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Abstract

The 2010 Deepwater Horizon oil spill coincided with the spawning season of many pelagic

fish species in the Gulf of Mexico. Yet, few studies have investigated physiological

responses of larval fish to interactions between anthropogenic crude oil exposure and natu-

ral factors (e.g. temperature, oxygen levels). Consequently, mahi mahi (Coryphaena hip-

purus) embryos were exposed for 24 hours to combinations of two temperatures (26 and

30˚C) and six concentrations of oiled fractions of weathered oil (from 0 to 44.1 μg

∑50PAHs�L-1). In 56 hours post-fertilization larvae, heart rate, stroke volume and cardiac

output were measured as indicators of functional cardiac phenotypes. Fluid accumulation

and incidence of edema and hematomas were quantified as indicators of morphological

impairments. At both 26 and 30˚C, oil-exposed larvae suffered dose-dependent morphologi-

cal impairments and functional heart failure. Elevation of temperature to 30˚C appeared to

induce greater physiological responses (bradycardia) at PAH concentrations in the range of

3.0–14.9 μg�L-1. Conversely, elevated temperature in oil-exposed larvae reduced edema

severity and hematoma incidence. However, the apparent protective role of warmer temper-

ature does not appear to protect against enhanced mortality. Collectively, our findings show

that elevated temperature may slightly decrease larval resilience to concurrent oil exposure.

Introduction

On April 20th 2010, the Deepwater Horizon (DWH) offshore drilling platform exploded and

resulted in the loss of crude oil, methane and other gases from 1500 m below the sea’s surface

into the northern Gulf of Mexico. The oil from DWH was a light crude oil containing saturated

n-alkanes, polycyclic aromatic hydrocarbons (PAHs) and their alkylated homologues, with
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over 50% comprising low-molecular-weight hydrocarbons (methane and C2-C11) [1]. Imme-

diately after discharge, natural weathering processes generated changes in the physico-chemi-

cal properties of source oil (considered “light oil”) in the seawater column [1,2]. These

alterations in composition are generally due to processes such as evaporation of volatile com-

pounds (e.g. high water temperature), emulsification, natural dispersion by oceanic dynamics

(e.g. winds, currents), dissolution of soluble compounds, photooxidation by solar irradiance

(UV), sedimentation, interaction with fine particles and biodegradation by environmental

microorganisms [3,4]. Consequently, the vertical transport of oil from the site of release to the

sea surface and the associated weathering processes generated weathered oil that was signifi-

cantly more toxic than oil released at the well head, with proportionally higher molecular

weight PAHs [5,6].

The timing of the DWH incident coincided with the spawning and larval development of

various commercial and recreational species such as mahi-mahi (Coryphaena hippurus) (hereafter

referred as “mahi”) and so likely resulted in oil exposure to early life stages [7–9]. Both crude and

weathered oil-derived PAHs adversely affect morphology and development of fish embryos and

larvae at low μg.L-1 aqueous concentrations [5,10–22]. For decades, clear evidence has indicated

that the cardiovascular system of fishes at the onset of organogenesis is a major primary target of

PAHs and particularly of the tricyclic families of PAHs [11,18,21,23–28]. Through different mech-

anisms such as blockade of potassium currents or disruption of intracellular calcium cycling dur-

ing excitation-contraction coupling [29], these PAHs cause a suite of pathologies related to

embryonic heart failure, mostly including bradycardias and arrhythmias [18,19,25,30,31]. These

functional cardiac impairments are often accompanied with high incidence of edemas and

improper cardiac chamber looping, shape or orientation [18,20,32]. At high doses, these impair-

ments may induce increased injuries, developmental delay or mortality [11,25,30].

The physiological mechanism of cardiac impairment in individual larval fish are still not

well understood. Most studies have focused on the single measurement of heart rates. Heart

rate is relatively simply and accurately measured, but is not a holistic indicator of cardiac per-

formance. For example, in young adult mahi exposed to DWH oil, heart rate measured in situ
was unaffected by oil exposure, but stroke volume, cardiac output and heart stroke work were

all significantly diminished [33]. Cardiac output also decreases in response to oil exposure in

larval stages of the coastal red drum (Sciaenops ocellatus) [14]. Understanding how not just

heart rate, but also stroke volume and the all-important cardiac output, are influenced by oil

exposure will add physiological understanding as to whether and how fishes can maintain

homeostasis and enhance chances for survival.

The cardiovascular system of larval fishes will likely respond to a multitude of environmen-

tal stressors [34]. Some of these natural stressors may act synergistically with environmental

toxicants. Thus, for example, elevated temperatures will increase metabolism, which may then

increase the susceptibility of organisms to oil exposure. However, few studies have explored

the synergistic/antagonistic relationships between multiple natural and anthropogenic stress-

ors [35–37].

Mahi inhabit waters of the northern Gulf of Mexico [9,38,39]. Hence, their newly-fertilized,

buoyant eggs could have potentially been exposed to crude oil from Deepwater Horizon. More-

over, during that incident, temperatures of surface waters ranged from 25 to 30˚C [40]. Here,

we investigated how weathered DWH oil exposure interacts with elevated temperatures to

influence the cardiac performance of larval mahi. We hypothesized that mahi would be more

susceptible to weathered oil toxicity when is co-exposed to high rearing temperature. Elevated

temperature may exacerbate functional cardiac disruption especially as upper physiological

thermal limits are approached. To test this hypothesis, embryonic mahi were co-exposed to

different sublethal concentrations of high energy water accommodated fractions (HEWAFs)
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of oil in combination with two rearing temperatures (26 and 30˚C). Morphological edemas

and cardiac physiological variables were then monitored in the larval stages.

Materials and methods

Preparation of oil exposure solutions

All oil samples were collected under chain of custody during the DWH event and kept at the

University of Miami. Oil from the surface (OFS) collected on July 29, 2010 via skimming oper-

ations was used to prepare the high energy accommodated fraction (HEWAF). HEWAF was

prepared at a loading rate of 1 g of oil per liter of UV-sterilized seawater (35 ppt) and mixed in

a Waring CB15 blender (Torrington, CT) at low speed for 30 s. The HEWAF was generated at

room temperature and was not filtered prior to use. The mixture was immediately transferred

to a glass separatory funnel and left to settle for 1 h. The 90% lower portion of the solution was

carefully drained and retained for subsequent use as 100% HEWAF. This fraction was then

diluted for test exposures. Dilution solutions were mixed on a stir plate (180 rpm) for 5 min

and then aliquoted for test exposures. The exposure tests consisted of five sublethal concentra-

tions (0.5, 1, 2, 4 and 8% HEWAF), and included a seawater control.

Maintenance and egg production of mahi

Mahi broodstock were captured in the offshore waters of the Straits of Florida off the coast of

Miami (FL, USA) in the general coordinates of 25˚ 34.000’N / 80˚ 00.000’W using hook and

line angling (special Activity License #: SAL-15-0932B-ABC). Broodstock age and growth met-

rics are detailed in Stieglitz et al. (2017). The fish were subsequently transferred to the Univer-

sity of Miami Experimental Hatchery (UMEH), where they were acclimated in 80 m3

fiberglass maturation tanks equipped with partially recirculated and temperature controlled

water at 26–27˚C [41]. All embryos used in the experiments described herein were collected

within 2–10 h following a volitional (non-induced) spawn using standard UMEH methods

[42]. The embryos used in the experiments came from a total of six different volitional spawn-

ing events over time. These spawning events involved three different groups of wild mahi, with

each group consisting of unrelated (i.e. non-sibling) adult wild mahi. Sex ratios during the

spawning events ranged from 1–5 females to one male, depending on the spawning group of

fish. Over the course of the experiments there were three males and eight females involved in

the spawning events producing embryos. In each replicated experiment, embryos from the

same batch were exposed to both low (26˚C) and high temperature (30˚C) treatments to avoid

any confounding effects that could potentially be related to batch or family variability. Addi-

tionally, the experiments were conducted using a multitude of spawns (six total) from three

different spawning groups (“families”, though unrelated) of broodstock fish, thereby minimiz-

ing any potential occurrence of confounding effects due to family.

Following collection of eggs, a prophylactic formalin treatment (37% formaldehyde solu-

tion at 100 μl�L-1 for 1 h) was administered to the embryos, followed by 30 min of flushing

with a minimum of 300% water volume in the treatment vessel using filtered, UV-sterilized

seawater. A small sample of eggs was collected from each spawn to microscopically assess fer-

tilization rate and embryo quality. Spawns demonstrating low fertilization rate (< 85% hatch-

ing) or more than 5% developmental abnormalities were rejected.

Ethics statements

Fishing for the mahi-mahi broodstock was done in accordance with the Florida Fish and Wild-

life Conservation Commission—Special Activity License #: SAL-15-0932B-ABC which

Combined oil and temperature effects on developing cardiac function of fish

PLOS ONE | https://doi.org/10.1371/journal.pone.0203949 October 17, 2018 3 / 19

https://doi.org/10.1371/journal.pone.0203949


provides authorization for this activity. Fish capture, transport, and holding techniques were

completed in accordance with the University of Miami Institutional Animal Care and Use

Committee (IACUC) protocol numbers 15–019, 12–064, and 15–067.

Embryonic exposure

Dilutions of 100% HEWAF were distributed to 1 L-glass beakers for each concentration tested.

20 embryos of ~eight hours post-fertilization (hpf) per liter were randomly and equally distrib-

uted. Beakers were covered with a glass lid to prevent evaporation. Embryos were exposed to

HEWAF fractions in triplicate for 24 h and then transferred to clean, oil-free seawater for a

subsequent 24 hrs of development, during which time heart observations were made (Fig 1).

Water quality was monitored daily, and included measurements of pH, dissolved oxygen,

salinity and temperature (S1 Table). To assess the combined effects of oil exposure and tem-

perature, trials were performed at two rearing temperatures (Fig 1) - 26 (”normal”) and 30˚C

(”elevated”)—in a temperature controlled environmental chamber with a 16:8 light/dark pho-

toperiod. These temperatures represent the temperatures known to induce cardiovascular per-

formance change in mahi embryos [43] and also represent the range of surface sea water

temperatures typical of the Gulf of Mexico.

Extraction and analyses of PAHs

Water samples were immediately collected in 250 mL amber glass bottles at 0 and 24 hours

post-exposure. Samples were stored at 4˚C and shipped overnight on ice to ALS Environmen-

tal (Kelso, WA, USA) for chemicals analysis. PAHs were then extracted and quantified by GC/

MS-SIM (gas chromatography coupled to mass spectrometer-selective ion monitoring) follow-

ing the US EPA method 8270D [44]. Blank analysis was carried out to ensure the absence of

contamination prior and during analysis. Reported ∑PAH values represent the sum of 50

PAHs analytes selected for standard analysis for the Deepwater Horizon Natural Resource

Damage Assessment toxicity testing program [45].

Image and video capturing

In mahi at 26˚C, the primitive heart (precursors) appears by 18–19 hpf, with the onset of heart

beat appearing by 22 hpf. After hatching at 50–56 hpf, the sinus venosus and bulbus cordis

Fig 1. Experimental design. Mahi embryos (eight hpf) were exposed to HEWAF solutions during 24 hours and subsequently transferred to clean seawater for an

additional 24 hours of development. Exposures were performed at two temperatures: a “normal” temperature of 26˚C and an “elevated” temperature 30˚C. Each

temperature trial included a control group raised in seawater only. hpf; hours post-fertilization.

https://doi.org/10.1371/journal.pone.0203949.g001
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start to differentiate. The heart starts to loop to the lateral side, as it begins to assume its adult

configuration with formation of both valves around 80 hpf [43,46].

Cardiac function was assessed in larvae (56 hpf) by imaging techniques described by Perri-

chon et al. (2017a). Briefly, specimens were positioned on a thermal microscope stage tempera-

ture controller (Brook Industries, Lake Villa, IL). Unanaesthetized larvae were individually

immobilized in a Petri dish containing 2% methylcellulose/98% seawater and orientated in a

left lateral view. Images of specimens were captured using a Nikon SMZ800 stereomicroscope

coupled to a Fire-i400 or Fire-i530c digital camera (Unibrain, San Ramon, CA). Images of

perigastro-intestinal areas and 20 s long live videos were digitized at 30 frames.s-1 using Photo-

Booth software. Calibrations were carried out using a stage micrometer. At the end of experi-

ment, larvae were euthanized with an overdose of buffered tricaine methanesulfonate (MS-

222).

Morphological assessment

Measurements of edema and sinus venosus-yolk mass gap (SV-YM) were made using ImageJ

software [47]. Edema area on the 2D images was measured as a proxy of the extent of pericar-

dial edema present in larvae following the procedure described by Edmunds et al. (2015). The

area was drawn with the ImageJ freehand tool enclosing the pericardial area plus the visible

mass of yolk sac distortion (fluid accumulation). The SV-YM gap, which represents a measure

of fluid accumulation, was determined by a line drawn from the posterior end of atrium to the

yolk mass, after Edmunds et al. (2015). Incidence of internal hematomas was also scored. All

abnormal blood accumulations out of the vascular route into the edema area were considered

to be hematomas (S1 Fig).

Quantification of ventricular cardiac function

Heart rate and stroke volume were determined from video sequences of the ventricle in 56 hpf

larvae and used for cardiac output calculation—see Perrichon et al. (2017a) for methodology.

Heart rate (heartbeat�min-1) was visually determined from slow speed videos.

Measurement of stroke volume in larval mahi was then determined by outlining the ven-

tricular perimeter during end-diastole and end-systole [43,46]. All measurements were per-

formed blind to treatment. Ventricular perimeter was fitted to the image with an ellipse using

ImageJ software (Schneider et al., 2012; http://imagej.nih.gov/ij/, 1997–2016), where major

and minor axes were then extracted. End-diastolic and end-systolic volumes of the ventricle

were calculated using the conventional prolate spheroid formula:

Volume ¼
4

3
p a b2

where a represents the major (longitudinal) semi-axis and b the minor (width) semi-axis [46].

For each larva, three successive systolic and diastolic cycles were captured, analyzed and

then averaged to provide a representative estimator for ventricular volumes. The mean stroke

volume (nL) was calculated as the difference between diastolic and systolic ventricular vol-

umes. Cardiac output (nL�min-1) was calculated as the product of heart rate and stroke

volume.

Statistical analyses

Statistical analyses were performed using Statistica12 software. Data are expressed as

mean ± standard error of mean (SEM). Data were standardized based on the average of four

and three control groups at 26 and 30˚C, respectively. Larvae were sampled per replicates and
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combined for measurement of ventricular function (S2 Table). Some videos with low quality

were excluded from heart and stroke volume measurement. Results were statistically evaluated

with multiple linear regressions (MLR) with temperature and concentrations as independent

variables, as well their interaction on each morphometric and cardiac variable. When concen-

tration effects were observed, ANOVAs were performed, followed by Tukey multiple compari-

son post hoc test. Pearson correlations were calculated to establish a potential link between the

variation in cardiac variables and edema severity. A significance level of 5% was used for all

analyses.

Results

PAH concentrations in HEWAF

Initial, final and equivalent geometric means of HEWAF concentrations are reported in

Table 1 for both temperature trials. As predicted, ∑50PAHs concentrations linearly decreased

with HEWAF dilutions in both temperature trials. PAH concentrations decreased by 9 to 30%

at 26˚C and by 15 to 32% at 30˚C after 24 h exposure. However, the geometric means between

concentrations at the normal 26˚C and elevated 30˚C temperatures were still quite similar.

Details of the chemical characterization of different HEWAF concentrations are indicated

in S3 Table. All following physiological and morphological data are reported as geometric

means of initial and final concentrations.

Larval survival

Data presented in this manuscript are part of a complementary physiological study undertaken

by Pasparakis et al. (2016) that focuses on sublethal effects of crude oil when combined with ele-

vated temperature exposure. Consequently, no precise data on survival or hatching success are

presented in the current manuscript. The combination of the highest HEWAF dilution (8%

OFS) and the elevated rearing temperature of 30˚C proved lethal for developing embryos [48].

Therefore, no data were acquired for biological analyses for this combination of exposures.

Larval morphology

Larval mahi exposed to OFS HEWAF displayed a linear increase of edema area with increasing

HEWAF concentrations (r2 = 0.30, P<0.001), irrespective of rearing temperature (Fig 2A). In

Table 1. Initial and final HEWAF concentrations (μg.L-1) and their geometric means for both temperature trials.

Concentrations (μg�L-1)

Temperature % HEWAF Initial Final Geometric Mean Loss

Normal

26˚C

0 0.0 0.0 0.0

0.5 3.2 2.8 3.0 -11%

1 8.0 6.7 7.4 -16%

2 14.8 10.3 12.4 -30%

4 32.6 29.7 31.2 -9%

8 49.3 39.3 44.1 -20%

Elevated

30˚C

0 0.0 0.0 0.0

0.5 3.4 2.8 3.1 -18%

1 8.4 7.2 7.8 -15%

2 18.0 12.3 14.9 -32%

4 31.0 22.9 26.6 -26%

8 57.2 40.3 48.8 -29%

https://doi.org/10.1371/journal.pone.0203949.t001
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both temperature conditions, edema area was significantly greater at PAH concentrations

from 12.4 (26˚C) and 14.9 (30˚C) μg�L-1 compared to respective controls. However, multiple

linear regression demonstrated no significant interaction (P = 0.583) between temperature

and HEWAF concentration on the edema variable. The SV-YM gap in larvae raised at 26˚C

was ~4.0-fold greater than controls at 7.4 and 12.4 μg�L-1 and was more than 9-fold greater at

31.2 and 44.1 μg�L-1 (Fig 2B). Larvae raised at 30˚C had a significantly greater SV-YM gap at

the highest concentration compared to the control group. A significant main effect of PAH

concentrations (P<0.001) and slight (but no significant) interaction (temperature x concentra-

tion) (P = 0.052) was observed on SV-YM gap, while no main effect of temperature (P = 0.525)

was noted.

The occurrence of intrapericardial hematomas ranged linearly from 6% (control) to 49%

(44.1 μg�L-1) in larvae raised at 26˚C. At a rearing temperature of 30˚C, the corresponding data

were 0% (control) to 32% (26.6 μg�L-1) (Fig 2C). There was no significant interaction between

temperature and oil concentration on hematomas incidence (P = 0.622).

Ventricular function

Heart rate in control larvae was 10% higher at 30˚C (216 beat�min-1) compared to 26˚C (196

beat�min-1) (Fig 3A, pairwise comparison, P<0.001). At a rearing temperature of 26˚C, heart

rate was significantly decreased from control values by 13% at an exposure of 31.2 μg�L-1 and

16% at an exposure of 44.1 μg�L-1. At a rearing temperature of 30˚C, heart rate was diminished

by 10–15% over control values at an exposure of 14.9 μg�L-1. The MLR model had a predictive

power of r2 = 0.30 with the temperature and concentration variables significantly contributing

to the model (P<0.001). However, the interaction between temperature and HEWAF concen-

tration was not significant (P = 0.181).

No change in stroke volume (pairwise comparison, P = 0.54) occurred in control larvae

with rearing temperature (Fig 3B). Stroke volume was depressed in oil-exposed larvae at low

concentrations for both temperature conditions. Specifically, stroke volume was significantly

reduced by 34% from 31.2 μg�L-1 at 26˚C and by 38% from 26.6 μg�L-1 at 30˚C. However, tem-

perature was not significant contributing factor of the MLR model (r2 = 0.08; temperature x

concentration: P = 0.195).

Cardiac output also was not significantly different (pairwise comparison, P = 0.62) in both

control groups raised at 26˚C and 30˚C (Fig 3C). However, there was a 31 to 50% decrease in

cardiac output of oil-exposed larvae raised at 26˚C. At 30˚C, a significant decrease of 34% and

43% compared to controls was measured in larvae exposed to 14.9 and 26.6 μg�L-1, respec-

tively. Temperature had slightly attenuated the cardiac output depression (P = 0.046), but the

interaction (temperature x concentration) was not significant (P = 0.102).

Correlation between functional and morphological oil-induced

modifications

A linear relationship between increasing edema area and depression of ventricular function

occurred as a function of HEWAF concentration exposure at both rearing temperatures (Fig

Fig 2. Morphological impairments associated with edema. (A) Edema area (mm2), (B) sinus venosus-yolk mass gap (μm) and

(C) total incidence of intrapericardial hematomas measured at two rearing temperatures 26˚C (N = 20–39) and 30˚C (N = 20–

56). Data for edema area and SV-YM gap are expressed as mean±SEM. Incidence of intrapericadial hematomas is expressed in

total percent of hematomas scored in oil—exposed individuals. Simple linear regressions are given for graphical representation

at both exposure temperatures. � (26˚C) and # (30˚C) indicate significant differences of oil exposure concentrations compared

to respective control groups (P<0.05).

https://doi.org/10.1371/journal.pone.0203949.g002
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4). However, a similar linear trend for heart rate was not significant at the elevated temperature

of 30˚C (r2 = 0.87, P = 0.055) compared to 26˚C (r2 = 0.89, P = 0.010) (Fig 4A). A decrease in

stroke volume was correlated with increased edema severity caused by HEWAF exposure in

larvae raised at 30˚C (r2 = 0.95, P = 0.014) (Fig 4B). Reduction of cardiac output by HEWAF

exposure was significantly linked to increasing edema area in larvae raised at both rearing tem-

peratures (Fig 4C).

Discussion

Despite the rich literature of the impact of DWH oil on the cardiomorphogenesis of resident

Gulf of Mexico fish [5,18,23,27], studies investigating multiple environmental stressors (e.g.

combinations of oil exposure and temperatures and their synergies) are still lacking. This cur-

rent study has measured significant crude oil-induced disruption of cardiac physiology (e.g.

depression of cardiac output) in larvae of pelagic mahi, adding to previously documented

effects such as pericardial edema and bradycardia. This study study has demonstrated not only

that weathered DWH oil induced a high incidence of edemas, strong bradycardia and consid-

erable reduction of stroke volume and cardiac output in larvae, but also that the severity of

these functional impairments induced by oil exposure was not necessary amplified when com-

bined with elevated rearing temperature during short term exposure.

Crude oil influence on larval ventricular function

Crude oil derived PAHs are highly toxic to embryonic and larval fish [18,19,25,27,28,30,49,50].

Not surprisingly, then, mahi larvae at even low PAH concentrations displayed the anticipated

morphological and functional disorders. These included edema, intrapericardial hematomas,

bradycardias and reduced stroke volume and cardiac output at 26˚C. Our data also imply a

PAH concentration-dependent trend, with greater functional cardiac depression at PAH con-

centrations higher than 12.4 μg�L-1.

Bradycardias and irregular arrhythmia occurred in Pacific herring, Clupea pallasi, exposed

to Alaska North Slope crude oil, following the 1989 Exxon Valdez oil spill [30]. These effects

also followed exposure to the 2007 Cosco Busan oil spill in San Francisco Bay [50]. Cardiac out-

put was reduced by ~40% in red drum larvae exposed to weathered oil from DWH (∑50PAHs =

1.8–2.2 μg�L-1) [14]. In zebrafish larvae exposed to Iranian heavy crude oil, ventricular diastolic

diameter and contractility decreased by 9% and 43%, respectively, while atrial diameters were

unaffected [32]. Abnormal heart alignment or “looping” [5,18] and cardiac muscle excitation or

conduction deficiency will likely influence blood ejection fraction, and could account for

incomplete ventricular relaxation. These effects, in turn, would lead to a reduction in stroke vol-

ume and cardiac output as observed in mahi in the present study or in red drum larvae [14].

Indeed, an increase of atrio-ventricular angle or change in heart shape might impair cardiac

pumping efficiency and consequently impair the heart’s capacity to cope with sudden increases

in blood transport demand. Such changes might result from the environmental stressors of oxy-

gen and temperature resulting from natural or anthropogenic causes.

Interestingly, although differences exist in terms of physical scale, developmental stage sen-

sitivity and measurement methods, there is a similar impairment of cardiac function in sub-

Fig 3. Cardiac variables measured in mahi larvae under combined oil and temperature exposures. (A) Heart rate (beat.

min-1), (B) stroke volume (nL) and (C) cardiac output (nL�min-1) measured at two rearing temperatures 26˚C (N = 20–39) and

30˚C (N = 20–56). Data are presented as Mean±SEM. Simple linear regressions are given for graphical representation at both

temperature exposures. � for 26˚C and # for 30˚C indicate significant differences of oil exposure concentrations compared to

respective control groups (P<0.05).

https://doi.org/10.1371/journal.pone.0203949.g003
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adult mahi exposed to weathered DWH oil (∑50PAHs = 9.6 μg�L-1) at 26˚C [33]. Stroke vol-

ume and cardiac output in that study decreased by 44 and 39%, respectively, after a 24-hour oil

exposure, while heart rate remained unchanged. Nelson et al. (2016) suggested that a disrup-

tion in excitation-contraction coupling in cardiomyocytes might be responsible for the cardiac

output depression. In support of this notion, ventricular cardiomyocytes of juvenile bluefin

tuna (Thunnus ortientalis) and yellowfin tuna (Thunnus albacares) displayed decreasing cal-

cium current and cycling, and therefore a depletion in contractile machinery, in response to

DWH oil [29]. Various genes affecting cellular calcium levels and cardiac muscle contraction

are downregulated in larval mahi [23] and larval Atlantic haddock (Melanogrammus aeglefi-
nus) [22] after oil exposure, and might be responsible for the depression in stroke volume and

cardiac output.

Depression of cardiac output and edema severity were highly correlated, irrespective of

rearing temperature. A failure in the functional machinery of the cardiac system can result in

edema formation in fish larvae [11,22]. Indeed, functional cardiac phenotypes were mostly

detected and coincided with abnormal fluid accumulation in pericardium and/or yolk sac

sinus. A modest failure in circulatory function might impair osmoregulation in fishes and con-

sequently induce edema [11,51]. Our data support these predictions. From a physiological

point of view, edema formation may in turn lead to elevated pressure in the peritoneal or peri-

cardial cavity, making cardiac filling more difficult–essentially, producting a pericardial

edema-induced “cardiac tamponade”. End-diastolic events in particular will be the most

impacted. However, additional experimentation is required to reveal the direct functional link

between oil-induced edema and cardiac function. Regardless of the mode of actions, oil expo-

sure, which impairs cardiac function, also suppresses maximal oxygen uptake, aerobic scope

and swimming performance of mahi [27,52].

Synergetic influence of temperature and crude oil on larval fish

Cardiac performance in fish embryos and larvae is affected by temperature [43,53–56] and by

crude oil related PAHs [5,14,18,19,25,26,30,50,57]. The current and previous studies have dem-

onstrated that crude oil-related PAHs considerably affect physiological performance such as

heart contractile function, stroke volume and cardiac output in fish early life stages. However,

the synergy and antagonism between temperature and the toxic responses of fish exposed to

crude oil have only infrequently been studied [48,58,59]. Hence, the question arises: “What is
the influence of elevated temperature on cardiac performance in fish larvae exposed to crude oil?”

In answering this question, we first must note that elevated temperature favors degradation

of PAHs by transformation and volatilization. These compounds are additionally modified fol-

lowing their uptake by fish larvae [60]. In the present study, 9 to 30% and 15 to 32% reduction

of PAHs from the initial concentration occurred after 24 hours at 26˚C and 30˚C, respectively.

This degradation might modify larval physiological responses observed at the normal tempera-

ture of 26˚C compared to 30˚C at similar PAH concentrations. Regarding whole body mor-

phology in unexposed fish, elevated temperature typically enhances larval development until

an optimal temperature is exceeded [43]. Elevated temperature below this threshold is gener-

ally accompanied by bigger size larvae, earlier hatching, faster absorption of vitelline reserve

and more rapid advancement through successive larval stages [43,61–66]. In contrast, crude

oil related PAHs slowed development and growth, increase edemas and their severity (e.g.

Fig 4. Correlation between cardiac variables and extent of edema in mahi larvae under combined oil and temperature

exposures. N = 20–39 at 26˚C and N = 20–56 at 30˚C. Data are presented as Mean±SEM. Solid and dashed lines represent linear

regressions at 26˚C and 30˚C, respectively.

https://doi.org/10.1371/journal.pone.0203949.g004

Combined oil and temperature effects on developing cardiac function of fish

PLOS ONE | https://doi.org/10.1371/journal.pone.0203949 October 17, 2018 12 / 19

https://doi.org/10.1371/journal.pone.0203949.g004
https://doi.org/10.1371/journal.pone.0203949


pericardium, yolk sac), caused various abnormalities (e.g. craniofacial, spinal), and modified

future feeding and swimming behavior. All of these effects are likely to have deleterious conse-

quences on survival [13,14,18,19,21,22,67]. However, no evidence emerged that warmer tempera-

ture played a protective role overall morphology of larvae. Indeed, the additive effect of warmer

temperature and higher PAHs concentration (> 30.4 μg.L-1) leading to the strongest negative

impact (mortality) may be due to insufficiency in energy reserves (Pasparakis et al., 2016).

Regarding cardiac physiology, the elevated temperature in 56 hpf larvae increased heart rate

by 10%, while stroke volume and cardiac output were not significantly affected in control

groups. These results are consistent with previous published observations in mahi [43]. When

exposed to 30˚C, functional cardiotoxicity (stroke volume and cardiac output) was not signifi-

cantly amplified in mahi larvae, while morphological variables influencing the heart function

were slightly disrupted.

The impact of oil is sufficiently high at concentrations over 12.4 μg�L-1 such that the tem-

perature effects may be minor in the regulation of cardiac function compared to the lethal

effects of oil. As well, it is difficult to fully understand the true impact of elevated temperature

based on only short term exposure (56 hours). Indeed, it is difficult to draw clear conclusions

from MLR models (low r squared, low P value), both because of the biological variability that

is increased with concentrations parameters and the small number of regressors (i.e. tempera-

ture). Furthermore, even if elevated temperature might slightly enhance development time of

larvae [43], it does not seem to have a very large influence on the cardiotoxicity of weathered

oil in mahi larvae, especially during the very short term exposures used in this study. PAH con-

centrations were more of an influencing factor than temperature.

Functional phenotypes involved in cardiac regulation are consistent with transcriptomic

responses observed in larval mahi exposed to the same crude oil at the optimal temperature of

26˚C [23]. As previously described, strong upregulation of genes not associated with the AhR

pathway were observed, but it has also been found that the detoxification mechanisms were

significantly upregulated in exposed larvae [23,68]. Strong induction of AhR detoxifying sys-

tems are not only energetically costly for organisms but also might be responsible for cardiac

failure in larvae after oil exposure [30,69–71]. Environmental temperature also influences the

level of various xenobiotic metabolizing enzyme activities in fish exposed to crude oil [58,59].

Indeed, regulation and induction of these detoxification mechanisms (cyp1a, EROD) and sev-

eral chaperone genes were much higher at elevated temperatures in Atlantic cod, Gadus mor-
hua [59] and in polar cod, Boreogadus saida [58]. These enzymatic modulations might cause

the slight (but insignificant) increase or comparable functional change in cardiac modulation

at elevated temperature compared to 26˚C in larval mahi.

Overall, our findings indicate that the interaction between elevated temperature and crude

oil exposure acted differentially on the cardiac system of larval fish. PAH concentrations of

crude oil appear to play a greater role on the metabolic demand and regulation of ventricular

function in mahi larvae than the temperature factor during these short term exposures.

Directions for future studies

Additional research is needed to further elucidate the complex interactions between rearing

temperature, PAH toxicants, and cardiac form and function. Future investigations should be

undertaken with more developed larvae to better understand the mechanisms underlying

these cardiac adjustments, in particular at developmental stages where the relationship

between both cardiac and circulatory systems is established and oxygen demand becomes

more important for organisms. Furthermore, a sudden, acute change of temperature would be

more representative of environmental conditions.
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Moreover, crude oil is a complex mixture of thousands of compounds generally character-

ized by its aromatic hydrocarbons fraction (i.e. BTEX, PAH). While this aromatic fraction is

assumed to be a primary determinant of oil toxicity [72,73], other aromatic compounds from

the unresolved complex mixture (UCM) may also strongly contribute to this toxicity by elicit-

ing nonspecific narcotic toxic responses [74,75]. Most studies, including our present work,

have characterized the oil fraction by measuring PAH as the basic metric for comparison of

toxicity testing, but additive effects of the mixture should be considered in future studies.

Conclusion

A combination of elevated temperature and crude oil exposure has a differential effect on

severity of morphological impairments and cardiac performance in mahi. Elevated tempera-

ture influenced solubility, bioavailability of some compounds and gas transport. However, ele-

vated water temperature did not protect the heart from functional oil-induced modifications,

such as bradycardia. Stroke volume was unaffected, and cardiac output only slightly affected,

by elevated temperature. Furthermore, reduction of edema in the pericardium and yolk sinus

cavity occurred at 30˚C. Nevertheless, a potential protective role of warmer temperature can-

not be supported, because of a lethal effect observed at higher exposure concentrations. Quite

the contrary, this smaller area of edema is probably morphologically related to the advanced

development in time of larvae, in which yolk sac absorption becomes more important and

nutritional and energetic reserves decrease, leading to increasing vulnerability of larval fish.

We suggest that elevated temperature may decrease larval resilience to oil exposure by amplify-

ing energetic costs to organisms. However, it is difficult to demonstrate this effect of increased

energetic costs with short term exposure. This study adds growing evidence to the importance

of considering environmental factors in risk assessment of anthropogenic pollutants on physi-

ology and fitness of aquatic organisms. In the current context of global warming, environmen-

tal water temperature should be considered as a key variable and thermally related

physiological challenges should be used in toxicity testing to further explore physiological and

ecological impacts of these interactions.
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