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ABSTRACT OF THE THESIS

Battery Lifetime-Aware Flight Control for Flapping Wing Micro Air Vehicles

By

Xiaohong Li

Master of Science in Computer Engineering

University of California, Irvine, 2018

Associate Professor Mohammad Abdullah Al Faruque, Chair

The balance and stability analysis for FWMAV systems is always quite challenging, while

the flight duration is also becoming a big challenge. In this thesis, we analyzed the balance

and stability of FWMAV system while considering the battery model for best energy usage.

We designed two stages for controlling the FWMAV vertical flight in this thesis: static flight

and dynamic flight. The static flight stage focuses on the tradeoff between the stability

and the energy usage, as well as the effection of the battery model. With the battery

model considered, static flight orbits with lower power consumption are found. For better

optimization of the power consumption, the dynamic flight control methods are proposed

by relaxing the strict constraints of hovering and periodic flight. Compared with the power

consumption results in the static flight stage, the power consumption improvement in the

dynamic flight stage is even larger than 40% while keeping orbits periodic and hovering.
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Chapter 1

Introduction

Flight dynamics of biological insects and birds and their mimetic vehicles, Micro Air Vehi-

cles (MAVs), has been an active area of research in different communities for more than a

decade since DARPA started a program named MAV-project in 1997 [24]. MAVs are micro

sized aircraft which spans a very wide variety of applications in a multitude of commercial,

industrial and military purposes, like observation and search and rescue missions. The main

applications are intelligence, surveillance, and reconnaissance missions. They can provide a

rapid overview in the area around personnel, without exposing themselves to danger [23].

To perform these missions MAVs should be small sized, have good maneuverability, be well

controllable.

MAVs come in various types, like conventional fixed wing aircraft and rotary aircraft. A third

type of MAV, flapping-wing micro-air-vehicles (FWMAVs), has attractive characteristics for

flight in confined spaces. FWMAVs are different from conventional fixed wing aircraft as

they use their flapping wings both for a means of propulsion (thrust) and for a means to

sustain flight (lift). FWMAVs have the potential to combine the positive aspects of both

fixed wing and rotary flights, while eliminating many of their disadvantages. They are able
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to travel at higher velocities than the rotary platforms while being more maneuverable than

the fixed wing MAVs [25]. The low RPM of the motors driving the wings make FWMAVs

be much quieter than other platforms. FWMAVs may have the ability to hover like rotary

aircraft, while they lack the high speed rotating blades that may be dangerous and are easily

damaged.

Most research groups working on MAVs today based their design on FWMAVs. The agility

of hummingbirds, dragonflies, bees, and fruit flies has inspired scientist to study how they

use flapping wings as a mean to generate aerodynamic forces capable of producing often

complex maneuvers in air [30].

Many different platforms have been constructed and modeled. Harvard’s RoboBees are

robotic insects with sub-millimeter scale anatomy and two wafer-thin wings which flaps at

120 times per second, achieving vertical takeoff, hovering and steering [16, 3]. The DelFly

FWMAVs from the Delft University of Technology make a series of FWMAVs [18]. The

second generation DelFly II was already capable of hovering, flying forward as well as flying

backward. It can keep flying for 15 minutes [15]. It was then improved and became the

DelFly Explorer, which is capable of sustained flight [4]. The smallest one of the series,

named DelFly Micro, weighs only 3.07 grams. It has a wingspan of 10 cm, and can fly

for up to 3 minutes with a camera onboard [7]. The Robo Raven from the University of

Maryland was the first demonstration of a bird-inspired platform doing outdoor aerobatics

using independently actuated and controlled wings. It successfully performed dives, flips,

and button hook turns, demonstrating the capability of bio-inspired aerobatic maneuvers

afforded by the design [10].
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1.1 Motivation

The balance and stability analysis for FWMAV systems is always quite challenging. Many

research papers have been published for this topic. However, as FWMAVs are becoming an

important tool in a wide variety of defense and civilian applications nowadays [23], the flight

duration also becomes a big challenge. Most platforms use the lithium-ion batteries as the

power supply. Hence, in this thesis, we analyze the balance and stability of FWMAV system

while leverage the knowledge of the battery dynamics for best energy usage.

Several efforts have been attempted to determine the optimum flapping strategy and many

different controllers also have been designed for FWMAVs [20, 39, 8, 40, 27, 19]. However,

all of these efforts have ignored the interplay between flapping and battery dynamics. To

the best of our knowledge, this is the first CPS optimization framework for FWMAVs.

The approach for analysis of the balance and stability is adopted from work [13]. In this

approach, it first applies a combined first- and higher-order averaging technique on the

FWMAV system. This averaging technique is applied to determine the required amplitude of

the periodic forcing for balance. Then, it uses an optimized shooting technique to numerically

capture the resulting periodic orbit for hovering. The purpose of the periodic orbit shooting

technique is to find a starting point on the periodic orbit that minimize residual, which is a

term used to represent the stability of hovering.

Based on the work in [13], we take the power consumption into account and preform the

optimization for a trade-off between the stability and the energy usage, as well as the solution

for best energy usage.
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1.2 Outline

In chapter 2, the FWMAV model and the particular wing configuration of DelFlyII used in

this thesis are introduced. The periodic shooting method adopted in this thesis for system

stability analysis is also described in chapter 2. The battery model is described in chapter 3.

The battery model involves using an effective pseudo-current. The increase of discharging

rate will introduce a larger increase in the effective pseudo-current, which results in a lower

usable capacity [31, 34, 36]. In chapter 4, the flight control problems and algorithms for

balancing the stability of FWMAV system and the energy usage are presented. The experi-

mental results, as well as the analysis of the results are represented in chapter 5. These lead

to the conclusion and further investigation in chapter 6.
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Chapter 2

Flapping Wing Dynamics

2.1 FWMAV Dynamic Model

Flapping flight dynamics is appropriately represented by a multibody, nonlinear, time-

varying system. In [29], the authors deduced the full equations of motion governing the

longitudinal flapping flight dynamics.

In general, three types of reference frames are required to formulate the flight dynamic model

for a rigid-winged FWMAV: an inertial reference frame xI, yI, zI, a body-fixed reference frame

xb, yb, zb, and a wing-fixed reference frame xw, yw, zw for each of the flight vehicle’s wings.

Because only longitudinal flight is considered in this work, only a single wing-fixed reference

frame is required because the opposing wing moves symmetrically.

There are five degrees of freedom (DOF) dynamics in total: the body variables including

body pitch angle θ, body velocity components u and w along the xb and zb directions; the

wing variables including the back and forth flapping angle as well as the wing pitching angle

η (maintained constant throughout each half-stroke). Figure 2.1 gives out the schematic
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diagram for a FWMAV with a horizontal stroke plane.

As for now we only consider to achieve hovering, the body velocity components w along

the zb directions is the dynamic we care about most. It is convenient to neglect the body

pitch angle θ, body velocity components u in xb direction and the wing pitching angle η as

in work [12] and [28]. We constraint the body to move along vertical rails, hence there are

only two degrees of freedom: the body vertical motion with a velocity w and the wing back

and forth flapping angle ϕ.

Figure 2.1: Schematic diagram for a FWMAV with a horizontal stroke plane [29]

In this model, there are two degrees of freedom: the body vertical motion with a velocity w

and the wing back and forth flapping angle ϕ. The model is represented by equation (2.1).

ẇ(t) = g − kd1|ϕ̇(t)|w(t)− kLϕ̇2(t)

ϕ̈(t) = −kd2|ϕ̇(t)|ϕ̇(t)− kd3w(t)ϕ̇(t) +
τϕ(t)

IF

(2.1)

Where IF is the flapping moment of inertia, and τϕ is the flapping control input torque which

is written as equation (2.2).
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τϕ(t) = Ucosωt (2.2)

kd1, kL, kd2, kd3 are defined as equations (2.3).

kd1 =
ρCLαI11cos

2αm
2mv

kL =
ρCLαI21sinαmcosαm

2mv

kd2 =
ρCLαI31sin

2αm
IF

kd3 =
ρCLαI21sinαmcosαm

IF

(2.3)

where ρ is the air density, which is normally 1.225. CLα is the wing lift curve slope, αm is

the mean angle of attack maintained throughout the entire stroke, mv is the total mass of

the vehicle, and Imn are constraints that depend on the chord distribution of the wing: Imn

= 2
∫ R
0
rmCn(r)dr.

The system (2.1) can be written in a state-space form as (2.4)

d

dt



z(t)

ϕ(t)

w(t)

ϕ̇(t)


=



w(t)

ϕ̇(t)

g - kd1|ϕ̇(t)|w(t) - kLϕ̇
2(t)

- kd2|ϕ̇(t)|ϕ̇(t) - kd3 w(t) ϕ̇(t)


+



0

0

0

1
IF


τϕ(t) (2.4)

which can be written as a typical nonlinear control-affine system as (2.5)

ẋ(t) = Z(x(t)) + Y (x(t))τϕ(t) (2.5)

x(t) = [z(t) ϕ(t) w(t) ϕ̇(t)]T (2.6)
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where x(t) in equation (2.6) is the state vector. The z(t) is the vehicle displacement during

the flight, which can be used to calculate the vehicle altitude using equation (2.7)

A(t) = A0 − z(t) (2.7)

where A(t) is the altitude and A0 is the initial altitude of the FWMAV.

In this work, the morphological and the wing planform are given in Table 2.1. The values

are adopted from the Delfly II as its capability of hovering satisfying our requirements. Its

wing planform is shown in figure 2.2 [5].

Figure 2.2: Schematic diagram for the wing planform of DelFly II

Parameters Value

R (mm) 140
S (mm2) 10177.5
mw (gm) 1.1
mv (gm) 14

Table 2.1: Values of parameters for DelFly II

In Table 2.1, R is the semi-span of the wing, S is the area of one wing, mw is the single wing

mass and mv is the total vehicle mass, including the battery mass.

8



The moments of the wing chord distribution are defined as equation (2.8)

Ik1 = 2

∫ R

0

rkc(r)dr (2.8)

where r represents the distance between a point on the wing axis and the wing base. The

chord distribution for the insect is defined as equation (2.9):

c(r) =

{
0.088, 06 r 60.065

0.088 - 0.03 * (r-0.065)/0.075, 0.065< r 60.14
(2.9)

The mass of the wing is assumed uniform with an areal mass distribution m’:

m
′
=
mw

S
(2.10)

The inertial properties of the wing are then estimated as

Ix = 2

∫ R

0

m
′
r2c(r)dr

Iy = 2

∫ R

0

m
′
d̂2c3(r)dr

Iz = Ix + Iy

(2.11)

where d̂ is the chord-normalized distance from the wing hinge line to the center of gravity

line. Here, the hinge is at the top of the wing and we assume the center of gravity lies at

the 30% of chord station. Then d̂ is given by:

d̂ = 0.3 ∗ c(0) (2.12)
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The flapping moment of inertia is calculated by:

IF = Ixsin
2αm + Izcos

2αm (2.13)

CLα is the wing lift curve slope of the three dimensional wing, which is given by:

CLα =
πAR

1 +
√

(πAR
a0

)2 + 1
(2.14)

where AR is the wing aspect ratio. In this work, we consider the wing as two dimensional

wing, a0 is then assumed as 2π. AR is calculated by

AR =
R2

S
(2.15)

where R is the semi-span of the wing, S is the area of one wing as mentioned above.

The power consumption for the FWMAV to hover is given by:

Pmav(t) = τϕ(t)ϕ̇(t) (2.16)

where τϕ(t) is the flapping control input torque, ϕ̇(t) is the derivative of the flapping angle

which indicates the flapping direction - forward or backward.

2.2 Periodic Shooting Methodology

In [13], the authors summarized the procedure for analyzing the balance and stability of

FWMAVs as in Figure. 2.3. The VOC and higher-order averaging are used to determine the

required amplitude U for balance. In this thesis, as U is used as one of the control inputs

10



Figure 2.3: Schematic for the analysis procedure of balance problem [13]

and is optimized as a independant variable. Hence, we only adopted the periodic shooting

method from the work [13].

The optimized shooting method adopted in [13] came from the work in [6]. Consider the

following system of equations (2.17)

ẋ(t) = f(x(t), α, t) (2.17)

where x ∈ R n and f: R n × R k × R ≥0 → R n , and α are the system parameters. A

solution x(t) to the system (2.17) is periodic if there exists a constant T > 0 such that

x(t) = x(t+ T ) (2.18)

The optimized shooting method can be applied to any system that can be expressed in the

11



form of (2.17). A dimensionless time τ is introduced such that t = τ T. Equation (2.17) is

then written as

dx

dτ
= Tf(x(τT ), α, τT ) (2.19)

And the boundary conditions in Eq. (2.18) then can be represented as x(τ = 0) = x(τ = 1)

and Eq.(2.19) can be integrated over one period. Now, the residual can be written as

R = T

∫ 1

0

f(x(τT ), α, τT )dτ (2.20)

According to work in [6], the residual depends on the number of quantities to be optimized

and can be expressed as

R = (x(1)− x(0), x(1 + ∆τ)− x(∆τ), ...,

x(1 + (p− 1)∆τ)− x((p− 1)∆τ))

(2.21)

where ∆τ is the integration step size and p is a natural number required by the Levenberg-

Marquardt algorithm [9], which is adopt in work [13]. It has to be chosen so that the

number of components of the residual is greater than or equal to the number of quantities

to be optimized. The number of components in the residual function is given by pN, where

N is the dimension of the system.
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Chapter 3

Battery Model

Energy and power are very crucial parts of FWMAV design. The flight endurance time of

the FWMAV heavily depends on the available energy, while power determines whether it is

possible the flight could happen in the first place. There are three characteristics, which are

flight time, maneuverability and payload capacity, are essential to the utility of the design of

FWMAV [5]. They often have to be traded off against each other. In this section, first the

energy sources for FWMAV is discussed. Then, the battery modelling used in this thesis is

described.

3.1 Energy Storage for FWMAV

The efficiency of FWMAV flight is not as efficient as other larger air vehicles, as the air

viscosity would have greater influence on the air flow for vehicles with low velocity or small

size. It is also related to the flight mode of the FWMAV. For example, the hovering flight

is a quite power intensive flight mode. Hovering flight needs more power and hence shows

shorter flight times than forward flight. Hummingbirds need to feed every 4 to 5min to stay

13



airborne when they hover [11]. The way how the FWMAV flies is also an very important

factor affecting the flight efficiency. The flapping wing flight could partly overcome the loss

of lift [5].

Hence, when choosing the energy sources for FWMAV, the specific energy and specific power

of the energy storage material are the factors to consider. They are measured by the power-

to-weight (kW/kg) and power density (kW/liter). The FWMAVs needs electric power for

the flight control and payload systems and mechanical power for propulsion. A conversion

system is needed to convert the energy from the source to propulsive and electric power.

This conversion system can be efficient and simple for some energy sources. It also can

be completely impractical for others. For instance, hydrocarbon fuel engines, with internal

combustion or jet turbines, are widely used in larger unmanned aircraft. While existing

versions of these systems are too large to be accommodated for micro or nano aircrafts.

There are UAVs flying on prototype Lithium-Sulphur cells which are made by the SionPower

company. The cells are tested in military. The Li-S cell is a little worse in power-to-weight

ratio but 50% better than the Lithium Polymer in energy-to-weight ratio at this stage of

development. But the cells are not yet available commercially. They could be useful in the

future when the pace of development proceeds.

For small to very small aircrafts, the electric power source which is in the form of a battery

powering an electric motor yields a very interesting compromise between complexity and

duration. The modern Lithium Polymer batteries have good power density, energy-to-weight

ratio and power-to-weight ratio.
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3.2 Battery Model

Lithium-ion batteries demonstrate less usable capacity in higher discharge rates (rate-capacity

effect). This characteristic is described by the Peukert’s Law, which is presented by the Ger-

man scientist Wilhelm Peukert in 1897. Peukert’s Law is represented by equation (3.1) and

was developed to model the behavior of the battery for different discharge currents [14].

C = Ipct (3.1)

where C is the battery capacity expressed in Ah, I is the discharging current, t is the

discharging time in hours and pc is the calibration coefficient. When a battery is subjected

to discharge using increasingly higher constant currents, the discharged battery capacity

decreases up to the cutoff voltage [14]. To compensate for these losses, Peukert introduced

the Peukert’s constant k.

The value of the Peukert’s constant is normally determined experimentally using two different

battery discharge curves. Consider that the battery is discharged in rate I1 for time t1, and

in rate I2 for time t2. By applying equation (3.1), we can get below equation (3.2) for

calculating the Peukert’s constant.

pc =
ln( t2

t1
)

ln( I1
I2

)
(3.2)

In this thesis, we adopted the DelFly II characteristics for FWMAV modelling. The DelFly

team uses Lithium Polymer batteries from several sources, like the 130 and 220 mAh from

Atomic workshop and the 180 mAh NanoTech from HobbyKing [5]. The 130mAh battery

from Atomic workshop has discharge curves shown as Figure 3.1.

The relationship between the usable capacity of the battery and the discharge rage is ex-
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Figure 3.1: Discharge curves of CyclonE-130mAh cell [2]

pressed in Equation 3.3. From this equation, it can be seen that the efficiency of converting

chemical energy to electrical energy decreases while increasing the discharge rate. Hence,

more chemical reactions are needed in order to provide the same amount of electrical en-

ergy [38, 35]. When the discharging current is variable, the model involves using an effective

pseudo-current. The increase of discharging rate will introduce a larger increase in the ef-

fective pseudo-current, which results in a lower usable capacity [31]. This relationship is

expressed by Equation 3.4.

C = Cn(
In
I

)pc−1 (3.3)

Ieff = I(
I

In
)pc−1 (3.4)

In this work, the simplified battery model is adopted by assuming that the voltage and the

resistance are not changed along with the discharging.

Power, which is the amount of energy used per second, can be calculated by Equation 3.5. As
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the voltage V is assumed not changing during discharging in this work, based on Equation

3.4 and 3.5, the relationship between the actual power Pact and effective pseudo-power Peff

can be deduced by Equation 3.6.

P = V I (3.5)

Peff = VnIeff

= VnIact(
Iact
In

)pc−1

= Vn
Pact
Vn

(
Pact
Vn

)pc−1

=
P pc
act

(VnIn)pc−1

(3.6)

The battery specification used in this work is shown as Table 3.1. In order to see the effect

of considering battery model in the optimization, we set the value of pc as 1.2 which is not

as small as the pc value of the 130mAh battery from Atomic workshop.

Parameters Value

Vn (V) 3.7
Cn (mAh) 130

pc 1.2

Table 3.1: Battery specification

17



Chapter 4

FWMAV Flight Control

The balance and stability analysis for FWMAV systems is always quite challenging, while

the flight duration is also becoming a big challenge. In this thesis, we analyze the balance

and stability of FWMAV system while considering the battery model for best energy usage.

The periodic orbit, hovering status of the flight and power consumption are the three main

aspects we consider when we design the control algorithm. We make sure the orbit is

periodic by controlling the residual, which is described in chapter 2. The smaller the value

of residual is, the better periodic states the orbit has. The hovering status is also measured

by the displacement z(t) part inside the residual. Small displacement means the FWMAV

is hovering.

This thesis covers two stages of the FWMAV project: static flight and dynamic flight. In our

algorithm, the entire flight is composed of flight patterns. The idea is inspired by the control

algorithm in work [37, 33, 1, 32], which is based on Model Predictive Control(MPC) method.

During the static vertical flight, the values of control inputs stay the same during the flight

pattern, hence also stay the same during the entire flight. The optimizer will optimize the

control inputs for one pattern. During the dynamic flight, different with the static flight,
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the pattern is divided into several parts and each part has a separate set of control inputs.

The optimizer will optimize the control inputs for all parts in a pattern together. In this

stage, instead of pursuing the hovering flight, the residual equation is adjusted to allow the

FWMAV have more flexible flying strategy.

In all of our experiments for both of the static flight and dynamic flight stages, the flight

pattern is set as 4 flapping cycles. Each flapping cycle is divided into 8 time segments. For

each time segment, the values of state vector are calculated based on the model in equation

(2.4) by using ode45.

4.1 Flight Optimization Problem

The flight control is responsible for adjusting the control inputs to the FWMAV system

for maintaining the system output and state variables in a specific range and target. With

the purpose of achieving the balance of stability while minimize the power consumption, we

includes the residual and the power consumption into the cost function. The stability is

represented by the residual, which is introduced by the periodic shooting method in chapter

2. It is used to ensure the hovering flight. For easier evaluation, we use the sum of the squares

of each element in the residual, instead of residual itself, in our cost function. And the energy

usage is measured by the average power consumption of the entire flight. The cost function of

the optimization in general is represented by equation (4.1). It will be adjusted accordingly

in experiments for different stages, which will be described in the following sections.

In equation (4.1), χ is the control input vector, P represents power consumption and R

represents the residual. w1 and w2 are weights for the term of power consumption and

residual in the cost function, respectively. Pmax is the maximum power limitation depending

on battery characteristics, w is the body vertical velocity and wmax is the maximum body
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vertical velocity. The value of wmax can be adjusted as needed. This constraint is used to

keep the FWMAV away from a large vertical movement during the flight. ϕ is the flapping

angle which is limited in the range of [−π/2, π/2].

min
χ w1P + w2

∑
R2

s.t.

{ P(t) 6 Pmax

|w| 6 wmax

|ϕ| 6 π/2

(4.1)

4.2 Flight Control Algorithm

The flight control algorithm is designed for estimating all the variables contributing to the

system. The optimization solver optimizes all of the variables in order to minimize a cost

function while considering the constraints put by the control limits and physical behav-

iors. Then the optimized control inputs are applied to the FWMAV system and form the

reproducible flight pattern.

The FWMAV system is a system with a high sensitivity with respect to the control inputs.

Hence, we use the accurate model in continuous time to calculate the sampled system state

for each time segment. The number of time segments, which is 32 in our experiments, is

decided according to the flapping period while considering the trade-off between the accuracy

and the running time of the optimization.
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Algorithm 1: FWMAV flight control

1 Nseg = number of time segments in a pattern

2 Npattern = number of patterns in the entire flight

3 Ssv = size of the state vector

4 Nctl = number of the control inputs

5 x = 1 × Ssv matrix // state vector

6 xseg = 1 × Ssv Nseg matrix // state vector for all time segments

7 χ = 1 × Nctl matrix // control inputs

8 v ← [χ, xseg] // optimization variables

9 χ0 = random initial guess of control inputs

// calculate the initial values of sampled state vector of each segment

10 for k = 1 to Nseg do

11 xseg
0 ← FWMAV(χ0, k)

12 end

13 v0 ← [χ0, xseg
0] // initial values of optimization variables

// call optimization solver, the solver will call FWMAV and battery

model to calculate power and residual

14 vopt = Optimize(v, v0, FWMAV, Battery)

15 for j = 1 to Npattern do

16 Orbit = FWMAV(χopt) // Reproduce the pattern

17 end

18 return Orbit

Algorithm 1 illustrates a pseudo-code to simulate the controlling process. First, the number

of the time segments and the number of the patterns in the entire flight are defined in lines 1 -

2. Then, the state variables (x, xseg), control inputs (χ) are defined (lines 3 - 5) and combined

in a vector as optimization variables (v) (lines 6). The initial value of the control inputs (χ0)
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are randomly generated in a given range (lines 7) and the initial value of the state variables

are calculated using the accurate FWMAV model (lines 8 - 10). They formed the initial

values of the optimization variables (lines 11). Input the initial values to the optimizer, the

optimization problem is solved and the optimizer returns the optimum solution (line 12).

When the optimizer solves the problem, it calls the FWMAV model and the battery model

to calculate the new system state and the cost function. As the entire flight is composed

of reproducible flight patterns, the optimizer will optimize the control inputs for only one

pattern. The optimum solution is then applied to the FWMAV model to get the pattern of

the flying orbit. By reproducing the pattern, we get the entire flying orbit (line 14 - 15).

More details of the static and dynamic flight control implementation and experiments are

described in next sections.

4.3 Static Vertical Flight Control

The FWMAV system uses multiple state variables, which are represented by the system state

vector (2.6) to define the current status of the system. In this vector, z(t) is the displacement

of the flight, ϕ(t) is the flapping angle, w(t) is the vertical velocity and ϕ̇(t) is the derivative

of flapping angle. ϕ̇(t) represents the flapping speed.

In our algorithm, the entire flight is composed of flight patterns. During the static vertical

flight, the values of control inputs stay the same during the flight pattern, hence also stay

the same during the entire flight. In this stage, the control inputs of the FWMAV system

are represented by the vector (4.2). In the control input vector, the part [ϕ(0) w(0)

ϕ̇(0)] represents the starting state (at time = 0) of the pattern as well as the entire flight,

which are inherited from the work [13]. They are chosen as part of the control inputs for

the purpose of applying periodic shooting methodology. Different starting state of the flight
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may lead the optimizer to different solution.

χstatic = [U αm ω ϕ(0) w(0) ϕ̇(0)]T (4.2)

The part [U αm ω] is used to control the flight process, where U is the amplitude of

the periodic force τϕ(t) shown in equation (2.2), αm is the angle of attack of the wings, and

ω is the flapping frequency of the FWMAV. These three variables are added into the control

input vector to control the flying process while achieving more flexibility for the optimizer.

In our algorithm, the optimization variables are composed of state vector and control inputs.

The boundaries of the optimization variables used by the optimizer are shown in table 4.2.

The initial values of the control inputs are random values generated within the boundaries

listed in table 4.1.

Parameters Lower Bound Upper Bound

ϕ(0) (rad) -0.5π 0.5π
w(0) (m/s) -0.2 0.2
ϕ̇(0) (rad/s) -50π 50π

U 0.0001 2
αm (deg) 10 60
ω (rad/s) 16π 100π

Table 4.1: Bounds for generating random initial values of control inputs in static flight stage

Parameters Lower Bound Upper Bound

z (m) -Inf Inf
ϕ (rad) -0.5π 0.5π
w (m/s) -0.2 0.2
ϕ̇ (rad/s) -Inf Inf

U 0 Inf
αm (deg) 10 80
ω (rad/s) 16π 100π

Table 4.2: Bounds for optimization variables of static flight

The flight pattern is set as 4 flapping cycles and each flapping cycle is divided into 8 time

segments. The optimization variables are composed of control inputs (4.2) and state vector
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(2.6) of all time segments as in equation (4.3). In equation (4.3), we have j = 1,2,3 ... ,

31, 32. Hence, there are 134 optimization variables in total. To get the initial values of

the optimization variables for the optimizer, we first generate random values of the control

inputs, then calculate the values of state vector for all time segments by using the values of

randomly generated initial values of the control inputs.

vstatic = [U αm ω ϕ(0) w(0) ϕ̇(0) z(j) ϕ(j) w(j) ϕ̇(j)]T (4.3)

The experiments during this static flight stage mainly focus on analyzing the effective of

considering battery model during the optimization. Hence, we use different cost functions

when we conduct the contrast experiments.

4.3.1 Static Flight without Considering Battery Model

Experiment 1: Static Flight without Considering Battery Model When the bat-

tery model is not considered, the power consumption we used to calculate the cost function

is the actual power consumption of the FWMAV. In this case, the cost function is repre-

sented by equation (4.4), where R is the residual and P act is the average of actual power

consumption of the FWMAV in this experiment of static flight stage.
∑
R2 is calculated as

in equation (4.5). wR and wPact are weights for
∑
R2 and P act, respectively.

Cost1 = wPactPact + wR

∑
R2 (4.4)

The R2 is a 1 ×Ssv matrix, where Ssv is the size of state vector x(t) in equation (2.6). For

easier evaluation, we use the sum of all elements inside R2 (
∑
R2) in the cost function.

∑
R2 =

Ssv∑
j=1

R2(j) (4.5)
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The R2 is calculated using the value of state vector at each time segment as shown in equation

(4.6). wx is the weight vector for each element inside the state vector x(t) in equation (2.6).

The value of wx does not affect the trade off between the residual and power, as long as

it keeps same during the entire experiment. It is set as [10 1 1 10] in our experiments.

Nseg is the total number of time segments in a pattern, Ncyc is the total number of flapping

cycles in a pattern, and Nspp is the number time segments in a flapping cycle. They have the

relationship in equation (4.7). x(i×T seg) is the value of state vector at time i×T seg (starting

time of the flight is 0), where Tseg is the time endurance of one single time segment. As in

equation (4.8), we get the value of Tseg by dividing flapping period by the number of time

segments in a flapping cycle.

R2 =

Nseg−Nspp∑
i=1

wx[x((i+Nspp)× T seg)− x(i× T seg)]
2 (4.6)

Nspp =
Nseg

Ncyc
(4.7)

Tseg =
2π

ωNspp
(4.8)

In the static flight stage, the constants used in the equations are listed in table 4.3.

Parameters Value

Ssv 4
Nseg 32
Ncyc 4
wx [10 1 1 10]

z(0) (m) 0

Table 4.3: Constants in static flight stage
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4.3.2 Static Flight with Considering Battery Model

Experiment 2: Static Flight with Considering Battery Model When the battery

model is considered, instead of using actual power consumption, we use effective power

consumption of the FWMAV to calculate the cost function. In this case, the cost function

is represented by equation (4.9), where R is the residual and P eff is the average of effective

power consumption of the FWMAV in this experiment of static flight stage.

Cost2 = wPeffPeff + wR

∑
R2 (4.9)

The effective power consumption P eff is calculated according to equation (3.6). The
∑
R2

is calculated in the same method with the one in experiment 1, as in (4.5). wR and wPeff

are weights for
∑
R2 and P eff, respectively. The constants used in this experiment are also

same with experiment 1, as in table 4.3.

4.4 Dynamic Vertical Flight Control

The static vertical flight doesn’t have much flexibility because of the two strict constraints:

the orbit is periodic and the FWMAV can hover. Hence, in dynamic flight stage, we relaxed

these two constraints to allow the FWMAV to fly in more flexible vertical orbits and expect

the optimizer to find dynamic flight orbits with lower power consumption than static flight

orbits. The entire flight is also composed of flight patterns. The flapping cycles inside the

pattern are not necessarily periodic and at hovering status. But same with the static flight,

the pattern still should be reproducible.

In the dynamic flight stage, as the flapping cycles inside the pattern are not necessarily

periodic and at hovering status, we introduce more control inputs to control each flapping

26



cycle in the pattern separately. The control inputs of the FWMAV system are represented

by the vector (4.10). In the control input vector, same with the static flight, the part [ϕ(0)

w(0) ϕ̇(0)] represents the starting state (at time = 0) of the pattern as well as the entire

flight. Different starting state of the flight may lead the optimizer to different solution. The

pattern includes 4 cycles in our experiments. The variables [Ui αmi ωi] (i = 1,2,3,4)

are used to control the flight process of each cycle in the pattern. Ui is the amplitude of

the periodic force τϕ(t) shown in equation (2.2), αmi is the angle of attack of the wings, and

ωi is the flapping frequency of the FWMAV for the ith (i = 1,2,3,4) flapping cycle in the

pattern, respectively.

χdynamic = [Ui αmi ωi ϕ(0) w(0) ϕ̇(0)]T (4.10)

In our algorithm, the flight pattern is set as 4 flapping cycles and each flapping cycle is

divided into 8 time segments. The optimization variables are composed of control inputs

(4.10) and state vector (2.6) of all time segments as in equation (4.11). In equation (4.11),

we have i = 1,2,3,4 and j = 1,2,3 ... , 31, 32. Hence, there are 143 optimization variables

in total. To get the initial values of the optimization variables for the optimizer, we first

generate random values of the control inputs, then calculate the values of state vector for all

time segments by using the values of randomly generated initial values of the control inputs.

vdynamic = [Ui αmi ωi ϕ(0) w(0) ϕ̇(0) z(j) ϕ(j) w(j) ϕ̇(j)]T (4.11)

The boundaries of the optimization variables used by the optimizer are shown in table 4.5.

The initial values of the control inputs are random values generated within the boundaries

listed in table 4.4. In both tables, we have i = 1,2,3,4 and j = 1,2,3 ... , 31, 32.

Compared with the static flight stage, the boundary of the vertical velocity is enlarged from

[-0.2, 0.2]m/s to [-0.5, 0.5]m/s. The boundary of the vertical velocity is enlarged for two
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reasons. First, it gives a looser constraint to the vertical velocity. In dynamic flight, we

allow a larger fluctuation of the displacement of the FWMAV, hence a looser constraint of

the vertical velocity. It allows the optimizer to search more area and get a better solution.

Second, it makes the optimization more practical in the perspective of the running time

of optimization. When we generate the initial values of the optimization variables, all 143

variables have to satisfy the lower bound and upper bound listed in table (4.5). If we keep

using the [-0.2, 0.2]m/s as the bounds of vertical velocity, according to our experiments, the

optimizer would take an extremely long time to generate the initial values of the optimization

variables which don’t violate the bounds in table (4.5). Increasing the boundary of the

vertical velocity shortens this optimization running time a lot so that the experiments could

be done in a reasonable time.

Parameters Lower Bound Upper Bound

ϕ(0) (rad) -0.5π 0.5π
w(0) (m/s) -0.5 0.5
ϕ̇(0) (rad/s) -50π 50π

Ui 0.0001 2
αmi (deg) 10 60
ωi (rad/s) 16π 100π

Table 4.4: Bounds for generating random initial values of control inputs in dynamic flight
stage

Parameters Lower Bound Upper Bound

zj (m) -Inf Inf
ϕj (rad) -0.5π 0.5π
wj (m/s) -0.5 0.5
ϕ̇j (rad/s) -Inf Inf

Ui 0 Inf
αmi (deg) 10 80
ωi (rad/s) 16π 100π

Table 4.5: Bounds for optimization variables of dynamic flight

The experiments during this dynamic flight stage mainly focus on finding more flexible

dynamic flight orbits which will introduce lower power consumption than static flight orbits.
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We improve our experiments by adjusting cost functions and constraints.

4.4.1 Dynamic Flight with Flexible Displacement

Experiment 3: Dynamic Flight without Considering Battery Model We started

the experiments by relaxing the constraint for hovering. The hovering status is measured by

the displacement z. In this experiment, we allow a larger fluctuation of the displacement of

the FWMAV. For this purpose, we divided the displacement z from other variables in the

state vector when we calculate the residual. We define the state vector without displacement

z as x’(t) in equation (4.12).

x’(t) = [ϕ(t) w(t) ϕ̇(t)]T (4.12)

When the battery model is not considered, the cost function of the optimization is adjusted

to include three terms as in equation (4.13), where R’ is the residual, P act is the average of

actual power consumption of the FWMAV, and δz is the change of the displacement. wR’,

wPact and wz are weights for
∑
R′2, P act and z, respectively.

Cost3 = wPactPact + wR′

∑
R′

2
+ wzδz

2 (4.13)

The R′2 is a 1 ×S ′sv matrix, where S ′sv is the size of the state vector without displacement

x’(t) in equation (2.6). For easier evaluation, we use the sum of all elements inside the vector

R’2 (
∑
R′2) in the cost function.

∑
R′2 is calculated as in equation (4.14).

∑
R′

2
=

S′
sv∑

j=1

R′
2
(j) (4.14)

The R′2 is calculated using the value of x’(t) at each time segment as shown in equation
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(4.15). wx’ is the weight vector for each element inside x’(t) in equation (4.12). The value

of w′x does not affect the trade off between the residual and power, as long as it keeps same

during the entire experiment. It is set as [1 1 10] in our experiments. Nseg is the total number

of time segments in a pattern, Ncyc is the total number of flapping cycles in a pattern, and

Nspp is the number time segments in a flapping cycle. They have the relationship in equation

(4.7). x’(i×T seg) is the value of x’(t) at time i×T seg (starting time of the flight is 0), where

Tseg is the time endurance of one single time segment as shown in equation (4.8).

R′
2

=

Nseg−Nspp∑
i=1

wx′ [x
′((i+Nspp)× T seg)− x′(i× T seg)]

2 (4.15)

The change of displacement δz is calculated by equation (4.16), where z(Nseg × Tseg) is the

displacement at time Nseg × Tseg and z(0) is the initial value (time = 0) of the displacement.

δz = z(Nseg × T seg)− z(0) (4.16)

In the dynamic flight stage, the constants used in the equations are listed in table 4.6.

Parameters Value

S’sv 3
Nseg 32
Ncyc 4
wx’ [1 1 10]

z(0) (m) 0

Table 4.6: Constants in dynamic flight stage

Experiment 4: Dynamic Flight with Considering Battery Model By replacing the

actual power consumption in equation (4.13) with the effective power consumption, we did

the experiments to get more accurate solutions by considering the battery model. The cost

function is adjusted and represented by equation (4.17), where P eff is the average of the

effective power consumption, which is recalculated by equation (3.6). The R′2 and δz are
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still calculated by equations (4.14) and (4.16), respectively.

Cost4 = wPeffPeff + wR′

∑
R′

2
+ wzδz

2 (4.17)

The effective power consumption P eff is calculated according to equation (3.6). wR’ and

wPeff are weights for
∑
R′2 and P eff, respectively. The R′2 is calculated in the same method

with the one in experiment 3, as in (4.14). The δz are still calculated by equation (4.16).

The constants used in this experiment are also same with experiment 3, as in table 4.6.

4.4.2 Dynamic Flight with Flexible States

Experiment 5: Dynamic Flight without Considering Battery Model In this ex-

periment, we give an even looser constraint to the flight. In experiment 3 and 4, we only do

not require the displacement z be periodic for each cycle in the pattern. But other variables

in the state vector (2.6) are still required to be periodic for each cycle. Here, in experiment

5, for all variables in the state vector (2.6), we don’t require them be periodic for each cycle,

but only for the pattern (4 cycles). In other words, the equation of the sum of the square

of residual is reformed to equation (4.19). The cost function is now represented by equation

(4.18). In the equations, P act is the average of actual power consumption of the FWMAV.

wRpat and wPact are weights for
∑
Rpattern

2 and P act respectively.

Cost5 = wPactPact + wRpat

∑
R2
pattern

(4.18)

∑
R2
pattern = δz2 + δφ2 + δw2 + δφ̇2 (4.19)

The δz is the change of the displacement z, which is calculated by equation (4.16). The

δφ, δw and δφ̇ are calculated by equations (4.20), (4.21) and (4.22), respectively. Nseg ×
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Tseg is the ending time of the pattern. The constants used in this experiment are same with

experiment 3, as in table 4.6.

δφ = φ(Nseg × T seg)− φ(0) (4.20)

δw = w(Nseg × T seg)− w(0) (4.21)

δφ̇ = φ̇(Nseg × T seg)− φ̇(0) (4.22)

Experiment 6: Dynamic Flight with Considering Battery Model By replacing

the actual power consumption in equation (4.18) with the effective power consumption, we

did the experiments to get more accurate solutions by considering the battery model. The

cost function is adjusted and represented by equation (4.23), where P 6 is the average of the

effective power consumption, which is recalculated by equation (3.6). The
∑
Rpattern

2 and z,

φ, w, φ̇ are still calculated by equations (4.19) and (4.16), (4.20), (4.21), (4.22) respectively.

Cost6 = wPeffPeff + wRpat

∑
Rpattern

2 (4.23)

4.4.3 Dynamic Flight with Residual as a Constraint

Experiment 7: Dynamic Flight without Considering Battery Model As men-

tioned in previous sections, the pattern, which includes 4 cycles and 8 time segments for

each cycle, should be reproducible so that this pattern can be applied to a long time vertical

flight. For making the pattern reproducible, the smaller the sum of the square of residual of

the pattern in equation (4.19) is, the better.
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With previous methodology, a reproducible orbit is not easy to achieve by adjusting the

weights of terms in the cost function. A more strait-forward method is to restrain the

residual of the pattern as a nonlinear equality constraint. In other words, we make the last

state of the pattern equal to the initial state in the nonlinear constraint file. Meanwhile, we

modify the cost function to only contain the power consumption. When the battery model

is not considered, the cost function is represented by equation (4.24).

Cost7 = Pact (4.24)

To be noted, the bounds for flapping angle φ is also changed from [-0.5π, 0.5π] to a

smaller range [-0.4π, 0.4π]. The optimizer only uses part of the data of state vector (x(i

×T seg)(i=0,1,2...,31,32)) instead of the complete data of state vector calculated by ode45.

When we plot the orbit by using the complete data of the state vector, we may find that the

flapping angle exceeds the boundaries [-0.5π, 0.5π]. And [-0.5π, 0.5π] are hard boundaries

which should not be broken physically. This problem can be avoid by using smaller bounds

for the flapping angle. This is also applicable to all previous experiments if the flapping

angle also exceeds the boundaries [-0.5π, 0.5π].

Experiment 8: Dynamic Flight with Considering Battery Model When the bat-

tery model is considered, the cost function is represented by equation (4.25). As the only

term in the cost function is the power consumption, there should be no much difference of

using actual power consumption and using effective power consumption.

Cost8 = Peff (4.25)
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Chapter 5

Experimental Results

The flight dynamics of FWMAVs are represented by multi-body, Nonlinear Time-Periodic

(NLTP) system models. In order to evaluate the contribution of including the battery

model into the optimization, we implemented two FWMAV system models. The first one

only includes the FWMAV mechanical dynamics. The second one also considers battery

characteristics except for the FWMAV mechanical dynamics.

Through experiments, we found that the optimum solutions found by the optimizer greatly

depend on the initial guess of starting point (state vector at time zero) of the flying orbit. If

we give the optimizer a certain initial guess of starting point, the optimizer would always give

out the periodic orbit which is close to the initial guess and very hard to find other periodic

orbits. In other words, it is stuck in the local minimum. In this case, the optimizer only

sees one periodic orbit because of the certain initial guess. The power consumption is then

also settled down once the orbit is found. Hence, there is no flexibility at all for optimizing

the power consumption while capturing a periodic orbit in this case. In the experiments for

dynamic flight, although we allow the FWMAV to have more flexible flying strategy, the

periodic orbit close to the initial guess of the starting point is still the best solution it can
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find. Hence, in all of the experiments described in the following sections, we find the global

minimum solution by the means of generating 100 appropriate random initial guesses of the

starting point.

Also, the sampling rate (or, the number of time segments) is also adjusted to balance the

accuracy of the model and the optimization running time. With a larger sampling rate, the

model is more accurate, but the optimizer would need a longer time to find the solution. In

our experiments, we set the flight time for the optimization as 4 flapping cycles and each

flapping cycle uses 8 samples.

5.1 Experimental Setup

The FWMAV model equations defined in chapter 2 contain multiple parameters which are

defined by the specifications of DelFlyII, which is designed by the Micro Air Vehicles Lab-

oratory of Delft University of Technology. The morphological and the wing planform are

shown in figure 2.2. The specification of DelFlyII used in this thesis are listed in table 2.1.

The model of FWMAV and battery represented in chapter 2 and chapter 3, as well as our

FWMAV flight control described in chapter 4 are implemented in MATLAB [17]. The flight

dynamics of FWMAVs are represented by multi-body, NLTP system model, which is written

in a state-space form as in equation (2.4). It is solved by the MATLAB ode45 solver. The

optimizations are preformed by the MATLAB fmincon solver. The average running time of

the fmincon solver is around 3 hours per each optimization in our experiments.
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5.2 Static Vertical Flight

During the static vertical flight, the control inputs, represented by the equation (4.2), stay

the same during the flight pattern.

In our experiments, the flight pattern is set as 4 cycles. Each cycle is divided into 8 time

segments. For each time segment, the state variables in equation (2.6) are calculated based

on the model in equation (2.4) by using ode45. For experiments of static flight stage, the

initial values of the control inputs are random values generated within the boundaries listed

in table 4.1. The boundaries of the optimization variables of the optimizer are shown in

table 4.2.

5.2.1 Static Flight Orbits Analysis

Experiment 1 - Static Flight without Considering Battery Model In this section,

we presents the experimental results of experiment 1 described in chapter 4. The controller

sets the control variables in the FWMAV for optimizing the cost function and reaching a

target. When the battery model is not considered, the cost function of the optimization is

composed of the two parts as in equation (4.4).

In order to find the global optimal solution, We run the optimizations 100 times with different

random initial values of the control input variables, then choose the final solution out of the

100 sets of solutions which introduce minimal Cost1. With different settings of the weights,

we get different solutions as shown in table 5.1, as well as the values of random initial control

inputs in table 5.2 which introduce the best solution out of 100 simulations.

Except the conditions that one of the wR and wPact is zero, when we change the weights, the

optimizer gives results which are very close to each other even when the values of random
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initial variables vary a lot. This is because the static flight itself doesn’t have much flexibility

when we optimize the power consumption while capturing a static hovering periodic orbit.

These two strict conditions, the orbit is periodic and the FWMAV can hover, make the poor

flexibility of the optimization, hence the very close solutions.

wR wPact U αm (rad) ω (rad/s) ϕ(0) (rad) w(0) (m/s) ϕ̇(0) (rad/s)

1 0 0.0788 0.5831 93.4523 -0.5158 0.0408 21.3174
0 1 0.0000 0.4008 312.8364 1.5281 -0.0233 -69.6945

100 1 0.0494 0.3671 50.4013 -1.3595 0.0743 23.1387
10 1 0.0498 0.3461 50.2682 -1.2187 0.0752 21.8462
1 1 0.0496 0.3325 50.2655 -1.4513 0.1195 20.8708
1 10 0.0485 0.3296 50.2655 -1.2146 0.1990 20.5106
1 100 0.0485 0.3299 50.2655 -1.2166 0.1939 20.4793

Table 5.1: Experiment 1 - Control inputs under different weights

wR wPact U αm (rad) ω (rad/s) ϕ(0) (rad) w(0) (m/s) ϕ̇(0) (rad/s)

1 0 0.0721 0.5663 88.8209 -0.3271 -0.1217 16.9859
0 1 0.1564 0.8960 261.7321 1.4324 -0.1573 -38.3165

100 1 0.1079 0.4620 137.6293 0.8453 -0.0818 -50.3165
10 1 0.1035 0.6120 120.2830 0.0256 -0.0795 -36.0361
1 1 0.0731 0.3470 81.5081 -1.0087 0.0149 9.4111
1 10 0.1307 0.5560 175.3444 -0.3793 -0.1151 17.8239
1 100 0.1503 0.4273 168.5789 -0.1530 0.1684 6.7778

Table 5.2: Experiment 1 - Random initial control inputs under different weights

The average of actual power consumption P act, the average of effective power consumption

P eff and the sum of the square of residual
∑
R2 are calculated using the results in table

5.1 are presented in the table 5.3. Although the solutions are very close to each other, the

tradeoff between the two parts in the cost function can still be seen. Figure 5.1 shows the

tradeoff of the results more clearly. With smaller wPact, we get larger P act and smaller
∑
R2.

The smaller
∑
R2 means a more periodic pattern of the flight orbit. When wPact is given 0,

we get a very small residual value which gives a very nice periodic hovering orbit and a very

small average of vertical velocity (0.0004985 m/s).
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Figure 5.1: Experiment 1 - The tradeoff between actual power consumption and residual

wR wPact P act (W) P eff (W)
∑
R2

1 0 1.1531 1.5815 2.4549E-10
0 1 1.9987E-06 2.087E-07 3838.7

100 1 0.8155 1.0458 1.1991E-07
10 1 0.8104 1.0404 0.00001099
1 1 0.7905 1.0113 0.0011
1 10 0.7578 0.9611 0.007
1 100 0.7573 0.9603 0.0097

Table 5.3: Experiment 1 - The power consumption and residual

We put the solution (when wPact=0) into the FWMAV model in equation (2.4) and run the

model for 20 flapping cycles using ode45. Figure 5.2 is the orbit we plot using part of the

data (x(i ×T seg)(i=0,1,2...,31,32)), which are also the part of the data the optimizer used.

To be noted, this orbit may not accurately reflect the actual flight status. The reason is

that the optimizer only use part data of the state vector x(t) instead of the full data of state

vector x(t) calculated by ode45, for the purpose of getting less optimization running time.

It’s a tradeoff between the accuracy and optimization running time. Based on the solution

(when wPact=0) find by the optimizer, we also plot the orbit using all data of state vector
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x(t) calculated by ode45, as shown in figure 5.3.

Figure 5.2: Experiment 1 - The orbit of 4 cycles using part state vector data (wPact=0)

Figure 5.3: Experiment 1 - The orbit of 20 flapping cycles using complete state vector data
(wPact=0)

5.2.2 Battery Model Effection Analysis

Experiment 2 - Static Flight with Considering Battery Model In this section,

we presents the experimental results of experiment 2 described in chapter 4. To get more

accurate solutions, the battery model is considered in experiment 2. The cost function is

adjusted and represented by equation (4.9), where P eff is the average of the effective power

consumption, which is recalculated by equation (3.6). The term of residual
∑
R2 is still

calculated by equations (4.5).
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We still run the optimizations 100 times with different random initial values of the control

input variables, then choose the solution out of the 100 sets of solutions which introduce

minimal Cost2. In addition, we also run this optimization by using the initial values in table

5.2 from the model without battery. By comparing this solution with the one chosen from

100 optimizations with random initial values, the final solution is the one which introduces

the minimal Cost2. With battery model considered, for different settings of the weights, we

get different solutions as shown in table 5.4, as well as the values of initial control inputs in

table 5.5.

wR wPeff U αm (rad) ω (rad/s) ϕ(0) (rad) w(0) (m/s) ϕ̇(0) (rad/s)

1 0 0.0788 0.5831 93.4523 -0.5158 0.0408 21.3174
0 1 0.0000 0.4243 312.7124 1.5297 0.0162 -75.2778

100 1 0.0495 0.3569 50.2664 -1.2512 0.0731 22.5453
10 1 0.0496 0.3527 50.2694 -1.1583 0.0795 22.2601
1 1 0.0489 0.3418 50.2655 -1.1421 0.1478 21.4065
1 10 0.0485 0.3301 50.2655 -1.1979 0.1990 20.5391
1 100 0.0485 0.3297 50.2655 -1.1982 0.1916 20.4517

Table 5.4: Experiment 2 - Control inputs under different weights

wR wPeff U αm (rad) ω (rad/s) ϕ(0) (rad) w(0) (m/s) ϕ̇(0) (rad/s)

1 0 0.0721 0.5663 88.8209 -0.3271 -0.1217 16.9859
0 1 0.1564 0.8960 261.7321 1.4324 -0.1573 -38.3165

100 1 0.1319 0.4518 167.7397 -1.2026 -0.1682 -5.8743
10 1 0.1578 0.9067 189.5122 -0.7557 0.0368 -16.9896
1 1 0.0731 0.3470 81.5081 -1.0087 0.0149 9.4111
1 10 0.1307 0.5560 175.3444 -0.3793 -0.1151 17.8239
1 100 0.1503 0.4273 168.5789 -0.1530 0.1684 6.7778

Table 5.5: Experiment 2 - Random initial control inputs under different weights

The average of actual power consumption P act, the average of effective power consumption

P eff and the sum of the square of residual
∑
R2 are presented in the table 5.6. The tradeoff

between the two parts in the cost function can also be seen, as in figure 5.4. With smaller

wPeff, we get larger P eff and smaller
∑
R2.

Compare table 5.3 and table 5.6, we can see that the actual power consumption of the system
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wR wPeff P act (W) P eff (W)
∑
R2

1 0 1.1531 1.5815 2.4553E-10
0 1 2.9336E-06 3.3164E-07 4932

100 1 0.813 1.043 4.1627E-07
10 1 0.8096 1.0383 2.7285E-05
1 1 0.7802 0.9941 0.0024
1 10 0.7577 0.961 0.007
1 100 0.7571 0.96 0.0122

Table 5.6: Experiment 2 - The power consumption and residual

Figure 5.4: Experiment 2 - The tradeoff between effective power consumption and residual

when we consider the battery model is slightly smaller than the actual power consumption

of the system when we did not consider the battery model. The effective power is larger

than the actual power when its value is larger than the threshold. In our experiments, this

threshold is 0.4810W. It is calculated using the battery model by making effective power

consumption equal to actual power consumption. Replacing the actual power consumption

with the effective power consumption in the cost function is equivalent to giving a larger

weight to the power consumption term, hence the optimizer gives a solution with a smaller

power consumption. Although it is not a large improvement, it is always good to take the
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battery model into consideration to get more accurate and better solution.

5.3 Dynamic Vertical Flight

The results of experiment 1 and experiment 2 have proved that the static vertical flight

optimization doesn’t have much flexibility because of the two strict constraints: the orbit

is periodic and the FWMAV can hover. In static flight stage, the solutions under different

settings of weights are very close to each other and there is no much improvement of power

consumption. Hence, in dynamic flight stage, we relaxed these two constraints to allow the

FWMAV to fly in more flexible vertical orbits and expect the optimizer to find dynamic

flight orbits with smaller power consumption than static flight orbits.

In the dynamic flight stage, we introduce more control inputs to control each flapping cycle

in the pattern separately. The control inputs now become (4.10), which is composed by the

control inputs for each flapping cycle and the initial state of the entire flight.

5.3.1 Dynamic Flight with Flexible Displacement

Experiment 3 - Dynamic Flight without Considering Battery Model In this sec-

tion, we presents the experimental results of experiment 3 described in chapter 4. When

the battery model is not considered, the cost function of the optimization is shown as in

equation (4.13).

Same as experiments for static flight, we run the optimizations 100 times with different

random initial values of the control input variables, then choose the final solution out of the

100 sets of solutions which introduce minimal Cost3. The solutions are shown in table 5.7

for different settings of the weights, as well as the values of random initial control inputs in
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table 5.8 which introduce the best solution out of 100 simulations.

wR’ wPact cycle(i) Ui
αmi ωi ϕ(0) w(0) ϕ̇(0)

(rad) (rad/s) (rad) (m/s) (rad/s)

1 0

i = 1 0.1181 0.7094 149.2505

-0.3272 0.0229 17.5436
i = 2 0.1181 0.7094 149.2503
i = 3 0.1181 0.7094 149.2502
i = 4 0.1181 0.7094 149.2502

0 1

i = 1 0.0000 0.7678 305.0217

0.0120 -0.4295 -0.0003
i = 2 0.0000 0.8481 274.7026
i = 3 0.0000 0.7911 299.4220
i = 4 0.0000 0.8220 292.7134

100 1

i = 1 0.0001 1.3591 314.1590

0.0006 -0.3909 -0.0001
i = 2 0.0001 1.3381 314.1591
i = 3 0.0001 0.2321 314.1591
i = 4 0.0001 0.2096 314.1590

10 1

i = 1 0.0006 1.3944 314.1590

0.0042 -0.3817 -0.0006
i = 2 0.0006 1.3842 314.1591
i = 3 0.0006 0.1860 314.1591
i = 4 0.0006 0.1762 314.1590

1 1

i = 1 0.0492 0.3303 50.2660

-1.2228 0.1452 20.6494
i = 2 0.0492 0.3301 50.2667
i = 3 0.0492 0.3300 50.2672
i = 4 0.0492 0.3298 50.2675

1 10

i = 1 0.0497 0.3494 50.2707

-1.2303 0.0788 22.0468
i = 2 0.0497 0.3494 50.2708
i = 3 0.0497 0.3494 50.2709
i = 4 0.0497 0.3494 50.2709

1 100

i = 1 0.0484 0.4188 50.2694

-0.6513 0.0844 26.4360
i = 2 0.0484 0.4188 50.2694
i = 3 0.0484 0.4188 50.2694
i = 4 0.0484 0.4188 50.2694

Table 5.7: Experiment 3 - Control inputs under different weights

The average of actual power consumption P act, the average of effective power consumption

P eff, the sum of the square of residual
∑
R′2 and δz are calculated using the results in table

5.7 are presented in the table 5.9. As there are three items in the cost function, the tradeoff

is not necessarily shown.
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wR’ wPact cycle(i) Ui
αmi ωi ϕ(0) w(0) ϕ̇(0)

(rad) (rad/s) (rad) (m/s) (rad/s)

1 0

i = 1 0.0782 0.3591 229.4566

-0.6882 -0.2898 26.5908
i = 2 0.0834 0.8742 211.6721
i = 3 0.1257 0.5227 193.8777
i = 4 0.2921 0.7888 185.1599

0 1

i = 1 0.3816 0.3099 306.8500

-1.2730 0.4118 15.5052
i = 2 0.2875 0.4537 287.7536
i = 3 0.4322 0.3114 293.3811
i = 4 0.3920 0.1922 296.2336

100 1

i = 1 0.1687 0.6431 253.7519

-1.2669 -0.4464 15.6696
i = 2 0.1142 0.9930 103.0078
i = 3 0.0262 0.9306 227.5075
i = 4 0.0225 0.4338 203.2910

10 1

i = 1 0.2347 0.9919 300.9255

-0.8846 0.2722 12.8957
i = 2 0.2677 0.7930 308.2358
i = 3 0.3424 0.8906 313.3759
i = 4 0.0077 0.7998 283.4552

1 1

i = 1 0.0886 0.7798 269.1679

-1.1552 0.0103 60.8832
i = 2 0.3810 1.0140 230.1440
i = 3 0.0627 0.9554 214.7371
i = 4 0.1739 0.4036 255.1217

1 10

i = 1 0.1718 0.1904 236.6020

0.0797 -0.4305 16.4276
i = 2 0.2037 0.4636 291.5922
i = 3 0.1046 0.4448 242.7237
i = 4 0.0443 0.3749 131.2082

1 100

i = 1 0.0291 0.6217 170.7458

1.1884 -0.4675 -21.5364
i = 2 0.2886 0.2143 233.8591
i = 3 0.3174 0.1848 309.7625
i = 4 0.2353 0.9810 219.9779

Table 5.8: Experiment 3 - Random initial control inputs under different weights

Experiment 4 - Dynamic Flight with Considering Battery Model In this section,

we presents the experimental results of experiment 4 described in chapter 4. When the

battery model is considered, the cost function of the optimization is shown as in equation

(4.17).

We still run the optimizations 100 times with different random initial values of the control

input variables, then choose the solution out of the 100 sets of solutions which introduce
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wR’ wPact P act (W) P eff (W)
∑
R′2 δz (m)

1 0 1.5474 2.2611 1.8377E-07 1.1529E-04
0 1 3.1957E-08 1.4926E-09 1.1225 7.322E-04

100 1 1.04E-07 6.42E-09 0.9604 8.41E-05
10 1 9.15E-06 1.38E-06 0.9602 8.19E-04
1 1 0.7781 0.9924 6.56E-05 0.0406
1 10 0.8092 1.0381 8.44E-07 0.0043
1 100 0.8302 1.0633 3.27E-08 6.32E-04

Table 5.9: Experiment 3 - The power consumption and residual

minimal Cost4. In addition, we also run this optimization by using the initial values in

table 5.8 from experiment 3. By comparing this solution with the one chosen from 100

optimizations with random initial values, the final solution is the one which introduces the

minimal Cost4. With battery model considered, for different settings of the weights, we get

solutions as shown in table 5.10, as well as the values of initial control inputs in table 5.11.

The average of actual power consumption P act, the average of effective power consumption

P eff, the sum of the square of residual
∑
R′2 and δz are presented in the table 5.12.

As expected, by comparing table 5.9 and table 5.12, we can see that the actual power

consumption of the system when we consider the battery model is slightly smaller than

the actual power consumption of the system when we did not consider the battery model.

Although it is not a large improvement, it is always good to take the battery model into

consideration.

However, by comparing the results with the results for static flight, we still couldn’t see

more flexibility here. Inside the pattern, all cycles have almost same values for the control

inputs. So, the results proved that the constraints are still too strict and are still restraining

the flight flexibility. Hence, we made more improvements and designed the experiments in

following sections.
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wR’ wPeff cycle(i) Ui
αmi ωi ϕ(0) w(0) ϕ̇(0)

(rad) (rad/s) (rad) (m/s) (rad/s)

1 0

i = 1 0.1147 0.7221 143.8430

-0.3360 0.0249 18.6190
i = 2 0.1147 0.7221 143.8428
i = 3 0.1147 0.7221 143.8427
i = 4 0.1147 0.7221 143.8426

0 1

i = 1 0.0000 1.3086 267.0573

-1.4446 0.3348 617.6857
i = 2 0.0000 0.9669 304.8888
i = 3 0.0000 0.7399 299.6291
i = 4 0.0000 0.7311 205.0992

100 1

i = 1 0.0004 1.3928 314.1590

-0.0005 -0.3852 -0.0005
i = 2 0.0004 1.3819 314.1591
i = 3 0.0004 0.1874 314.1591
i = 4 0.0004 0.1778 314.1590

10 1

i = 1 0.0023 1.3961 314.1591

-0.0066 -0.3479 0.0519
i = 2 0.0023 1.2651 314.1590
i = 3 0.0023 0.2723 314.1592
i = 4 0.0023 0.1749 314.1430

1 1

i = 1 0.0561 0.7700 314.1592

-0.0233 -0.2294 0.7216
i = 2 0.0561 0.7027 314.0741
i = 3 0.0561 0.6393 314.0298
i = 4 0.0561 0.6045 313.9585

1 10

i = 1 0.0495 0.3525 50.2820

-1.3415 0.0837 22.2284
i = 2 0.0495 0.3525 50.2821
i = 3 0.0495 0.3525 50.2822
i = 4 0.0495 0.3525 50.2822

1 100

i = 1 0.0497 0.3514 50.2688

-0.8677 0.0726 22.1924
i = 2 0.0497 0.3514 50.2688
i = 3 0.0497 0.3514 50.2688
i = 4 0.0497 0.3514 50.2688

Table 5.10: Experiment 4 - Control inputs under different weights

5.3.2 Dynamic Flight with Flexible States

Experiment 5 - Dynamic Flight without Considering Battery Model In this sec-

tion, we presents the experimental results of experiment 5 described in chapter 4. When

the battery model is not considered, the cost function of the optimization is shown as in

equation (4.18).
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wR’ wPeff cycle(i) Ui
αmi ωi ϕ(0) w(0) ϕ̇(0)

(rad) (rad/s) (rad) (m/s) (rad/s)

1 0

i = 1 0.1167 0.4003 151.6400

-0.7435 0.0355 35.2048
i = 2 0.0863 0.9543 235.0855
i = 3 0.3957 0.6311 261.0183
i = 4 0.1145 0.2210 227.7031

0 1

i = 1 0.0004 1.0412 112.0099

-1.4614 -0.2420 130.3366
i = 2 0.4364 1.0157 286.8618
i = 3 0.0353 0.6392 263.0845
i = 4 0.1100 0.6582 161.3053

100 1

i = 1 0.0867 0.7911 301.1131

-1.0584 -0.4578 -19.0106
i = 2 0.2396 1.0430 300.3242
i = 3 0.0292 1.0071 238.6175
i = 4 0.3057 0.7728 254.3935

10 1

i = 1 0.2259 0.5047 208.1798

0.5846 0.4300 -9.2962
i = 2 0.3158 0.3833 291.4107
i = 3 0.1426 0.8521 303.9895
i = 4 0.5314 0.5409 309.1841

1 1

i = 1 0.0335 0.8238 256.5005

1.4037 -0.2648 -66.8989
i = 2 0.2322 0.1859 228.5266
i = 3 0.1140 0.4958 258.0570
i = 4 0.2798 0.9827 251.6505

1 10

i = 1 0.2713 0.2519 280.6682

-0.9636 0.4134 13.9248
i = 2 0.2050 0.4787 251.8486
i = 3 0.5066 0.5348 304.6421
i = 4 0.1458 0.7445 244.2045

1 100

i = 1 0.0980 0.2631 164.0674

-0.6861 -0.1987 23.6976
i = 2 0.4835 0.2046 298.7946
i = 3 0.1841 0.7375 281.8627
i = 4 0.0145 0.7401 278.3242

Table 5.11: Experiment 4 - Random initial control inputs under different weights

The optimizations are still run 100 times with different random initial values of the control

input variables, then choose the solution out of the 100 sets of solutions which introduce

minimal Cost5. With different settings of the weights, we get solutions as shown in table

5.13, as well as the values of initial control inputs in table 5.14.

The average of actual power consumption P act, the average of effective power consumption

P eff, the revised sum of square of residual
∑
Rpattern

2 are presented in the table 5.15.
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wR’ wPeff P act (W) P eff (W)
∑
R′2 δz (m)

1 0 1.5426 2.2486 1.86E-07 1.1637E-04
0 1 6.19E-07 5.12E-08 3.74E+05 -4.39E-04

100 1 4.06E-06 5.20E-07 0.9603 5.46E-04
10 1 1.63E-04 4.16E-05 0.9594 0.0035
1 1 0.0985 0.0904 0.8327 0.0111
1 10 0.8077 1.0353 1.87E-06 0.0065
1 100 0.8122 1.0425 2.83E-08 8.62E-04

Table 5.12: Experiment 4 - The power consumption and residual

Experiment 6 - Dynamic Flight with Considering Battery Model In this section,

we presents the experimental results of experiment 6 described in chapter 4. When the

battery model is considered, the cost function of the optimization is shown as in equation

(4.23).

We run the optimizations 100 times with different random initial values of the control input

variables, then choose the solution out of the 100 sets of solutions which introduce minimal

Cost6. In addition, we also run this optimization by using the initial values in table 5.14

from the model without battery. By comparing this solution with the one chosen from 100

optimizations with random initial values, the final solution is the one which introduces the

minimal Cost6. With battery model considered, for different settings of the weights, we get

solutions as shown in table 5.16, as well as the values of initial control inputs in table 5.17.

The average of actual power consumption P act, the average of effective power consumption

P eff and the sum of the square of residual
∑
Rpattern

2 are presented in the table 5.18.

Comparing the results with the orbits with only flexible displacement, we get more flexible

orbits with smaller power consumption. The patterns (4 cycles) are also reproducible to

some extend. Figure 5.5 are the pattern (4 cycles) gotten from the FWMAV model when

considering battery model as well as setting [wRpat=100, wPeff=1]. And figure 5.6 and 5.7

are orbits by running the FWMAV model in 5 patterns (20 cycles) and 50 patterns (200
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wRpat wPact cycle(i) Ui
αmi ωi ϕ(0) w(0) ϕ̇(0)

(rad) (rad/s) (rad) (m/s) (rad/s)

1 0

i = 1 0.1669 0.7451 274.8118

0.1694 -0.1002 -2.4122
i = 2 0.1675 0.7344 281.0717
i = 3 0.1224 0.6195 138.8545
i = 4 0.1021 0.6913 99.1097

0 1

i = 1 0.0000 0.6514 308.2942

0.9639 -0.4564 -41.8848
i = 2 0.0000 0.7073 310.1534
i = 3 0.0000 0.8347 312.0582
i = 4 0.0000 0.4294 106.4339

100 1

i = 1 0.0000 1.3135 314.1589

0.0060 -0.3824 0.1447
i = 2 0.0000 1.2374 314.1589
i = 3 0.0000 0.1794 314.1589
i = 4 0.0000 0.1763 314.1589

10 1

i = 1 0.0000 1.0475 314.1590

0.0005 -0.3821 -0.0130
i = 2 0.0000 1.0351 314.1590
i = 3 0.0005 0.1796 314.1590
i = 4 0.0015 0.1757 314.1590

1 1

i = 1 0.0000 0.5728 250.7047

0.9122 0.1612 28.0554
i = 2 0.0554 0.2688 62.6762
i = 3 0.0000 0.3045 314.1213
i = 4 0.0000 0.4038 314.1212

1 10

i = 1 0.0000 0.7198 262.4754

1.0482 -0.0163 24.8151
i = 2 0.0629 0.3149 65.6189
i = 3 0.0000 0.3876 314.1589
i = 4 0.0000 0.5429 314.1589

1 100

i = 1 0.0000 0.7247 257.0584

1.0930 -0.0481 21.9615
i = 2 0.0626 0.3337 64.2646
i = 3 0.0000 0.4126 314.1256
i = 4 0.0000 0.6422 314.1275

Table 5.13: Experiment 5 - Control inputs under different weights

cycles), respectively. All of orbits in above figures are using complete data of state vectors

calculated by ode45.

The δz (when [wRpat=100, wPeff=1]) is 9.1258e-04 meters in the duration of 1 pattern

(0.1668 seconds) when we calculate it using the sampled state vector data. It is not very

large, but it will get a lot larger when we apply the control variables to the FWMAV model

and plot the orbits with complete state vector data calculated by ode45. We can see the
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Figure 5.5: Experiment 6 - The dynamic flight with flexible states (1 pattern, [wRpat=100,
wPeff=1])
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Figure 5.6: Experiment 6 - The dynamic flight with flexible states (5 patterns, [wRpat=100,
wPeff=1])
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Figure 5.7: Experiment 6 - The dynamic flight with flexible states (50 patterns, [wRpat=100,
wPeff=1])
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wRpat wPact cycle(i) Ui
αmi ωi ϕ(0) w(0) ϕ̇(0)

(rad) (rad/s) (rad) (m/s) (rad/s)

1 0

i = 1 0.0118 0.9554 283.8770

-1.0707 0.3283 70.7451
i = 2 0.3722 0.7068 286.4628
i = 3 0.0653 0.6108 150.9396
i = 4 0.1406 0.9382 92.5763

0 1

i = 1 0.2711 0.8539 292.8144

-1.1979 0.4510 19.0157
i = 2 0.3119 0.7108 251.2721
i = 3 0.1059 1.0187 261.6941
i = 4 0.0511 0.8007 117.2954

100 1

i = 1 0.1199 0.9988 102.0776

0.1665 0.1927 -22.7769
i = 2 0.1898 0.8234 259.6352
i = 3 0.1735 0.3505 140.7444
i = 4 0.0580 0.5794 106.9839

10 1

i = 1 0.0943 0.6342 103.6874

0.0187 0.1114 -21.2570
i = 2 0.3094 0.8412 262.3302
i = 3 0.2643 0.4163 262.3918
i = 4 0.1191 0.9908 225.3855

1 1

i = 1 0.1446 0.9825 267.8893

-1.0626 -0.4511 33.0990
i = 2 0.0105 0.3631 93.3155
i = 3 0.2695 0.8331 214.0811
i = 4 0.2946 0.8975 286.7589

1 10

i = 1 0.2876 0.1879 285.9967

-0.3446 -0.2127 15.0246
i = 2 0.1123 0.8318 85.2470
i = 3 0.2781 0.2018 235.0910
i = 4 0.1186 0.5578 283.5652

1 100

i = 1 0.2426 0.7842 293.4574

-1.0495 0.3751 3.8779
i = 2 0.1416 0.5227 117.0628
i = 3 0.1292 0.2805 245.8052
i = 4 0.1659 0.3807 243.8042

Table 5.14: Experiment 5 - Random initial control inputs under different weights

obvious drop of the altitude from the figure 5.7, which are drawn using the complete state

vector data calculated by ode45. The altitude drops 0.0009 meters in 1 pattern duration

(0.1668 seconds) and even 0.0073 meters in 5 pattern duration (0.8341 seconds). We let

the FWMAV model run for 50 pattern duration (8.341 seconds), the altitude drops 0.0899

meters, which is quite large.
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wRpat wPact P act (W) P eff (W)
∑
Rpattern

2

1 0 1.512 2.2166 5.82E-12
0 1 5.12E-08 2.49E-09 1.21E+03

100 1 1.26E-08 4.66E-10 0.6145
10 1 1.76E-05 3.69E-06 0.6143
1 1 0.2168 0.2978 1.80E-02
1 10 0.2903 0.4107 3.12E-04
1 100 0.3025 0.4266 3.15E-06

Table 5.15: Experiment 5 - The power consumption and residual

5.3.3 Dynamic Flight with Residual as a Constraint

Experiment 7 and 8 - Dynamic Flight with Residual as a Constraint In this

section, we presents the experimental results of experiment 7 and experiment 8 described in

chapter 4.The cost function of the optimization is shown as in equation (4.24) and (4.25),

respectively.

In table 5.19, we present the solutions which are gotten out of 100 times optimizations with

different random initial values, with and without considering the battery model. Values in

table 5.20 are the random initial values corresponding to the solutions in table 5.19.

Table 5.21 listed the average of actual power consumption P act, the average of effective power

consumption P eff, the sum of square of residual for the pattern
∑
Rpattern

2 , as well as the

value of δz, δφ, δw, δφ̇ from the optimization with and without considering battery model.

They are calculated by the sampled state vector data, which is used by the optimization.

The data in table 5.21 shows that the values of δz, δφ, δw, δφ̇ are extremely small. Hence,

the pattern should be reproducible. It is proved by applying the solutions in table 5.19 into

the FWMAV model and plot the orbit using the complete data of state vector. Here, we use

the solutions that we get when we take the battery model into account. Figure 5.8 shows the

orbit, vertical velocity, flapping angle and the altitude of the FWMAV in only one pattern (4

cycles). We let the model also run for 5 patterns and 50 patterns, the results are presented
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wRpat wPeff cycle(i) Ui
αmi ωi ϕ(0) w(0) ϕ̇(0)

(rad) (rad/s) (rad) (m/s) (rad/s)

1 0

i = 1 0.1080 0.7788 140.9872

-0.3051 -0.0442 2.8505
i = 2 0.1185 0.6464 140.6310
i = 3 0.1224 0.8042 207.5724
i = 4 0.0979 0.7382 101.2937

0 1

i = 1 0.0000 0.7253 110.7192

-1.5533 0.0534 164.6981
i = 2 0.0000 1.1432 313.1058
i = 3 0.0000 0.5643 288.4891
i = 4 0.0000 0.3731 177.5763

100 1

i = 1 0.0000 1.1564 314.1590

0.0001 -0.3864 -0.0094
i = 2 0.0000 0.1848 314.1590
i = 3 0.0003 0.1794 314.1590
i = 4 0.0007 0.1772 314.1590

10 1

i = 1 0.0000 0.9210 314.1589

0.0014 -0.3689 -0.0534
i = 2 0.0000 0.8948 314.1589
i = 3 0.0017 0.1755 314.1589
i = 4 0.0039 0.1749 314.1589

1 1

i = 1 0.0000 0.6752 242.2963

0.9491 0.1201 26.6640
i = 2 0.0497 0.2936 57.9665
i = 3 0.0000 0.3116 314.1590
i = 4 0.0000 0.4329 314.1590

1 10

i = 1 0.0000 0.8167 261.9449

1.0804 -0.0231 22.8320
i = 2 0.0588 0.3424 61.4924
i = 3 0.0000 0.4113 314.1590
i = 4 0.0000 0.5984 314.1590

1 100

i = 1 0.0000 0.8323 259.5602

1.1184 -0.0603 20.7596
i = 2 0.0599 0.3586 61.2325
i = 3 0.0000 0.4388 314.1585
i = 4 0.0000 0.6804 314.1578

Table 5.16: Experiment 6 - Control inputs under different weights

in figure 5.9 and 5.10, respectively.

When the battery model is considered, the δz in table 5.21 is 1.88E-15 meters in the duration

of 1 pattern (0.1418 seconds). Like the experiment 6, it also gets larger when we apply the

control variables to the FWMAV model and plot the orbits with complete data calculated by

ode45. By applying the solution of experiment 8 to the FWMAV model, we get the complete

and accurate data of the state vector. The displacement δz is shown in table 5.22. We can
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Figure 5.8: Experiment 8 - The dynamic flight orbit in 1 pattern
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Figure 5.9: Experiment 8 - The dynamic flight orbit in 5 patterns
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Figure 5.10: Experiment 8 - The dynamic flight orbit in 50 patterns
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wRpat wPeff cycle(i) Ui
αmi ωi ϕ(0) w(0) ϕ̇(0)

(rad) (rad/s) (rad) (m/s) (rad/s)

1 0

i = 1 0.1457 0.7020 197.1088

-0.1591 0.3797 -42.2735
i = 2 0.1551 0.2273 149.2051
i = 3 0.2657 0.3344 225.1918
i = 4 0.1543 0.9523 119.6312

0 1

i = 1 0.0551 0.7141 86.7590

-0.3410 0.3268 82.4673
i = 2 0.2673 0.6326 263.4853
i = 3 0.0022 0.5880 305.5785
i = 4 0.1113 0.8119 182.0026

100 1

i = 1 0.1664 0.7217 128.0523

-0.6472 0.0355 4.6730
i = 2 0.0124 0.3685 123.1282
i = 3 0.2710 0.5283 257.5323
i = 4 0.0412 0.6232 125.9760

10 1

i = 1 0.1001 0.9812 254.6646

0.2374 -0.1315 -40.7649
i = 2 0.3339 0.9135 239.7476
i = 3 0.0049 0.2885 252.0848
i = 4 0.0279 0.8537 250.0119

1 1

i = 1 0.2125 1.0327 141.6154

-0.2668 -0.0537 -24.0118
i = 2 0.0104 0.9319 159.7887
i = 3 0.2587 0.5944 216.8422
i = 4 0.0742 0.8721 301.0206

1 10

i = 1 0.0408 0.5829 304.0465

-1.3398 -0.4620 7.6814
i = 2 0.0016 0.2805 179.2660
i = 3 0.2604 0.3010 237.1790
i = 4 0.3144 1.0142 255.2613

1 100

i = 1 0.0707 0.8195 291.0683

-0.8912 -0.2073 16.6305
i = 2 0.1941 0.2101 121.2359
i = 3 0.0583 0.6379 305.7286
i = 4 0.1306 0.4602 258.0886

Table 5.17: Experiment 6 - Random initial control inputs under different weights

see that, when the FWMAV model run for 50 pattern duration (7.0925 seconds), the altitude

drops 9.7041E-04 meters. It is a lot better than the one in experiment 6.
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wRpat wPeff P act (W) P eff (W)
∑
Rpattern

2

1 0 1.4701 2.128 4.5894E-12
0 1 6.32E-07 5.12E-08 2.52E+04

100 1 4.88E-06 7.56E-07 0.6145
10 1 1.38E-04 4.18E-05 0.6136
1 1 0.2026 0.2645 0.0368
1 10 0.2873 0.3920 7.61E-04
1 100 0.3058 0.4195 8.38E-06

Table 5.18: Experiment 6 - The power consumption and residual

Battery
cycle(i) Ui

αmi ωi ϕ(0) w(0) ϕ̇(0)
model (rad) (rad/s) (rad) (m/s) (rad/s)

w/o

i = 1 0.0000 0.8995 313.9932

0.9593 -0.0134 16.8379
i = 2 0.0748 0.3861 78.4983
i = 3 0.0000 0.5415 314.0499
i = 4 0.0000 0.7771 314.0471

w

i = 1 0.0000 0.9605 314.1588

0.9698 -0.0176 16.1347
i = 2 0.0734 0.3997 76.7651
i = 3 0.0000 0.5548 314.1591
i = 4 0.0000 0.8161 314.1591

Table 5.19: Experiment 7 and 8 - Control inputs

Battery
cycle(i) Ui

αmi ωi ϕ(0) w(0) ϕ̇(0)
model (rad) (rad/s) (rad) (m/s) (rad/s)

w/o

i = 1 0.1859 0.8502 305.7548

0.3063 -0.2420 -20.4034
i = 2 0.0764 0.7416 101.2145
i = 3 0.2362 0.3483 194.4925
i = 4 0.3559 0.2812 256.5129

w

i = 1 0.1917 0.6399 281.3580

0.2658 0.2530 -30.5192
i = 2 0.0895 0.4221 89.1141
i = 3 0.1444 0.2402 222.9571
i = 4 0.2140 0.5661 240.9930

Table 5.20: Experiment 7 and 8 - Random initial control inputs

Battery P act P eff ∑
Rpattern

2
δz δφ δw δφ̇

model (W) (W) (m) (rad) (m/s) (rad/s)

w/o 0.3652 0.5315 3.09E-27 5.13E-16 -1.34E-14 8.13E-15 -5.33E-14

w 0.3683 0.5285 3.71E-26 1.88E-15 6.77E-15 1.71E-14 1.92E-13

Table 5.21: Experiment 7 and 8 - The power consumption and residual
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Compare the results of experiment 7 and 8 with all previous experiments, we proved that

the methodology of making the residual as a equality constraint can introduce best solutions

with low power consumption along with a more periodic and hovering orbit. Especially,

compared with the power consumption results of experiment 1 and 2 of the static flight

stage in table 5.3 and 5.6, the power consumption improvement is larger than 40% while

keeping orbits periodic and hovering.

Number of patterns Duration (s) δz (m)

1 0.1418 7.3393E-06

5 0.7092 1.1815E-04

50 7.0925 9.7041E-04

500 70.9248 0.0274

5000 709.2476 0.3331

Table 5.22: Experiment 8 - The displacements
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Chapter 6

Conclusion and Future Work

This chapter summarizes the findings from chapter 5 and gives recommendations for further

research.

The balance and stability analysis for FWMAV systems is always quite challenging, while

the flight duration is also becoming a big challenge. In this thesis, we analyzed the balance

and stability of FWMAV system while considering the battery model for best energy usage.

The residual described in chapter 2 is chosen to represent the balance and stability of the

FWMAV system. In chapter 5, the experimental results of the flight control methodology

described in chapter 4 are discussed.

There are two stages of the FWMAV project are covered in this thesis: static flight and

dynamic flight. In the experimental results for the static flight, by adjusting the weights for

power consumption and the residual in the cost function, we can see clear tradeoff between

the power consumption and the residual. The effection of including battery model into

the optimization is also reflected by the experimental results. When the battery model is

considered, the effective power consumption is used in the cost function. Compared with

the case that the battery model is not considered, the optimizer is able to find orbits with
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lower power consumption. The results of the static flight stage also prove that the static

vertical flight optimization doesn’t have much flexibility because of the strict constraints

of hovering and periodic flight. Hence, the power consumption isn’t improved much when

we increase the weight for the power consumption in the cost function. This problem is

solved by the dynamic flight control. By relaxing the strict constraints of hovering and

periodic flight, the dynamic vertical flight optimization gains more flexibility when finding

the orbits. Compared with the power consumption results of the static flight stage, the

power consumption improvement is even larger than 40% while keeping orbits periodic and

hovering.

There are still many possible further research which can be exploited in the future. In work

[26] and [41], dynamic soaring is described by the authors. The transfer of energy from the

moving air in the shear wind to a bird is considered as an energy source for dynamic soaring.

The energy gain from the moving air is just used to compensate for the energy loss due to

drag for a dynamic soaring cycle. It is also possible for the FWMAV to take advantage of

the energy of the moving air in the wind to save the energy for flying and hovering.

The other possible energy source is the solar energy. The team of University of Maryland has

had the flexible solar cells integrated into wings, tail, and body of FWAVs to harvest solar

energy [22, 21]. The harvested solar energy is used to recharge batteries and increase the

flight time of the FWMAV by supplementing the battery power. It also eliminates the need

for external electrical power. Considering the solar energy, size of solar cells and wing area

in our flight control, it is possible that the joint optimization could find the orbit and wing

design which can maximize the flight endurance while keeping orbit hovering and periodic.
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[19] N. O. Pérez-Arancibia, P.-E. J. Duhamel, K. Y. Ma, and R. J. Wood. Model-free con-
trol of a hovering flapping-wing microrobot. Journal of Intelligent & Robotic Systems,
77(1):95–111, 2015.
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