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Abstract.
Background: Parkinson’s disease (PD) is a chronic, disabling neurodegenerative disorder.
Objective: To predict a future diagnosis of PD using questionnaires and simple non-invasive clinical tests.
Methods: Participants in the prospective Kuakini Honolulu-Asia Aging Study (HAAS) were evaluated biannually between
1995–2017 by PD experts using standard diagnostic criteria. Autopsies were sought on all deaths. We input simple clinical
and risk factor variables into an ensemble-tree based machine learning algorithm and derived models to predict the probability
of developing PD. We also investigated relationships of predictive models and neuropathologic features such as nigral neuron
density.
Results: The study sample included 292 subjects, 25 of whom developed PD within 3 years and 41 by 5 years. 116 (46%)
of 251 subjects not diagnosed with PD underwent autopsy. Light Gradient Boosting Machine modeling of 12 predictors
correctly classified a high proportion of individuals who developed PD within 3 years (area under the curve (AUC) 0.82,
95%CI 0.76–0.89) or 5 years (AUC 0.77, 95%CI 0.71–0.84). A large proportion of controls who were misclassified as
PD had Lewy pathology at autopsy, including 79% of those who died within 3 years. PD probability estimates correlated
inversely with nigral neuron density and were strongest in autopsies conducted within 3 years of index date (r = –0.57,
p < 0.01).
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Conclusion: Machine learning can identify persons likely to develop PD during the prodromal period using questionnaires
and simple non-invasive tests. Correlation with neuropathology suggests that true model accuracy may be considerably higher
than estimates based solely on clinical diagnosis.

Keywords: Parkinson’s disease, Lewy body pathology, neuron density, machine learning

INTRODUCTION

Parkinson’s disease (PD) is a chronic, progressive
and disabling neurodegenerative disorder beginning
in mid to late life [1, 2]. Classical motor features result
primarily from degeneration of dopaminergic neu-
rons in the substantia nigra pars compacta (SNpc),
and include rest tremor, slowness and paucity of
movement, rigidity, impaired balance and autonomic
symptoms. PD is now well-recognized to be a sys-
temic disease [1, 2] with widespread intraneuronal
accumulations of aggregated phosphorylated alpha-
synuclein protein (Lewy bodies and Lewy neurites)
and associated symptomatology detected throughout
the spinal cord and autonomic nervous system, myen-
teric plexus and gut, olfactory system, visual system,
pancreas and skin [3–9]. Peripheral pathology likely
precedes central pathology [10].

There is no diagnostic test for PD, and motor signs
and symptoms required to meet diagnostic criteria
manifest only after extensive loss of striatal dopamine
[1, 2, 11, 12]. By the time of diagnosis, 50–80% of
nigral dopaminergic neurons are dead or dying [13].
Therapeutic agents designed to slow disease progres-
sion may be less effective at this late stage, and indeed
more than three decades of clinical trials targeting
early PD have failed to identify a disease modifying
intervention. A prodromal period lasting many years
precedes the onset of motor parkinsonism [14]. Inter-
ventions to delay the onset of parkinsonism could be
implemented during this long pathologic evolution if
persons at risk for developing PD could be identified
with confidence.

Only a few prior studies have collected a broad
range of prodromal features and risk factors prospec-
tively, and the correlation between these risk factors
and Lewy pathology at autopsy is understudied
[15–18]. Importantly, incidental Lewy pathology has
been detected in up to 20% of otherwise clinically
normal individuals, and is thought by many to reflect
early PD [19, 20]. We hypothesized that it is possi-
ble to identify those at risk of PD and Lewy body
pathology using machine learning modeling of data

obtained by questionnaire and simple clinical tests
conducted during medical examination of partici-
pants in the prospective population-based Kuakini
Honolulu-Asia Aging Study (HAAS) [21].

MATERIALS AND METHODS

Study cohort

The Kuakini Honolulu Heart Program (HHP) was
established as a prospective cohort study in 1965
with enrollment of 8,006 Japanese-American men
born 1900–1919. The original goals were to exam-
ine rates and risk factors for heart disease and stroke
[22]. In 1991 with establishment of the Kuakini
HAAS, the focus shifted to neurodegenerative dis-
eases including PD. Environmental, lifestyle, and
physical characteristics were ascertained in 1991 and
at follow-up exams every 2–3 years through 2012.
Detailed case finding methods have been published
[23, 24]. Briefly, during the course of follow-up, all
subjects were questioned about a diagnosis of PD
and the use of PD medications by structured inter-
view. Study participants received further screening
by a technician trained in the recognition of the clini-
cal symptoms of parkinsonism. Those with a history
or sign of parkinsonism were referred to a study neu-
rologist for a comprehensive neurologic examination
and application of standard diagnostic criteria for PD
[25]. For the current study, the exam conducted dur-
ing 1994–1996 (Exam 5) was set as the index date.
Individuals diagnosed with PD at or before the index
date were excluded. Cohort members were followed
until the latter of death or 2012.

Neuropathological evaluation

Autopsies have been sought on all Kuakini HAAS
deaths since 1991 and obtained on about 20%. Full
neuropathological methods are reported in Petro-
vitch et al. [16]. Briefly, examinations of multiple
brain regions were performed by neuropathologists
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unaware of clinical diagnoses. Formalin-fixed hema-
toxylin and eosin stained sections of the mid-brain
were prepared at the level of the exit of the third
cranial nerve and mid-pons at the level of the locus
coeruleus. Lewy bodies were identified by micro-
scopic evaluation of single sections through the
substantia nigra and locus coeruleus. If Lewy bod-
ies were found in any region, then alpha-synuclein
immunohistochemistry was also performed on sec-
tions of anterior cingulate, insula, frontal, temporal,
and parietal lobes, and entorhinal cortex. Cortical
Lewy bodies in these regions were then quanti-
fied [16]. SNpc neuron counts were determined as
previously described for dorsomedial, ventromedial,
dorsolateral, and ventrolateral quadrants, and neuron
density expressed as neurons/mm2 [26].

Case/control definitions

Final diagnosis of incident PD ascertained after
the index date was determined by neurological exam
and PD experts using published diagnostic crite-
ria [23, 24]. Participants who did not manifest
signs of parkinsonism or dementia were classified
as controls. Among controls who went to autopsy,
some were found incidentally to have nigral Lewy
pathology. Thus, controls comprised three mutually
exclusive groups: 1) autopsied with incidental Lewy
pathology (iLB-Yes), 2) autopsied with no inciden-
tal Lewy pathology (iLB-No), and 3) not autopsied
(iLB-Unknown). In order to best investigate the rela-
tionship of predictive models with Lewy pathology
we included all PD cases (n = 58) and all iLB-Yes
controls (n = 84), and age-matched them to iLB-
No (n = 32) and iLB-Unknown (n = 135) controls at
approximately a 1 : 1 ratio.

Clinical variables

Clinical variables analyzed in the current study
were collected during follow-up exams at or prior
to the index date (Exam 5, 1994–1996). For variables
collected at multiple exams, we selected the measure-
ment temporally closest to the index date. Available
variables from Exam 5 included age, simple reaction
time [27], and choice reaction time (measured using
a computerized reaction time test [28], and modeled
as continuous variables (s) [29, 30]), and olfactory
discrimination (assessed with the brief smell iden-
tification test [31] (BSIT) (total score; range 0–12)
[27]). Variables from Exam 4 (1991–1993) included
body mass index (BMI; kg/m2) [32], smoking history

(never, past, or current [33]), excessive daytime
sleepiness (response to the question “are you sleepy
most of the day” [23, 27]), bowel movement fre-
quency (defined as < every other day, every other
day, once per day, 2–3 times per day, or > 3 times
per day [34], modeled as an ordinal variable), and
cognitive impairment (evaluated using the Cogni-
tive Abilities Screening Instrument (CASI), with total
score modeled as a continuous variable [35]). We
also incorporated three variables from the mid-life
1967–8 HHP exam including presence of hyperten-
sion (systolic blood pressure ≥ 140 or diastolic blood
pressure ≥ 90 or taking antihypertensive medication
[27] [33]), self-reported history of a head injury with
loss of consciousness [36]) and daily average coffee
consumption (ounces per day, analyzed as a continu-
ous variable [33]).

Machine learning classifier of a future diagnosis
of PD

We implemented Light Gradient Boosting Ma-
chine (LGBM) as a classifier, a decision tree-based
ensemble method that iteratively builds decision trees
with the main goal of reducing classification (or pre-
diction) error from the previous step. LGBM consists
of individual shallow decision trees that avoid overfit-
ting problems [37, 38]. In a classification task, LGBM
produces a value between 0 and 1 representing the
probability of belonging to each class. These values
may be further transformed to predicted class labels
by processing via a threshold (or cutoff) value. We
did not implement a separate missing data imputation
since LGBM can automatically handle missing data.
We implemented a five-fold cross-validation strategy
to avoid overfitting models. A Bayesian optimization
algorithm was used for hyperparameter tuning [39]
to find optimal values of parameters such as number
of trees, tree depth, learning rate, and boosting rate.

We built several LGBM models to predict PD using
different sets of controls. In Model 1, we considered
all participants without a clinical diagnosis of PD as
controls. Model 2 excluded controls who had Lewy
bodies at autopsy (iLB-Yes). In Model 3, we excluded
both iLB-Yes controls and controls who did not have
an autopsy (iLB-Unknown) and included only con-
trols known to be free of Lewy bodies at autopsy
(iLB-No). Finally, we generated a Model 4, in which
we re-annotated iLB-Yes controls as cases for model
development. To avoid any circularity, iLB-Yes con-
trols were excluded from assessments of Model 4
classification accuracy. To ensure that models have
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practical applicability to future studies of disease
modifying interventions, primary analyses used two
separate prediction windows, 3- and 5- years from
index date, to model both short- and mid-term pre-
dictors of PD risk.

Overfitting is a common problem when using
machine learning. It occurs when trained machine
learning models learn the patterns that are specific to
the training sample, rather than learning the patterns
representing the input-outcome relationship. Over-
fitting manifests as high accuracy in training data
but poor performance in testing. We implemented
a 5-fold cross-validation strategy to ensure gener-
alizability within our study cohort. At each run of
the 5-fold cross-validation, we randomly selected
10% of the training data to be used as a valida-
tion set for early stopping to minimize overfitting.
To avoid information leak during the five steps of
the cross validation, we built five different mod-
els from scratch independent from the parameters
of the model developed in other steps. We assessed
classification models using various performance met-
rics including sensitivity, specificity, and area under
the receiver operating characteristics (ROC) curve
(AUC) statistics. We additionally analyzed the cor-
relation of predictive models with neuron density.
We performed LGBM’s default variable importance
analyses to rank variables based on their contribu-
tion to the predictions, which calculates an average
“gain” value (relative importance) of the correspond-
ing variable to the model. A higher “gain” value of a
variable shows its importance over other variables of
lesser gain value [40]. We further extended the vari-
able importance analyses to estimate the independent
magnitude and direction of effect of the predictors
on the risk for PD. This was done by quantifying
the average change (with 95% confidence interval)
on predicted risk for PD corresponding to one stan-
dard deviation increase in continuous predictors or
one unit increase in ordinal categorical variables.

All analyses were carried out using Python pro-
gramming language.

The study was approved by the Institutional
Review Boards of Loyola University Chicago (LU
212399), the University of California-San Francisco,
and the Kuakini Medical Center.

RESULTS

The analytic sample consisted of 309 Kuakini
HAAS participants with complete data and who did

not have a PD diagnosis at the index date (Exam 5,
1994–1996). A total of 58 individuals were diag-
nosed with incident PD. Among these, 25 were
diagnosed with PD within 3 years, and an addi-
tional 16 were diagnosed within 5 years of the
index date. Eleven of 41 participants who developed
PD within 5 years had autopsies, all of whom had
Lewy body pathology. Among 251 clinically-defined
controls, we included 84 with Lewy body pathol-
ogy at autopsy (iLB-Yes), 32 without Lewy body
pathology (iLB-No), and 135 without an autopsy
(iLB-Unknown). Cohort characteristics are summa-
rized in Table 1. For most predictor variables, values
were most extreme among those who developed
PD within 3 years of the index date, and values
for iLB-Yes were intermediate between iLB-No and
PD. Relative to all controls, cases had significantly
lower bowel movement frequency and BSIT olfac-
tion scores, and greater daytime sleepiness. Relative
to controls without LB pathology, controls with LB
pathology scored lower on the CASI and the BSIT.

Predicting a future diagnosis of PD within
5 years

Five-fold cross-validation accuracies for predict-
ing a diagnosis of PD within 3 or 5 years after index
date using several different control subgroups are
presented in Table 2. The majority of misclassifica-
tion in Model 1 occurred among controls with Lewy
pathology (iLB-Yes), 38 (45%) of whom were clas-
sified by the model as PD. As noted in the Methods,
we used this information to generate a Model 4, in
which we re-annotated these individuals as cases for
model development. Model 4 yielded the best accu-
racy for predicting future PD with AUC and 95% CIs
of 0.82 (0.76–0.89) for a 3-year prediction window
and 0.77 (0.71–0.84) for a 5-year prediction window.
iLB-Yes controls were not included when calculating
the AUCs for this model so as to avoid any circularity.
Figure 1 depicts AUCs and examples of the sensitiv-
ity and specificity for predicting a clinical diagnosis
of PD for several cut-points.

Although our main goal in this study was to
develop models to identify patients at risk for being
clinically diagnosed with PD within a specified time
frame (3 or 5 years), as a sensitivity analysis, we also
repeated Model 4 including 17 additional individuals
who were diagnosed with PD beyond 5 years of index
date (median 8 years, Range 6–17). As expected, the
classification accuracy was lower, with an AUC of
0.70 (95%CI 0.64–0.77).
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Table 1
Study Sample Characteristics

Cases All Controls Control Sub-Categories
(n = 251)

PD in 3 years PD in 5 years LB-Unknown LB-No LB-Yes
(n = 25) Case (n = 41) (n = 135) (n = 32) (n = 84)

Age at index date, mean (SD) 81.4 (4.5) 80.4 (4.3) 81.1 (4.4) 80.7 (4.1) 81.4 (5.0) 81.6 (4.7)
Years from index date until autopsy, mean

(SD)∗
3.9 (1.21) 5.5 (2.2) 10.2 (3.9) – 10.8 (4.3) 10.1 (3.8)

Simple reaction time, mean ms (SD) 532.3 (245.9) 483.9 (209) 440.1 (163.3) 446.3 (164.8) 401.4 (87.4) 445.5 (183.7)
Choice reaction time, mean ms (SD) 701.7 (316.5) 628.2 (263) 573.7 (164.1) 570.6 (153.7) 538.9 (126.8) 593.9 (192.6)
BMI kg/m2, mean (SD) 24.2 (2.9) 24.5 (3.0) 23.9 (3.3) 23.9 (3.3) 23.0 (3.3) 23. 8 (3.1)
Coffee oz/day, mean (SD) 9.4 (6.4) 9.7 (9.7) 14 (13.1) 14.6 (13.7) 14.3 (12.1) 12.8 (12.5)
CASI total score, mean (SD) ∗∗ 81.4 (12.5) 85.6 (11.3) 84.4 (12.8) 86.1 (8.8) 86.8 (8.4) 80.8 (18.1)
Olfaction BSIT score, median [range]∗,∗∗ 4 [0–11] 6 [0–11] 7 [0–12] 8 [0–12] 7.5 [0–12] 5 [0–12]
Bowel Movement Frequency∗

< 1 every other day 1 (4%) 1 (2.4%) 3 (1.2%) 0 (0%) 0 (0%) 3 (3.6%)
Every other day 5 (20%) 9 (22%) 13 (5.2%) 6 (4.4%) 0 (0%) 7 (8.3%)
Once per day 14 (56%) 24 (58.5%) 157 (62.6%) 87 (64.4%) 20 (62.5%) 50 (59.5%)
2–3 per day 5 (20%) 6 (14.7%) 61 (24.3%) 32 (23.8%) 10 (31.3%) 19 (22.6%)
> 3 per day 0 (0%) 0 (0%) 8 (3.1%) 3 (2.2%) 1 (3.1%) 4 (4.8%)
Missing 0 (0%) 1 (2.4%) 9 (3.6%) 7 (5.2%) 1 (3.1%) 1 (1.2%)

Excess Daytime sleepiness∗
No 19 (76%) 34 (82.9%) 230 (91.6.%) 128 (94.8.%) 31 (88.6%) 71 (84.5%)
Yes 6 (24%) 7 (17.1%) 18 (7.2%) 7 (5.2%) 1 (2.8%) 10 (11.9%)
Missing 0 (0.0%) 0 (0%) 3 (1.2%) 0 (0%) 3 (8.6%) 3 (3.6%)

Traumatic Brain Injury
No 22 (88%) 34 (82.9%) 211 (84.1%) 118 (87.4%) 26 (81.3%) 67 (79.8%)
Yes 3 (12%) 7 (17.1%) 28 (11.1%) 11 (8.1%) 6 (18.7%) 11 (13.1%)
Missing 0 (0%) 0 (0%) 12 (4.8%) 6 (4.5%) 0 (0.0%) 6 (7.1%)

Smoking
Never 9 (36%) 14 (34.1%) 99 (39.4%) 53 (39.3%) 11 (34.4%) 35 (41.7%)
Past 16 (64%) 26 (63.4%) 138 (55%) 78 (57.8%) 17 (53.1%) 43 (51.2%)
Current 0 (0.0%) 1 (2.5%) 14 (5.6%) 4 (2.9%) 4 (12.5%) 6 (7.1%)

Hypertension
No 7 (28%) 11 (26.8%) 71 (28.2%) 33 (24.4%) 8 (25%) 30 (35.7%)
Yes 18 (72%) 30 (73.2%) 180 (71.8%) 102 (75.6%) 24 (75%) 54 (64.3%)

∗Significantly different (p < 0.05) between all cases and all controls. ∗∗Significantly different (p < 0.05) between LB-Yes and LB-No controls.

Table 2
Machine Learning Models for Prediction of Incident Clinical PD

AUC (95% CI)

Model Control group (n = 251) Case 3-year (PD n = 25) Case 5-year (PD n = 41)

1∗ LB-Unknown (135) 0.64 (0.51–0.76) 0.61 (0.52–0.71)
LB-No (32)
LB-Yes (84)

2 LB-Unknown (135) 0.71 (0.59–0.83) 0.61 (0.51–0.71)
LB-No (32)

3 LB-No (32) 0.79 (0.67–0.91) 0.73 (0.62–0.85)
4∗∗ LB-Unknown (135) 0.82 (0.76–0.89) 0.77 (0.71–0.84)

LB-No (32)
∗We also ran a model by using LB-Yes patients as cases and obtained AUC of 0.63 (0.56–0.70) for 3-year prediction
window and AUC of 0.61 (0.55–0.68) for 5-year prediction window. ∗∗Controls with LB at autopsy (LB-Yes) were
reannotated as PD for model development but excluded from tests of model performance. When we implemented
Model 3, among 84 LB-Yes controls, 38 were classified as cases (PD) and 46 as controls). Using this evidence, in
Model 4, we rebuilt a model by using these 38 as cases and 46 as controls. In addition, to compare the robustness
of Model 4 with Model 3, we further excluded LB-Unknown patients in the AUC calculation and obtained an AUC
of 0.91 (0.82–0.99) for 3-year prediction window and 0.80 (0.70–0.90) for 5-year prediction.
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Fig. 1. ROC curve of Model 4 for 3-year (left) (AUC 0.82) and 5-year (right) (AUC 0.79) prediction windows.

Table 3
SNpc neuron densities and correlations with estimated PD risk

Overall correlation with PD risk Neuron counts by case status
probability (n = 134) mean neurons/mm3 with 95%CI

Diagnosed with PD (n = 31) Controls

LB-Yes (n = 78) LB-No (n = 25)

Dorsomedial quadrant –0.16, p = 0.10 9.1 (6.9–11.3) 15.3 (13.5–17.1) 19.4 (15.7–23.1)
Ventromedial quadrant –0.28, p < 0.01 8.6 (6.2–11.0) 15.1 (13.2–17.0) 19.5 (15.9–23.1)
Dorsolateral quadrant –0.08, p = 0.38 7.8 (6.0–9.6) 10.4 (9.1–11.7) 12.7 (9.5–15.9)
Ventrolateral quadrant –0.23, p < 0.05 5.3 (3.6–7.0) 15.8 (13.8–17.8) 20.2 (17.5–22.9)
Total Neuron Density –0.24, p < 0.01 7.7 (6.0–9.4) 14.3 (12.9–15.7) 18.2 (15.6–20.8)

Censor-time based subgroup analysis for controls

Because the time from index date to autopsy was as
long as 14 years for some participants, we calculated
prediction performance for different time intervals
until autopsy. For iLB-Yes controls whose autopsy
was within 3 years of the index date, our model
classified 79% as PD. This declined to 67% of iLB-
Yes controls autopsied within 4 years, 55% within
5 years, and 40% of those autopsied > 7 years after
index date. Thus, those with incidental Lewy pathol-
ogy who were identified closer to the index date were
more likely to be classified as PD.

Correlation of predicted PD risk probability with
neuron density

Neuron densities and their correlations with pre-
dicted 5-year PD risk probability are shown in
Table 3. Age at autopsy was not significantly cor-
related with any of the neuron density variables (all

|correlations| < 0.1; data not shown). As expected,
neuron density was highest in controls without LBs
and lowest in PD cases. The classification scores cor-
related inversely with neuron density in all SNpc
quadrants, with ventromedial neuron density being
most strongly correlated to predicted PD risk. This
negative correlation suggested that a greater predicted
probability of PD is associated with lower nigral neu-
ron density at death. As above, since autopsies were
performed after a variable number of years following
index date, we further investigated how the correla-
tion of predicted PD risk and ventromedial neuron
density varied by the time since the index date. As
shown in Fig. 2, correlations were stronger for autop-
sies performed closer to the index date.

Variable importance analysis

Figure 3 depicts the relative contributions of each
variable to LGBM Model 4 at 3 and 5 years after index
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Fig. 2. Correlation between predicted PD risk and ventromedial neuron density is stronger closer to index date.

Fig. 3. Variable Importance for predicting PD within 3 (Top) and 5 years (Bottom). The length of the bar depicts the relative importance.

date. The reaction time variables were most impor-
tant, followed by olfaction score and BMI. Figure 4
depicts the magnitude, precision (95%CI) and direc-
tion (inverse or direct relationship) of independent
contributions to the classification model, in which
each point with associated bar represents the mean

change in predicted PD risk with 95% CI when the
variable value was artificially increased by 1 standard
deviation for continuous variables and by 1 unit for
categorical variables. Most variables contributed in
the expected direction with the exception of CASI
score and age. The inverse directionality of age may
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Fig. 4. Independent direction and magnitude of effect for 3-year (Top) and 5-year (Bottom) prediction windows.

reflect interaction between age and other model vari-
ables and/or may be due to the narrow age range of
the study cohort. For example, slower reaction time
is likely to be a stronger predictor of future PD in
younger individuals.

DISCUSSION

Identifying PD in its earliest stages, before sig-
nificant motor symptoms manifest, may be essential
for the development and implementation of disease
modifying interventions. However, current criteria
for prodromal PD have been validated in only a hand-
ful of studies [41–43], and performance has varied
among populations [44]. The most specific prodro-
mal indicators, such as dopamine transporter imaging
or ultrasonography, can be costly and invasive, while
others such as REM sleep behavior disorder are rel-
atively rare in the general population and definitive
diagnosis requires polysomnography. In the current
study, we applied machine learning techniques to
accurately classify persons at risk for developing

PD. Because our models relied exclusively on non-
invasive and inexpensive tests, many of which could
be implemented remotely, such as in an online or
mobile phone-based assessment, and historical vari-
ables easily determined by self-report, this approach
could be efficiently implemented in large, targeted
populations.

To our knowledge, this is the first time that post-
mortem pathologic findings have been combined
with the clinical diagnosis of PD to explore model
classification performance. We have also used these
pathologic data to tune model performance and max-
imize classification accuracy. Remarkably, 45% of
clinical controls who were misclassified as hav-
ing PD by our initial model were found to have
nigral Lewy bodies at autopsy. Because incidental
Lewy bodies likely reflect early-stage PD [25, 45,
46], we propose that the model is in fact correctly
classifying people with prodromal PD, though we
cannot rule out the possibility of another evolving
neurodegenerative synucleinopathy. Further support-
ing this interpretation, model prediction probabilities
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correlated significantly with lower nigral neuron den-
sity, and correlations were strongest in those whose
autopsies were within three years of the index date.
Similarly, the proportion of iLB-Yes controls classi-
fied as PD was highest for those with the shortest
time from index date until autopsy. Although we
obtained classification AUCs of 0.82 and 0.77 at 3-
and 5-years after the index date, many of the vari-
ables included in our model were collected as long
as several decades before the index date. The most
important predictors—simple reaction time, choice
reaction time, and olfactory discrimination—were all
collected at the index date. Prediction accuracy would
likely have been considerably higher had all vari-
ables been collected closer to the index date, as has
been previously observed in this cohort for olfactory
dysfunction.[47]

The International Parkinson’s Disease and Move-
ment Disorder Society (IPMDS) has identified 23
individual factors in a proposed research definition
of prodromal PD [14]. While many of those features
were not assessed here, remarkably, the variables
with the highest importance for predicting PD in this
machine learning derived model based on clinical
and pathological outcomes parallel many of those
assigned greater importance in the IPMDS model,
represented as higher likelihoods [14]. The variables
with greatest importance for predicting PD within 3 or
5 years in our model were two quantitative motor tests
(simple and choice reaction time). Abnormal quan-
titative motor tests are also a feature in the IPMDS
criteria, but with only moderately strong likelihood
ratios. Impaired smell recognition and increasing age
are recognized as important in both models. BMI,
among the top four most important factors in this
model, may be a surrogate for diabetes mellitus and
physical inactivity, two IPMDS criteria. Hyperten-
sion is the only variable identified in this model that
is not represented in the IPMDS criteria. In fact,
orthostatic hypotension is strongly weighted in the
IPMDS criteria. This may reflect the fact that our
model included hypertension in midlife, determined
more than 25 years before index date.

Our study has some limitations. Most importantly,
the Kuakini HAAS cohort is comprised entirely of
Japanese-American men in Hawaii, and with an index
date mean age over 80, they are substantially older
than study populations likely to be enrolled in disease
modifying therapeutic trials. Thus, although our mod-
eling approach may be widely applicable, our model
weightings are not likely to be generalizable out-
side of this population. Additionally, as noted above,

predictor variables were collected at differing time-
points before the index date. Although we would
expect this to have biased our models toward the
null, it nonetheless further hinders generalizability.
Further, despite the fact that all individuals defined
here as controls (with or without incidental Lewy
pathology) did not have clinical evidence of parkin-
sonism or dementia, we did not consider other types
of neuropathology in these analytic models. Finally,
although we implemented a comprehensive cross-
validation strategy, our sample size was relatively
small and variable coefficients imprecise.

Machine learning techniques may provide oppor-
tunities to identify individuals during prodromal PD
[48], as well as to predict disease progression [49]. In
prior work, we successfully implemented a machine
learning approach to detect PD autonomic features
prior to diagnosis using a single lead of a standard
10-s 12-lead electrocardiogram [50]. Karabayir et al.
implemented an LGBM algorithm to accurately clas-
sify PD using data generated from a simple speech
test [51]. Although some have criticized machine
learning methods as non-intuitive, the development
of compact models using a small number of clin-
ical variables increases their utility and potentially
their portability across healthcare settings and sys-
tems [52].

Advances in digital technology are increasingly
being applied in the assessment of health outcomes
[53]. Many of the variables with highest predictive
value in this model, as well as our prior finding asso-
ciating reduced heart rate variability and future risk
of PD [50] can now be determined using personal
technologies such as online computerized testing,
mobile phone applications or wrist-worn sensors
[53]. In the future, machine learning algorithms such
as those reported here may be effectively combined
with self-reported health measurements and digital
assessments to develop an efficient, low cost method
for population screening and prospective monitoring
of those with prodromal PD.

Investigators wishing to test our model in other
study populations can access the source code at
https://github.com/akbilgic/AI PD ClinicalModel.
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