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Abstract

In this paper we examine the role played by working memory
demands in determining problem difficulty during the solution of
Tower of Hanoi Problem isomorphs. We do so by describing a
production system model that accounts for subjects’
performance on these problems via a dynamic analysis of the
memory load imposed by the problem and of changes in that
load during the problem solving episode. We also present the
results of detailed testing of the model against human subject
data. The model uses a highly constrained working memory to
account for a number of features of the problem solving
behavior, including the dichotomous (exploratory and final
path) nature of the problem solving, the relative difficulty of the
problems, the particular moves made in each state of the
problem space, and the temporal patterning of the final path
moves.

Introduction: Human Problem Solving Performance
One of the large issues in problem solving research is the
question of what makes a problem hard or easy to solve. This
issue is of interest both to educators interested in designing
instruction so as to more effectively understand and promote
the growth of problem solving skills, and to cognitive scientists
interested in the information processing involved in problem
solving. It is from the latter perspective that we attempt here
to examine how the processing demands imposed by different
problem features interact with limited working memory to
determine problem difficulty. We do so by describing a model
of problem solving that accounts for subject performance on a
set of Tower of Hanoi Problem isomorphs. The model
incorporates a dynamic analysis of problem processing demands
in the form of memory load, the effects of changes in that load
over the course of problem solving, and the limitations inherent
in short term memory. In attempting to account for problem
difficulty by means of the processing demands or ‘“load"
imposed by various features of the problem, the model includes
design parameters based on fairly precise data obtained from a
number of experiments with human subjects. The model is
tested via detailed comparisons of its behavior against that of
human subjects.

While the work presents a detailed analysis of the model's
application to a particular domain, a set of isomorphs of the
Tower of Hanoi Problem, the implications of the work are not
limited to that problem domain, but rather address a set of
issues applicable to a wide variety of problem solving situations.

In 1974, Hayes and Simon published the first of a series of
articles on Tower of Hanoi problem isomorphs (Hayes & Simon
1974, 1977, Simon & Hayes 1976). The set of isomorphs they
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investigated consisted of problems that had the same problem
state space as the three disk Tower of Hanoi Problem. Two
problem types were labelled either “Monster Move” problems
because they involved monsters passing globes back and forth,
or “Monster Change" problems because they had monsters
changing the sizes of globes they were holding. A major finding
was that isomorphic problems could differ significantly in
difficulty. In particular, they obtained difficulty (solution time)
ratios averaging about 2:1 between Monster Change and
Monster Move problems. Kotovsky, Hayes, and Simon (1985),
extended the investigation to a broader array of problems,
obtaining difficulty ratios of up to 16:1 for their
hardest/easiest pair of isomorphs; the easiest being the original
Tower of Hanoi disk/peg problem.

The different problems are defined by the subjects’
internal problem representation which included the move
operators that define move legality. This representation is
engendered by either an external depiction of important
features of the problem such as the physical pegs and disks of
the Tower of Hanoi problem, or a “cover story” that describes
the monsters, their globes and the moves or changes the
monsters can make with their globes. Table 1 presents the rules
for two problems that were used to produce much of the data
discussed here, a Monster Move Problem, and a Monster Change
Problem. The cover story that defined the problem had three
different sized monsters trying to move or change globes to
convert an initial arrangement of monster—globe pairings into a
final arrangement.

nster M I

1. Only one globe may be transferred at a time.

2. Ifamonster is holding two globes, only the larger of the
two may be transferred.

3. A globe may not be transferred to @ monster who is holding
a larger globe.

Monster Change Problem

1. Only one globe may be changed at a ime.

2. Iftwo globes have the same size, only the globe held by the
larger monster may be changed.

3. Aglobe may not be changed to the same size as the globe
of a larger monster.

Table 1: Problem Rules

The fact that the problems are isomorphic in the above
work removes problem search space structural features
(branchiness of the problem space, length of the minimum
solution path, etc.) as possible sources of the large difficulty
differences that were discovered. In an attempt to discover
what were the sources of the difficulty differences, two
findings emerged from the Kotovsky, Hayes and Simon (1985)
work that are the starting points for the research reported
here. Those findings are: (a) the crucial role played by the move
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operator and its interaction with human information processing
limitations in determining problem difficulty, and (b) the
discovery of a dichotomous pattern of moves that occurred as
people moved through the problem space to reach a solution to
the problem.

The first finding was that more difficult problems
employed move operators that imposed more of a processing
load via the number of entities (monsters and globes) and the
number of separate loci that had to be imaged in testing the
legality of a move. A ranking of individual moves or problems by
the number of separate entities and loci that had to be
simultaneously held in working memory was predictive of both
the difficulty of making individual moves and also of overall
problem difficulty. Thus, in one experiment, when subjects were
asked to judge the legality of single moves that were presented
tachistoscopically, their response latencies were correlated
with the number of entities that had to be imaged in order to
make the judgement. For example, in the Move Problem, subjects’
judgements were relatively fast when they compared the sizes
of two globes held by the same monster (Rule 2) and relatively
slow when they compared the sizes of two globes held by
different monsters (Rule 3). The explanation was that
comparing two globes when they were at two separate loci
entailed carrying one in memory and thus imposed an added unit
of memory load. An even harder comparison occurs in the
Change Problem where subjects had to imagine changing the
size of a globe, and then test the imaged size against the size of
another globe that was held by either the same monster (Rule
2) or another monster (Rule 3). In that case, the imposed load
was higher because of the need to imagine the size change
before doing the comparison. There were positive correlations
between the processing load imposed by the move operators,
operator application time, and problem difficulty. In the
current work, this load is termed the “image” load.

The second finding was that subjects’ move making was
dichotomous, consisting of an initial, “exploratory phase” (whose
length differed across problems) in which moves were slow,
particularly in the harder isomorphs, and resulted in no net
progress toward the goal, followed by a subsequent “final
path” phase (virtually identical across problems) where moves
were uniformly fast, relatively error free, and quickly led to the
solution. The difference was due to subjects in the final path
phase being able to plan and execute subgoals (as evidenced by
final path patterns of move latencies), whereas earlier in the
problem, they were not able to.! The empirical evidence
suggested that subjects attained this ability to subgoal by

1There is evidence that subjects, just prior to the final path, were
not able to successfully execute a subgoal-goal pair of moves when
they were in a situation that called for such a move pair. The
evidence was obtained from an analysis of moves made when
subjects were in a subgoal situation just prior to the final path. This
was defined as a locus in the problem state space that required a
subgoal move before a progress-making move could be made.
Even when the analysis was restricted to the end of the exploratory
phase, the move latencies indicate that the subjects did not execute
the moves as a move pair at a frequency greater than chance. If
they encountered the same situation during the final path phase, it
was correctly executed as a move-pair with a frequency well above
chance (Kotovsky & Fallside, 1989).
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reducing the memory demands involved in learning and applying
the problem move legality tests during the course of solving the
problem (Kotovsky et al 1985).

This “rule leaming” effect on the memory load imposed by
learning and remembering the problem rules or move legality
tests occurred as people made moves. They started out making
errors (illegal moves) because of starting to move before they
knew the rules, but became progressively better at using the
problem rules as they received practice. The difficulty of
learning the move rules presented in isolation was determined,
and on that basis and primarily via a linguistic analysis of the
statement of the problem rules, the relative processing
demands of the various problems’ rules were determined. This
‘rule load” decreased as the problem solving proceeded and the
rules were learned.

The result of this rule learning was that subjects’ moves in
the state space regularly exhibited the surprisingly
dichotomous “exploratory” and “final path” pattern described
above. The exploratory moves were made slowly, they occupied
the major phase of the problem solving time, and they were more
difficult (took much longer) in the harder isomorphs.
Furthermore, subjects were as far from the goal after making
these moves as they were at the beginning of the problem. In
contrast, the final path moves (after subjects had compiled the
problem rules) were relatively error free, were made very
rapidly, were executed at a similar speed across all problem
isomorphs, and led almost immediately to a problem solution.
This dichotomous pattern of slow or difficult move making that
made no net progress, and whose length reflected the relative
difficulty of the problems, followed by a rapid dash to a solution
in the last minute or so of the solution process, regardless of
isomorph, is characteristic of a number of other problems as
well (Kotovsky & Simon 1989).

This discovery of distinctive exploratory and final path
phases provided a plausible link between move operator
difficulty and problem difficulty. The issue was that although
the processing load imposed by the move operators predicted
the ordering of isomorph difficulty, the differences in move
time were not great enough to account for the very large
differences in problem solution time. The linkage was that
during the exploratory phase, the difficulty of remembering and
applying the rules (legality tests) prevented subjects from
planning move sequences; even those of length two, and
prevented their making progress toward the goal (moving down
the final path).2 An information processing analysis of the load
imposed in making goal-subgoal pairs of moves showed that the
harder, Monster Change problems imposed much higher memory
loads than the Monster Move problems. A single move in the
Monster Change problem always requires one more entity to be
imaged than an equivalent move in the Monster Move problem.
The direction of this difference is what would be expected from

22An alternative explanation for the exploratory-final path
dichotomy has been provided by Anderson (1990) as part of his
rational analysis of cognition. His very interesting analysis is
predicated on the relative costs of hill-climbing versus means-ends
analysis, rather than the near-impossibility of means-ends analysis
within the memory limitations we believe are operating. A detailed
comparison of the two models is beyond the scope of this paper.



the pattern of move operator difficulties found for individual
moves in the various isomorphs. When subjects tried to plan
pairs of moves, the load differences were magnified.

To test the hypothesis that subjects were planning move-
pairs during the final path phase, the move latencies of the final
path were analyzed for evidence of subgoal-goal pairs of
moves.3 The analysis indicated that the subjects solved these
five-move minimum path problems in two rapid sequences of
moves, corresponding to two goal-subgoal pairs of moves,
followed by a final fast move of the last globe to its final goal
position. The patten of move latencies was long-short followed
by long-short-short. This is what we would expect if the
subject attained the ability to plan and execute a subgoal-goal
move pair, as contrasted with the pattern if they made
individual moves, or planned and executed all five final path
moves as a compiled whole. The long-short pattern of move
latencies is presumably due to a planning-plus-move step,
followed by a move step. Not only did the subjects for whom
final path move latencies were recorded exhibit the long-short
and long-short-short temporal patterns, but as noted earlier,
subjects in the exploratory phase did not.

The Model

The model we report on attempts to account for the above
findings with a small number of mechanisms and assumptions.
The model consists of a production system? containing 21
productions that incorporates the following features: a limited
working memory, a state memory that records recent moves and
acts to prevent looping, a representation of the relative
difficulty of the problem rules, a chunking or learming mechanism
that operates on the problem rules and a derived measure of
move latencies. These major features of the model are
implemented as follows:

Working Memory is the common “work-space” of the model.
It is very limited, able to hold, in the “standard” version of the
model, about five entities or chunks. Its contents are the
model's current subgoals (the overall goal of gelting each
monster its own sized globe is assumed to be in a longer term
store), the problem rules, and the entities (globes, monsters)
that have to be held in mind or imaged in order to be compared
as part of the rule-legality checks during move planning and
execution. The previously described image load acts here. The
load imposed by various items in its contents at any point in time
are calculated on the basis of empirical data acquired from the
experimental work discussed above. An additional feature is
that if this memory is overloaded, every item it contains is a
candidate for being displaced, with equal likelihood. There is a
working memory breakpoint, an inflection point near which each
entity currently in working memory becomes separately eligible

3An example of a subgoal-goal move pair is that encountered in the
Move Problem when trying to move the medium globe to the medium
monster when the medium monster is already holding the large
globe. The completion of the move requires the subgeal of
*clearing® the medium monster by moving the large globe elsewhere,
followed by the goal move of moving the medium globe to the
medium monster.

4The production system is written in a modified version of Grapes
(Sauers & Farrell, 1982).
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for displacement, with a probability obtained as follows:

! 1
p(displacement) = 1 + ebreakpoint - load

where
load= ‘image load" (the number of imaged entities involved
in the move or planned move)
+  “spatial load" (the number of loci that had fo imaged
in the move or planned move)

+  "subgoal load" (the number of subgoals)

+  ‘rule load" (remembering the current move rule)
The breakpoint is thus the point where the p(displacement)="s,.
The function rapidly goes to zero when the load is less than the
breakpoint and to one when the load moves above the
breakpoint. This relatively steep function is meant to
approximate the behavior obtained in tests of memory span
where the break is fairly sharp as the limit of a person’s span is
approached. For the data presented here, the breakpoint was
chosen to be five. (It is possible to vary this parameter to
match the performance of different subjects.) This stringently
limited ability to manage information in making or planning moves
is a major determinant of the model's behavior, as it is the
behavior of the subjects. This is particularly true during the
exploratory phase of the problem solving.

State Memory is posited to be a somewhat longer term
recognition memory for recently made moves in the problem
space. It functions to prevent looping (repeatedly traversing
the same portion of the problem state space) or perseverating
on trying the same move over and over again. Itis implemented
as a separate store to which the current move (and the state
from which it is being attempted) is added (with probability =
p) each time a subgoal or goal move is planned or made, and from
which the oldest element is displaced (with probability = ) on
each production firing. The probabilities, p and g, were set
equal to 0.5 and 0.1 in the model data reported here.

The rule load designates the immediate memory load
(number of chunks) imposed by remembering the problem move-
legality rules. This was calculated primarily on the basis of a
clausal analysis of the statement of the rules, bolstered by some
data on the learning time required by subjects to learn to
paraphrase or repeat the rules. The rule “loads" imposed by
the problem rules in the order of source rule and destination
rule, were for the Move Problem, 3 chunks and 4 chunks, and for
the Change Problem, 4 chunks and 5 chunks respectively. These
were the initial loads imposed by the rules. As subjects (human
or computer) started making moves, they often made errors in
which case they were forced to take back the illegal move and
were re-exposed to the statement of the violated rule. This
learning experience, by which subjects eventually learned to
remember and apply the rule could eventually reduce the rule
load to one. It was implemented via the following mechanism.

Bule chunking is a learning mechanism that is invoked each
time a move rule was violated. Upon each violation, the relevant
rule was “chunked" (ie. its imposed load was reduced to 1 from
its initial value of 3, 4 or 5) with some probability. For the
results reported here, the probability was sel equal to 0.6 and
0.3 for the Move and Change problem respectively. This
chunking in the model corresponded to the automatic
restatement of any violated rule to human subjects each time it
was violated.

Tty Something Else is a mechanism that gets invoked



whenever the model's planning function resulted in its looping
(perseverating) when trying to plan a particular subgoal-goal
move pair or it's trying @ move that had recently been tried (ie.
was in state memory). The mechanism operated by randomly
choosing @ move from among the set of all “top goal” moves (ie.
moves that would move a globe to its final or “home" position), +
all trivial moves (ie. any moves that do not require legality
checks at either the source or destination), + one randomly
chosen move that is not currently in state memory.

Move latencyis determined by assuming that the amount of
time it takes a production to fire is a function of the complexity
of a production (the number of elements on its condition side)
and the working memory load extant at the time of the
productions firing. The calculation assumes that the larger the
current contents of working memory (as a percentage of the
breakpoint capacity) the less resources available for the
demands of the particular production and as a result, the slower
the firing. This calculation of a memory-conditioned production
firing time allows us to derive a measure of move latency by
simply adding the times of all the productions that fire between
a pair of moves. A move latency measure is needed if we are to
compare the temporal patterns of the model's moves with the
characteristic temporal patterns obtained from human
subjects’ data.

Results

The operation of the model consists of trying to reach the
specified goal state, which has each monster ending up holding
his/her corresponding sized globe, by trying to make moves that
will get the correct globes to their appropriate monsters.
When moves are blocked by the problem’s rules, the model fries,
as subjects do, to plan and execute subgoal moves that will clear
the way for desired goal moves. In the beginning of solving the
problem, the model often makes illegal moves (by forgetting one
or more of the move legality checks). Further along in the
problem solving, the model, as it remembers to check the legality
of contemplated moves, tries to “unblock™ desired moves by
executing subgoal moves, but is unable to accomplish this
because of the memory load involved in planning and making the
pair of moves. This results in repeated attempts to make moves
that are repeatedly frustrated, more error prone move-making
(when a legality check is one of the items displaced from the
overloaded working memory), or a retreat to an easier but less
useful move. Toward the end of the problem-solving episode,
the model frequently exhibits the human subjects’ “final path”
type of behavior of efficaciously and quickly making moves that
achieve the goal state. This is accomplished when it has learned
the rules well enough so that they do not overload working
memory, thus allowing some planning to occur. As this verbal
summary indicates, the model’s behavior is roughly similar to
that reported for human subjects. We turn now to a more
detailed comparison of the behavior of the model with that of
people solving the same problems.

Move gala is presented in Table 2 which contains the
numbers of legal and illegal moves in each of four problems. The
problems are change and move problems, each with two
different starting positions. The data show that the model
solves the various problems in about the same number of moves,
making about the same number of errors, as the human subjects,
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with the fit somewhat better for the Change problems than for
the Move problems.

Problem: Start State Human
Move Type Model  gypjects
Change: LSM

Legal 12 13

llegal 10 10
Change: MLS

Legal 17 18

llegal 1 14
Move: LSM

Legal 12 16

lllegal 6 9
Move: MLS

Legal 17 15

llegal 1 8

Table 2: Solution Path Length (Number of Moves)

Move latencies: Another way in which the behavior of the
model can be compared with the behavior of human subjects was
by means of the temporal patterning of moves and the rate of
progress toward a solution during various phases of the
problem solving. The issue is whether the model exhibited the
exploratory and final path dichotomy found in most subjects’
behavior; that is, whether the model exhibited a pattern of non-
progress making moves followed by a rapid dash to a solution. A
further question is whether the model also exhibited the
evidence of subgoaling that was so crucial an element in the
human subjects becoming able to move down the final path to the
goal. The derived time measure is at best only an indicator of
relative times, and its results should be interpreted with
caution. Observation of the model's performance did reveal the
characteristic dichotomy of exploratory and final path phases
of moving. That is, there was a period, often quite extended,
during which the model made non-optimal moves that contained a
high frequency of illegal moves and resulted in no net progress
toward the goal. This was followed by a rapid dash to a
solution, during which the model made very few errors, and the
moves were optimally directed toward the goal. Further, the
temporal patterning of moves at the end of the problem solving
episode for an absolute majority of solutions in which the model
exhibited final path behavior did exhibit the L-S-L-S-S
pattern of move latencies that indicated the subgoal-goal move
pattern so evident on the subjects’ final path. This evidence of
final path behavior captures a major feature of the subjects’
behavior; the learning of the problem rules and resultant
acquisition of a bit of expertise at using them to plan moves.
This learning occurs during the exploratory phase of the
problem solving episode and allows the planning of subgoal-goal
move pairs, thus permitting the subject, human or machine, to
plan moves within the sharp constraints imposed by a very
limited working memory.

v W, n isits; One question that can be
asked of the model's performance, in addition to how many
moves it took to solve the problem, is whether it moves through
the same portions of the problem state space as are traversed
by the human subjects. The answer to this question is
complicated by the fact that there is great diversity in the
pathways chosen by different subjects and by different runs of
the model. We constructed a display system that mapped out
sets of subjects and sets of model runs and displayed the moves



Figure 1: Number of Visits to Each State of the Problem Space, Model and Subjects
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(preserving their latencies) through the problem space from
start to goal. In general, the agreement seemed to be high; the
diversity in the subjects’ moves was matched by the diversity
found among different runs of the model. A more controlled
comparison was performed by comparing the number of visits
lo each of the 27 states (monster-globe arrangements) in the
problem space made by our human subjects with those made by a
set of model runs for four different Monster Problems. The
four problems were two Move Problems and two Change
problems, where the pairs of each type were defined by
different problem start states.> The data is contained in
Figure 1, where it can be seen that the stale visits of the model
closely approximate those of the subjects.®

jsons; An even more detailed comparison of
model and subject behavior can be made by comparing the
particular moves made from each of the 27 problem space
locations. This provides 105 comparisons (the number of each
of the three legal moves together with the number of illegal
moves from each state in the problem space).” The average
correlation between moves chosen for the model and humans
across the four isomorph types is 0.73, with the four problems’
correlations ranging from 0.60 to 0.87. An even finer grain
analysis can be made by considering each type of illegal move
separately. Thatis, from each state in the problem space, there
are three possible illegal moves that can be made by moving one
globe. (If we allow the simultaneous moving of more than one
globe, then a move can be made between any state in the search
space and any other state, producing a total of 27x26 possible
moves). The experiment constrained subjects so they could not
move two globes at once (something that rarely happens even in
unconstrained experiments), so the real limit on the number of
possible moves is 27x6 (3 legal + 3 illegal moves) from each
state, except for the three states where only two legal moves
possible. Comparing the model with the subjects on the choice
of moves for all 159 possible moves, the correlations range from
0.57 to 0.86, with a mean of 0.70. In evaluating this quite
positive result, one possibility is that the structure of the state
space itself constrains both model and subjects to certain
states and moves because of the particular transitions that are
allowed. In order to test this possibility, we constructed a
random move generating model that randemly chose one of the
six possible one-globe moves, and correlated its performance
with that of the subjects. The result was that there is a
correlation between the random model and the human
performance data, but it is small compared to that found with
the actual model. Thus the correlations between the random
model and the human data ranged from 0.37 to 0.50 for the
different problems, with a mean of 0.44. In addition, the
random model accounted for none of the temporally patterned

5The subject data consists of sets of between 10 and 20 subjects
per problem condition. The number of runs of the model was set at
25 1o insure an adequate sampling, and the subject dala were
normalized to 25 in order to make the data sets comparable.

BState visits included visits to a state in the problem space resulting
from either a legal or an illegal move. If only visits resulting from
legal moves are considered, the fit is comparable.

"Three of the problem space loci allow only 2 legal moves, thus
accounting for the 105 instead of 108 possibilities.
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final path behavior that the model reproduced. Thus while the
structure of the state space does play some role in constraining
the behavior of those moving through it, it is not nearly
conslraining enough to serve as the explanation of the results
we have oblained.

Our model, which incorporates the findings that have been
made about the difficulties imposed by various features of the
problem together with a sharply limited working memory
provides a good account of a number of aspects of people’s
behavior on these problems. This is true whether the
comparison is of the portion of the problem search space visited
on a subject by subject basis, the frequency of particular state
visits, the aggregate frequency of particular moves, the
relative frequency of legal and illegal moves, the frequency with
which all possible moves are made or the temporal patterns
exhibited by the model in the final stages of its solution of the
problem. These and other detailed comparisons of the model
with human data allow a rigorous testing of the hypotheses that
underlie the model's design, and provided convergent evidence
for the conclusions reached in previous work on these problems.
The work with the model is still in its early stages. We have yet
to investigate transfer from one problem to another, nor have
we used the power of the model to systematically explore
factors that account for individual differences in performance
or for performance on a wider array of problem isomorphs.
Work on these issues is currently in progress.
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