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The Interaction of Convection & Internal Waves:
A Natural Co-Dimension-Three Dynamics

Larry G. Redekopp and Hang Song

Department of Aerospace & Mechanical Engineering,
University of Southern California

lg.redekopp@usc.edu

Abstract
The interactive dynamics involving convective motions in a layer heated from below and
internal wave motions in a contiguous, stably stratified layer is analyzed in the weakly
nonlinear limit. A reduced dynamical system consisting of three coupled, nonlinear
amplitude equations describing the intensity of convection co-existing with bi-directionally
propagating long internal waves is derived. This set is analyzed for various states of
motion, and the results for special cases are discussed. In particular, we identify critical
conditions when both the long-wave mode and the short-wave mode become unstable,
allowing a “resonant” coupling of unstable modes. The amplitude equation model also
possesses a third-order phase dynamics which, at least in the weakly nonlinear limit, can
describe episodic mixing events.

1 Introduction

The phenomenon of thermal convection occurring in a horizontal layer heated from below
has been studied extensively, both because of its relevance in physical contexts and its
utility as a model for pattern forming instabilities and transition to (weak) turbulence. In
the present study, onset of thermal instability is considered together with its coupling with
motion in an adjacent layer supporting internal waves. The physical model is intended as
one with potential for providing insight into, for example, the case of surface cooling of a
mixed layer in a lake and a consequent, stimulated internal wave field generated in and
across the metalimnion. Alternatively, the formulation may be considered as a model for
the convective dynamics arising from surface heating at the base of the troposphere, and
consequent driven internal waves in and across the tropopause.

In either of the physical paradigms noted, convective dynamics in a finite layer occurs
in the presence of an adjoining layer of stably stratified media. As a consequence,
convective motions may, depending on the static stability of the interface between the
contiguous layers, couple strongly with internal waves, leading in such cases to enhanced
transport, especially in cases where the underlying system is Galilean invariant. The
Galilean invariance of the system is an important factor as convective cells are then readily
displaced horizontally by propagating long waves impressed on the convecting layer.

On the other hand, the action of waves in a region adjacent to a convective layer will
modulate the depth of the convecting layer and, therewith, the local Rayleigh number and
the intensity of convective motion. Further, when the modulation timescale is sufficiently
short, slower convective activity may even be inhibited. It appears, therefore, that
offsetting affects exist in the nonlinear coupling between convection and internal waves,
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and the interaction is likely to lead to nontrivial dynamics which may have important
practical implications. It is the exploration of these dynamics that is pursued in the
present work.

2 Model Definition

Figure 1: Schematic definition of the problem.

The idealized model examined in this study is depicted in Figure 1. The base state,
as shown, consists of a horizontal layer of fluid with a non-deformable, impermeable,
stress-free, isothermal lower boundary. The convecting layer is capped by an immiscible,
deformable boundary separating it from a contiguous, stationary and stably stratified
region. For model simplicity and analytic convenience, we consider a particular limit
where the upper stratified layer is “collapsed” to a bounding, immiscible, deformable
interface across which a finite, stable density jump exists. As such, the model may be
viewed as a “one and one-half layer” configuration, yet with the capacity to support
propagating waves of only the lowest internal wave mode of a more realistic, two-layer
system. This model is chosen for analysis as it contains the minimum structure wherein
the spontaneous onset of convection can readily couple with freely propagating internal
waves impressed by a contiguous layer.

Employing this restricted physical model, we consider only plane motion and invoke the
Boussinesq approximation. Important aspects of the formulation of this problem, where
the focus was directed exclusively on the short-wave mode of convective instability, can
be found by reference to Pavithran and Rdedekopp (1994). As in that earlier work,
the disturbance state of motion, relative to the specified base state, is described by the
following set of field equations:

∇ ·V = 0, (1)

1

Pr

DV

Dt
= −∇p+ θêz +∇2V, (2)

Dθ

Dt
= RaV × êz +∇2θ. (3)

In these equations the velocity vector has two components (u,w) corresponding to
motion in the coordinate directions (x, z), and all the variables are non-dimensional
based on the scales (d; d2/κ;κ/d; ρ1νκ/d

2; νκ/αgd3) for length, time, velocity, pressure,
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and temperature, respectively. The two parameters appearing in the above set of field
equations are the Prandtl number, Pr, and the Rayleigh number, Ra.

Pr = ν/κ; Ra =
{
αg(T1 − T2)d3/(νκ)

}
.

For purposes of providing only a concise definition of the present model, and emphasizing
essential differences relative to the previous work of Pavithran and Rdedekopp (1994), we
present the analytic form of just two of the boundary conditions. The two conditions in
view are both applicable to the upper, deformable surface of the convecting layer, and
they reveal the existence of two additional parameters that are pivotal to characterizing
the interaction of convection and waves. First, the normal stress matching condition
applied at the non-equilibrium location z = 1 + ζ(x, t), takes the form:

Ra

{
δ +

1

2
ζ

}
ζ + p+

2

1 + ζ2x

{
wx − ζx(uz + wx) + uxζ

2
x

}
. (4)

Second, by use of a mixed thermal flux condition at the interface, allowing thereby for
either a convective or radiative heat flux into the ambient above the deformable surface,
one obtains the following condition:

θz − ζxθx = −Bi(θ − Raζ)
√

1 + ζ2x − Ra
(√

1 + ζ2x − 1
)

at z = 1 + ζ(x, t). (5)

The two additional parameters entering through these boundary conditions are the
interfacial density parameter δ and the Biot number Bi. These important parameters
have the definitions

δ =
δint

δconv
and Bi =

qrad

qcond
. (6)

The terms in the expression for the first parameter, namely δint and δconv, represent,
respectively, the (stable) density change across the deformable interface and the unstable
density change across the convecting layer in the base state condition. It is a ratio of the
stiffness of the upper interface compared to the driving potential for motion within the
layer. One should note that, since the Boussinesq approximation is employed, there is
an implicit restriction on the magnitude of these density changes. However, in the limit
of increasing δ, the deformable interface becomes increasingly stiff, and the problem for
convection between two plane boundaries is formally recovered as δ →∞.

In a corresponding way, the terms qrad and qcond in the definition of the Biot number Bi
specify the radiative heat flux from the deformable interface and the conductive heat flux
across the convecting layer in the stationary, base state condition, respectively. When
the Biot number becomes large, corresponding to very efficient heat transfer from the
interface, the thermal condition at the interface approaches that of an isothermal surface.
Alternatively, when the Biot number vanishes, the condition of an insulated boundary is
recovered. The subsequent analysis reveals that the Biot number serves to distinguish the
dominance of two different modes of convective instability, and it allows for identification
of a “resonant” state wherein both a long-wave and a short-wave mode of convection
share the same threshold condition for release of potential energy. In such a condition,
the two modes can interact nonlinearly through the intrinsic coupling afforded with
long gravity waves on the interface. This intrinsic dynamics can be understood from
a deeper fundamental perspective via couplings arising from the simultaneous breaking
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of underlying invariance properties.

3 The Long-Wave Mode

The long-wave mode of instability can be readily assessed analytically by use of an
asymptotic expansion involving use of scaled (slow) coordinates (ζ, τ) = ε(x, t), where
ε is a small amplitude parameter. A consistent approximation is obtained in the case of
stress-free surfaces provided the dependent variables are expanded as:

ζ(x, t) = ε2H(1)(ζ, τ) + ε3H(2)(ζ, τ) + . . . , (7a)

(u,w, p, θ) = ε2
{
U (1), εW (1), P (1), ϑ(1)

}
+ ε3 {. . .}+ . . . . (7b)

Each amplitude function in (7b) depends on the independent variables (ζ, z, τ). A similar
long-wave analysis of convection in an altered physical model has been considered by
Benguria and Depassier (1987).

The expansion noted in (7a,b) can be carried forward for several orders, yielding
a hierarchical pair of amplitude equations characterizing the evolution of long-wave
disturbances. For example, the leading order evolution is given simply by the DAlembert,
linear wave equation pair

H(1)
τ = −U (1)

x and U (1)
τ = −c20H(1)

x . (8)

The parameter c0 is the long-wave phase speed for interfacial waves in this model, and is
defined by

c20 = δ −
1

3

(
Bi

Bi + 1

)
. (9)

For propagating waves we require c20 > 0, which yields a restriction on allowable values
of the parameter space (δ,Bi). When this quantity is negative, the amplitude evolution
requires special consideration that will not be discussed here.

Carrying the analysis to second order, and transforming back to laboratory coordinates,
the long-wave evolution is defined by the pair

ζt = −Vx + α0ζxx and Vt = −c20ζx + β0Vxx. (10)

A straightforward stability analysis yields the onset condition for the long-wave mode of
convection. This condition is given by

α0 + β0 = −4Pr
Ra− Rac

Rac

= −4Pr∆, where Rac = 180
(Bi + 1)2

Bi + 6
. (11)

One observes that the critical Rayleigh number for this mode is independent of the
interface density parameter δ, although the acceptable range of this parameter is
constrained by (9). Further, one observes that onset condition for this mode tends to
Rac →∞ as Bi→∞, showing that the long-wave mode is linearly stable in the limit of
an isothermal interface. Hence, the flux condition across the deformable interface exerts
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a pivotal role in the relative competition between the two possible modes of convection.

Carrying the long-wave analysis to higher orders, and using lower-order sets to eliminate
time derivatives appearing in higher-order sets in favor of space derivatives, one obtains
an extended dispersive-dissipative, nonlinear system for the long-wave dynamics. This
system, when used to consider waves propagating in only one direction (say, to the right),
can be cast into an extended KdV equation for the interface displacement:

ζt + c0ζx + αζζx + βζxxx = −2Pr∆ζxx + γ4ζxxxx + β2 (ζζx)x . (12)

This equation possesses equilibrium, solitary wave states sustained against dissipation by
the release of potential energy through the long-wave instability operating when ∆ > 0.
Linear growth rate curves for several values of the criticality parameter ∆ are shown in
Figure 2.

4 The Short-Wave Mode

Analysis of the short-wave mode of convection follows closely the earlier work of Pavithran
and Rdedekopp (1994), albeit here the effect of the mixed flux condition (5) at the
deformable interface must be considered. The onset conditions for this mode have
been explored in some detail, and in Figure 3 we show parameter values that lead to
identical critical Rayleigh numbers for onset of convection for both the long-wave and
the short-wave modes. The intersection of the dotted curve with any solid curve defines
a condition for spontaneous release of potential energy for both modes, and for possible
long-wave/short-wave resonant interaction via nonlinear coupling.

Figure 2: Linear growth rate for the
long-wave mode at the indicated degree of
super-criticality.

Figure 3: The critical Rayleigh number for a
’resonant’ onset of convection involving both
the long-wave and the shortwave modes.

A standard, multiple scale analysis for the weakly nonlinear dynamics ensuing via the
stationary bifurcation in the vicinity of the critical condition (Ra, kc) leads to the following
(scaled) evolution system:

At = −ikcUA+ ∆A− γHA+ Axx − |A|2A, (13)

Ht = −Ux + α0Hxx − ν0
(
|A|2

)
x
, (14)
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Ut = −c20Hx + σ0
(
|A|2

)
x

+ λ0Uxx. (15)

In this system A(x, t) is the complex modulation amplitude of, say, the vertical velocity
of the disturbance field associated with convective motions with spatial periodicity 2π/kc,
and ∆ is the linear instability parameter proportional to (Ra − Rac), where Rac in this
case is the threshold Rayleigh number for instability. The variables H(x, t) and U(x, t)
describe the long-wave component of the interface distortion and the associated drift
velocity.

The first amplitude equation is consistent with that obtained by Newell and Whitehead
(1969) in the case where H = U = 0. The drift effect (Doppler shift) under the
restrictive condition H = 0, wherein both boundaries are non-deformable, was shown
by Zippelius and Siggia (1983) and by Coullet and Huerre (1986) to have an important
dynamical role in pattern forming instabilities and pattern selection. They demonstrated
that the marginal vertical vorticity mode, in cases with underlying Galilean invariance,
can couple effectively with convection through spontaneous onset of drift currents in
two-space-dimensional evolution. In the present case, a strong dynamical coupling is
possible even for one-space-dimensional evolution, and even when the vertical vorticity
mode is restricted because of the present limitation of plane flow. One observes that,
when convection is not active (i.e., A = 0), the latter two amplitude equations describe a
linear, damped and non-dispersive, long-wave motion. The degree of freedom associated
with the compressional mode (the presence of a stable, deformable interface) gives rise
to a non-trivial coupling between convection and wave motion even in the case of planar
motion.

The system (13-15) possesses the stationary, spatially periodic solution

A(x, t) = Qe(qx+φ) , H(x, t) = U(x, t) = 0. (16)

The quantity φ is an arbitrary phase constant and Q, the amplitude, is given by:

Q2 =

{
0, when ∆ < 0
∆− q2, when ∆ > 0.

(17)

Another family of stationary solutions exist in which H and U are arbitrary constants,
but these are isomorphic to the set in (16) and have identical stability properties.

The stability of the family of stationary solutions given in (16-17) can be analyzed by
adding a small perturbation to the amplitude set (Q,H,U), and allowing for a general,
evolving phase φ(x, t). It emerges that the amplitude perturbation to Q is strongly
damped, leading in particular to a third-order in time dynamics for the phase φ. The
evolution of the phase is found to couple strongly with disturbances associated with
presence of a compressional mode; that is, with disturbances in the height and drift fields
H and U . Focusing on long-wave disturbances, the linear evolution equation for the phase
takes the form

φttt = aφxxtt + bφxxt +mφxxxx + nφxxxxxx. (18)

This dynamical model is the only known example of this co-dimension-three instability,
and it arises naturally through the breaking of the three fundamental invariances implicit
to the structure of the underlying physical and mathematical model. Equation (18)
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contains two well-known limits of phase instability analysis in the problem of convection,
each of which arises generically from breaking of particular invariances. For example,
when one considers the case of convection between plane, non-deformable surfaces
with no-slip boundaries, the stability of the finite-amplitude (roll) state near onset
occurs via the Eckhaus instability. This instability, associated with the breaking of the
underlying translational invariance, corresponds with the balance φttt ∼ φxxtt – a diffusive
phase instability. Also, when one considers convection between plane, non-deformable,
stress-free surfaces, the base system satisfies both translational and Galilean invariance.
Then, the onset of convection couples with a two-dimensional drift field (via the marginal
vertical vorticity mode), leading to a phase which is propagative a balance captured in
the present 1-D case by the balance φttt ∼ φxxt (see Coullet and Fauve (1985) and Coullet
and Huerre (1986)).

In the case of the physical problem considered here, the underlying system satisfies
not only translational and Galilean invariance, but also Newtonian invariance. As a
consequence, the onset of convection gives rise naturally to a phase dynamics that is
third-order in time. The linear equation in (18) has been analyzed in detail to characterize
the nature of the third-order fixed point as a function of the parameters of the problem.
The nonlinear evolution of this phase dynamics has been derived and is being studied
through numerical simulation.
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