whether or not we have seen it before (Brady et al., 2008; Standing, 1973). Other time, we

need to remember specific details about our prior interactions. What determines the kinds

of information we remember about objects we encounter, and what about our interactions

with objects determines how well we remember them?

A substantial body of prior work had found that more active forms of encoding,

in contrast to more passive observation, lead to stronger memories (Bonwell & Eison,

1991; Chi, 2009; Craik & Lockhart, 1972; Markant et al., 2016). These findings suggest

that people will remember more about objects they actively manipulate, compared to

those they just see. Indeed, actively rotating 3D objects does lead to better recognition of

those objects compared to passively viewing the same sequence of images (Harman et al.,

1999). Some forms of interaction may be particularly beneficial to memory. Many memory

researchers have identified strong mnemonic benefits of generation: people are more likely

to remember words (Bertsch et al., 2007; Slamecka & Graf, 1978) and numbers (Crutcher

& Healy, 1989) when they have generated them as answers to questions, compared to when

those same answers are given to them. These findings suggests that visual memory might

also benefit from generative processes, such as altering an object’s appearance, or even

constructing an object from scratch. Moreover, production of visual objects (i.e. drawing)

has been shown to support memory for depicted words and concepts (Fernandes et al.,

2018; Wammes et al., 2016), however, whether constructing a visual object strengthens

memory of the object itself is less clear.

The experience of constructing an object is a complex physical and cognitive act that

could impact memory in various ways, from providing more visual exposure, to “deeper”

or embodied processing through multiple sensory channels (Craik & Lockhart, 1972), to
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practice “retrieving” objects from memory (Roediger III & Karpicke, 2006; Rowland, 2014;

Schuetze et al., 2019). A unique but perhaps critical aspect of construction is the sequence

of transformative actions performed. The procedural learning (W. McCarthy et al., 2020;

Ryle & Tanney, 2009) that occurs during this process may be intimately related to how

we visually represent objects (Lake et al., 2015; Yildirim et al., 2020). On the other hand,

our memory of how an object looks might be entirely independent of our memory of how

to build an object, which we may only observe in decoding contexts that leverage that

information.

In general, the way in which we probe different kinds of memory may have a

critical effect on the results we observe. The standard measure of visual recognition

memory– asking whether or not someone has seen a stimulus before– may reveal whether

someone has stored some aspect of a stimulus in memory, but not which aspects of the

stimulus were used to make those judgements (Brady et al., 2008). Theories of verbal and

concept memory distinguish between recognition (or “familiarity”) and recall (Yonelinas,

2002), tests of which are able to provide richer readouts of memory. This had led some

researchers to explore visual production (i.e. drawing) to provide more detailed insight into

the contents of visual memory (Bainbridge et al., 2019). These generative readouts may

be especially sensitive to memories formed during construction, by providing a decoding

context that is consistent with how the objects are encoded (Godden & Baddeley, 1975;

Tulving & Thomson, 1973).

2.2 General Methods

In this paper, we present a series of 4 experiments designed to assess the impact of

generative visual encoding tasks on subsequent memory of objects. We use a task domain

with objects that can themselves be constructed– 2D block towers– allowing us to compare

the impact of generative experience on recognition as well as recall. All experiments
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Figure 2.1. Building might impact memory simply by being more “active”, but might
also require existing memories to strengthen or elaborate. It could impact our ability to
recognize the things we build, or our memories of how to build them (A). Target block
towers can be built from 8 blocks (B). 3 towers were assigned to each encoding task (C
left). In the View task, participants inspected the tower for 15 seconds. In the Build
task, participants rebuilt the tower. We tested recognition (Experiment 1) by asking
participants if they had seen each tower before (top-right); we tested recall (Experiment
2) by asking participants to rebuild each tower from memory (bottom-right).

reported consisted of an encoding phase and decoding phase. In each encoding

phase, each participant viewed 6 block towers that were randomly split between two

encoding conditions, View and Build. Encoding tasks for each condition varied slightly

across experiments. In each decoding phase, memory of these towers was tested with an

assessment of recognition or recall.

Stimuli

To design a set of visually homogeneous stimuli that could be generated with

distinct sequences of actions, we generated a set of 2D block towers (Fig 2.1B). Each tower

was constructed out of 8 dominoes, 4 horizontal and 4 vertical (i.e. 2x1 and 1x2 blocks),

and fit within a 4x6 grid.

Participants

Participants (18+ years, from USA and UK) were recruited online using the Prolific

platform and were paid approximately $16 per hour for their time (20-30 minutes). For
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E1 and E2, we recruited participants until 50 participants completed each study without

meeting any of our pre-defined exclusion criteria. For E3 and E4, we recruited participants

until 50 participants in each group completed the study.

2.3 Experiment 1: Impact of building objects on

visual recognition

We manually selected a subset of 12 block towers to be shown to all participants

(Fig 2.1B). For each participant, the 12 towers were randomly divided into sets of 6 target

towers and 6 foils. The 6 target towers were randomly split between two conditions– Build

and View– and were all presented in the same color.

Encoding

Participants were informed that their memory for the shape of each tower would

be tested later in the experiment. All 6 target towers were presented in a psuedorandom

order. View towers were displayed on screen for 15000ms, and participants were instructed

to “study the shape of the tower” for the entire time it is on screen (Fig 2.1C, upper-left).

Build towers were presented alongside a building interface: a gridworld environment where

blocks could be picked up and placed on any supporting surface by clicking with the mouse.

Participants were instructed to “copy the tower” by building it in the environment. Blocks

could not be moved once placed, however, the building environment could be reset at any

time, and undo/ redo was available. When the participants had perfectly reconstructed

the target tower, they automatically proceeded to the next trial (Fig 2.1C, lower-left).

Decoding

Visual recognition memory was measured with an old-new task (Fig 2.1C, upper-

right). Participants were presented with the target towers one-by-one, randomly interleaved

with foils, and asked to indicate whether they had seen the presented tower in the previous

phase by keypress.
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Figure 2.2. Participants correctly responded ‘old’ to View stimuli more often than to
Build (A). Participants recalled roughly the same amount of Build and View towers, and
those they did recall were of roughly the same accuracy. Error bars in all plots represent
95% CI.

2.3.1 Results

We excluded 8 participants for incomplete data. To determine whether participants

had any ability to discriminate between old and new stimuli, we created bootstrapped

distributions of the number of times participants responded “old,” separately for target

towers and foils (Fig 2.2A). Distributions and confidence intervals were created by

resampling over 1000 iterations; in each bootstrap iteration we sampled participants

with replacement and included all data from a participant every time they were sampled.

We found that participants responded “old” more often to target towers (0.667, 95% CI :

[0.62, 0.708]) than to foils (0.33, 95% CI : [0.283, 0.377]) (p = 0), confirming that they

could, in general, discriminate between towers they had seen and those they had not.

We also found that participants were more likely to respond “old” to View towers

(0.743, 95% CI : [0.683, 0.793]) than to Build towers (0.59, 95% CI : [0.527, 0.653])

(p = 0). This was particularly surprising given that participants took on average 61.1s

(95% CI : [60.8, 61.3]) to complete each Build trial, far longer than the 15s exposure in
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the View trials. Primarily, however, it conflicts with the prediction that the more active

task, building, would lead to stronger memories than the viewing task, which required no

overt activity at all.

2.4 Experiment 2: Impact of building objects on

visual recall

We had several hypotheses about why building a tower might lead to worse memories,

however we first sought to establish whether this phenomena was isolated to visual

recognition, or extended to other forms of memory. Recall– the ability to bring an item to

mind without a related cue– provides an opportunity for participants to share contents

of memory, even if it does not reach threshold for visual recognition. Our task domain

provides a natural way of testing visual recall: asking participants to build block towers

from memory. Furthermore, this decoding context is highly consistent with the context of

encoding (i.e. building towers) (Godden & Baddeley, 1975; Tulving & Thomson, 1973),

which may give participants the best chance of leveraging kinds of representations learned

during building.

Encoding

The encoding phase was identical to that of Experiment 1, except that participants

performed 2 repetitions of each encoding trial. We increased the number of repetitions as

we found in piloting that many participants struggled to recall any towers after a single

encoding trial, consistent with prior findings that visual recall demands a stronger memory

signal than recognition (Yonelinas, 2002).

Decoding

Participants were presented with a building environment almost identical to the one

available to them in the Build encoding task, minus the target tower. Participants were

asked to reconstruct as many towers as they could remember from the previous part of

60



the study, in any order (Fig 2.1C, lower-right). The experiment ended when a participant

submitted 6 towers, or pressed a button indicating that they could not remember any

more towers.

2.4.1 Results

We excluded 11 participants for incomplete data. After removing duplicate

submissions of towers, participants submitted an average of 4.2 towers (95% CI : [3.7, 4.64]).

On average, 1.46 (95% CI : [1.06, 1.84]) of these towers were perfect reconstructions of a

target tower, suggesting that accurately recalling towers of this complexity was a difficult

task. Fewer Build towers (0.56, 95% CI : [0.34, 0.78]) were perfectly recalled than View

towers (0.9, 95% CI : [0.62, 1.22]) (p = 0.020), providing initial evidence that building did

not benefit recall memory.

To measure accuracy of the imperfect reconstructions we calculated the “Intersection

Over Union” (IoU): the area of overlap between target and reconstruction, divided by the

total area covered by both, allowing for horizontal translation. Imperfect reconstructions

present a challenge for analysis: how should we identify which target towers participants

were attempting to reconstruct? We made an assumption– that each unique tower

built in the recall phase corresponded to a genuinely recalled target tower. To map

these recalled towers to their intended targets, we calculated the IoU between every

reconstruction and target, then found the mapping that maximizes the mean score. We

found no reliable difference between the number of towers paired to targets from the Build

(2.1, 95% CI : [1.82, 2.34]) and View (2.1, 95% CI : [1.8, 2.38]) conditions (p = 0.440) (Fig

2.2B). However, we did find that participants who recalled towers from both conditions

generally built more accurate reconstructions of View condition towers (p = 0.0208,

Cohen’s d = 0.433), revealed by a paired t-test between reconstruction means in each

condition (Fig 2.2C).

In sum, these results point to a moderate recall advantage for towers in the View
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Figure 2.3. Experiments 3 and 4 compared the effect of our original encoding tasks
with two new encoding tasks (A). In both tasks, participants studied a tower until it
disappeared. They were then asked to either identify the tower from a group (top) or
to rebuild the tower (bottom). Different colors were used for each tower, allowing us to
measure recognition and recall of specific towers (B).

condition, compared to Build, which is also at odds with the prediction that more active

engagement leads to stronger memories. This also happened despite the highly similar

encoding and decoding contexts in the Build condition, suggesting that if generative

encoding can actually benefit visual memory, something about the generative experience

our participants are engaging in is failing to induce this effect, or is interfering with memory

in some way.
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2.5 Experiment 3: Impact of building from working

memory on visual recognition

Why did participants not remember the towers they built better than the ones

they viewed? Much of the prior work demonstrating mnemonic benefits of “generation”

investigates processes of reconstructing or generating an example or word from memory or

from an internal thought process. Retrieval from an internal representation may serve to

reinforce prior representations through retrieval (Fan & Turk-Browne, 2013; Roediger III

& Karpicke, 2006; Rowland, 2014; Schuetze et al., 2019), or link these representations

to novel experiences. Our building task, in contrast, asks people to copy an object that

already exists in the world, meaning it could in principle be completed without any

holistic representation of the object. If, for example, participants reconstructed towers

by iteratively determining which one block should be placed next, they may have never

associated their actions with a representation of what any particular tower looked like.

Moreover, if participants learned that they only needed to attend to individual blocks,

they may have stopped attending to the entire the tower.

In Experiments 3 and 4, we aimed to test whether a pre-existing visual memory is

a prerequisite for a mnemonic advantage of building. We introduced two new encoding

tasks that each required participants to hold a representation of an entire tower in working

memory before performing some an adapted Build or View task. Similarly to Experiments

1 and 2, Experiment 3 tests visual recognition and Experiment 4 tests recall.

Stimuli

For each of the target towers used in Experiments 1 and 2, we derived a set of 5

distractors by performing the following transformations: horizontal flip, vertical flip, 180

degree rotation, lower half swapped with upper half, and left half swapped with right half.

We sampled one of these distractors to act as the foil in the old-new decoding task. The
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remaining 5 became distractors in the match-to-sample encoding task, described below.

We randomly sampled sets of 6 target towers until all of the target towers and derived

distractors were distinct, and presented this set to all participants in Experiments 3 and 4.

Each target tower and its corresponding distractors were assigned one of six colors. As

with Experiments 1 and 2, target towers were randomly split between Build and View

conditions for each participant.

Encoding

Participants in the Visual Exposure group performed the same Build and View

tasks from Experiments 1 and 2. Participants in the Working Memory group performed

modified Build and View tasks that required participants to visually encode each tower

before responding. Prior to each Working Memory task, the target tower was displayed

on screen for 8000ms and participants were prompted to “study” the shape of the tower.

Then, for towers in the View condition, participants performed a match-to-sample task:

they were presented with a centered fixation cross, followed by a circular array of 5 towers–

the 4 sampled distractor towers plus the target tower. Participants were instructed to

select the tower they had just studied by clicking on it, after which they received feedback.

For towers in the Build condition, participants performed a build-from-memory task:

they were presented with an empty building environment, with blocks in the same color

as the tower they had just viewed, and prompted to build the target tower from memory.

They could submit a tower once they had placed 8 blocks. They received feedback after

submission (correct or incorrect), and the target tower was revealed in an adjacent window

to allow comparison with their reconstruction.

Decoding

Experiment 3 used the same old-new task from Experiment 1, except that participants

saw two trials of each color: one target and the randomly sampled foil generated from

that target.
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2.5.1 Results

We excluded 11 participants for failing to complete all trials, leaving 50 in each

group. We first analyze performance in the Working Memory encoding phase. In the

match-to-sample task, participants correctly selected the target tower from the 5 distractors

on 91.5% of trials (95% CI : [86.3, 95.8]), suggesting that they successfully encoded the

target towers in working memory. In the build-from-memory task, participants perfectly

reconstructed the target tower on 73.3% of trials (95% CI : [0.688, 0.774]), consistent

with this being a more difficult task.

As with Experiment 1, the Visual Exposure group responded “old” to target towers

(0.807, 95% CI : [0.76, 0.853]) more often than to foils (0.29, 95% CI : [0.243, 0.34])

(p = 0). However, while View towers (0.833, 95% CI : [0.753, 0.9]) were remembered

marginally more often than Build (0.78, 95% CI : [0.713, 0.847]) (p = 0.173), we did not

see a reliable difference between responses (Fig 2.4A left). Convergence between conditions

may have been driven by ceiling effects, as the introduction of colors and increased number

of repetitions did appear to result in stronger recognition performance overall (75.8%

correct, 95% CI : [71.8, 79.7]), relative to Experiment 1.

This explanation is supported by the fact that in the Working Memory condition,

where participants’ responses were marginally more accurate again (80.1% correct, 95% CI :

[76.3, 83.8]), the difference in responses between Build (0.88, 95% CI : [0.827, 0.927])

and View (0.873, 95% CI : [0.827, 0.92]) was even less distinct (p = 0.565) (Fig 2.4A

right). In sum, we find no evidence that building from working memory reliably led to

better or worse recognition.
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Figure 2.4. Recognition performance was similar for Build and View (A left), regardless
of whether the tower was encoded in working memory (A right). As in Experiment 1,
participants recalled towers they viewed more accurately than towers they built (B left),
unless those towers were first encoded in working memory (B right).

2.6 Experiment 4: Impact of building from working

memory on visual recall

Finally, we asked whether building from memory impacts visual recall. We

introduced block towers of different colors to provide a way of inferring which towers

participants were attempting to recall, as well as provide an additional channel by which

participants could discriminate between towers.

Encoding

The encoding phase was identical to the encoding phase in Experiment 3.
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Decoding

As in Experiment 2, participants were presented with an empty building environment,

and asked to recall as many towers as they could remember from the encoding phase.

This time, however, participants first had to select the color of the tower they wanted

to build. Once they had placed 8 blocks of their chosen color, then pressed a button to

submit their tower and remove that color as an option. The experiment ended when a

participant submitted towers of all 6 colors, or pressed a button indicating that they could

not remember any more towers.

2.6.1 Results

We excluded 6 participants for failing to complete all trials, and 1 failing to start

the decoding task within 10 minutes of finishing the encoding task, leaving 50 participants

in each group.

Similarly to Experiment 3, the Working Memory group correctly selected the

target tower on 86.7% of match-to-sample trials (95% CI : [81.3, 91.7]), and perfectly

reconstructed the target tower on 73.9% of build-from-memory trials (95% CI : [0.7, 0.778]).

Participants submitted towers on 3.78 towers on average (95% CI : [3.44, 4.11]).

The colors of recalled towers provided a mechanism for us to match recalled towers with

their intended target stimuli. To compare how different encoding tasks affected recall

memory, we fit a mixed-effects logistic regression predicting whether or not a participant

submitted a perfect reconstruction of the target tower. We included fixed effects for

encoding group (Visual Exposure vs. Working Memory), encoding context (Build vs.

View), and their interaction; plus random intercepts for participant and tower. We found

no evidence that the Working Memory tasks reliable led to a better or worse ability to

perfectly recall towers (b = −0.595, z = −1.35, p = 0.177). While we did see evidence for

a main effect of encoding context, where Build towers were recalled less frequently than

View (b = −0.879, z = −2.52, p = 0.0117), this effect was small compared to a reliable
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crossover interaction between encoding task and context (b = 1.62, z = 3.33, p < 0.001):

Build towers were recalled more often than View towers when encoded in the Working

Memory tasks. That is, we see evidence for stronger memories of built towers than viewed

towers when building follows prior encoding of the tower.

To verify this finding, we fit a model of the same structure, predicting the accuracy

of each reconstruction for every target tower, treating towers that were not reconstructed

as IoU = 0. Again, we found no reliable effect of encoding condition (b = −0.09261,

t = −1.58, p = 0.116), a small negative main effect of the Build condition (b = −0.143,

t = −3.00, p = 0.00346), and a crossover interaction (b = 0.247, t = 3.67, p < 0.001)

suggesting that Build towers were recalled more accurately than View towers in the

Working Memory condition (Fig 2.4 B) (and less in the Visual Exposure condition).

Together, these results suggest that building a tower from working memory facilitates

visual recall, relative to simply viewing a tower.

2.7 Discussion

We asked how generating block towers impacts our subsequent memory of them.

We initially compared memory for block towers that participants copied with block towers

that they simply viewed on screen, and found that the towers people copied were recognized

less frequently and recalled less accurately. We suspected that building block towers while

they were still on screen prevented participants from forming holistic representations of

them, and that these might be critical for generation to facilitate memory. Consistent with

this interpretation, we found that when participants built towers from working memory,

they did remember them better later on. Moreover, this relative memory boost was only

apparent in visual recall, not visual recognition, suggesting that generative experience

impacted some but not all aspects of memory for the object.

Our work has implications for the applicability of active and generative learning to
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visual memory (Crutcher & Healy, 1989; Markant et al., 2016; Slamecka & Graf, 1978). It

suggests that more active engagement does not necessarily translate to better memory

of a visual stimulus– that the kind of engagement matters. Our finding that building

from memory supports recall but not recognition, as well as hinting at distinct processes

underlying these two forms of memory (Yonelinas, 2002), suggests that active engagement

differentially affects different kinds of memory. Why is recall prioritized in this way? A

possible reason is suggested by theories of situated cognition (Roth & Jornet, 2013), that

have long stressed that internal representations do not always present the most efficient

solution to a cognitive problem: why remember what something looks like when you

can easily check by looking? Actions are not perceivable in this way, making it more

worthwhile to dedicate cognitive resources to remembering them.

Another key question raised by our study is how building from working memory

leads to stronger memories. One possibility is that building from memory requires a large

volume of queries of working memory, consolidating any pre-existing representations in

longer-term memory through retrieval practice (Roediger III & Karpicke, 2006; Rowland,

2014; Schuetze et al., 2019). Alternatively, generative experience may result in a distinct

kind of action-based representation, akin to procedural knowledge or “knowledge how”

(Anderson, 2013; Ryle & Tanney, 2009). Such representations may elaborate on existing

perceptual representations, facilitating processing at a deeper level (Bradshaw & Anderson,

1982; Craik & Lockhart, 1972), or simply constitute a distinct memory trace that can be

accessed in future generative contexts. Our results do provide one reason to be skeptical

of additional memory formats– a seemingly limited capacity to recall objects. Participants

in the Working Memory group did not, in general, recall more towers than the Visual

Exposure group, suggesting that the build from memory task served to prioritize memory

for certain towers above others, more so than it did to boost memory strength overall.

Our study also raise the question of how goals at encoding time affect memory.

We chose not tell participants which Working Memory task they would perform until the
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stimulus they were encoding had disappeared. However, goals guide visual attention and

attention is crucial for determining what gets encoded in memory (Chun & Turk-Browne,

2007). A straightforward way to test whether goals at encoding time impacted memory

would be to tell people in advance what task they will perform, potentially cueing different

ways of seeing (Goodwin, 2015) and leading to measurable memory effects downstream.

Finally, the hierarchical structure of our stimuli raises the possiblity of relating

fine-grained differences in encoding behavior to downstream memory. One well documented

strategy for remembering something is to break it down into memorable “chunks” (Chase

& Simon, 1973; Miller, 1956; Orbán et al., 2008), a process that may have occurred

implicitly as participants built towers. By analyzing the kinds of errors participants made,

we may be able to identify subtowers that they did remember, even when they failed

to remember the entire tower. Doing so may help to shed light on the structure of the

representations used to support visual recognition and recall (Yonelinas, 2002), and tease

apart the impact of generative experience on these representations.
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Chapter 3

Learning to communicate about
shared procedural abstractions
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INTERIM SUMMARY

In the preceding chapters, I explored the consequences of assembling objects for

the procedures we use to build those objects, and for our memory of those objects. The

results so far suggest that assembly experience helps individuals build better, by helping us

build things more accurately and quickly. They also suggest that our ability to recall how

something is made can be improved with practice. Together, these results suggest that

our mental representations of how something is made can shift in response to experience.

The dynamic nature of these representations pose a challenge for real-world construction,

which is frequently carried out by groups of collaborators, rather than individuals. How

are people able to communicate effectively about how something is made, if their internal

representation of that process is constantly shifting? In this chapter, I explore how

collaborators in assembly tasks use natural language to coordinate behavior, even amid

changing representations of construction procedures.

76



Abstract

Successful collaboration requires people to coordinate their behavior in pursuit of a shared

goal. In addition to breaking down a task into the same components, collaborators often

need to communicate about those components in the same way. We investigate the joint

coordination of ad hoc task abstractions and communicative conventions in a collaborative

physical assembly paradigm. One participant (the architect) saw the blueprints for scenes

containing block towers, and sent assembly instructions to the other participant (the

builder) using a natural-language chat interface. Participants converged on increasingly

effective instructions across repeated attempts, using more abstract referring expressions

capturing each scene’s hierarchical structure. To explain these findings, we present a

computational model that integrates recent probabilistic accounts of ad hoc convention

formation with a neurosymbolic account of procedural chunking. Our results shed light on

the fundamental mechanisms that enable intelligent agents to communicate and collaborate

so flexibly.

Keywords: language, collaboration, social cognition, program induction, learning
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3.1 Introduction

Many real-world tasks are too complex for any one individual to accomplish alone.

Instead, multiple people must coordinate their behavior and work as a team (Eccles

& Tenenbaum, 2004; Grosz & Kraus, 1996; Salas & Fiore, 2004; Stone et al., 2010;

Tannenbaum & Salas, 2020). To work together effectively, team members need to think

about what they are doing in the same way, sharing similar mental representations of the

relevant procedures at the appropriate level of abstraction for their joint goals (DeChurch

& Mesmer-Magnus, 2010; Mathieu et al., 2000; Stout et al., 1999; Waller et al., 2004). For

example, consider a group of cooks working together at a restaurant (Fine, 2008; Strouse

et al., 2021; R. E. Wang et al., 2021). When a new cook is training in the kitchen, they

may need to follow step-by-step instructions at the level of individual ingredients, like

melt 30g butter in the small pan, then stir in 30g of flour. As they gain more experience,

however, they may just make a roux, efficiently executing the entire procedure as a single

routine. When all cooks are using the same unified roux abstraction, it is easier to plan and

execute complementary actions without clashing. Similar benefits of shared abstractions

are found in other domains, from doubles tennis (Blickensderfer et al., 2010) to nursing

care (Apker et al., 2006) and operating rooms (Bogdanovic et al., 2015; Klein et al., 2006;

Sexton et al., 2006)

In many cases, however, the relevant abstractions are not available to agents

in advance, and achieving the collective benefit of shared abstraction requires ad hoc

coordination between interacting agents as they individually learn the procedures required

for the task at hand (Cooke, 2015; Entin & Serfaty, 1999; S. I. Wang et al., 2017).

The ability to communicate using natural language is a powerful tool for solving this

coordination problem, allowing people to verbally negotiate roles and instructions (Clark,

1996; Suhr et al., 2019; Tellex et al., 2020). Yet for a communication protocol to be effective

in novel task settings, these protocols must also be able to update over the course of a
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group interaction to refer to newly relevant concepts. For example, if the cooks were asked

to make a “vegan roux,” they might have some uncertainty over what recipe, exactly, is

being referred to. What is expected to replace the butter? The process of forming common

ground or pacts to resolve this uncertainty has been central to psycholinguistics (Clark,

1996; Hawkins, Frank, & Goodman, 2020) and natural language processing (Hawkins,

Kwon, et al., 2020; Takmaz et al., 2020; Udagawa & Aizawa, 2021).

In this paper, we address a fundamental question concerning the learning mechanisms

that enable teams to meet these challenges: how are people able to simultaneously coordinate

on a shared set of concepts as well as the language for talking about them? We approach this

question by building a computational cognitive model capable of capturing both conceptual

and communicative dimensions of successful coordination at once. To model conceptual

coordination, we draw upon recent developed neurosymbolic models emerging from the

classical program synthesis literature (Barsalou, 1999; Dehaene et al., 2022; Goodman et al.,

2015; Gulwani et al., 2017). These models formalize concepts as structured, executable

programs. Through a process known as library learning, agents are able to supplement

an initial set of primitive concepts with more complex abstractions, or “chunks,” as they

learn more about a task (Ellis et al., 2021; Kumar et al., 2022; Wong et al., 2021). To

model linguistic coordination, we draw upon a recently proposed of model of linguistic

convention formation as probabilistic social inference over those underlying abstractions

(Hawkins et al., 2021, 2023). These two model components are complementary to one

another: Library learning provides a mechanism for how individuals acquire new concepts

by combining existing ones, but cannot explain how individuals bind words to these new

concepts, nor how the same concepts would come to be shared between collaborators.

On the other hand, linguistic convention formation provides a computational mechanism

whereby teams can coordinate on ways of talking about existing concepts, but cannot

explain how new concepts arise. When combined, however, these two mechanisms generate

specific and testable predictions concerning how mental representations change when a
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team encounters a new task.

We evaluate these predictions in a physical assembly domain (Bapst et al., 2019;

Bramley & Xu, 2023; McCarthy et al., 2020; Walsman et al., 2022). Participants encounter

visual scenes populated by a recurring set of block towers. These scenes are hierarchically

organized and can thus be validly represented at multiple levels of abstraction. For

instance, a scene might be represented holistically or it might be represented as an

assemblage of simpler structural units. As participants are presented with multiple

such scenes, the library learning component predicts that certain “chunks” should be

preferred, grouping primitive elements (i.e., individual blocks) into more complex units

(i.e., configurations of multiple blocks; Aslin et al., 1998; Austerweil & Griffiths, 2013;

Christiansen & Chater, 2016). However, these newly formed abstractions are only useful

for collaboration if they can be shared with other people—for example, by using language.

And using language to communicate about these abstractions requires overcoming the

inherent risk of miscommunication that accompanies the use of new terms. As such, the

model we propose requires both bootstrapping new abstractions (driven by the functional

pressure to efficiently represent structure in the world) as well as coordinating on new links

between these abstractions and tokens of language (driven by the functional pressure to

be understood). In sum, our paper contributes a novel empirical paradigm, computational

model, and set of evaluation metrics that expose core principles of successful teamwork

and can be used to guide applications such as the ongoing development of artificial agents

that collaborate as flexibly as people do.

3.2 Method

3.2.1 Participants

73 dyads (N = 146 human participants) were recruited from Amazon Mechanical

Turk and automatically paired up to perform a collaborative assembly task. We excluded
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Figure 3.1. Collaborative assembly task. (A) The Architect was shown a target scene and
provided assembly instructions to the Builder, who aimed to reconstruct it. (B) Each scene was
composed of two towers, which were each composed of four domino-shaped blocks.

24 dyads who failed to meet preregistered criteria (i.e., failing to achieve at least 75%

reconstruction accuracy on at least 75% of the trials, self-reporting confusion about task

instructions, self-reporting non-fluency in English). Each session lasted approximately

30-50 minutes, and participants were provided with a minimum compensation of $5.00 for

task completion, plus a performance bonus of up to $3.00 (see Supplemental Methods for

further details). All participants provided informed consent in accordance with IRB.

3.2.2 Procedure

Each participant was assigned a fixed role of Architect or Builder and proceeded

with their partner through a series of twelve trials. On each trial, the Architect was shown

a target scene containing block towers (Figure 3.1A). The Builder could not see the target

scene, but was shown an empty grid where they could click to place individual domino-like

blocks. The Architect was asked to send step-by-step assembly instructions through a

free response text box, which the Builder could use to reconstruct the target scene as

accurately as possible. The Architect and Builder took as many turns as they needed to

reconstruct each scene. On the Architect’s turn, they sent a single message containing a
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Figure 3.2. A: Example messages from earlier and later repetitions of tower pairs, showing
the emergence of tower-level expressions (upside down U, long C). B: t-SNE visualization of
referring expressions mentioned in each repetition. Each line represents the change in the
embedding space from a participant’s first to final repetition of the same tower pair. Red arrows
are highlighted examples with annotated endpoints.

maximum of 100 characters; on the Builder’s turn, they placed as many blocks as they

wish (including zero) before pressing the “done” button and passing control back to the

Architect. Blocks could be placed anywhere so long as they were supported from beneath,

and could not be moved once placed. The Architect could see the placement of each block

in real time but the communication channel was otherwise unidirectional: the Builder

was unable to send messages back to the Architect. During each turn, there was a timer

counting down from 30 seconds to encourage the Architect and Builder to work quickly,

but there was no time-out or penalty for exceeding this time limit. Once all eight blocks

have been placed, both participants received feedback about the mismatch between the

target scene and reconstruction before advancing to the next trial.

3.2.3 Stimuli and Design

Each scene was composed hierarchically from two block towers that appeared side

by side. Each tower, in turn, was composed hierarchically from four domino-shaped
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blocks– two vertical and two horizontal (Figure 3.1B). There were three unique towers. To

evaluate changes in collaboration behavior over time, we employed a repeated design where

each tower appeared multiple times. All three possible pairs of these towers appeared,

in randomized sequence, in each of four repetition blocks for a total of twelve trials. All

towers appeared in both the left and right positions an equal number of times, such that

there was no association between any given tower and its location in the scene.

3.2.4 Reconstruction accuracy improves across repetitions

Although each interaction only spanned twelve trials, we hypothesized that human

dyads would be able to leverage this small amount of experience to rapidly develop shared

task representations, resulting in increasingly successful and efficient collaboration over

time. Before turning to our fine-grained predictions about the language used by the

Architect (Figure 3.2), we first needed to verify that human dyads were able to work

together in the assembly task at all. We used reconstruction accuracy as a measure of

overall performance, quantifying the mismatch between the reconstructed tower and the

target silhouette. Specifically, we computed the F1 score, a standard metric of overlap

that accounts for both parts of the target silhouette that the reconstruction failed to

cover (a recall term) as well as parts of the reconstructed tower that lay outside the

silhouette (a precision term). F1 is normalized by the total size of the shapes, with 0

representing no overlap at all, and 1 representing perfect overlap. We found that even initial

reconstructions were highly accurate with mean F1 = 0.88 (95% CI = [0.85, 0.90]), which

roughly corresponds to having just one block out of place, while the final reconstructions

were near ceiling at F1 = 0.98 (95% CI = [0.96, 0.99]). We estimated this increase using a

linear mixed-effects model that predicted the F1 score on each trial, with a fixed effect of

repetition number and random intercepts and slopes for each dyad (see Supplementary

Methods for more details about the model specification). We found that dyads improved

significantly across repetitions (β = 0.92, t(54.84) = 6.22, p < 0.001; Figure 3.3A).
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Figure 3.3. (A) Mean reconstruction accuracy improved across repetitions and (B) mean
instruction length required on each trial decreased across repetitions as dyads became more
effective at collaborating. Points represent values for individual dyads (N = 49). Error bars
represent 95% CIs using dyads as the unit for bootstrap resampling.

3.2.5 Communicative efficiency improves across repetitions

Having established that the Builder was able to successfully reconstruct the tower

from the Architect’s descriptions, we could then examine the most basic signature of

increasing abstraction in language. Given that the same towers recurred throughout the

interaction, we hypothesized that Architects would exploit these regularities to provide

more concise instructions over time, conveying the same information in fewer words. To

test this hypothesis, we analyzed both changes in the total number of words produced

by the Architect within each trial as well as the total number of separate messages sent

(where each message may contain more or less words). We estimated this effect using a

mixed-effects model containing a fixed effect of repetition, as well as maximal random

effects for both items and participants (see Supplemental Methods). Consistent with our

hypothesis, we found that Architects sent messages containing significantly fewer words

84



2

4

6

8

1 2 3 4
repetition

# 
re

fe
rri

ng
 e

xp
re

ss
io

ns
0.00

0.25

0.50

0.75

1.00

1 2 3 4
repetition

fre
qu

en
cy

abstraction level
ch

an
ge

 in
 p

ro
po

rti
on

word frequency BA C
block

m
ix

tow
er

communicative strategy

-0.15

-0.13

-0.11

-0.09

-0.07

-0.05

-0.03

-0.01

0.01

0.03

0.05

BL
O

C
K

TW
O

H
O

R
IZ

O
N

TA
L

O
N

E
VE

R
TI

C
AL

AN
O

TH
ER

U
TA

LL
BL

U
E

SH
AP

E C L

Figure 3.4. (A) Words with largest positive and negative changes in frequency between first
and final repetitions. (B) Change in number of block-level and tower-level references across
repetitions. Darker and lighter dashed lines represent maximum possible number of blocks and
maximum number of towers, respectively. error bars represent bootstrapped 95% CIs. (C) The
proportion of referring expressions in each trial that exclusively refer to blocks, towers, or scenes.

over time (β = −8.53, t(36.9) = −9.58, p < 0.001; Figure 3.3B), which were themselves

contained within fewer discrete messages within each trial (β = −18.1, t(24) = −7.11,

p < 0.001).

Results

3.2.6 Level of referential abstraction increases across repetitions

What allowed dyads to perform better while also using fewer words? We hypothesized

that the increase in communicative effectiveness is due to the ability of each dyad to

gradually shift to giving and receiving instructions at a higher level of abstraction — in

particular, one corresponding to entire towers rather than individual blocks. We first

conducted a qualitative analysis to explore this possibility. Specifically, we tokenized

all of the Architect’s messages into individual words and examined, across our entire

dataset, which words changed the most in frequency from the beginning to the end of
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the experiment (Figure 3.4A). We observed that the frequency of low-level nouns like

“block” and block-level modifiers like “horizontal” or “red” decreased the most, while that

of high-level nouns like “L” or “C” and adjectives like “tall” increased the most.

We followed up this initial exploration with a more systematic analysis of the

content in each message. We recruited a group of four annotators who were unaware

of the study design and hypotheses to tag each referring expression with the number of

references to block-level vs. tower-level entities they contained. Annotations were highly

consistent between raters (intraclass correlation, ICC = 0.83; 95% CI = [0.82, 0.84], see

Supplementary Materials for further analysis). We constructed a mixed-effects model

that included fixed effects of repetition (integer: 1 to 4), expression type (categorical:

tower vs. block), their interaction, as well as maximal random effects for each dyad. We

found a significant interaction (b = 0.53, t(47.5) = 4.8, p < 0.001; Figure 3.4B), providing

further evidence that block-level referring expressions became reliably less common while

tower-level ones became more prevalent. The mean number of block-level references strictly

decreased by half, from approximately 7.3 at the beginning to 3.6 at the end, while the

mean number of tower-level messages nearly doubled, from around 0.6 at the beginning

to 1.1 at the end. Because many messages contained a mixture of both levels, we further

annotated whether each trial contained only block-level (e.g. “horizontal blue block,”

“vertical red block”), only tower-level (e.g. “C shape,” “L shape”), or a mixture of both

levels of expressions. We observed that the shift across repetitions is primarily driven by

an increase in the proportion of tower-level references and a decrease in the proportion of

both mixed and block-level references (Figure 3.4C).

3.2.7 Both conceptual and linguistic coordination are required
in a model

Our experiment provided strong evidence that dyads shift to higher levels of

conceptual abstraction as their assembly performance improved. However, this finding
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raises several questions: Why did tower-level expressions gradually displace block-level

ones, rather than the other way around? And why did participants change the way they

communicated about the scenes at all, given that initial reconstruction accuracy was

already so high? In this section, we argue that a dual-coordination model provides a more

satisfying answer to these questions than simpler existing models. The dual-coordination

model explains an Architect’s use of referring expressions and the Builder’s understanding

of them in terms of two basic ingredients: (1) the procedural abstractions available to

each agent at a given time and (2) a communicative trade-off between informativity and

message length (a.k.a. verbosity) given common ground with their partner. We integrated

this pair of ingredients in a computational model that integrates a state-of-the-art library

learning algorithm (Ellis et al., 2021) with a recently proposed probabilistic model of

communication under uncertainty (Hawkins et al., 2023). We conducted several ablation

studies and found that both mechanisms are required to explain the patterns observed in

our empirical data (see Supplementary Material for a full specification of the model and

details of our simulations).

We ran simulated Architect-Builder pairs with different combinations of these

components through the same trial sequences used in our human behavioral experiment.

For each trial, we first sampled a scene representation and corresponding sequence of

instructions from the Architect agent and then sampled a set of corresponding actions from

the Builder agent’s distribution conditioned on this utterance. The Architect maintains

some representation of the target scene using their own library of “chunks,” but maintains

uncertainty in their beliefs over whether their partner shares that representation and

whether they share the linguistic conventions used to refer to it. Given their uncertainty,

they generate an instruction balancing between its informativeness (the expected probability

that the Builder will build the intended tower) and its length (with the relative weighting

determined by a fixed parameter β ∈ [0, 1]). After each trial, each agent updated (1)

their concept library, (2) their beliefs about their partner’s lexicon, or (3) both, the latter
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variants, where only the full model displays both improved accuracy (top) and efficiency (bottom).
Curves shown for parameters set to β = 0.3, α = 5, ϵ = 0.075 (see Supplemental Material for
more information).

constituting our full model the previous two representing “lesioned” variants.

The model with both components fully intact displayed two behavioral signatures

that were qualitatively consistent with those displayed by human participants. First,

repeated exposure to target towers across trials increased the likelihood that chunked

subroutines at the tower-level would be independently discovered by each agent, as a

consequence of library learning (Fig. 3.5A). Second, as the Architect received feedback

about the success of their instructions, thereby reducing their uncertainty that more

abstract referring expressions would be interpreted correctly, these instructions no longer

seemed as risky and became preferred for their shorter length. Thus our model provides

an explanation for why Architects may increasingly prefer shorter, abstract messages over

longer, concrete messages: new “chunks” come online and uncertainty is reduced about

whether the Builder will understand instructions that refer to them.

By contrast, the lesioned models did not reproduce this pattern of behavior. Without
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the library learning component, efficiency cannot not improve; there are no more abstract

chunks for conventions to bind to, only the same primitives that were available at the

beginning. Without the convention formation component, accuracy cannot improve; new

conceptual abstractions are introduced into each agent’s library, but there is no way to

update beliefs about which words correspond to it. Finally, within the full model, we found

that the tradeoff between informativeness and verbosity (controlled by β) was crucial.

If sensitivity to verbosity is too high (i.e. β > 0.5), Architects would always used the

most concise programs available to them – by the third repetition nearly all block-level

instructions were replaced by descriptions at higher levels of abstraction, even though

these descriptions were more likely to result in Builder errors (Fig. 3.5B). Meanwhile,

without any sensitivity to verbosity at all (β = 0), Architects stuck to a safer strategy,

continuing to use longer but less ambiguous descriptions composed solely of block-level

instructions. We found that only at intermediate values of β could the model reproduce

key aspects of Architect behavior observed in human participants.

Discussion

Successful teamwork relies on team members to both coordinate how they think

about and how they talk about what they are doing. This paper explored a “dual

coordination” theory of teamwork using a naturalistic collaborative assembly task that

required teams of participants to ground their communication in shared abstractions of

the scenes they were building. Over the course of an extended interaction, we found

that dyads communicated with increasing efficiency by shifting to ad hoc labels at higher

levels of conceptual abstraction. Our computational model explains this trend by invoking

learning mechanisms at two levels: a perceptual “chunking” mechanism (based on Bayesian

program learning) and a social inference mechanism (based on a probabilistic model of

communication).
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Beyond the core implications for coordination in teams, our work also contributes to

two influential lines of work on a more basic question: where do abstractions come from in

the first place? On one hand, “chunking” strategies are used to reduce cognitive costs across

many domains including planning (Ho et al., 2019, 2022), perceptual organization (Palmer,

1977), memory encoding (Ding et al., 2017), concept learning (Tversky & Hemenway,

1984; *Wong et al., 2022), and motor learning (Chaffin & Imreh, 2002). Given their

ubiquity, these chunking processes may form a set of implicitly shared inductive biases

between partners in collaborative tasks – each individual may justifiably assume others are

chunking in a similar way. The functional demands of social coordination emphasized in

our work may thus play an important role in the pressures shaping abstraction processes in

individual minds more broadly (Gilead et al., 2020). On the other hand, the co-existence

of multiple layers of abstraction in the lexicon (e.g. poodle, dog, animal, thing) has raised

longstanding questions about why some abstractions get lexicalized in language while

others do not (Brochhagen et al., 2023; Leising et al., 2014; Rosch et al., 1976; Snefjella

& Kuperman, 2015). A dual coordination account provides another perspective: ad hoc

linguistic conventions co-evolve with ad hoc concepts based on the needs of particular

communicative contexts. Thus, as our language and concepts adapt to our environment,

new conventions dynamically bind to newly relevant concepts.

While our model captures the key signatures of adaptive collaboration behavior

that were the focus of our experiment, it is limited in several ways that would be valuable

to address in future work. First, our agents did not explicitly reason about the contents of

their partner’s conceptual library, only the contents of their lexicon. That is, our agents

engaged in social inference at the level of language, but were “egocentric” at the level of

concepts. While an “egocentric” strategy is functionally equivalent to social reasoning in

our task, as both agents experienced the exact same sequence of towers as input, more

general settings will require social reasoning about conceptual mismatches, as when an

expert must give instructions to a novice. Second, we constructed our task and model to

90



build in an asymmetry between the Architect and Builder roles, but in practice, these

roles often self-organize dynamically, requiring a third layer of coordination above shared

concepts and language (Goldstone et al., 2023; Mauro et al., 2009). Third, while we focused

on qualitative effects, there is substantial quantitative variation in the natural language

strategies chosen by different Architects, posing important challenges for future work using

more realistic lexical priors (e.g. given by neural language models). For example, some

Architects anaphorically refer to actions from previous trials (e.g. “the same C again”) or

use disjunctively combine multiple valid expressions (e.g. “like a big C or a tower with the

right side cut out”). For all of these reasons, we emphasize that while our model provided

one precise instantiation of the dual coordination hypothesis, other instantiations could

make similar predictions. In the long run, comparing different models may shed light on

the inductive biases that enable such rapid coordination upon shared abstractions during

social interaction between intelligent, autonomous agents.
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S1 Supplementary Material

S1.1 Sampling procedure and incentive structure across data
collection

We pre-registered a sample of 50 dyads (100 participants), and collected data across

several batches to achieve this number. Small changes were implemented between batches

as we realized that some sessions were taking longer than expected and the payment was

not proportionate. After the first 8 dyads, we increased the maximum size of the bonus

from $1.80 (up to 15 cents per trial) to $2.40 (up to 20 cents per trial). After 4 additional

dyads, we further increased the maximum bonus to $3.00 (up to 25 cents per trial) and

also added a solo practice trial as an early off-ramp to catch and remove unreliable

participants (or bots) prior to being paired up. These changes did not substantively

change the task procedure and were mostly logistical in nature (paying a fairer hourly

rate, reducing frustration for reliable participants who happened to get paired with a bot

at the outset rather than during post-processing). Hence, we used the full pre-registered

sample, collapsing across these changes.

S1.2 Mixed effects model specification for reconstruction
accuracy

Formally, the F1 overlap metric used as our dependent variable is the harmonic

mean of the precision and recall, normalized by the total size of the towers. We analyzed

builder reconstruction accuracy using the following model:

lmer(f1score ~ poly(rep,2)

+ (1 + poly(rep,2) | gameid)

where f1score ∈[0,1]. We make two observations about this model. First, we included

a quadratic predictor of repetition number to account for non-linearities in the trend.

The model with the non-linear component fit significantly better and allowed for a more
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interpretable linear component. Second, we included the full random effect structure for

gameid, but did not include random effects for items (the three tower scenes), as the

variance captured by item effects was too small for the model to be fit without singularities.

There may be a potential concern that about this use of a model with normal error terms

for a bounded dependent variable (as F1 ∈ [0, 1]). However, similar effects were observed

for a stricter binary metric of performance that simply coded whether or not the builder’s

reconstruction perfectly matched the target silhouette or not (i.e. no “partial credit”). For

this stricter metric, the assumptions of logistic regression are justified.

S1.3 Mixed effects model specification for instruction length

We analyzed the architect’s verbosity using the following mixed-effects model, which

was the maximal model that converged:

lmer(words ~ poly(rep, 2)

+ (1 + poly(rep, 2) | gameid)

+ (1 + poly(rep, 1) | sceneid))

Note that here we again included an orthogonal quadratic term to account for the

non-linearity in the word count trend across repetitions, and here we were able to support

linear slopes for scenes as well as dyads. As in the previous section, there is a potential

objection about the use of a linear error function when the number of words is a count

variable (i.e. integer valued and always greater than one). Technically, the appropriate

model should use a Poisson linking function for count data:

glmer(words ~ rep

+ (1 + rep | gameid) +

+ (0 + rep | sceneid)),

family = ’poisson’)

which yields a similarly strong effect β = −9.2, z = −8.7, p < 0.001.
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Figure S1. Mean number of discrete messages sent per trial decreases across repetitions.
Points represent means for individual dyads, error bars represent bootstrapped 95% CIs.

S1.4 Mixed effects model specification for number of messages

Finally, our model of the number of discrete messages sent was specified as follows:

lmer(n_messages ~ poly(rep,2)

+ (1 + poly(rep,2) | gameid)

+ (1 + poly(rep,2) | sceneid))

We reported coefficients from the standard linear model in the main text for interpretability

and familiarity, but as the number of messages on each trial are count data, we checked

our findings with the more appropriate Poisson linking function:

glmer(n_messages ~ rep +

(1 + rep | gameid) +

(1 + rep | sceneid),

family = ’poisson’)

with estimated effect β = −7.2, z = −8.4, p < 0.001 (see Figure S1).
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S1.5 Annotation of referring expressions

To identify the referential content of participants’ messages we asked four naive

raters to count the number of a) block-level and b) tower-level expressions in each messages.

We decided not to ask raters to identify sub-tower or scene level expressions, as we did

not identify any such expressions in the data ourselves, and wanted to keep the rating

task straightforward. Raters annotated messages sent by all participants, dyad by dyad,

in the order they were sent. Raters were instructed not to count references to locations

(e.g. “next to the previous block”).

To measure reliability between raters we calculated the intraclass coefficient (ICC),

using the pingouin python package. As all observations were rated by the same, fixed

set of raters, we report ICC3, which assumes a two-way mixed-effects model and aims to

measure the actual agreement between the set of raters involved, rather than estimating

agreement in a larger population. In the main text we report this measure for tower and

block level expressions together. Agreement for block-level expressions ICC = 0.815, 95%

CI:[0.8, 0.83], was lower than for tower-level expressions ICC = 0.935, 95% CI:[0.93, 0.94],

although variance in block-level expressions is expected to be higher due to the larger

number of blocks per scene than towers.

S1.6 Referential conventions diverge across dyads

The overall increase in tokens resembling entire towers (“C” and “L” shapes) in

the final repetition suggests that different dyads may have arrived at similar tower-level

abstractions and similar ways of talking about them. To what extent did different dyads

converge on the same set of labels for each tower, rather than settle on distinct, but

internally consistent solutions to the coordination problem? To explore this question,

we estimated how dissimilar the language used by different dyads was within each

repetition, by computing the Jensen-Shannon divergence (JSD) between their word
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frequency distributions, aggregating language from all trials in a repetition block. We found

that the mean pairwise JSD increased significantly between the first and final repetitions

(d = 0.080, 95% CI:[0.041, 0.118], p = 0.004), consistent with divergence between dyads.

To visualize these distances, we first ran Principal Component Analysis (PCA) on

the collection of binary vectors of length 247 (representing whether or not each distinct

referring expression was present in each) to reduce their sparsity. We then extracted

the top 21 principle components and fed them into a t-SNE embedding (Fig. 3.2, right).

Two participants were removed for empty messages or highly-idiosyncratic messages,

which compressed other data points onto a small region of space. This analysis revealed

widespread convergence on messages that involve tower-level expressions in the final

repetition (e.g. ”L” and ”U”), as well as a collection of more idiosyncratic strategies that

were more consistent throughout the experiment (e.g. consistently using ”blue” and ”red”

to refer to blocks). These findings suggest that even in this relatively simple task domain,

human dyads manage to discover a diverse array of solutions for mapping tokens of natural

language to components of each scene.

Modeling details: Library learning component

In the following sections, we specify our computational model in full detail. We

begin by specifying how each agent’s procedural knowledge is represented and modified

over the course of learning in the task. Following (Ellis et al., 2021), we assume that each

agent maintains a library L of conceptual primitives that can be combined to generate

simple block structures in a domain-specific language (DSL). We assume the library is

initialized with the following primitives: h (place a horizontal block), v (place a vertical

block), l (move hand to the left), r (move hand to the right) and digits 1∼9. This DSL is

small but fully expressive: any possible tower can be written by combining together these

basic commands.

In the Bayesian program learning framework, the DSL is updated over time by
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expanding the library with new primitives. As an agent progresses through multiple trials

of tower scenes {Tn}N1 expressed as programs, they may extract common subroutines

that would allow them to re-represent the data more efficiently. Formally, the model

proposes a set of candidate sub-routine fragments f after each trial and updates a posterior

distribution over possible ways of extending the library (including f = ∅, which would

maintain the current library):

P (L ∪ {f}|{Tn}N1 ) ∝ P (L ∪ {f})︸ ︷︷ ︸
description-length prior

×
N∏

n=1

P (Tn|L ∪ {f})︸ ︷︷ ︸
likelihood

(3.1)

This posterior distribution weighs two competing criteria for a good library: the

likelihood and the prior. The likelihood in 3.1 captures the ability of an extended library

efficiently to explain previous towers:

P (Tn|L ∪ {f}) = exp(−MDL(Tn | L ∪ {f}))

where MDL is a function evaluating the Minimum Description Length. Intuitively, the

Minimum Description Length is the most compact version of Tn that can possibly be

written in the updated library L ∪ {f}. This term is therefore maximized by sets of

fragments {f} that allow the existing data to be expressed most efficiently. The prior

over libraries, meanwhile, instantiates an Occam’s razor preferring smaller libraries, all

else being equal,

P (L ∪ {f}) = exp(−w · size(L ∪ {f}))

where size(L ∪ {f}) represents the number of primitives in the updated library. The

strength of this preference is controlled by a parameter w. We explore several values of w

in our simulations (Figure 3.5A). Intuitively, when w = 0, there is no penalty for having

a larger library, so the library that best explains the observations would simply be the
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exhaustive set of scenes Tn observations themselves. As w → ∞, any expansion of the

library is considered too costly, preventing library learning entirely. The expressiveness

and simplicity objectives balance out in the posterior distribution (Eq. 3.1) such that

the fragments f with the highest posterior probability are those that provide maximal

compression of input tower programs while minimizing expansion of the library. We make

the simplifying assumption that both participants update their libraries at the same rate

(using the same w). While we believe this is a reasonable assumption for our task, it is

likely glossing over real individual differences. Collaborators in the real world are likely

to discover useful abstractions at different rates, due to differences in prior knowledge or

from approaching the task from different perspectives.

In practice, we selected the single highest posterior-probability set of fragments at

each point in the task, conditioning on the previous trials (Fig. 3.5A). The resulting DSL

was supplied to both the Architect and Builder agent model as the set of primitives they

are able to represent. In other words, we assume that the Builder and Architect learn

abstractions at the same rate throughout the experiment. We further assume that when

the Architect agent is presented with a scene, they are able to synthesize a set of 1 to 4

possible candidate programs for representing that scene in their current DSL. For example,

the Architect agent may simultaneously recognize that a scene may be constructed by

placing eight primitive blocks, (h (l 1) v v (r 2) ...), or by combining two higher-

level primitives (chunk1 (r 2) chunk2) and must choose which of these to convey to

the Builder.

S1.7 Probabilistic model of communication as social reasoning

Now we are ready to embed the library learning module in the previous section

inside a model of communicative grounding where each agent’s DSL serves as a basis

for grounding structured linguistic meanings. We assume the Architect is a cooperative

speaker who aims to produce utterances that will allow the Builder agent to accurately
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re-produce the target tower. For simplicity, we also assume the Architect generates natural

language instructions sequentially, aiming to produce an utterance for each step ti of a

full procedural sequence T written in their current DSL (in principle, this sequence could

be planned jointly). Following recent probabilistic models of communication as social

reasoning (e.g. Goodman & Frank, 2016), the speaker chooses an utterance according to a

utility function that trades off informativity against verbosity.

PS1(ui|ti,L) ∝ exp{−α · U(ui; ti,L)} (3.2)

U(u; ti,L) = (1− β) · lnPL0(ti|ui,L)− β · cost(ui)

PL0(ti|ui,L) ∝ L(ui, ti)

where α ∈ [0,∞] is the soft-max temperature, β ∈ [0, 1] controls the relative sensitivity to

verbosity, lnPL0(ti|ui) is a measure of information gain to a literal builder, and L(ui, ti) is

the literal meaning function that a literal Builder agent is expected to use, evaluating to

1 when ui is true of the primitive ti in the agent’s lexicon L and 0 otherwise. When β

is high, note that the length of the required description dominates the Architect agent’s

decision-making; when it is low, the Architect’s decisions are dominated by informativity

to the Builder.

The key effect we aimed to explain with this model is the Architect’s increasing

preference for more abstract descriptions without sacrificing Builder accuracy (i.e. Figure 3.4

in the main text). Eq. 3.2 gives the Architect’s preferences for conveying each instruction

of a fixed program T under a fixed lexicon L. However, once we plug in our neurosymbolic

model from the previous section, an Architect on later trials in fact has multiple ways

of representing the raw scene T ∗ available to them, drawing upon different primitives in

their library. We must extend our model to explicitly model the Architect’s joint decision

over which of these realizations T k of the raw scene T ∗ they should attempt to transmit,
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alongside what utterance they should use to transmit it:

PS1(u, T
k|T ∗,L) ∝ exp{−α · U(u, T k;L) (3.3)

U(u, T k;L) =
∑
i

[
(1− β) · lnPL0(t

k
i |ui,L)− β · cost(u, T k)

]
(3.4)

where we are now accounting for the full sequence of instructions T k = {tk1, . . . , tkM} and

so taking the sum of the utility over all steps of the sequence.

Finally, to account for the last condition of our hypothesis, that the Architect is

sensitive to the risks of introducing novel descriptions, we must specify their expectations

about how to refer to a new chunk given their partner’s lexicon: L(u, chunk). Following

recent models of lexical coordination (Hawkins et al., 2023), we assume that the Architect’s

lexicon L is dynamic rather than static or fixed. Each agent maintains uncertainty over

the possible lexical mappings their partner may be using between words and primitives in

their DSL P (L) and marginalizes over this distribution when evaluating their utility:

Ps1(u, T
k|T ∗) ∝ exp{−α · U(u, T k)} (3.5)

U(u, T k) =
∑
i

[
(1− β) ·

∑
j

P (Lj|D) · lnPL0(t
k
i |ui,Lj)− β · cost(u, T k)

]
(3.6)

where D represents the shared history of feedback from the Builder agent’s previous actions

(e.g. their placement of blocks in response to different instructions) and P (L|D) represents

the agent’s updated posterior beliefs over the lexicons given these observations (see

Hawkins et al., 2023, for additional details). We assume the lexical bindings for the starting

primitives of the DSL are fixed and deterministic, e.g. P ({h:“place a horizontal block”}) =

1. But for learned abstractions (chunk1, chunk2) coming online through the library learning
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process, we assume uncertainty over a space of other utterances (“phraseA”, “phraseB”)

that can be emitted:

P ({chunk1:“phraseA”}) = 0.50

P ({chunk1:“phraseB”}) = 0.25

P ({chunk1:“phraseC”}) = 0.25

and similarly for the other chunks. Note that, following the simulations in Hawkins et al.

(2023), we used a biased lexical prior to capture the idea that participants are using natural

language and hence not beginning with a completely blank slate: there is ambiguity over

exactly which tower shape the utterance “build a C” might correspond to (there are many

shapes that look like a C), but not all shapes are equally likely. Future work extending this

model from this artificial proof-of-concept domain to full natural language could instead

use an elicited empirical prior or neural prior over all possible shapes. Indeed, while our

architecture posits a clean separation between the discovery of conceptual abstractions and

their subsequent communication, this is likely a two-way street. People may leverage their

partner’s language to discover new abstractions, a possibility suggested by language-guided

library-learning (Wong et al., 2021).

S1.8 Analyzing the library learning component in model
simulations

We examined the trajectory of procedural abstractions that were acquired by the

model over the 49 trial sequences presented to participants, while varying the penalty on

library size, w (Figure 3.5A). We manually categorized the resulting fragments based on

their level of abstraction at the sub-tower level (e.g. a routine producing a configuration of

2-3 blocks that co-occur within multiple towers), the tower level (e.g. a routine generating

four block placements that exactly reproduce one of the tower stimuli), or the scene level
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(e.g. a routine generating eight block placements in the exact configuration that appeared

on a trial). First, we found that the statistical structure of the trial sequence did indeed

allow our library learning algorithm to acquire full tower-level primitives across a wide

range of w, although higher (e.g. w = 9.6) significantly delayed learning. Surprisingly,

the discovery of tower-level fragments was always preceded by sub-tower fragments. For

example, the pair of blocks forming the lower left of the ’L’ and ’C’ towers was frequently

added, and many more such fragments were added at lower values of w. There are several

possible reason why these sub-tower abstractions were rare in our behavioral data, and

additional work is required to determine whether Architects failed to represent them as

perceptual configurations, or whether they simply suppressed the production of referring

expressions for such structures.

S1.9 Analyzing reconstruction accuracy in model simulations

We measured the extend to which the programs inferred by the Builder agent

matched the intended programs of the Builder. As our primary goal was to model the

emergence of compositional abstractions in response to varying demands for efficiency and

accuracy, we decided to initialise the Architect’s and Builder’s lexicons with deterministic

mappings from DSL primitives to natural language expressions. This meant that before

abstractions were learned and used by the Architect, the Builder would always perfectly

interpret the Architect’s language, and execute the program they had intended. When

new abstractions are introduced, the Builder must guess the referent of the new expression,

in this case by sampling from a uniform distribution over possible referring expressions.

We thus expect, and see, a steep drop in accuracy following the inclusion of the first

abstraction. In contrast, human participants often chose words such as ’C’ or ’L-shape’, for

which likely have sharp priors about the possible programs they represent. After the initial

drop in accuracy, the proportion of Builder actions that matched the intended program of

the Architect steadily increased.

102



Figure S2. Schematic of model pipeline on an example trial. The Architect agent receives
as input a scene presented as a grid, which is encoded into a program representation (using
their current library of concepts LA) and then into a linguistic representation (using their
current lexicon parameters ϕA.) The grey box indicates that these processes take place
within the Architect, such that the Builder has no access to them. Then the Architect
produces a message from the linguistic representation, which is interpreted by the Builder
(using their current lexicon parameters ϕB) and translated back into a program (using
their current library of concepts LB) which can be executed to produce a series of block
placements back in the grid environment. The yellow box indicates processes taking place
within the Builder, such that the Architect has no access to them.
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Figure S3. Critically, the library and lexicon shown in Figure S2 are not static but are
updated over time. The orange box on the left highlights library learning updating LA and
LB in both the Architect and Builder. Statistically reliable chunks are pulled out as new
concepts in a library of primitives (e.g. f and l). The light blue box on the right depicts
convention formation coordinating the lexicons ϕA and ϕB as the Architect and Builder
update their respective beliefs in light of their shared history of successful or unsuccessful
trials.
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Figure S4. Accuracy of simulated agents across four repetitions shown for a range of β
and ϵ parameter values. We ran two iterations for each of the 49 empirical trial sequences,
so each curve is estimated from approximately 100 simulated games. The optimality
parameter is set to α = 5 for all simulations as it does not affect qualitative behavior.
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Figure S5. Instruction lengths produced by simulated Architects across four repetitions
shown for a range of β and ϵ parameter values. We ran two iterations for each of the 49
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106



References

Apker, J., Propp, K. M., Ford, W. S. Z., & Hofmeister, N. (2006). Collaboration, credibility,
compassion, and coordination: Professional nurse communication skill sets in health
care team interactions. Journal of Professional Nursing, 22 (3), 180–189.

Aslin, R. N., Saffran, J. R., & Newport, E. L. (1998). Computation of conditional probability
statistics by 8-month-old infants. Psychological Science, 9 (4), 321–324.

Austerweil, J. L., & Griffiths, T. L. (2013). A nonparametric Bayesian framework for
constructing flexible feature representations. Psychological Review, 120 (4), 817.

Bapst, V., Sanchez-Gonzalez, A., Doersch, C., Stachenfeld, K., Kohli, P., Battaglia, P.,
& Hamrick, J. (2019). Structured agents for physical construction. International
conference on machine learning, 464–474.

Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 22 (4),
577–660.

Blickensderfer, E. L., Reynolds, R., Salas, E., & Cannon-Bowers, J. A. (2010). Shared
expectations and implicit coordination in tennis doubles teams. Journal of Applied
Sport Psychology, 22 (4), 486–499.

Bogdanovic, J., Perry, J., Guggenheim, M., & Manser, T. (2015). Adaptive coordination
in surgical teams: An interview study. BMC Health Services Research, 15, 1–12.

Bramley, N. R., & Xu, F. (2023). Active inductive inference in children and adults: A
constructivist perspective. Cognition, 238, 105471.

Brochhagen, T., Boleda, G., Gualdoni, E., & Xu, Y. (2023). From language development to
language evolution: A unified view of human lexical creativity. Science, 381 (6656),
431–436.

Chaffin, R., & Imreh, G. (2002). Practicing perfection: Piano performance as expert
memory. Psychological Science, 13 (4), 342–349.

107



Christiansen, M. H., & Chater, N. (2016). The now-or-never bottleneck: A fundamental
constraint on language. Behavioral and Brain Sciences, 39, e62.

Clark, H. H. (1996). Using language. Cambridge University Press.

Cooke, N. J. (2015). Team cognition as interaction. Current Directions in Psychological
Science, 24 (6), 415–419.

DeChurch, L. A., & Mesmer-Magnus, J. R. (2010). The cognitive underpinnings of effective
teamwork: A meta-analysis. Journal of Applied Psychology, 95 (1), 32.

Dehaene, S., Al Roumi, F., Lakretz, Y., Planton, S., & Sablé-Meyer, M. (2022). Symbols
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Chapter 4

Discussion
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In this dissertation I presented methods for studying the cognitive processes that

underlie physical assembly, and applied them to discover several cognitive consequences of

assembling objects.

In Chapter 1, I introduced a novel task environment for studying physical assembly,

specifically a web-based environment where participants could recreate 2D block towers.

This tool enabled a detailed investigation of how individuals develop procedural knowledge

and enhance task performance through repeated attempts. I developed metrics sensitive to

variance in both the outcomes and the evolving processes of assembly, allowing me to track

changes in both. My findings indicated that participants not only improved in constructing

the target structures more accurately and quickly but also showed a significant convergence

toward a limited set of effective strategies. These results demonstrate that the procedures

people use build something can change when they practice, and suggest that the cognitive

processes underlying this ability shift also. This work establishes a robust paradigm for

impacting assembly behavior over a handful of experimental trials, validating the efficacy

of our methodology for future studies investigating cognitive changes associated with

physical assembly tasks.

In Chapter 2, I leveraged the tools introduced in Chapter 1 to examine how building

objects impacts our memory of them. Using a related block tower assembly domain, I

compared participants’ memory for tower they had built with ones they had viewed more

passively. Surprisingly, despite requiring more active engagement with the towers, building

them did not necessarily lead to better memories than viewing them. However, additional

experiments revealed that building could enhance recall of a tower, contingent on the

participants’ ability to form a detailed, holistic representation of the tower during the

building process. As well as furthering our understanding of how active engagement

impacts our memory, this chapter provides another means by which people learn to build

more effectively– by remembering the process of building something. Together, Chapters 1

and 2 provide evidence that the way we mentally represent how something is made can
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shift as we gain more assembly experience.

In Chapter 3 I asked how people are able to communicate so effectively in

construction tasks, even when their mental representations of construction processes

are likely changing. By extending the tower assembly domain to a collaborative setting,

I explored how procedural knowledge and communication strategies co-evolve during an

interaction. Behavioral results indicated that the language people used to describe objects

and procedures became more efficient as they gained shared experience, and that the shift

was largely due to the introduction of words referring to higher-level procedural abstractions.

Formalizing the learning of these abstractions as the acquisition of program abstractions in

a mental concept library, I introduced a novel computational model to simultaneously track

shifting representations and the formation of ad-hoc linguistic conventions for referring to

them. The model was able to capture the shift to a lexicon more abstract expressions, laying

the groundwork for theories of how shared experience leads to more efficient collaboration

during assembly. At a high level, these results show that collaborators are able to leverage

shared assembly experience to infer more efficient ways of talking about what they are

building.

The results presented in this dissertation comprise a set of that people get better

at building when they practice: by learning to build the same objects in better ways, by

recalling procedures for building them, and by inferring more efficient ways of communicating

about the objects they are building. Studying the mechanisms of learning, memory, and

communication in the context of this generative task enabled the discovery of relationships

between these processes that would not have been present studying each mechanism in

isolation. In doing so, we intentionally laid aside other mechanisms that might be relevant,

like planning and physical simulation, as well as situated and embodied strategies that we

know are prevalent in assembly and other generative behaviors (Kirsh, 1995). While some

aspects of construction behavior may always be out of reach in simulated environments, a

large number of affordances could be incorporated, in principle, particularly if environments
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were extended to 3D objects, virtual reality, and more realistic physics and haptics. Studies

in these more complex environments could reveal interactions between other cognitive

processes.

Our ability to learn procedures for creating something was at the core of all three

chapters, and I presented evidence for relationships between this ability and memory,

communication, and construction ability as a whole. These findings have implications for

our understanding of the format, or formats, of our mental representations of objects. In

Chapter 2, I found that the effect of assembling objects on memory differed depending on

the particular readouts of memory we used, suggesting multiple kinds of representation

that are differentially sensitive to experience. Machine learning distinguishes between

generative and discriminative representations, a dichotomy that may track the distinction

between recognition and recall, and perhaps be reflected in the ventral and dorsal pathways

(Chao & Martin, 2000). On the other hand, our ability to reason about objects in various

ways– what they look like, how to use them, as well as how they are made– suggests a role

for general-purpose object representations, perhaps akin to symbolic representations in a

language of thought (Fodor et al., 1975; Lake et al., 2017). Such representations would

need to be capable of capturing detailed information about objects’ structure and their

parts. Several researchers have proposed that generative programs may fill this role, due

to their flexibility and expressive power (Lake et al., 2015, 2017; Yildirim et al., 2020).

Likewise, in Chapter 3, I leverage such representations because they support abstraction

(Ellis et al., 2020). Insofar as solving an assembly problem invokes a mental library of

part concepts to generate the target object (Tian et al., 2020), our results suggest that

these libraries are not fixed. Furthermore, while I used language to probe the libraries

of part concepts people learn, language may in fact play a causal role in the the kinds of

representations people learn (Wong et al., 2021), suggesting a further role for language

as a tool for investigating the dynamic structure of object representations (*Wong et al.,

2022).
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The experimental methods developed for studying how people collaborate in

assembly tasks could easily be extended to explore collaboration in other generative

tasks. Investigating other collaborative domains, such as product design, architecture,

and computer aided design, might reveal similar linguistic trends towards higher-level

abstractions, or domain-specific strategies for communicating creative intent. To truly

understand the range of communicative strategies in these highly visual domains will

require going beyond language; as well as speaking and writing, designers use drawing to

communicate their designs (Lawson, 2006; Williams & Cowdroy, 2002). Incorporating

additional communicative modalities into these experiments could allow researchers to

investigate how professional creators make efficient use of these modalities to convey design

intent. Understanding the nuances of how people communicate in different domains could

fuel the development of creative tools– by suggesting novel user interfaces supporting

common goals, and via the development of AI agents that can understand and execute

naturalistic instructions.
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