
UC Irvine
UC Irvine Previously Published Works

Title
Consequences of systematic model drift in DYNAMO MJO hindcasts with SP‐CAM and CAM5

Permalink
https://escholarship.org/uc/item/8kr9c7z2

Journal
Journal of Advances in Modeling Earth Systems, 7(3)

ISSN
1942-2466

Authors
Hannah, Walter M
Maloney, Eric D
Pritchard, Michael S

Publication Date
2015-09-01

DOI
10.1002/2014ms000423
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8kr9c7z2
https://escholarship.org
http://www.cdlib.org/


RESEARCH ARTICLE
10.1002/2014MS000423

Consequences of systematic model drift in DYNAMO MJO
hindcasts with SP-CAM and CAM5
Walter M. Hannah1,2, Eric D. Maloney3, and Michael S. Pritchard4

1Department of Atmospheric Science, University of Miami, Miami, Florida, USA, 2Now at Department of Marine, Earth, and
Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina, USA, 3Department of Atmospheric
Science, Colorado State University, Fort Collins, Colorado, USA, 4Department of Earth System Science, University of
California Irvine, Irvine, California, USA

Abstract Hindcast simulations of MJO events during the dynamics of the MJO (DYNAMO) field campaign
are conducted with two models, one with conventional parameterization (CAM5) and a comparable model
that utilizes superparameterization (SP-CAM). SP-CAM is shown to produce a qualitatively better reproduc-
tion of the fluctuations of precipitation and low-level zonal wind associated with the first two DYNAMO
MJO events compared to CAM5. Interestingly, skill metrics using the real-time multivariate MJO index
(RMM) suggest the opposite conclusion that CAM5 has more skill than SP-CAM. This inconsistency can be
explained by a systematic increase of RMM amplitude with lead time, which results from a drift of the large-
scale wind field in SP-CAM that projects strongly onto the RMM index. CAM5 hindcasts exhibit a contraction
of the moisture distribution, in which extreme wet and dry conditions become less frequent with lead time.
SP-CAM hindcasts better reproduce the observed moisture distribution, but also have stronger drift patterns
of moisture budget terms, such as an increase in drying by meridional advection in SP-CAM. This advection
tendency in SP-CAM appears to be associated with enhanced off-equatorial synoptic eddy activity with lead
time. Systematic drift moisture tendencies in SP-CAM are of similar magnitude to intraseasonal moisture
tendencies, and therefore are important for understanding MJO prediction skill.

1. Introduction

Weather has intrinsic limits of predictability [Lorenz, 1968], but the practical shortcomings of observation
networks and numerical prediction methods are often the biggest factor limiting forecast skill. Convectively,
coupled phenomena are especially prone to errors because of the uncertainties surrounding the treatment
of convection in large-scale models. Luckily, these errors on the mesoscale and smaller tend to saturate
within the first few days of a forecast, allowing large-scale patterns to have longer predictability [Zhang
et al., 2007]. For example, convectively coupled equatorial waves can maintain their amplitude and, in prin-
ciple, can be predicted out to 2 weeks, in spite of the fact that moist convection largely influences the
dynamics [Straub et al., 2006; Mapes et al., 2008].

A potential source of enhanced prediction skill of variability on subseasonal time scales is the Madden-
Julian Oscillation (MJO) [Zhang, 2013], which is characterized by alternating intraseasonal periods of
enhanced convection and wind in the Tropical Indian and West Pacific Oceans regions [Madden and Julian,
1972; Zhang, 2005]. The MJO can interact with many weather phenomena, such as tropical cyclones [Vitart,
2009; Vitart et al., 2010], the Asian and Australian monsoons [Hendon and Liebmann, 1990; Joseph et al.,
2008], African easterly waves [Matthews, 2004; Alaka and Maloney, 2012], extratropical weather [Cassou,
2008; Marshall et al., 2010; Vitart and Molteni, 2010], and ENSO [Shi et al., 2010]. Because of its long time
scale, quasiperiodic nature, and far-reaching effects, the MJO offers the potential of improving weather pre-
diction beyond the typical range of weather forecasts [Zhang, 2013].

It has long been recognized that most weather and climate models cannot reproduce robust MJO variability
[Slingo et al., 1996; Lin et al., 2006; Kim et al., 2009, D. Kim et al., 2014]. This problem is often attributed to
issues with the treatment of moist convection [Tokioka et al., 1988; Maloney and Hartmann, 2001; Lin et al.,
2008b; Hannah and Maloney, 2011, 2014; Benedict et al., 2014], but a detailed understanding of this problem
is lacking. In addition to the lack of a robust MJO in most free-running global models, MJO prediction skill is
also lacking in operational forecast systems [Ling et al., 2014]. The inherent predictability of the MJO has
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been estimated to be around 30–40 days [Waliser et al., 2003; Ding et al., 2010; H.-M. Kim et al., 2014; Neena
et al., 2014]. However, most studies find the actual MJO prediction skill to be about 10–20 days for individ-
ual models [Vitart et al., 2007; Seo et al., 2009; Rashid et al., 2010; Vitart et al., 2010; Klingaman and Wool-
nough, 2014] and 10–30 days when an ensemble approach is used [Neena et al., 2014]. While this range is
beyond the �10 day limit of typical forecasts, there is room for improvement in forecast systems, as well as
in the methods used to assess forecast skill [Ling et al., 2014].

Hannah and Maloney [2014] analyzed hindcast experiments of the MJO events that occurred during the
dynamics of the MJO (DYNAMO) international field campaign, which took place in the Indian Ocean during
the winter of 2011–2012 to study the initiation of the MJO [Yoneyama et al., 2013; Johnson and Ciesielski,
2013]. The experiments used a common approach of increasing the entrainment rate for deep convection,
which tends to strengthen the MJO signal in a model [Maloney and Hartmann, 2001; Bechtold et al., 2008;
Hannah and Maloney, 2011]. However, their results suggest that this method actually produces a better
MJO for the wrong reason. Specifically, increasing convective entrainment allows divergent circulations to
become unrealistically efficient at building up column moist static energy. This produced an unrealistic
trade-off whereby too strong import by vertical moist static energy advection compensated for other model
deficiencies, such as weak cloud-radiative feedbacks, and explained why the stronger entrainment parame-
ter helped improve the MJO.

A more recent approach to treating convection in global models, known as ‘‘superparameterization,’’ is able
to produce a robust MJO with attractively fewer assumptions about how moist convection behaves [Khair-
outdinov et al., 2005; Benedict and Randall, 2009; Thayer-Calder and Randall, 2009; Zhu et al., 2009; Andersen
and Kuang, 2012; Pritchard and Bretherton, 2014]. Superparameterization works by representing the effects
of unresolved moist convection and turbulence processes with an embedded higher-resolution model,
often referred to as a cloud-resolving model (CRM), that is specialized for the unresolved scales of convec-
tion [Khairoutdinov and Randall, 2001; Jung and Arakawa, 2005]. The downside of this approach is that it
can substantially increase computational expense [Randall et al., 2003], although there are strategies to
compensate for this while maintaining MJO fidelity [Pritchard et al., 2014].

Kim et al. [2009] found the superparameterized NCAR Community Atmosphere Model (SP-CAM) to have the
most realistic composite MJO simulation out of eight state-of-the-art, uncoupled global models. A recent
study has shown in 20 day hindcasts of specific MJO events during the Year of Tropical Convection (YOTC)
that SP-CAM is among the best of 15 AGCMs in 15–20 day outgoing longwave radiation (OLR) forecast skill
[Klingaman et al., 2015]. An explanation for these successes is not clear. Some have suggested that SP-
CAM’s success is due to the ability to delay deep convection until the troposphere can be sufficiently mois-
tened [Zhu et al., 2009]. A delay in deep convection should allow more vigorous convection after the envi-
ronment has been sufficiently primed, unlike models that allow deep convection in dry environments
[Grabowski and Moncrieff, 2004; Bechtold et al., 2008; Thayer-Calder and Randall, 2009]. Radiative processes
have also been implicated to play an important role in the maintenance and propagation of the MJO
[Andersen and Kuang, 2012; Chikira, 2014]. SP-CAM calculates radiative tendencies on the CRM grid, which
produces realistic cloud-radiative feedbacks, and so we expect this model to produce a more realistic MJO
in this respect.

The representation of the MJO in SP-CAM is not without some deficiencies. Generally, the convective inten-
sity of the MJO is too strong, which may be due to differences in the model’s mean state, and unrealistic
interactions between deep convection and the boundary layer [Benedict and Randall, 2009]. Klingaman et al.
[2015] found that despite its good OLR forecast skill, SP-CAM is among the poorest performing third of 15
AGCMs in RMM and wind 15–20 day forecast skill for YOTC MJO events. Some have suggested that the SP-
CAM may also have an unrealistically intense wind-evaporation feedback stemming from the periodic
boundaries in the embedded CRM [Luo and Stephens, 2006]. Some of the deficiencies noted above may be
improved through coupling SP-CAM to an ocean model [Stan et al., 2010; Benedict and Randall, 2011;
DeMott et al., 2014].

When initialized with an observed state, models are known to systematically drift away from initial condi-
tions toward a state consistent with their internal physics [Judd et al., 2008]. However, little work has been
done to characterize the drift of superparameterized models. Systematic errors in hindcasts with the con-
ventionally parameterized CAM tend to resemble model biases in long-term simulations [Ma et al., 2013].
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Most of the hindcast error that results from systematic drift of an atmospheric model is evident by day 2 of
a simulation and generally becomes saturated by day 5 [Xie et al., 2012]. These systematic errors are mostly
associated with moist processes, but can also be associated with dry, balanced dynamics [Jung, 2005]. Sys-
tematic drift also tends to be different depending on the region and time of year [Kang et al., 2004; Huang
et al., 2007; Vitart et al., 2007]. Many methods can be utilized to reduce such errors, such as multimodel
ensembles that cancel out systematic errors [Pavan and Doblas-Reyes, 2000], or statistical methods [Fed-
dersen et al., 1999]. It may be tempting to correct systematic errors, but their existence can shed light on
model deficiencies that can be addressed to produce a more physically consistent solution [Phillips et al.,
2004; Ma et al., 2013].

In light of the advantages of superparameterization, the current paper compares hindcast simulations of
DYNAMO MJO events from a conventionally parameterized model (CAM5) that was analyzed by Hannah
and Maloney [2014] to its superparameterized counterpart (SP-CAM). The analysis focuses on the conse-
quences of systematic model drift in both models, including the implications for assessing model MJO skill
using metrics commonly employed in the community [Rashid et al., 2010; Klingaman et al., 2015]. Section 2
outlines the methods and model configurations. Section 3 details differences between the models and char-
acterizes the effect of systematic model errors on skill scores. Effects of drift on the budget of column mois-
ture are considered in section 4. Conclusions are discussed in section 5.

2. Methodology

2.1. Hindcast Setup
Simulations are conducted with the Super-Parameterized Community Atmosphere Model version 5 (SP-
CAM), which is the atmospheric component of the NCAR Community Earth System Model version 1.1
(CESM) [Neale et al., 2010]. The development of SP-CAM is a bit unconventional, occurring across several
institutions, which has complicated the version history. The version used in this study was obtained from
the NCAR subversion server, but is currently not available to the public. This issue will likely be resolved as
superparameterized models becomes more widely available, but to ensure repeatability of our results we
are willing to share our code and data with any interested party. The embedded cloud-resolving model
used to simulate subgrid-scale convection in SP-CAM is based on the System for Atmospheric Modeling
(SAM) [Khairoutdinov and Randall, 2003], including updates to modern versions of CAM and upgrades to
SAM microphysics and radiative transfer capabilities by Wang et al. [2011]. The domain of the embedded
cloud-resolving model (CRM) is a two-dimensional ‘‘curtain,’’ with 32 columns and 28 vertical levels corre-
sponding to the lowest 28 levels in CAM. A Newzed with Arakawa C staggering, and a third-order Adams-
Bashforth time stepping scheme with variable time stepping to maintain linear stability. A single-moment
bulk microphysics scheme is used, with five species of hydrometeors, including cloud water, rain, cloud ice,
snow, graupel, and hail. All simulations employ a finite volume dynamical core, 30 vertical levels and 0.98 3

1.258 horizontal resolution. Note that this horizontal resolution of SP-CAM is generally higher than that used
in the literature at this time.

Hindcasts with the conventional CAM5, which employs the deep convection scheme of Zhang and Mcfar-
lane [1995], are also conducted for comparison. To be consistent with Hannah and Maloney [2014] we use
the default deep convective entrainment rate of 1.0 km21. CAM5 contains a moist boundary layer scheme
based on Bretherton and Park [2009], the prognostic two-moment bulk cloud microphysics scheme of Morri-
son and Gettelman [2008], and the shallow convection scheme of Park and Bretherton [2009]. No cloud
parameterizations are needed in SP-CAM, since the embedded CRM takes the place of all of these
parameterizations.

Hindcast initial conditions were created from ECMWF operational analysis at 00z every 5 days from 1 Octo-
ber 2011 to 15 December 2011. While a higher density of hindcast initializations (daily) could have been
useful for constraining statistical sampling significance, we prefer a sparse hindcast initialization methodol-
ogy since this alleviates concerns about whether the hindcasts are truly independent on the temporal scales
relevant to the MJO [Vitart et al., 2007]. Furthermore, the high cost of running SP-CAM at �18 resolution lim-
ited our ability to substantially increase the number of simulations. Each simulation was integrated for 10
days with output every 6 h. The initialization of hindcasts with SP-CAM raises the question of whether it is
necessary for the embedded CRM to be ‘‘spun-up’’ prior to the initialization time. There is currently no
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published study that addresses this question. The third author of this study has experimented with nudging
methods that allow subgrid convection to develop prior to hindcast initialization. These experiments have
not yielded any notable difference in event-level MJO forecast skill when compared to a ‘‘cold start’’
method. Similar intrinsic predictability experiments confirm that including versus excluding CRM-scale state
information at hindcast initialization has no effect on MJO forecast skill in multievent composites in SP-
CAM. Based on this experience, and since a nudging approach adds complexity, and thus we have opted to
use a ‘‘cold start’’ method for this study.

Hindcast skill is estimated using the Real-time Multivariate MJO index (RMM) [Wheeler and Hendon, 2004]
following Rashid et al. [2010], Lin et al. [2008a], and Gottschalck et al. [2010] to estimate a bivariate correla-
tion (COR) and root mean square error (RMSE) of the hindcast RMM given by

CORðsÞ5

XN

t51
a1ðtÞb1ðt; sÞ1a2ðtÞb2ðt; sÞ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

t51
a2

1ðtÞ1a2
2ðtÞ

� �q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

t51
b2

1ðt; sÞ1b2
2ðt; sÞ

� �q ; (1)

RMSEðsÞ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

t51
a1ðtÞ2b1ðt; sÞ½ �21 a2ðtÞ2b2ðt; sÞ½ �2

n or
; (2)

where a1;2ðtÞ is the verification RMM and b1;2ðt; sÞ is the respective projection of the forecast onto the
observed RMM patterns for time t and lead time s. To first order, COR is generally insensitive to amplitude
errors and so should be considered as a measure of RMM phase skill in the hindcast, whereas RMSE is sensi-
tive to both phase and amplitude errors. Since both indices are normalized by their standard deviations, an
RMSE of 2.0 or above indicates that the two indices are no longer correlated, and therefore the model can
be viewed as having no skill beyond this threshold. Similarly, we use a threshold minimum of 0.5 for COR to
indicate when a hindcast has no skill, consistent with previous studies [Rashid et al., 2010]. Note that we
retain interannual variability in our RMM calculation.

The RMM projections for each hindcast are obtained following previous studies [Lin et al., 2008a; Rashid
et al., 2010; Gottschalck et al., 2010], with the exception that we retain interannual variability, since we are
working with a short hindcast period. This exception does not affect the interpretation of skill scores since
the verification RMM data also retain interannual variability. To be consistent with previous studies, the
RMM projections are estimated using the NCEP-NCAR reanalysis [Kanamitsu et al., 2002] zonal wind at 200
and 850 hPa, and NOAA-interpolated OLR [Liebmann and Smith, 1996]. The procedure for obtaining hind-
cast RMM projections is as follows:

1. Hindcast anomalies are calculated by subtracting the 31 year climatological mean and seasonal cycle of
NCEP and NOAA OLR data over the period 1980–2010.

2. The hindcast data are latitudinally averaged over 158S–158N.
3. Each field is divided by a normalization factor from Wheeler and Hendon [2004]:

a. 1.81 m s21 for 850 hPa zonal wind.
b. 4.81 m s21 for 200 hPa zonal wind.
c. 15.1 W m22 for OLR.

4. Hindcast data are then projected onto the observed EOF patterns.
5. Finally, the projection coefficients are divided by the observed principal component standard deviations

from Wheeler and Hendon [2004] based on 1979–2001 values.

2.2. Validation Data
To validate the SP-CAM and CAM5 hindcasts, we use the European Centre for Medium-Range Weather Fore-
casts (ECMWF) operational analysis that was used to create the hindcast initial conditions, as well as the
Tropical Rainfall Measuring Mission (TRMM) 3B42 3 hourly merged satellite rainfall product. Both data sets
have a high spatial resolution of 0.258, which is interpolated to match the model grid.

2.3. Subsetting Method
Several following analyses in this study will utilize a subset of the hindcast and observational data that will
be grouped by lead times of either 00–04 or 05–09 days. The hindcast initializations are separated by 5
days, and so the 00–04 and 05–09 day lead times can be concatenated to form continuous data sets. The
observation-based validation data can be similarly subsetted to match the days covered by the hindcast
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data in either case. This allows
us to easily compare the first
and second halves of the hind-
cast data, in order to character-
ize how the quality of the
hindcast degrades with lead
time.

3. Hindcast Drift and
RMM Skill Metrics

3.1. Hindcast Comparison
Our initial goal is to determine
how each model performs in
the DYNAMO hindcast simula-
tions, since convection is treated
very differently in each model.
Maps of precipitation averaged
over data with 00–04 day lead
times are shown in Figure 1 for
TRMM, SP-CAM, and CAM5. The
simulations exhibit some region-
specific precipitation biases, but
generally resemble TRMM
observations. SP-CAM is slightly
more realistic than CAM5, with
areas of intense precipitation
over the Indian Ocean. The
models also share some differ-
ences relative to TRMM, such as
too much precipitation over
Papua New Guinea and too little
precipitation near the Philip-
pines (Figures 1b and 1c).

To get a sense of how well the
hindcasts capture the DYNAMO
MJO events, Hovm€oller dia-
grams of equatorial averaged
precipitation for 00–04 day
leads are shown in Figure 2. The
data in Figure 2 have been tem-
porally smoothed with two
passes of a 1-2-1 filter to bring
out MJO-scale variability. TRMM
shows clearly defined periods of

enhanced precipitation that make up the October and November DYNAMO events (Figure 2a). SP-CAM also
shows periods of enhanced and suppressed precipitation that agree well with TRMM data, but are slightly
less coherent (Figure 2b). The MJO events are less prominent in CAM5 (Figure 2c), but periods of enhanced
and suppressed precipitation still occur at the correct longitudes and times. Precipitation in CAM5 is gener-
ally weaker than SP-CAM or TRMM, consistent with the mean precipitation in Figure 1c.

At 05–09 day lead times the MJO precipitation signal is somewhat degraded in both models (Figure 3). SP-
CAM still maintains clear periods of enhanced and suppressed precipitation, although the convective enve-
lope is less coherent than in TRMM data (Figure 3b). Degradation of the convective signal is more dramatic

Figure 1. Mean precipitation for all data with a lead time of 00–04 days.
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in CAM5 at 05–09 day leads (Figure 3c). Overall, we conclude that SP-CAM hindcasts have a more robust
representation of the MJO convective signal during DYNAMO when compared to the conventional CAM5.

Figure 4 shows Hovmoller plots of 850 hPa zonal wind for ECMWF, SP-CAM, and CAM5 at 00–04 day leads.
Both models slightly overestimate low-level zonal wind anomalies (Figure 4b), evidenced by higher stand-
ard deviations of 3.3 m s21 for SP-CAM and 3.0 m s21 for CAM5 versus 2.7 m s21 for ECMWF data. A similar
overestimation is found for upper level wind anomalies (not shown). At 05–09 day leads the zonal wind

Figure 2. Hovm€oller diagram of equatorial precipitation averaged from 158S to 158N for 00–04 day lead times.

Figure 3. Hovm€oller diagram of equatorial precipitation averaged from 158S to 158N for 05–09 day lead times.
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signal in both models has become less coherent, especially for CAM5 (Figure 5). Interestingly, the magni-
tude of the zonal wind generally becomes stronger at later lead times in SP-CAM. As we will show, this
property of SP-CAM can strongly affect the projection onto the RMM index.

3.2. RMM Skill Metrics
The COR and RMSE skill scores are shown in Figure 6. Note that the COR and RMSE scores on the first day
are not 1.0 and 0.0, as might be expected. This is partly because the model is initialized at 00Z and exhibits
an adjustment during the first 24 h, but also because we initialize from ECMWF data, but use NCEP data for
the RMM projection, following previous studies [Gottschalck et al., 2010]. The COR metric (higher value is
better) indicates a slightly better skill in SP-CAM than CAM5 (Figure 6a). On the other hand, the RMSE metric
(lower value is better) suggests that SP-CAM has less skill than CAM5 in predicting future MJO evolution,
which may at first glance seem inconsistent with Figures 2–5. This discrepancy suggests a large amplitude
error in SP-CAM. The RMM index mostly emphasizes wind fields rather than OLR [Straub, 2013], so the high
RMSE is likely related to the overestimation of the wind signal (Figures 4 and 5).

To better understand the amplitude error in SP-CAM, it is useful to first deconstruct the time series of RMM
amplitude and phase for each hindcast simulation relative to the observed RMM index (Figure 7). The ampli-
tude and phase of the RMM index are calculated from the RMM components (RMM1 and RMM2) as follows:

AMP5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RMM2

11RMM2
2

q
; (3)

PHS5arctan
RMM2

RMM1

� �
(4)

A systematic overamplification of the RMM projection in SP-CAM is evident in Figure 7a, whereas CAM5
hindcasts more closely follow the observed RMM (Figure 7b). Both models do an adequate job of reproduc-
ing the RMM phase (Figures 7c and 7d). This confirms that our conclusion from the RMM skill metrics was
correct in that an amplitude error exists in SP-CAM. The amplitude problem in SP-CAM is the opposite of
the overly weak MJO amplitude that exists in many models [Kim et al., 2009, D. Kim et al., 2014; Neena et al.,
2014; H.-M. Kim et al., 2014].

Figure 4. Hovm€oller diagram of equatorial 850 hPa zonal wind averaged from 158S to 158N for 00–04 day lead times.
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Figure 8 reveals a striking drift signal in SP-CAM hindcasts. Time series of individual SP-CAM RMM compo-
nents (Figures 8a and 8c) reveal a systematic tendency for SP-CAM hindcasts to have an increasingly strong
projection onto positive RMM1 and negative RMM2. This is not to say that errors are not evident at other
phases, but a selective amplification of positive RMM1 and negative RMM2 appears to be robust across all
the SP-CAM hindcasts, regardless of initial MJO phase. In contrast, CAM5 does not show any systematic
errors that grow with lead time (Figures 8b and 8d). In CAM5 there are both positively and negatively trend-
ing biases of the RMM components at different initial MJO phases. In other words, a systematic drift in the
wind field occurs in SP-CAM hindcasts that does not occur in the standard CAM5.

Note that it is not valid to interpret RMM1 and RMM2 separately from a physical standpoint because they
both describe a single mode of variability. Here we are discussing the projection of a model solution that is
physical inconsistent with the real world onto the RMM index and the influence on MJO hindcast skill. Thus,
in this case, it is useful to consider the RMM components separately to help explain how and why model

Figure 5. Hovm€oller diagram of equatorial 850 hPa zonal wind averaged from 158S to 158N for 05–09 day lead times.

Figure 6. (left) COR and (right) RMSE RMM skill scores as a function of lead time in days for SP-CAM (blue) and CAM5 (red). The thin black
line denotes a threshold of no MJO predictive skill (see text).
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drift with a geographic preference impacts the RMM skill scores (Figure 6). In light of our conclusion, the
amplitude problem identified initially by the RMM skill metrics may have little to with the model’s intrinsic
ability to produce a coherent representation of the DYNAMO MJO events. To better understand whether
this is the case, we need to quantify the impact of the models’ drift pattern and verify that it projects onto
positive RMM1 and negative RMM2.

3.3. Impacts of Model Drift on the RMM
In order to quantify model drift, we need to first isolate the drift signal. Model drift is a systematic evolution
of the model state, independent of perturbations in the initial conditions. To isolate the drift of a variable,
we first locate all data that fall on a given lead time. We then average these data to get a four-dimensional
data set that is a function of lead time and the three spatial dimensions. The purpose of this averaging is to
remove the ‘‘weather’’ and bring out the signal of the intrinsic model drift that occurs systematically over

Figure 7. (a) Time series of RMM amplitude, (b) RMM1, (c) RMM phase, and (d) RMM2 from observations (black) and individual (left)
SP-CAM (blue) and (right) CAM5 (red) hindcast projections.

Figure 8. Time series of RMM index components, (top) RMM1 and (bottom) RMM2, for (left) SP-CAM and (right) CAM5.
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the course of each hindcast. As an illustrative example, the first time of this new data set would be the aver-
age of the first time output of all hindcasts for a given model (ex. 00Z on 1 October, 5 October, 10 October,
etc.). The ‘‘drift’’ of the observational data is similarly calculated by selecting the days that correspond to
each lead time of the hindcast data.

At this point, we could subtract the value at the initial hindcast state, but this can be misleading when a
variable has a large error at the time of initialization and becomes closer to the observed state at a later
time. Quantities related to moist convection, such as precipitation, tend to exhibit this behavior (not
shown). A better method is to subtract the temporal mean of the verification data (i.e., ECMWF analysis)
from the hindcast drift signal at all spatial points. In this sense the drift can be considered a component of
the total hindcast error. Comparison of drift patterns to average hindcast error patterns (i.e., not based on
the RMM) reveals that drift patterns do not necessarily resemble error patterns, and are generally smaller in
magnitude (not shown).

Note that the drift obtained from the hindcasts in this study is limited in scope, and may not fully describe
the intrinsic model drift, since drift can have a seasonal dependence. A more thorough method of charac-
terizing the drift tendencies of a model would be to create hindcasts for each day of the year over several
decades so that any seasonal evolution of the systematic model drift could be accounted for. Indeed, this is
the strategy used as a best practice to analyze the effect of convection parameterization changes on intrin-
sic MJO skill as distinct from model drift in the ECMWF model development process [e.g., Vitart et al., 2007].
Unfortunately, SP-CAM is so computationally expensive that this alternate method is too burdensome, and
thus outside the scope of the present study.

To characterize the effect of drift on the RMM index, equatorially averaged Hovm€oller plots are shown in
Figure 9 for 850 and 200 hPa zonal wind (U850; U200). Results from ECMWF analysis are included to confirm
there is no drift in the analysis, except for a slight hint of the seasonal cycle in the upper level wind over the
East Pacific (Figures 9a and 9d). In the simulations, upper and lower level wind display a drift pattern with a
rich longitudinal structure. SP-CAM develops a strong low-level easterly bias around 1808E–1208W (Figure 9b).

Figure 9. Hovm€oller diagrams of the systematic drift over the DYNAMO period as a function of time since hindcast initialization (see text) in the wind fields used in the RMM index in
ECMWF, SP-CAM, and CAM5. Contour units are m s21. Stippling indicates where the drift signal is significantly different than zero at the 95% cofidence level. Data were equatorial aver-
aged from 158S to 158N, consistent with the RMM index.
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There is a weak signal of a similar low-level easterly bias in CAM5 (Figure 9c). Upper level wind drift in SP-CAM
shows a prominent easterly bias (Figure 9e). CAM5 also has a mostly easterly upper level zonal wind drift, as
well as a westerly bias in the central Indian Ocean. The drift pattern of zonally averaged meridional wind also
shows a similar diverse spatial structure, but does not indicate a robust shift of the ITCZ (not shown).

Although OLR has a small impact on the RMM [Straub, 2013], it is interesting to consider how it evolves in the
simulations. To isolate the OLR drift we use NOAA OLR as a reference, since this is used in the RMM (Figure
10). The OLR drift in SP-CAM is reminiscent of a zonal wavenumber one pattern, with a stronger reduction of
OLR (i.e., enhanced cloudiness) in the Indian Ocean and West Pacific Oceans (608E–1808E). This pattern
appears likely to project well onto the RMM spatial patterns, which also have a similar wavenumber 1 pattern.
The OLR drift in CAM5 also shows a reduction in OLR with lead time, but the drift begins with a larger positive
bias and is more gradual than the OLR drift tin SP-CAM. Both models show higher OLR (i.e., suppressed con-
vection) at day 0. This might be related to the spin-up of the embedded CRM in SP-CAM. Parameterized con-
vection in CAM5 does not require such spin-up, but the ambient cloud water and ice used in radiative
calculations is initially absent, and therefore some time is required to adjust these fields to reasonable values.

Now that we have a method for isolating the systematic hindcast drift as an anomaly from the ECMWF
data, we can further quantify the full impact of the drift signal on the RMM index by projecting the equatori-
ally averaged drift data (158S–158N) at each lead time onto the RMM spatial structures defined by Wheeler
and Hendon [2004]. The projection of the drift signal is calculated in a similar manner to the RMM projec-
tions used for the skill score calculations, except in this case we have removed the mean of the ECMWF
‘‘drift’’ data, rather than the climatological mean and seasonal cycle. Figure 11 shows the SP-CAM RMM drift
projection on the RMM components as well as the individual projections of U200, U850, and OLR. The drift
projections confirm the selective amplification of positive RMM1 and negative RMM2 suggested in Figure 8.
During days 0–6, U200 compensates the positive RMM1 bias, but later becomes positive (Figure 11a).
Although wind dominates the RMM index, Figure 11 suggests that OLR also contributes substantially to the
RMM amplification problem. The biggest offender to both RMM1 and RMM2 in SP-CAM is U850, contributing
the strongest drift signal to the RMM bias. Similar plots for CAM5 show the model drift weakly contributing
a negative RMM1 and positive RMM2 (Figure 12). Therefore, we can conclude that model drift in CAM5 is
less of a concern for interpreting the RMM skill scores. On the other hand, the SP-CAM nicely reproduces
the convective signal of the DYNAMO MJO events, but the model drift induces a large bias in the RMM pro-
jections, and obscures the RMM RMSE metric. The significant mean state drift in SP-CAM may reflect the
fact that it is an experimental prototype tool that has not been substantially tuned in its mean state, unlike
the standard CAM and older versions of SP-CAM [Pritchard and Bretherton, 2014].

Even though an exhaustive characterization of model drift is outside the scope of this study, we can naively
estimate the effect of the drift shown here on the RMM skill scores. The solid lines in Figure 13 show the result
of estimating the RMM skill metrics after removing the systematic drift that was used to produce Figures 9
and 10. Although the drift was less prominent in CAM5, removing it has improved the phase error so that
SP-CAM and CAM5 have comparable COR values over the 10 day hindcast (Figure 13a). However, the COR
change is relatively small, and thus does not appear to be strongly influenced by the systematic drift.

Figure 10. Hovm€oller diagrams of the systematic drift, similar to Figure 9, except for OLR with units of W m22. NOAA OLR is used as the reference to isolate the model drift signal.
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RMSE is noticeably reduced for SP-CAM when the drift is removed (Figure 13b), but it is still significantly
higher than CAM5. This difference may be due to the stronger variability of lower tropospheric wind in SP-
CAM (Figure 5), since stronger anomalies of both signs would not be a consequence of model drift. A
detailed explanation of why the drift-corrected RMM skill scores change as shown in Figure 13 is compli-
cated by the nonlinearity of the skill score calculations in (1) and (2). Additionally, we feel a larger hindcast
ensemble is needed to estimate the significance of the differences in Figure 13.

4. Effects of Hindcast Drift on Column Moisture

The drift patterns highlighted in the previous analysis are interesting from an operational viewpoint,
because they give us insight into how the RMM skill scores can be misleading if a model has large drift.
From a more scientific perspective, the question naturally arises as to how model drift might affect the fun-
damental dynamics of the MJO. The RMM is an empirical tool for identifying the MJO that cannot tell us

Figure 12. Projection of the isolated drift pattern, similar to Figure 11, except for CAM5.

Figure 11. Projection of the isolated drift pattern in Figures 9 and 10 onto the RMM spatial structures (see text) as a function of lead time
for SP-CAM. The total projection (thick black) is broken into three components of the projection from OLR (blue), U850 (green), and U200
(red).
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anything about what drives the MJO, and so our results regarding drift and the RMM do not directly give us
any physical insight about this important question. Many studies have suggested that moisture is important
to MJO dynamics, by modulating how convection is coupled with large-scale dynamics. To discuss the
model drift in a more physically relevant context we will now consider how model drift can influence the
column-integrated moisture budget of the DYNAMO hindcasts in SP-CAM and CAM5.

4.1. Analysis of Moisture Budget Drift
The longitudinal drift pattern of column-integrated water vapor (CWV) is shown in Figure 14. The patterns
are qualitatively similar between the two models and indicate CWV changes of 2–3 mm over 10 days. The
rate of column moistening leading up to the DYNAMO MJO events is roughly 1–2 mm d21, so the net drift
tendencies are roughly 10% of the those associated with the MJO. However, as we will show, indivdual
processes that make up this net tendency are naturally much larger, and so the drift of processes that con-
trol the column moisture budget are, arguably, not negligible to MJO moisture dynamics.

Figure 15 shows an alternate view of moisture drift by comparing the frequency distribution of CWV over
the Indian and West Pacific Oceans (208S–208N; 408E–1808E) in the first 2 days and last 2 days of the hind-
casts. The CWV distribution in SP-CAM stays close to that in the ECMWF analysis throughout the 10 day
hindcast, with a few slight exceptions. CAM5 hindcasts exhibit an interesting ‘‘contraction’’ of the moisture
distrbution, in which there are fewer values at the extremes of the distribution by days 8–9 (Figure 15b).
The wet and dry phases of the MJO are associated with changes in the shape of the CWV distribution (not
shown), which are associated with the modulation of the large-scale convective activity. Given that the con-
vective characteristics of the MJO appear to be fundamental to its dynamics, the change in the CAM5 CWV

Figure 13. Similar to Figure 6, but with drift corrected (solid) and original (thin dashed) (left) COR and (right) RMSE RMM skill scores as a
function of lead time in days for SP-CAM (blue) and CAM5 (red).

Figure 14. Hovmoller of column water vapor drift relative to ECMWF data. Data were averaged from 208S to 208N.
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distribution is arguably a more relevant discrepancy to the prediction of the MJO than the drift of large-
scale wind patterns in SP-CAM that were shown to be so influential to the RMM skill scores.

The vertically integrated budget of water vapor can be approximated as,

h@t qi52hv � rqi2hx@pqi1E2P; (5)

where q is specific humidity, v is the horizontal wind, x is vertical pressure velocity, E is surface evaporation,
and P is precipitation. Angle brackets denote a mass weighted vertical integral throughout the troposphere.
Following Yanai et al. [1973], we can also write the column moisture budget as

h@t qi52hv � rqi2hx@pqi2hQ2i; (6)

where hQ2i is the column-integrated apparent moisture sink defined as the residual of the total derivative
of q. Note that the units of our definition of Q2 differ from that of Yanai et al. [1973], but this can be con-
verted by dividing our Q2 by the latent heat of vaporization. The ECMWF analysis used in this study provides
data at 6 h intervals, except for forecasted variables, such as surface evaporation and precipitation, which
are only available on 12 h intervals. Preliminary estimates of moisture budget terms revealed that the
budget is better constrained with 4X daily data, compared to 2X or 1X daily data (not shown). For this rea-
son we will only consider the budget as shown in (6) using 6 h data. It is also worth noting that the ECMWF
data were interpolated to the model grid before calculating advective tendencies, as this ensures the
resolved moisture gradients are of similar magnitude.

Figure 15. Frequency distribution of column water vapor for the (top) first and (bottom) last 2 days of the hindcast periods, for the Indian
and West Pacific Ocean regions (208S–208N; 408E–1808E). Data have been normalized by the total number of observations and multiplied
by 100, so that the units can be shown as a percent.
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Figure 16a shows the tendency of CWV due to vertical advection binned by the CWV for 00–04 day lead
times over the Tropical Indian Ocean and western Pacific Ocean (208S–208N; 408E–1808E). Vertical advection
acts to dry out the column in dry conditions due to subsidence, and moisten the column in moist condi-
tions due to large-scale upward motion. This is consistent with the relationship of precipitation and column
water in previous studies [Bretherton et al., 2004; Neelin et al., 2009; Sahany et al., 2012]. The CWV tendency
due to vertical advection is large compared to horizontal advection in the Tropics, but is largely cancelled
by diabatic processes represented by hQ2i, such as moist convection [Chikira, 2014]. The residual of vertical
advection and hQ2i is much smaller than vertical advection alone (Figure 16b), and generally balances the
total horizontal advection (Figure 17a). Comparing this quantity between hindcasts and observations, the
models exhibit a stronger moistening tendency in dry environments (Figure 16b). For wetter environments,
CAM5 has much weaker moistening compared to ECMWF, which would restrict the models’ ability to main-
tain high CWV values. SP-CAM more closely matches the ECMWF analysis at the high CWV values.

We can get a sense of the overall strength of moisture-convection feedbacks from linear regression of CWV
and the sum of vertical advection and hQ2i (thin straight lines in Figure 16b). The regression slope is positive
in all casese, implying that the net effects of convection and divergent circulations provide stronger mois-
tening as CWV increases. Both models have a less positive regression slope than ECMWF, but SP-CAM is
more positive than CAM5. Thus, we can conlcude that CAM5 has weaker moisture-convection feedbacks

Figure 16. (a) Column-integrated vertical advection of water and (b) the sum of vertical advection and the apparent moisture sink binned by CWV anomaly using only data with 00–04
day lead times. Thin straight lines in Figure 16b show the result of linear regression analysis on the data (see text). The right figure shows the distribution of anomalous CWV. Data were
restricted to the Indian and West Pacific Ocean regions (208S–208N; 408E–1808E).

Figure 17. Terms of the CWV budget binned by CWV anomaly, similar to Figure 16, except for (a) total advection, (b) zonal advection, and (c) meridional advection.
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compared to SP-CAM. This may help explain the contraction of the moisture distribution in CAM5, because
it is less able to develop and maintain large moisture anomalies (Figure 15). Similar conclusions can be
drawn from similar analysis of 05–09 day lead times (not shown).

Figure 17 shows a breakdown of the horizontal advective tendency of CWV, binned by CWV for 00–04 day
lead times. Horizontal advection generally contributes a drying tendency, which is strongest for the wettest
columns (Figure 17a). In moist environments above 45 mm, both models show less drying, which comes
from differences in the zonal component (Figure 17b). In dry environments between 20 and 45 mm, both
models show stronger drying by advection that can be attributed to the meridional component (Figure
17c). Interestingly, the bias in meridional advection becomes larger in SP-CAM at later lead times (Figure
18c).

In order to put the above results in context of the MJO we can examine the spatial pattern of the drift of
CWV budget terms. Figures 19 and 20 show hovmoller plots of these drift patterns calculated with ECMWF
as a reference similar to Figure 9. Note that Figures 19a and 20a are included to show that there is no coher-
ent drift in ECWMF data. In both models, the drift of vertical advection has a coherent pattern that would
tend to moisten over the Western Indian and West Pacific oceans, and dry over the Eastern Indian Ocean
(Figures 19b and 19c). The drift of the net tendency by vertical advection and diabatic sources shows a
moistening pattern similar to vertical advection, but it is smaller in magnitude, and contributes a positive
tendency in most regions. This moistening rate reaches 2 mm d21 in the Western Indian Ocean in SP-CAM,
and is somewhat smaller in CAM5. Given that the convective signal of the MJO initiates in Western Indian
Ocean, this drift of the moisture tendencies could have a significant impact on the ability of the model to
correctly reproduce the timing of MJO initiation.

Figure 20 shows the drift pattern of zonal (Figures 20a–20c) and merdional (Figures 20d–20f) horizontal
advective tendencies. The drift of zonal advection in SP-CAM contributes larger tendencies than CAM5. The
pattern of zonal advection does not have a coherent large-scale structure, which is surprising given the
coherent wind drift patterns discussed in section 3 (Figure 9). On the other hand, meridional wind shows a
coherent large-scale drift pattern in SP-CAM hindcasts (Figure 20e), with drying that steadily increases in
the vicinity of the Maritime continent and the Western Indian Ocean, consistent with Figure 18. This drying
in the Western Indian Ocean is compensated by an increase in the sum of vertical advection and hQ2i (Fig-
ure 19e). However, the increased meridional advective drying between 908 and 1208 does not have a corre-
sponding compensation.

4.2. Drift of Synoptic Eddy Activity
The meridonal moisture advection drift pattern in SP-CAM (Figure 20e) appears to be unique and is continu-
ally amplifying with lead time, so it is worth further investigation. The drift patterns of other budget terms
do not have coherent evolving structures, and therefore are not straighforward to explain. However, a possi-
ble explanation for the meridional advection drift comes from Maloney [2009], who showed that advection

Figure 18. Similar to Figure 17, except for 05–09 day lead times.
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by synoptic eddies explained a large part of the meridional moist static energy advection of the MJO in a
global model [Pritchard and Bretherton, 2014; Landu and Maloney, 2011; Andersen and Kuang, 2012]. Thus,
an enhancement of off-equatorial eddy activity that amplifies with lead time would also affect the merido-
nal moisture advection (Figure 20e).

To address the hypothesis that meridonal advection is influenced by an enhancement of eddy activity with
lead time, it would be convienient to use a measure of eddy kinetic energy (EKE) such as,

EKE5
u021v02

2
; (7)

where the bar and primes denote a temporal window mean and deviations from that mean, respectively.
This would identify eddies and also allows us to explain their generation by various source terms in the
eddy kinetic energy budget [Lau and Lau, 1992; Alaka and Maloney, 2014]. However, this is problematic in a
10 day hindcasts, because we do not have enough data to filter properly. If we use a 5 day running mean
we lose 4 days out of each hindcast, and a shorter running mean would not effectively isolate the eddy cir-
culations from the mean. Therefore, we are forced to use indirect methods of testing our hypothesis.

Instead of EKE, we will use a basic kinetic energy (KE), defined as,

KE5
u21v2

2
: (8)

Figure 21 shows a map of 700 hPa KE drift relative to ECMWF data averaged over the last 2 days of each
hindcast (i.e., days 8 and 9), with contours of CWV overlayed. Much of the KE drift signal appears to be
organized on synoptic scales in both models. SP-CAM shows much larger and widespread KE anomalies
compared to CAM5. SP-CAM also shows a strong KE enhancement on the meridional moisture gradient
north of the equator in the Indian Ocean (Figure 21), which is consistent with the drying by meridional
advection (Figure 20e).

Figure 19. (a–c) Hovmoller drift of the vertical advective tendency and (d–f) the sum of vertical advection and the CWV budget residual relative to ECMWF data. Data were averaged
from 208S to 208N. Stippling indicates where the drift signal is significantly different than zero at the 95% cofidence level. Note that positive values indicate moistening.
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In order to quantify the scale selection of the KE drift pattern, we can calculate a spatial fourier transform
that yields the zonal wavenumber power spectrum of KE, and then calculate the drift of this spectrum rela-
tive to ECMWF. To do this, KE spectra are calculated separately for each day and latitude band, and then
averaged to yield the KE drift as a function of lead time and zonal wavenumber. We restrict the data to
108N–208N to capture the eddies that mix across the mean moisture gradient north of the equator, and are
presumably responsible for the drift of merdional moisture advection. Note that this analysis requires a peri-
odic domain, so it cannot be restricted to a region such as the Indian Ocean.

Figure 22 shows drift of the KE wavenumber power spectrum as a function of lead time calculated relative
to the time average spectral power of ECMWF data in each band. This analysis shows that the KE drift in SP-
CAM hindcasts preferentially occurs on synoptic scales (1032104 km), whereas CAM5 hindcasts do not
show any notable drift. To test whether this result is statistically significant, we can use the F test for the
null hypothesis that two populations have equal variance. The test statistic is defined as the ratio of two var-
iances, s2

1 and s2
2, from normally distributed populations as,

F5
s2

1

s2
2
: (9)

In our case we need only calculate the ratio of two spectral estimates in each wavenumber band. Since we
are expecting a drift signal in synoptic bands of the spectrum a priori [see Madden and Julian, 1971], we can
simply use a critical F value from a lookup table. Using a very conservative estimate of 30 degrees of
reedom, the appropriate critical F value is 1.84. The stipling in Figure 22 designates where the F-statistic
exceeds the critical value, indicating that the synoptic wave activity in SP-CAM is systematically enhanced
and becomes statistically distinct starting around days 3–5 of the hindcasts.

Even though we cannot analyze the EKE budget to understand the drift pattern of moisture advection, we
can find qualitative evidence of the mechanism at play. Figure 23 shows the zonal wind drift pattern aver-
aged zonally over 608E–1508E (shading), along with the time mean zonal wind (contours). There are many
interesting upper level features, such as the tendency for SP-CAM to shift the southern subtropical jet pole-
ward. At low levels, where the change in moisture advection is most dramatic (not shown), the drift pattern

Figure 20. Similar to Figure 19, except for (a–c) zonal and (d–f) meridional advective tendencies of CWV relative to ECMWF data.

Journal of Advances in Modeling Earth Systems 10.1002/2014MS000423

HANNAH ET AL. SYSTEMATIC DRIFT IN DYNAMO HINDCASTS 1068



of zonal wind acts to amplify the westerlies on the equator, as well as the easterlies to the north of the
equator. This enhances the shear zone around 08N–158N, which roughly coincides with the location of the
enhanced synoptic-scale KE (Figure 20). The drift patterns in CAM5 are qualitatively similar, but not as dra-
matic, consistent with the lack of systematic synoptic KE enhancement.

5. Conclusions and Discussion

5.1. Summary
Hindcast simulations of the first two MJO events during the DYNAMO field campaign are performed with
SP-CAM and CAM5, and evaluated against analysis and satellite data. SP-CAM produces a better mean pre-
cipitation pattern (Figure 1), and a somewhat more robust MJO convective signal than CAM5 (Figures 2 and
3). Despite these qualitative results, RMM skill scores suggest that SP-CAM has less skill reproducing the
observed RMM amplitude than CAM5 (Figure 6). Closer inspection shows that systematic drift in SP-CAM
fields projects positively onto RMM1 and negatively onto RMM2, which heavily influences RMM skill scores
(Figure 11). The RMM bias in SP-CAM is mostly caused by the drift of 850 hPa zonal wind, but the drift of
200 hPa zonal wind and outgoing longwave radiation (OLR) also have a noticeable impact on RMM skill
scores. A na€ıve attempt to remove the systematic drift in the hindcasts alters the RMM skill scores, but SP-
CAM still has an amplitude bias relative to CAM5, which is likely related to the overestimation of wind
anomalies in SP-CAM. These results shed light on how a model with a good MJO can have poor MJO fore-
casts [Klingaman et al., 2015].

Figure 21. Spatial drift pattern of 700 hPa kinetic energy averaged over the last 2 days of the hindcasts. Kinetic energy is shown in units of
m2 s22. Contours show the mean CWV at intervals of 5 mm, with contours less than 45 mm dashed.
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Both models exhibit a coherent drift pattern of the equatorial Indian Ocean column water vapor (CWV; Fig-
ures 14 and 15). Analysis of the CWV budget for small lead times shows that the combined effects of vertical
advection and diabatic processes moisten too much in dry regimes and too little in the wettest regimes in
both models (Figure 16). This issue is particularly prevalent in CAM5, and linear regression analysis further
suggests that CAM5 has weaker overall moisture-convection feedbacks than SP-CAM. Horizontal advection
also has an interesting bias, in which meridional advection dries too much in dry regimes and zonal advec-
tion dries too little in the wettest regimes (Figure 17).

Drift of CWV budget terms reveals some interesting systematic patterns. The drift of tendencies by vertical
advection and diabatic processes shows systematic moistening in the western Indian Ocean and West
Pacific, which could affect the prediction skill of dry phase conditions (Figure 19). A systematic increase in
drying by meridional advection in SP-CAM (Figure 20) seems to be associated with an increase in off-
equatorial synoptic eddy activity that occurs in the vicinity of strong meridional moisture gradients (Figures
21 and 22). The data do not permit a thorough analysis of the eddy kinetic energy budget, but the drift of
zonal wind suggests that barotropic energy conversion from an enhanced off-equatorial shear zone may be
able to explain the increase in synoptic eddy activity (Figure 23).

Figure 22. Drift of kinetic energy wavenumber power spectrum as a function of lead time. Data for this analysis were restricted to 108N–208N and necessarily includes all longitudes. Fou-
rier analysis was performed separately on each longitude band before averaging the power spectra together. Stippling indicates statistical significance of the spectral difference at the
95% cofidence level based on an F test (see text).

Figure 23. Zonally averaged zonal wind (contours) and zonal wind drift (shaded). Data were averaged over 608E–1508E.
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The drift of these moisture tendencies are not negligible to MJO moisture dynamics. Previous studies that
analyzed the column moist static energy and moisture budgets found anomalous column moist static
energy tendencies on the order of 20 W m22, which corresponds to less than 1 mm d21 CWV tendency
[Maloney, 2009; Landu and Maloney, 2011; B. O. Wolding and E. D. Maloney, Objective diagnostics and the
Madden-Julian oscillation. Part II: Application to moist static energy and moisture budgets, submitted to
Journal of Climate, 2015]. The magnitude of CWV tendency drift in SP-CAM from advection and diabatic
processes discussed here are similar to these previous studies, and therefore have serious implications for
MJO prediction skill.

5.2. Discussion
The findings here are useful for understanding model shortcomings and can be abridged into two main
conclusions. The first being that systematic drift of MJO hindcast experiments can distort RMM skill scores.
This highlights one of several weaknesses of the RMM index that have been discussed by recent studies
[Straub, 2013; Kiladis et al., 2014]. The second conclusion is that a superparameterized model can do a com-
parable or better job reproducing the convective signal of the MJO than a conventional model, while still
having similar moisture budget biases (Figures 16 and 17), as well as drift of the moisture budget terms (Fig-
ures 19 and 20).

A noteworthy caveat of our conclusions about the moisture budget is that we are comparing a model to
an analysis product, which is largely influenced by parameterized model physics in data-sparse regions,
like the Indian Ocean. Mapes and Bacmeister [2012] provided a detailed description of the analysis ten-
dencies of the model used for the Modern Era Reanalysis (MERRA) product, as this indicates when and
where assimilation corrections are needed to compensate for model errors. Analysis tendencies of MERRA
MJO events showed a moistening correction during the moistening period that precedes the convectively
active phase, indicating that the model was far too dry. If the analysis used here has similar issues, then
our conclusions regarding Figures 16–20 require a caveat. There is evidence that this is the case, as Landu
and Maloney [2011] found a budget residual during the MJO moistening period in ECMWF interim reanal-
ysis similar to what Mapes and Bacmeister [2012] found for MERRA. Nonetheless, ECMWF analysis is cur-
rently one of the best resources for investigating the dynamics of the MJO at the larger scales during
DYNAMO.

There are many possible methods of addressing the issue of model drift [Judd et al., 2008], but this
can be a complicated task that will be out of scope for most model based studies of the MJO. Perhaps
this means that hindcast experiments should be limited to models that have a trusted data assimila-
tion structure in place [Raeder et al., 2012]. Either way, we have shown that SP-CAM can produce a
robust hindcasts of observed MJO events, so the issues surrounding model drift and the correspond-
ing effects on MJO dynamics may, ultimately, not be of first-order importance at this time. On the
other hand, the impacts of drift on the RMM are very large and should not be ignored. Better metrics
that are not prone to the projection issues outlined here would benefit both operational and scientific
interests.

So if the RMM has flaws in assessing MJO forecast skill, what is the alternative? This is a somewhat indirect
way of asking, ‘‘What is the MJO?’’ If we possessed a deep understanding of the fundamental dynamics of
the MJO, then we should be able to tell how well a model can reproduce it based on ‘‘process-oriented’’
diagnostics. The RMM index is not process-oriented, because it empirically identifies relevant wind and OLR
patterns which fluctuate on the appropriate time scale, rather than building on an understanding of what
makes the MJO tick.

The theory of ‘‘moisture modes’’ offers a promising explanation of some observed characteristics of the MJO
[Sobel et al., 2001; Raymond and Fuchs, 2009] that could be used to create a process-oriented MJO index. An
index designed to identify moisture modes would obviously involve the spatial distribution of moisture, but
might also include details of how various processes are changing column moisture. For example, if the loca-
tion of evaporation anomalies relative to the area of enhanced moisture are crucial for the maintenance of
the MJO, an index that includes this could help identify the potential for long-lived events. Details about
the presence of cloud populations that amplify or damp column moisture could also be included to better
predict MJO initiation. Ideally, this approach would consider consequences of weak-temperature gradient
balance, such as how radiative heating can influence moisture [Chikira, 2014]. The drift of the column
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moisture distribution in CAM5 (Figure 15) suggests that such a process-oriented approach to MJO forecast
skill would implicate SP-CAM as the superior model to CAM5. Current work is under way to develop a set of
metrics to this end.
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