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Abstract

The nicotine metabolite ratio (NMR; 3-hydroxycotinine/cotinine) is an index of CYP2A6 activity. 

CYP2A6 is responsible for nicotine’s metabolic inactivation and variation in the NMR/CYP2A6 is 

associated with several smoking behaviors. Our aim was to integrate established alleles and novel 

genome-wide association studies (GWAS) signals to create a weighted genetic risk score (wGRS) 

for the CYP2A6 gene for European-ancestry populations. The wGRS was compared with a 

previous CYP2A6 gene scoring approach designed for an alternative phenotype (C2/N2; cotinine-

d2/(nicotine-d2 + cotinine-d2)). CYP2A6 genotypes and the NMR were assessed in European-

ancestry participants. The wGRS training set included N = 933 smokers recruited to the 

Pharmacogenetics of Nicotine Addiction and Treatment clinical trial [NCT01314001]. The 
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replication cohort included N = 196 smokers recruited to the Quit 2 Live clinical trial 

[NCT01836276]. Comparisons between the two CYP2A6 phenotypes and with fractional 

clearance were made in a laboratory-based pharmacokinetic study (N = 92 participants). In both 

the training and replication sets, the wGRS, which included seven CYP2A6 variants, explained 

33.8% (P < 0.001) of the variance in NMR, providing improved predictive power to the NMR 

phenotype when compared with other CYP2A6 gene scoring approaches. NMR and C2/N2 were 

strongly correlated to nicotine clearance (ρ = 0.70 and ρ = 0.79, respectively; P < 0.001), and to 

one another (ρ = 0.82; P < 0.001); however reduced function genotypes occurred in slow NMR but 

throughout C2/N2. The wGRS was able to predict smoking quantity and nicotine intake, to 

discriminate between NMR slow and normal metabolizers (AUC = 0.79; P < 0.001), and to 

replicate previous NMR-stratified cessation outcomes showing unique treatment outcomes 

between metabolizer groups.

Clinical Trial Registrations—NCT01314001 and NCT01836276.
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1 | INTRODUCTION

Nicotine is the primary psychoactive compound in cigarettes, responsible for tobacco’s 

addictive properties.1 Nicotine undergoes CYP2A6-mediated metabolism to cotinine (COT)2 

and COT is further metabolized to 3-hydroxycotinine (3HC) exclusively by CYP2A6.3,4 The 

3HC/COT ratio, known as the nicotine metabolite ratio (NMR), is a well-established index 

of CYP2A6 activity.3 The NMR is strongly associated with CYP2A6 genotype, highly 

correlated with total nicotine clearance,3 and is associated with smoking behaviors including 

acquisition,5 cigarettes/day,6–8 smoking topography,9 nicotine dependence,7,8,10 and 

cessation outcomes.11–15

Heritability estimates for NMR derived from European-ancestry twins range from 60% to 

80%.16,17 Among European-ancestry individuals, common loss- (*2, *4) and decrease- (*9, 

*12) of-function * alleles [pharmvar.org] explain approximately 20% of total NMR 

variation.17 Since these * alleles are primarily associated with haplotypes that lead to 

reduced activity, they are less effective in stratifying faster metabolizers, resulting in a wide 

range of variability among normal metabolizers.

Several genome-wide association studies (GWAS) of the NMR have shown most (more than 

98%) of the genome-wide significant variants are concentrated in or around 

CYP2A6.16,18–20 Among European-ancestry cohorts, the top replicated hit is rs56113850, a 

CYP2A6 intronic SNP, explaining approximately 14% to 22% of NMR variation.16 Putative 

independent signals (via conditional analysis) included rs56113850, rs113288603, and 

esv2663194 (ie, CYP2A6*12) among Finnish smokers,16 and rs56113850, rs2316204, and 

rs1801272 (ie, CYP2A6*2) among European-ancestry smokers recruited to the 

Pharmacogenetics of Nicotine Addiction and Treatment (PNAT2) trial (unpublished 

observations). In addition, novel CYP2A6 diplotypes constructed from rs28399453, 

El-Boraie et al. Page 2

Addict Biol. Author manuscript; available in PMC 2020 September 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://clinicaltrials.gov/ct2/show/NCT01836276
https://clinicaltrials.gov/ct2/show/NCT01314001
https://clinicaltrials.gov/ct2/show/NCT01836276
http://pharmvar.org


rs150298687, rs7260629, and rs57837628 have been identified through next generation 

sequencing.21

Measuring ad libitum NMR requires that individuals are smoking at regular intervals so that 

cotinine remains in steady state. A CYP2A6 genetic risk score would improve assessment in 

instances where ad libitum NMR is unavailable, including among nonsmokers, intermittent 

smokers, and former smokers, as well as in studies in which DNA is available, but other 

biological matrices are not. Genetic risk scores have been described for multiple complex 

diseases and behaviors, by aggregating multiple genetic variants into a single predictive 

measure.22,23 CYP2A6 is involved in the pathogenesis of multiple diseases and metabolism 

of several clinical substrates. For example, CYP2A6 activates tobacco-specific nitrosamines; 

greater CYP2A6 activity is associated with an increased risk for lung cancer8,24 and several 

tobacco-related illnesses (eg, COPD and type-2 diabetes).25,26 Among CYP2A6 substrates 

also include tegafur, letrozole, metronidazole, and efavirenz.27,28 A recent set of polygenic 

risk scores (PRSs) developed by Chen and colleagues demonstrated an ability to capture 

9.2% to 16% of the variation in nicotine metabolism markers, but these PRSs were unable to 

predict either smoking quantity or cessation.29 Improved estimation of the impact of 

different CYP2A6 genotypes on enzyme activity will enhance the clinical utility of available 

genotype data. Specifically, improving interpretation of the effect of CYP2A6 gene variants 

on CYP2A6 enzyme activity will facilitate the ability to use genetics-based approaches to 

study the influence of CYP2A6 on disease risk and/or drug metabolism in the absence of a 

measured phenotype.

A CYP2A6 multiplicative model, also referred to as the CYP2A6 metric,29 was constructed 

by Bloom and colleagues on an alternative CYP2A6 phenotype (COT-d2/(NIC-d2 + COT-

d2); abbreviated C2/N2, also referred to as the metabolism proportion29), where COT-d2 

represents dideutero-cotinine and NIC-d2 represents dideutero-nicotine.30 The model used 

seven CYP2A6 polymorphisms (*1A(51A), *1D-Y351H, *2, *4, *9, *12, and *14) and 

explained approximately 70% of the variance in the C2/N2 measure. Because of nicotine’s 

short half-life (1–2 h) and cotinine’s long half-life (16–19 h),1 C2/N2 is usually quantified in 

a laboratory setting where deuterated compounds are consumed orally. In contrast, because 

of the long half-life of cotinine and formation dependence of 3-hydroxycotinine on cotinine,
1,3 NMR can be reliably derived from nicotine derived from ad-libitum smoking31–33 and is 

minimally affected by other enzyme pathways.34–36 We are unaware of studies directly 

associating the laboratory phenotype C2/N2 with smoking behaviors, including response to 

smoking cessation therapies. It is also unclear how C2/N2 correlates with nicotine clearance 

or NMR, or whether the multiplicative metric, which was primarily designed to fit the 

C2/N2 measure, would be effective in predicting NMR.

This study seeks to (1) assess how well a previous CYP2A6 multiplicative gene scoring 

approach based on the C2/N2 phenotype predicts NMR; (2) develop an improved genotype 

model, a weighted genetic risk score (wGRS), specifically designed to predict NMR among 

those of European-ancestry through the integration of NMR GWAS signals with established 

* alleles and evaluate this wGRS in an independent cohort to validate model 

generalizability; (3) compare C2/N2 and NMR directly with each other and with nicotine 

clearance; (4) evaluate the wGRS’s relationship to smoking quantity and nicotine intake; (5) 
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examine the ability of the wGRS to discriminate between slow and normal metabolizers 

based on NMR cut-points implicated in clinical outcomes; and lastly, (6) compare the wGRS 

with the NMR in predicting smoking cessation outcomes.

2 | MATERIALS AND METHODS

2.1 | Study populations

Each study was approved by institutional review boards at all participating sites and at the 

University of Toronto. Participants providing written informed consent for DNA sample 

collection and release of de-identified information to investigators underwent genotyping.

2.1.1 | Training set—A total of N = 933 treatment-seeking European-ancestry smokers 

were recruited to the PNAT2 clinical trial [NCT01314001], where ancestry was determined 

from GWAS data using principal components analysis19; 96.8% of European-ancestry 

smokers and 98.5% of African-ancestry smokers in the PNAT2 trial had genetic ancestries 

concordant with self-reported ancestry.19 Study details are described elsewhere.12 The NMR 

was measured from whole blood32 collected at intake. Smoking quantity in PNAT2 was 

assessed at intake using self-reported cigarettes per day (CPD), assessed both as a 

continuous variable, and by a 4-level ordered grouping strategy (CPD ≤ 10; 11 ≤ CPD ≤ 20; 

21 ≤ CPD ≤ 30; and CPD ≥ 31) as previously described.29 Nicotine intake at this time point 

was assessed by the sum of cotinine and 3-hydroxycotinine (COT+3HC), a superior 

biomarker to cotinine alone6,37 as cotinine can overestimate smoking quantity in CYP2A6 

slow metabolizers because of reduced COT metabolism to 3HC.38

2.1.2 | Replication cohort—A total of N = 196 treatment-seeking European-ancestry 

smokers were recruited to the Quit-2-Live (Q2L) clinical trial [NCT01836276], where 

ancestry was self-reported. Study details are described elsewhere.39 The NMR was 

measured from whole blood collected at intake.

2.1.3 | Laboratory-based pharmacokinetic study—A total of N = 92 European-

ancestry participants (N = 44 smokers and N = 48 nonsmokers) were recruited to the 

Pharmacogenetic Study of Nicotine Metabolism, where ancestry was self-reported. Study 

details are described elsewhere.3 Fractional clearance to cotinine, C2/N2, and the NMR were 

derived from single-dose oral administration of deuterium-labeled nicotine (nicotine-d2). We 

refer to this version of the NMR as NMR-d2, which has also been referred to as 

experimentally ingested NMR (eNMR) by others.29 Metabolite concentrations for C2/N2 

and the NMR were determined from plasma samples collected at 30 minutes and 6 hours 

following oral administration of nicotine-d2, respectively, as previously described.3,30

2.2 | Genotyping

Copy number variants were determined through TaqMan copy number assays 

(ThermoFisher Scientific, Waltham, Massachusetts, USA) according to the manufacturer’s 

protocol and previous studies.40 A gene conversion variant in the CYP2A6 3′ flanking 

region (CYP2A6*1B) was determined by a two-step PCR assay as described previously.41 

For the training set, single nucleotide variants were genotyped using an Illumina 
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HumanOmniExpressExome-8 version 1.2 array with a custom add-on containing more than 

2500 additional variants; details on genotyping, quality control procedures, and imputation 

are found elsewhere.19 For the replication cohort and the laboratory-based pharmacokinetic 

study, single nucleotide variants were genotyped by quantitative polymerase chain reaction 

(qPCR) approaches including TaqMan (rs56113850, rs113288603, rs1801272 (CYP2A6*2)) 

and two-step PCR (rs2316204, rs1137115 (CYP2A6*1A), rs28399433 (CYP2A6*9), 

rs28399435 (CYP2A6*14)) assays (ThermoFisher Scientific) as described.41 Genotype 

frequencies for each of the SNPs were in Hardy-Weinberg equilibrium (P > 0.05) in each of 

the cohorts. Genotyping methods were cross-validated in a subset of training set samples (N 

= 141) to confirm validity of comparisons between SNPs that were imputed in the training 

set (ie, rs113288603, rs56113850, and rs2316204) and qPCR results. rs113288603 and 

rs2316204 yielded 100% concordance between genotyping methods; rs56113850 yielded a 

94% concordance rate, with mismatches found predominantly in samples with a CYP2A6 
deletion (CYP2A6*4).

2.3 | Gene scoring models

2.3.1 | Multiplicative model—The multiplicative model was employed as described 

previously using described variants and parameters.42 Briefly, model parameters were fit to 

the C2/N2 phenotype and included genotypes for six CYP2A6 * alleles (*1A(51A) 
(rs1137115), *2 (rs1801272), *4 (gene deletion), *9 (rs28399433), *12 (CYP2A6/2A7 
hybrid), and *14 (rs28399435)), with final scores ranging from 0.44 to 0.90. CYP2A6*1D-
Y351H is a rare allele that was not identified in our training set.

2.3.2 | Weighted genetic risk score model—An additive wGRS was constructed to 

the variation in the NMR in the training set, where the selection of variants came from four 

variant sets. Set 1 were independent signals identified by conditional analysis in the training 

set. Details on GWAS methodology and conditional analysis for the training set (variant set 

1) were identical to methods used previously for the African-ancestry participants recruited 

to the PNAT2 clinical trial.19 Set 2 were independent signals identified from another large-

scale European-ancestry GWAS of the NMR.16 Set 3 were CYP2A6 * alleles not identified 

in sets 1 and 2, but common in European-ancestry populations, and set 4 were SNPs 

identified in a recent CYP2A6 sequencing study.

Using the combination of independent signals (variant sets 1 & 2) as the initial baseline set 

of variants for the wGRS model, additional established CYP2A6 gene variants that are 

frequently studied in candidate gene analyses were tested. These were from set 3 CYP2A6 * 

alleles (*4 (gene deletion), *9 (rs28399433), *1A(51A) (rs1137115), *1B (58 base-pair gene 

conversion in the 3′ UTR of CYP2A6), and *14 (rs28399435)), as well as set 4 SNPs 

identified in a recent CYP2A6 sequencing study (rs28399453, rs150298687, rs7260629, and 

rs57837628; Tanner et al., 2017). These additional variant sets (3 & 4) were investigated by 

evaluating the variance (R2) captured (in combination with the independent signals from 

variant sets 1 & 2). Only the variants which contributed an additional source of variance to 

the NMR phenotype (ie, increased the R2) were added into the wGRS model. Scores were 

created by summing the number of risk alleles weighted by their unstandardized effect sizes. 

The use of unstandardized betas is to retain the unit of measurement from the GWAS 
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analysis, where standardized variables invite bias because of sampling error. Betas were 

estimated from frequentist additive linear regression models (using SNPTEST, version 

2.5.2)43 of the NMR phenotype in the training set, adjusted for principal components 1 and 

2, and unstandardized through multiplying betas by the standard deviation (SD) of the NMR 

in the training set (SD = 0.205). To evaluate an individual’s wGRS, the number of risk 

alleles were summed using their assigned weights (Table 1); this summed value was then 

adjusted by the addition of 2.0 to create a final score with a positive range of values, 

assigning individuals with the CYP2A6 diplotype *1/*1, ie, those without the included 

wGRS decrease or increase of function variants, a score of 2.0 to resemble other CYP gene 

activity scores, eg, CYP2D644 or CYP2C1945 and as outlined by the Clinical 

Pharmacogenetics Implementation Consortium (CPIC) to assign phenotypes based on CYP 
genotypes.46 This will enhance the clinical implementation of CYP2A6 genetic data by 

facilitating the conversion of the wGRS to an analogous CYP activity score. For example, an 

individual with the risk allelesT/C for rs56113850, T/T for rs2316204, A/T for CYP2A6*2, 

and reference alleles for the remaining genotypes would be as assigned an activity score of 

2.046 (ie, [{0.135 + 0.16 − 0.25} + 2.0]).

2.4 | Statistical analysis

All statistical analyses were completed using SPSS version 20 (IBM Corporation) and 

MedCalc version 17.4 (MedCalc Software). The Shapiro-Wilk test was used to test for 

normality in dependent variables. Variables which were not normally distributed were log-

transformed.33 Linear regression was used to assess NMR variation accounted for by the 

gene scoring models, and the overall contribution to NMR variation was assessed after 

controlling for known NMR covariates (sex, age, and body mass index [BMI])47 reflecting 

factors that influence the NMR in addition to CYP2A6 genetic variants. Correlations 

between variables in the laboratory-based pharmacokinetic study were assessed using 

Spearman rank correlation coefficients. Linear regression and Spearman rank correlations 

were used to evaluate the relationship between the wGRS and measures of smoking quantity 

and nicotine intake. Receiver operating characteristic (ROC) curve analyses were conducted 

with two NMR definitions of normal metabolizers (NMR ≥ 0.26 and ≥ 0.31) coding slow 

and normal dichotomously as the outcome variable, with the various gene scoring models 

included as continuous predictors. The Youden’s J index was used to determine the criterion 

for the optimal cut-point in the wGRS. Logistic regression was used to evaluate end-of-

treatment quit rates (nicotine patch vs. varenicline) within slow and normal metabolizers 

defined by NMR or the wGRS. An interaction between treatment and metabolizer group was 

evaluated as the ratio of odds ratios (ORRs).12

3 | RESULTS

The multiplicative model, originally developed to predict C2/N2 following oral nicotine 

administration,30 explained 9.2% of the variance (R2) in log-transformed NMR (log-NMR) 

in the training set (Figure 1). Including non-CYP2A6 covariates (sex, age, and BMI) known 

to influence NMR47 in the model modestly increased the amount of log-NMR variability 

captured (R2 = 12.4%).
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The final wGRS model included seven variants (Table 1), derived from the four variant sets 

comprising five putative independent signals identified using conditional analyses in two 

exclusively European-ancestry NMR GWASs, as described in variant sets 1 and 2, and two 

additional functionally relevant CYP2A6 * alleles common (minor allele frequency > 1%) in 

European-ancestry populations [pharmvar.org], as described in variant set 3. Versions of the 

model including other common CYP2A6 * alleles (*1A(51A), *1B, and *14; variant set 3), 

and novel diplotypes (constructed from rs28399453, rs150298687, rs7260629, and 

rs57837628; variant set 4)21 yielded poorer fit to the NMR phenotype and were 

consequently excluded, suggesting the impact of these excluded variants is captured by the 

independent signals. The wGRS model was based on an additive genetic model (see 

individual variant weights, Table 1), which reflects the observed influence of CYP2A6 
variant alleles on the NMR, as illustrated for rs56113850 with incrementing allele dosages 

(Figure S1).

The wGRS was assessed in an independent cohort of treatment-seeking smokers (replication 

cohort) to validate the model’s generalizability. The developed wGRS model explained 

33.8% of the log-NMR variance in the replication cohort. When sex, age, and BMI were 

included as covariates, the overall model explained 41.1% of the log-NMR variance (Figure 

2A). In the training set, the variance in log-NMR explained exclusively by the wGRS model 

was similar (R2 = 33.8%). After including known NMR covariates (sex, age, and BMI), the 

overall model explained 37.6% of the log-NMR variance in the training set (Figure 2B).

Variations of the optimal 7-variant wGRS were then tested in the replication cohort and 

training set using a subset of the seven variants (Table 2). A 4-variant wGRS including only 

the common and functionally-relevant CYP2A6 * alleles (*2, *4, *9, and *12) was tested, 

representing variants commonly used to genotype CYP2A6 and excluding for the three 

additional variants in the 7-variant wGRS to come from the recent GWASs (rs56113850, 

rs2316204, rs13288603). The 4-variant wGRS explained 23.1% of the log-NMR variance 

(31.3% including covariates of sex, age, and BMI) in the replication cohort and 29.6% 

(33.2% including covariates) in the training set. A 6-variant version was also tested; the 6-

variant model may be applicable in instances where copy-number genotyping for *4 
(CYP2A6 gene deletion) or *12 (CYP2A6/CYP2A7 hybrid allele) is not feasible. This 6-

variant model excluded *4, and used rs28399442 as a proposed surrogate marker for *12.48 

This version of the model was marginally inferior to the full 7-variant wGRS, explaining 

29.3% of the log-NMR variance (33.0% including covariates of sex, age, and BMI) in the 

training set; rs28399442 was not genotyped in the replication cohort. In evaluating the 

performance of rs28399442 at capturing the *12 hybrid allele, the rs28399442 surrogate 

marker correctly identified 34/41 (82.9%) of the *12 alleles previously identified using 

qPCR copy number variation analysis in the training set, with no false positives. 

Furthermore, there were negligible differences in the log-NMR variance explained between 

a 6-variant model that included the *12 surrogate SNP (ie, rs28399442) and a 6-variant 

model that included the *12 allele determined through qPCR copy number variation 

analysis: R2 = 29.3% versus 28.9%, respectively (excluding covariates), and R2 = 33.0% 

versus 32.7%, respectively (including covariates).
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In contrast to previously used methods to classify individuals by CYP2A6 * alleles into 

slow, intermediate, or normal metabolizers (Figure 3A), the semi-continuous range of values 

from the wGRS can be used either to replicate similar broad categorizations as demonstrated 

by splitting the wGRS scale by tertiles (Figure 3B), or more refined divisions using, for 

example, quintiles (Figure 3C).

The C2/N2 and NMR-d2 ratios were compared following oral nicotine administration in the 

laboratory-based pharmacokinetic study. Following oral nicotine-d2, the C2/N2 and NMR-

d2 ratios were significantly and strongly correlated with each other (ρ = 0.82) (Figure 4A). 

Furthermore, both the C2/N2 and NMR-d2 ratios were significantly and strongly correlated 

with nicotine fractional clearance to cotinine (ρ = 0.79 and ρ = 0.70, respectively) (Figures 

4B, 4C). Decrease/loss of function CYP2A6 * alleles (*2, *4, and *9) were distributed 

throughout the range of C2/N2 values (Figure 5A), in contrast to the NMR where they were 

concentrated exclusively in the slower half of the NMR range (Figure 5B). The lack of 

association of these alleles with lower C2/N2 suggests C2/N2 does not represent genetic 

variation in CYP2A6, which may contribute to the relatively poor ability of the 

multiplicative model, based on C2/N2, to predict NMR (Figure 1).

The wGRS was significantly associated with smoking quantity, as defined by a 4-level 

grouping order of CPD (R2 = 0.8%, P = 0.006), as well as by Spearman correlation when 

entering CPD as a continuous variable (ρ = 0.085, P = 0.009). Likewise, the wGRS was 

significantly associated with nicotine intake, as defined by a log-transformed sum of COT + 

3HC (R2 = 2.5%, P < 0.001), as well by Spearman correlation to COT + 3HC as an 

untransformed variable (ρ = 0.132, P < 0.001).

ROC curve analyses were performed to assess the ability of the wGRS to discriminate 

between slow and normal metabolizers in the replication cohort, using the NMR cut-point of 

0.31 (Figure 6) used in the original PNAT2 smoking cessation clinical trial to prospectively 

stratify slow and normal metabolizers for treatment randomization.12 The wGRS model, 

excluding covariates, showed fair to good diagnostic ability to discriminate between slow 

and normal metabolizers at the 0.31 cut-point, yielding a significant area under the curve 

(AUC) of 0.78 (95% confidence interval (CI), 0.71–0.85) in the replication cohort. The 

Youden index J statistic indicated an optimal cut-point wGRS-2.14 to best identify normal 

metabolizers based on the NMR ≥ 0.31 definition. The wGRS yielded a similar AUC and 

Youden index J statistic in the training set when dichotomizing NMR metabolism groups 

based on the 0.31 cut-point: 0.79 (95% CI, 0.76–0.82) and 2.19, respectively (Figure S2). 

The diagnostic ability of the wGRS appeared superior to the multiplicative model in the 

training set, which in comparison yielded an AUC of 0.60 (95% CI, 0.55–0.64) for the NMR 

0.31 cut-point (Figure S2). Moreover, the wGRS showed consistent diagnostic validity at 

another cited NMR cut-point used to evaluate smoking cessation treatment outcomes (NMR: 

0.2613), yielding an AUC of 0.78 (95% CI, 0.71–0.86) and 0.81 (95% CI, 0.78–0.85) in the 

replication cohort and training set, respectively, compared with the multiplicative model 

which yielded an AUC of 0.65 (95% CI, 0.60–0.71) in the training set.

In the placebo-controlled PNAT2 clinical trial, focusing on the active treatment arms as the 

main hypothesis,12 N = 838 multiracial smokers were randomized to varenicline or nicotine 
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patch based on pretreatment NMR. Normal metabolizers (NMR ≥ 0.31) experienced 

significantly higher end-of-treatment quit rates on varenicline compared with the nicotine 

patch, while slow metabolizers (NMR < 0.31) had similar quit rates on varenicline and the 

nicotine patch resulting in a significant NMR-by-treatment interaction (ratio of odds ratio, 

ORR = 1.89; 95% CI, 1.02–3.45; Figure 7A). Compared with the complete multiracial 

cohort receiving varenicline or nicotine patch (N = 838), in the genetically-determined 

European-ancestry subset (N = 404 training set smokers of the 838 that were randomized to 

the varenicline or nicotine patch treatment arms), a similar NMR metabolism group-by-

treatment interaction (ORR = 2.08; 95% CI, 0.88–4.89) on quitting was observed (Figure 

7B). Moreover, substituting NMR with our wGRS (Figure 7C) (normal metabolizers defined 

as wGRS ≥ 2.14, as described above) produced a similar ORR of 2.30 (95% CI, 0.94–5.58).

Likewise, the relative treatment effects within metabolizer group in the N = 404 subset were 

comparable to the observations from the N = 838 dataset (Figure 7A) when stratified by the 

NMR (Figure 7B), and the wGRS (Figure 7C), where normal metabolizers showed 

significantly higher quit rates on varenicline versus nicotine patch (OR = 2.54, P = 0.002 by 

the NMR or OR = 2.55, P = 0.001 by the wGRS compared with OR = 2.17, P = 0.001 by the 

NMR in the N = 838 dataset), while slow metabolizers demonstrated similar quit rates 

between treatments (OR = 1.16, P = 0.65 by the NMR or OR = 1.11, P = 0.77 by the wGRS 

compared with OR = 1.13, P = 0.56 by the NMR in the N = 838 dataset) (Figures 7A–C). 

Using the Youden J Statistic identified in the training set (wGRS≥2.19) versus the 

replication cohort (wGRS≥2.14), a similar treatment-by-group effect was observed (Figure 

S3).

4 | DISCUSSION

We present a simple 7-variant approach to translate CYP2A6 genotypes into a semi-

continuous CYP2A6 genetic measure for use in European-ancestry populations. The model 

improves on previous approaches, such as traditional broad categorization of composite 

CYP2A6 genotypes based on CYP2A6 * alleles into slow, intermediate, and normal 

metabolizers, by translating CYP2A6 genetic information to a semi-continuous metric 

predictive of the NMR. Moreover, our findings replicated in an independent cohort of 

treatment-seeking smokers, as demonstrated by a similar proportion of log-NMR variance 

explained by the wGRS. This successful replication suggests that parameter estimates for the 

wGRS are precise and may be extended to further studies of European-ancestry populations 

seeking to classify CYP2A6 genotypes.

Our wGRS model is superior to the multiplicative metric, originally modeled on C2/N2, for 

predicting NMR variation. This finding is intriguing since, following oral nicotine, both 

C2/N2 and NMR-d2 were significantly correlated with each other (Figure 4A) and to 

nicotine fractional clearance to cotinine (Figures 4B and 4C). The discrepancy in NMR 

prediction may be due, at least in part, to the observation that well-characterized decrease/

loss of function CYP2A6 * alleles (*2, *4, and *9) are found across the C2/N2 distribution, 

in contrast to the NMR where these variant alleles are concentrated exclusively in the slower 

half of the NMR range (Figures 5A and 5B). This finding suggests that C2/N2, unlike the 

NMR, does not exclusively reflect CYP2A6 activity, and may be less suitable for 
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phenotyping CYP2A6 and for fitting CYP2A6 genotypes for genetic scoring. Furthermore, 

the wGRS model, using the same variants and weights as described to predict the NMR, 

revealed comparable predictive power (12%) to the multiplicative model (11%) in predicting 

C2/N2 (Figure S4), substantially lower than previously reported for the multiplicative model 

(70%).30

After including known NMR covariates, the wGRS model explained approximately 35% of 

NMR variation suggesting, based on NMR heritability estimates of 60% to 80%, that 

additional genetic variation is yet to be characterized in CYP2A6, and perhaps in additional 

regulatory or pharmacokinetic genes. Despite the noted linkage disequilibrium between the 

reduce-of-function CYP2A6 * alleles and the independent signals identified through 

conditional analysis in GWASs,16 the inclusion of these independent GWAS signals 

explained more of the variation in the NMR than the CYP2A6 * alleles alone (Table 2), 

suggesting that some of the contribution of these GWAS hits to NMR variability is 

independent of their linkage to CYP2A6 * alleles. Conditional analysis, while informative 

for identifying independent signals in GWASs, is a relatively conservative approach; many 

additional CYP2A6 genetic variants not included here likely contribute to the variation in 

the NMR. In all, 719 genome-wide significant variants were identified in a meta-GWAS of 

the NMR in Finnish smokers16; assessment of these variants using approaches beyond 

traditional univariate analyses may explain a larger portion of the variation in the NMR. 

Emerging computational approaches, such as those involving more sophisticated predictive 

modeling (eg, regularized regression)49 may help account for the complex linkage 

disequilibrium and haplotype structures between associated variants, aiding in the prediction 

of the NMR. One study limitation was the lack of principal components-based ancestry 

determination in the replication cohort. However, the high concordance between PC-based 

and self-reported ancestry in the training set (96.8%), as observed in other studies (eg, 

96.9% in Sucheston et al50), and the high similarity in wGRS fit between the training set and 

replication cohort (Figure 2) suggests this is a minimal limitation. However, this may 

contribute to a poorer fit of the wGRS in other studies, especially when the degree of genetic 

admixture among study participants is high.

The wGRS significantly associated to measures of smoking quantity and nicotine intake as 

assessed by the relationships to CPD and COT+3HC, respectively. Through ROC analyses, 

we demonstrated that the wGRS was favorable to the multiplicative approach in 

distinguishing slow from normal NMR metabolizers based on NMR cut-points that have 

previously reflected distinct smoking cessation outcomes (Figure 6 and Figure S2).12,13 The 

wGRS was able to replicate the within-metabolizer cessation outcomes observed by baseline 

pretreatment NMR, where normal (NMR ≥ 0.31 or wGRS ≥ 2.14) but not slow metabolizers 

show significant differences in quit outcomes between varenicline and nicotine patch 

treatments (Figure 7). Similar interaction effect sizes (ORRs) were noted between NMR and 

the wGRS approaches, but we were underpowered in the European-ancestry subset (N = 404 

of 838) to observe statistical significance; similar and significant effect sizes (ORs) were 

noted between treatments within normal metabolizer groups, where no differences between 

treatments were observed among slow metabolizers (Figure 7A–C).
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Here we have focused on developing a CYP2A6 gene-scoring approach in European-

ancestry populations. Because of the unique differences in SNP rankings based on 

association strength (P values) and linkage disequilibrium patterns between different 

ancestral populations,18 developing unique gene-scoring approaches according to ancestry is 

likely necessary. Of note, in a meta-GWAS for the NMR in a cohort of exclusively African-

ancestry smokers,19 a distinct list of independent signals was yielded compared with those 

identified in European-ancestry smokers, and only approximately 40% of the overall 

significant hits overlapped those identified in the GWAS of Finnish smokers.16 Bayesian 

fine-mapping approaches will likely aid in the identification of the causal SNPs that these 

independent signals are tagging and may give rise to a unified approach in translating 

CYP2A6 gene-scoring approaches across multiple ancestries, and individuals of mixed 

ancestry. However, we demonstrated that our current approach of combining independent 

GWAS signals with functional CYP2A6 * alleles provides a good and immediately available 

method of translating CYP2A6 genetic variants and warrants extension to other ancestries.

In summary, we have developed an original genomics approach to translate a small subset of 

seven CYP2A6 genetic variants into a single semi-continuous genetic score. This model 

replicated in an external cohort, indicating generalizability, associated with measures of 

smoking quantity and nicotine intake, and showed the ability to replicate NMR-based 

clinical outcomes for slow and normal metabolizers. Our wGRS approach represents a 

practical approach for diverse studies seeking to understand the contribution of CYP2A6 
genetic variation to tobacco dependence, as well as tobacco-related diseases, and potentially 

to the metabolism of other clinical substrates.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Linear regression analysis of the relationship between the multiplicative model score as 

described previously42 and log-transformed nicotine metabolite ratio (NMR) in the training 

set (N = 933). The multiplicative model explained 9.2% of the variance in log-NMR. When 

non-CYP2A6 covariates (sex, age, and BMI)47 were additionally included, the model 

explained 12.4% of the variance in log-NMR
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FIGURE 2. 
Linear regression analysis of the relationship between the 7-variant weighted genetic risk 

score (wGRS) and log-transformed NMR in the A, replication cohort (N = 196) and B, 

training set (N = 933). The wGRS explained 33.8% of the variance in log-NMR in both 

cohorts. When non-CYP2A6 covariates (sex, age, and BMI)47 were additionally included, 

the model explained 41.1% and 37.6% of the variance in the replication cohort and training 

set, respectively
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FIGURE 3. 
Tukey box-and-whisker plots of nicotine metabolite ratio (NMR) distributions. Data is from 

the training set (N = 933) split as a function of A, * allele groupings; SM, slow metabolizers; 

IM, intermediate metabolizers; NM, normal metabolizers. V/V, two variant * alleles B, 

wGRS scale (1.300–2.430) split into tertiles (T, tertile) and C, weighted genetic risk score 

(wGRS) scale (1.300–2.430) split into quintiles (Q, quintile)
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FIGURE 4. 
Correlations between nicotine kinetic parameters in the laboratory-based pharmacokinetic 

study (N = 92). Correlations between the CYP2A6 phenotype ratios C2/N2 and NMR-d2 

measured at 30 and 360 minutes, respectively are shown in A. Correlations between nicotine 

fractional clearance (L/min) and C2/N2, and between nicotine fractional clearance (L/min) 

and NMR-d2 are shown in B, and C, respectively
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FIGURE 5. 
The distribution of A, C2/N2 and B, NMR-d2 in the laboratory-based pharmacokinetic study 

(N = 92) as a frequency histogram color-coded by genotype class. Decrease/loss of function 

CYP2A6 * alleles (*2, *4, and *9) were distributed throughout the range of C2/N2 values A, 

these CYP2A6 * alleles (*2, *4, and *9) were concentrated exclusively in the slower half of 

the NMR-d2 range B
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FIGURE 6. 
Receiver-operating-characteristic (ROC) curve of the weighted genetic risk score (wGRS) 

(dashed line) in discriminating CYP2A6 slow and fast metabolizer groups using an NMR 

cut-point of 0.31 in the replication cohort. The wGRS for an nicotine metabolite ratio 

(NMR) cut-point of 0.31 (slow: NMR < 0.31, normal: NMR ≥ 0.31)12 yielded an area under 

the curve (AUC) estimate of 0.78; P < 0.001 (95% confidence interval (CI), 0.71–0.85). The 

wGRS for an NMR cut-point of 0.26 (slow: NMR < 0.26, normal: NMR ≥ 0.26)13 yielded 

an AUC estimate of 0.78; P < 0.001 (95% CI, 0.71–0.86) (not shown)
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FIGURE 7. 
End-of-treatment quit rates by treatment group and metabolizer group. Odds ratios (OR) 

with 95% confidence intervals (CI) comparing the efficacy of varenicline versus the nicotine 

patch. Metabolizer-by-treatment interaction effects on end-of-treatment quit rates evaluated 

by the ratio of odds ratios (ORR) with 95% CI. A, NMR stratification (slow: NMR < 0.31, 

normal: NMR ≥ 0.31) in the complete varenicline and nicotine patch treatment arms from 

intent-to-treat dataset (N = 838).12 B, NMR stratification (slow: NMR < 0.31, normal: NMR 

≥ 0.31) in the genetically determined European-ancestry subset of the varenicline and 

nicotine patch treatment arms (N = 404). (C) wGRS stratification (slow: wGRS < 2.14, 

normal: wGRS ≥ 2.14) in the genetically determined European-ancestry subset of the 

varenicline and nicotine patch treatment arms (N = 404)
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