
UCLA
UCLA Previously Published Works

Title
A model-based multithreshold method for subgroup identification

Permalink
https://escholarship.org/uc/item/8kz3933t

Authors
Wang, Jingli
Li, Jialiang
Li, Yaguang
et al.

Publication Date
2019-02-11

DOI
10.1002/sim.8136
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8kz3933t
https://escholarship.org/uc/item/8kz3933t#author
https://escholarship.org
http://www.cdlib.org/


Received: 9 March 2018 Revised: 29 January 2019 Accepted: 11 February 2019

DOI: 10.1002/sim.8136

R E S E A R C H A R T I C L E

A model-based multithreshold method for subgroup
identification

Jingli Wang1 Jialiang Li1,2,3 Yaguang Li4 Weng Kee Wong5

1Department of Statistics and Applied
Probability, National University of
Singapore, Singapore
2Duke University-NUS Graduate Medical
School, Singapore
3Singapore Eye Research Institute,
Singapore
4University of Science and Technology of
China, Hefei, China
5Department of Biostatistics, Fielding
School of Public Health, University of
California, Los Angeles, Los Angeles,
California

Correspondence
Weng Kee Wong, Department of
Biostatistics, Fielding School of Public
Health, University of California, Los
Angeles, Los Angeles, CA 90095-1772.
Email: wkwong@ucla.edu

Funding information
Academic Research Funds, Grant/Award
Number: R-155-000-205-114 and
R-155-000-195-114; Tier 2 MOE funds in
Singapore, Grant/Award Number:
MOE2017-T2-2-082, R-155-000-197-112,
and R-155-000-197-113; National Institute
of General Medical Sciences of the
National Institutes of Health,
Grant/Award Number: R01GM107639

Thresholding variable plays a crucial role in subgroup identification for per-
sonalized medicine. Most existing partitioning methods split the sample based
on one predictor variable. In this paper, we consider setting the splitting rule
from a combination of multivariate predictors, such as the latent factors, princi-
ple components, and weighted sum of predictors. Such a subgrouping method
may lead to more meaningful partitioning of the population than using a single
variable. In addition, our method is based on a change point regression model
and thus yields straight forward model-based prediction results. After choosing
a particular thresholding variable form, we apply a two-stage multiple change
point detection method to determine the subgroups and estimate the regression
parameters. We show that our approach can produce two or more subgroups
from the multiple change points and identify the true grouping with high prob-
ability. In addition, our estimation results enjoy oracle properties. We design a
simulation study to compare performances of our proposed and existing meth-
ods and apply them to analyze data sets from a Scleroderma trial and a breast
cancer study.
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1 INTRODUCTION

A main aim of precision medicine is to find a treatment that maximizes individual health outcomes. There is a lot of
interest in this exciting approach in medicine because of its promise and potential impact in practice. Its rapid rise in
interest can be attributed to increasing recognition that (i) the “one size fits all” strategy does not work for many serious
diseases, such as cancer, and targeted therapies based on individual traits tend to work better; (ii) it is much more difficult
to find a treatment that works for all patients; (iii) risk factors for a disease are likely going to vary among different patients
groups; and (iv) recent advances in genomics, computational biology, medical imagining, and regenerative medicine have
made targeted therapies more feasible. The overarching goal in precision medicine then is to find subgroups of patients
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that respond differentially to different treatment regimens and model the relationships between the response variable and
predictors differently across the subgroups.

There are two different goals for subgroup identification in precision medicine, namely, prognostic and predictive signa-
ture developments. Clark et al1 summarize the two types as follows: a prognostic signature is a measurement associated
with clinical outcome without therapy or with the application of a standard therapy that patients are likely to receive and
it can be thought of as a measure of the natural history of the disease, and a predictive signature is a measurement that
is associated with response to a particular therapy and that is best evaluated in a randomized clinical trial with a control
group. Our focus is on prognostic signature even though it is quite possible that methods developed here may also apply
to the predictive setting.

There are many statistical methods for subgroup identification in the literature and some of the most popular ones are
based on tree-like partitioning algorithms. Early work includes automatic interaction detection (AID)2 and theta auto-
matic interaction detection (THAID).3 The regression tree (CART)4 algorithm was particularly successful and tree-based
methods become more widely used for subgroup identification. A tree recursively partitions the subjects into binary
subgroups until certain stopping criterion is met. There are two approaches to find an optimal tree: prepruning and post-
pruning. Prepruning relies on some internal stopping criterion to control the size of the tree, such as in the work of
Zeileis et al,5 and postpruning prunes a very large tree to a smaller sized-tree based on some optimality criteria.6 A clas-
sification tree is a tree method where the response takes on discrete or unordered values and a regression tree is a tree
method where the response variable is continuous or has ordered discrete values.7 There are many tree-based classifica-
tion and regression subgroup identification methods, and they include generalized unbiased interaction detection and
estimation (GUIDE),8,9 model-based recursive partitioning (MOB),5 interaction tree (IT),10 subgroup identification based
on difference effect search (SIDES),11 and virtual twins (VT),12 among others. GUIDE and MOB can be applied to both
prognostic and predictive signature developments, but IT, SIDES, and VT are only for predictive signature development.
Some researchers have also proposed subgroup identification methods for individualized treatment rules.13,14 Doove et al15

and Lipkovich et al16 provide reviews and compare a few tree-based methods.
Additionally, change point detection (CPD) methods are available in the economic studies17,18 and may prove useful as

an alternative strategy for clustering subjects. Finding a structural break for a covariate in the observed subjects effec-
tively leads to subgrouping. To implement the change point detection is not easy as there are usually two challenges:
(i) one needs to decide the number of change points and (ii) one must estimate the change point locations accurately.
Earlier authors proposed iterative cumulative-sum methods, which could be computationally intensive. Recent authors
adopted the penalization method, which accelerates the change point detection. In this paper, we consider a recently
proposed method called two-stage multiple change-point detection (TSMCD) method,19 which enjoys solid theoretical
advantages and nice practical performance. There are other methods for subgroup identification,20,21 including Bayesian
approaches.22,23

In general, to apply a CPD approach, such as TSMCD, one first decides on the choice of the thresholding variable for
which the change point is sought. Typically, simple thresholding variable is used. For example, in econometric time series
modeling, the thresholding variable is simply the time. Existing CPD methods usually take one of the covariates as the
thresholding variable, which may be inadequate for partitioning and prediction purposes. The same applies when we
choose the splitting variable for a tree method.

This paper proposes a general framework to select a combination of predictor variables as the thresholding variable. We
identify a linear combination of covariates to divide the sample into multiple groups according to the change points. This is
tantamount to forming parallel change planes in the linear space spanned by the covariates and subjects are thus grouped
by the change planes according to their covariate characteristics. We propose a few practical ways to construct the linear
combination, including strategies from principal components and factor analysis. The latter was originally developed for
the analysis of scores on the mental tests24 and is now widely applied in many research fields. The factor analysis model can
be used for finance,25 genomics,26 and neuroscience27 among many other research fields. The expectation maximization
algorithm can be applied to estimate the factor loadings and factors.28,29 Recently, Fan et al30 developed a factor adjusted
robust multiple testing method for high-dimensional data.

Several of our proposed methods to derive latent variables useful for subgroup identification are based on latent factors
and principal components. This approach is motivated from the high-dimensional principal components analysis (PCA)
for reducing the data dimension by creating orthogonal eigen-components with ordered importance.31,32 The PCA can
usually help identify meaningful patterns in data and therefore may serve as candidates for the thresholding variable. In
what follows, we demonstrate that our methods are practical and, unlike most of the current methods, they can identify
a thresholding variable with possibly two or more change points.
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After we have specified the thresholding variable, we apply the TSMCD approach to identify the subgroups. We prefer
the TSMCD method for two main reasons. First, this method can divide the sample into two or more groups when there
is one or more change points. This substantially improves the single change point estimation method, which restricts
the separation into only two groups. More flexible partitioning is thus attained when we expect heterogeneous grouping
for the study population. Many existing methods, such as AIM-rule and sequential BATTing method,20 have outstanding
performance but they only return two subgroups. Despite their popularity, their grouping may be not as accurate as
our method with mixed regression relationship. In addition, these two methods usually do not produce a regression
model for subgroups directly. Practitioners usually have to carry out postidentification modeling indirectly. In fact, both
AIM-rule and Seq-BATTing methods typically place subjects into signature positive and signature negative subgroups
and so only provide information on group membership, but no information on the risk factors and confounder effects for
different subgroups. If practitioners need to examine the dependence of the response variable on the predictors for each
subgroup, they will need to fit a model within each subgroup based on the splitting results. Second, the TSMCD method
has theoretical support and fast computing speed. Under mild technical conditions, the estimated thresholding locations
(change points) from TSMCD converge almost surely to the true thresholding locations.19 Furthermore, the estimated
regression coefficients work as well as the oracle estimators, which can only be obtained when the change point structures
are known. Establishing similar results for existing recursive partitioning methods or other ad hoc methods has not been
fully addressed in the literature yet.

There are several key contributions in our work. First, we propose a new change point detection method for subgroup
identification in personalized medicine. Second, we propose a general framework for constructing subgroups via a thresh-
olding variable; our method is both flexible and, new in that, our thresholding variable extends those previously proposed
and not limited to a single observed covariate. Our method considers not only the covariates but also a combination of
covariates, latent factors, and principal components. Simulation results show that our methods can outperform current
methods and provide more meaningful subgroup identification and accurate prediction for all kinds of medical outcomes.

The rest of this paper is organized as follows. In Section 2, we review some existing subgrouping methods, which are
to be compared with our proposed methods. In Section 3, we present a piecewise linear regression model with unknown
change points and then propose thresholding variable selection methods. Full details of TSMCD will be provided. Section 4
contains simulation studies for assessing the proposed methods. We apply the proposed methods to two medical examples
in Section 5. We provide a discussion in Section 6.

2 A REVIEW OF SELECTED COMPARATOR APPROACHES

A model-based recursive partitioning (MOB)5 groups the observations into clusters on the basis of covariate values. This
method has been appraised by many researchers for its outstanding performance. Specifically, one first fits a model with
the entire sample and then performs an M-fluctuation test for the parameter instability with respect to all candidates of
thresholding variables. If overall parameter instability is achieved, the variable with the highest parameter instability is
issued as a splitting variable. The procedure is repeated in each of the children nodes learned from the preceding step, until
convergence. Finally, MOB constructs a tree in which every leaf is associated with a well-fitted submodel. This method is
flexible and can deal with continuous or categorical variables, but the measurements of parameter instability for different
type of variables have different forms. The performance of MOB may be influenced by dimension of the data because the
M-fluctuation tests performed repeatedly may be rather computationally intensive especially when the dimension of the
covariates space is high. Another issue is that, sometimes, the splitting variable may be irrelevant practically and hard to
interpret. The MOB can be implemented by function mob in the R package party. The argument method allows users
to select between linear or generalized linear models.

Huang et al20 proposed two methods for subgroup identification. The first approach is sequential BATTing
(seq-BATTing), a multivariate extension of the bootstrapping, and aggregating of thresholds from trees (BATTing),
whereas the second approach is AIM-rule, which is a multiplicative rules-based modification of the adaptive index model
(AIM).33 The working models of the mean response for these methods are m(X) = 𝛽0 + 𝛽1w(X) for prognostic signa-
tures and m(X) = 𝛽0 + 𝛽1w(X)u + 𝛽2u for predictive signatures, where m(X) is the mean response, 𝛽 i and i = 0, 1, 2
are regression parameters, w(X) is the multiplicative signature rule, and u is a treatment variable. Both AIM-rule and
Seq-BATTing depend on the original BATTing approach. In the BATTing procedure, there are B single-stub thresholds,
which are obtained by a single split on the predictor for B bootstrap data sets, and the best separations are obtained by
maximizing the score test statistics. The estimated threshold is a robust estimator (eg, median) for characterizing the
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distribution of B single-stub thresholds. Sequential BATTing extends the BATTing procedure with a stepwise method.
First, find the thresholding positions for candidate predictors by BATTing and then select the predictor, which can max-
imize the score test statistics and update the multiplicative signature rule. Then, repeat this procedure on predictors
without previously selected predictors until the likelihood ratio test statistics of two adjacent multiplicative signature
rules is not significant. For the AIM algorithm, the thresholding variables and positions are obtained by maximizing the
score test and then updating the additive signature rule by adding an indicator function of subgroup regions. Since the
working models are quite general, both Seq-BATTing and AIM-rule allow continuous, discrete, and censored survival
outcomes. However, the working models all assume that the difference of mean responses between two identified sub-
groups must be a constant 𝛽1. When the difference also depends on covariates (as in our proposed model (1) in the next
section), these methods may produce misleading solutions. In practice, both AIM-rule and sequential BATTing methods
can be implemented by a function SubgrpID in R package SubgrpID. In particular, AIM-rule can be implemented by
SubgrpID with argument ”method=“AIM.Rule””, whereas sequential BATTing can be implemented by SubgrpID
with argument “method= “Seq.BT””.

The patient rule induction method (PRIM) was first proposed by Chen et al34 using the bump hunting algorithm
developed in the work of Friedman and Fisher35 and, since then, have been applied to different biomedical applica-
tions. For subgroup identification problems, this approach can be applied to both prognostic signature36,37 and predictive
signatures.34 Similar to AIM-rule and sequential BATTing, PRIM also avoids making assumptions of specific data gener-
ating mechanisms. Moreover, PRIM directly targets subgroups regions rather than indirectly through the estimation of a
regression function. The original PRIM method needs a prespecified threshold value, but some upgraded versions only
rely on test p-values or other statistics to split the group.34 When there exist two or more groups, PRIM might not be able
to resolve two distinct modes for the response distribution and must be remedied by additional procedures.38 Compared
with MOB, we note that none of AIM-rule, seq-BATTing, and PRIM can produce a fitted model after the splitting step, and
users should refit model for identified subgroups to understand the relationship between the response and the predictors.
In addition, PRIM can be applied by SubgrpID with argument 'method=“PRIM”' in R package SubgrpID.

Following the terminology in the work of Lipkovich et al,16 the aforementioned methods may be classified into the fol-
lowing two categories. (i) Global outcome modeling, or scoring-based methods, is to build a composite model to generate
a single score (or probability) for each individual, and then use this composite score for further subgroup identification.
CART, GUIDE, VT, and a few other learning approaches fall into this category. Specifically, for classification tree meth-
ods with a binary outcome, a follow-up cutoff needs to be derived on the probability of the membership at each node to
return the final subgroups. (ii) Local modeling, or rule-based modeling, aims for direct subgroup identification of regions
in the covariate space without any individual outcome prediction. SIDES, Rule-Fit, PRIM, and seq-BATTing belong to
this category. All local modeling methods need to have a further step of regression modeling to produce the individual
prediction. This additional procedure, however, may deviate from the purpose of local modeling.

All the aforementioned approaches have found successes in many clinical applications and demonstrated their useful-
ness for personalized medicine. However, their choice of splitting variable is rather restrictive and is only selected from
the set of available covariates. In addition, only MOB allows a statistical model, whereas other three approaches do not
directly output a fitted model. We will consider a new model with change point structure and also allow flexible thresh-
olding methods. The model can directly provide a sensible characterization of the underlying data generating mechanism
and thus facilitate statistical prediction.

3 MODEL AND METHODS

Throughout, we let n be the sample size and let yi be the real-valued univariate response from the ith subject with covariate
x̃i = (xi1, … , xip)′ ∈ ℝp, i = 1, … ,n. Without loss of generality, we denote xi = (1, x̃′

i)
′ to incorporate the model with an

intercept term. We focus on a piecewise linear regression model with s thresholds given by

𝑦i =
s+1∑
𝑗=1

x′
i𝜷𝑗1{a𝑗−1<Zi≤a𝑗} + 𝜖i,

= x′
i

[
𝜷1 +

s∑
𝑗=1

(𝜷𝑗+1 − 𝜷𝑗)1{a𝑗<Zi≤as+1}

]
+ 𝜖i, i = 1, … ,n,

(1)
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where 𝜷𝑗 ∈ ℝp, j = 1, … , s + 1, are unknown ( p + 1)-dimensional regression coefficients for s + 1 subgroups, s ≥ 0 is
the unknown number of thresholds, a1, … , as are unknown structural break locations, and 𝜖i are independent random
errors with mean zero and constant variance. The thresholding variable for subject i is Zi and Section 3.1 provides details
on how to determine this variable. To fix idea, we assume response variable is continuous but extensions to other types of
responses are possible using a similar construction. For simplification, we denote𝜽1 = 𝜷1,𝜽j + 1 = 𝜷 j + 1 − 𝜷 j, j = 1, … , s,
and write the model as

𝑦i =
s+1∑
𝑗=1

x′
i𝜽𝑗1{a𝑗−1<Zi≤as+1} + 𝜖i,

=

⎧⎪⎪⎨⎪⎪⎩

x′
i𝜽1 + 𝜖i, if a0 < Zi ≤ a1,

x′
i(𝜽1 + 𝜽2) + 𝜖i, if a1 < Zi ≤ a2,

… …
x′

i

(∑s+1
𝑗=1 𝜽𝑗

)
+ 𝜖i, if as < Zi ≤ as+1.

(2)

When the number of change points and the their locations are known in model (2), we only need to estimate 𝜽 =
(𝜽′

1, … ,𝜽′
s+1)′ and we can do so using least squares or other familiar regression techniques.

3.1 Thresholding variable selection
When the thresholding variable Z is given, we may apply the TSMCD method in the work of Li and Jin19 to find change
points and estimate the regression parameters. In practice, the choice of thresholding variable is crucial on the identifica-
tion and interpretation of the subgroups. We develop four methods to specify the thresholding variable Z in this section.
In the first method, we consider individual covariates as the thresholding variable. The second method uses a linear com-
bination of covariates to split the covariate space. The third method is based on multivariate factor analysis. The fourth
method is to use the principal components of the covariates as candidates of the thresholding variable.

Method 1. Single covariate. Most existing splitting methods such as MOB adopt this traditional approach. Specifically,
we can take all available covariates as candidates of thresholding variable Z, ie,

Z ∈ {X𝑗 , 𝑗 = 1, … , p}. (3)

This method is intuitive but may be too simple to accommodate complicated grouping mechanism generated according
to multiple variables. Combined with TSMCD, we refer this method as 1-TSMCD in the rest of this paper.

Method 2. Weighted combination. A thresholding variable may be a linear combination of the covariates. In this
case, the thresholding variable can be written as

Z =
p∑

𝑗=1
w𝑗X𝑗 , (4)

where wj is the weight for variable Xj, which can be specified by users or estimated by some methods. For example, we
can take equal weights on the variables if they are equally important for thresholding. Consequently, we can take the
average of the covariates as the thresholding variable Z and also implement this in Section 5. This method is denoted as
A-TSMCD in the following.

Method 3. Factor analysis (FA). Multivariate data often exhibit similar patterns suggesting the existence of common
structure hidden in the observations. Factor analysis is based on a multivariate model in which the observed random
variables can be expressed as a sum of a linear combination of certain unobserved factors and an error term.39,40 Suppose
X̃ = (X1, … ,Xp)′ is a p-dimensional vector with mean 𝜇 and covariance matrix 𝜮, which is assumed positive definite.
Under a factor model, X̃ can be written as

X̃ = 𝝁 + 𝚲f + 𝜺, (5)

where f = ( f1, … , fm)′ in the vector of unobserved factors (m < p), 𝜇 is a common variable shared with all components
of X̃ , 𝜺 is the error term, and 𝚲 = (𝜌ij) is a p × m unknown loading matrix. We assume 𝜺 is distributed independently of f
and with mean 0 and a diagonal covariance matrix 𝚺𝜺. Model (5) is similar to a multivariate regression model except that
regressor f in this case is not observable. When E( f ) = 0m and cov ( f ) = Im, model (5) is called an orthogonal factor
model.
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Since mean 𝝁 does not affect the covariance of X̃ , when cov ( f ) = I, we have

𝚺 = cov(X̃) = cov(𝚲f + 𝜺) = 𝚲𝚲′ + 𝚺𝜀.

It follows that 𝚺 is positive definite, ie,
cov(X̃ , f ) = E

[
(X̃ − 𝝁)( f )′

]
= 𝚲,

and the (i, j)th entry of 𝚲 = (𝜌ij) is the covariance of Xi and fj. In practice, we assume the distribution to be multivariate
normal and obtain the maximum likelihood estimates �̂� and �̂�𝜺 from the sample of n data points. The factor is then
estimated using weighted least squares

f̂ =
(
�̂�′�̂�−1

𝜺 �̂�
)−1

�̂�′�̂�−1
𝜺 (X̃ − �̂�). (6)

It can be shown that this estimator is the minimum variance unbiased linear estimator of f. Another estimator of f is the
Thomson estimator41 given by

f̂ = �̂�′
(
�̂�𝜺 + �̂��̂�′

)−1
(X̃ − �̂�). (7)

Sometimes an orthogonal rotation may be applied to the loading matrix to obtain maximum variation of the squared
loadings.

In this third approach of choosing a thresholding variable, the estimated factors are the candidates

Z ∈ { ̂f 1, … , f̂ m}, (8)

where f̂ 𝑗 = (𝑓1𝑗 , … , 𝑓n𝑗)′, 𝑗 = 1, … ,m.
In practice, we implement the factor analysis using the function factanal in R. The score option allows the user

to select either the least squares estimator (6) or the Thomson's regression estimator (7). We call these two methods
F1-TSMCD and F2-TSMCD, respectively.

Method 4. Principal component analysis (PCA). Principal components are widely used in many areas of statisti-
cal research such as dimensional reduction. Since the first principal component is the linear combination of covariates
with the maximum variance among all possible linear combinations,40,42 it may be useful to consider the first principal
component as the thresholding variable.

Suppose that covariance 𝚺 is a positive semidefinite matrix. The first principal component of X̃ , denoted as g1, can be
written as the linear combination g1 = e′1X̃ , with e1 ∈ ℝp and e′1e1 = 1 such that

var
(

e′1X̃
)
= max

e
var(e′X̃) = max

e
e′𝚺e.

In practice, we may obtain the PCA solution from a matrix singular value decomposition (SVD)24,43 using the function
svd in R and obtain the thresholding variable

Z = (Z1, … ,Zn)′ = ĝ1 = x̃ê1. (9)

The function prcomp in R performs the PCA on the given data matrix. However, in very high dimensional setting when
p > n, the classical PCA becomes inconsistent44-46 and we have to use svd instead.

We note that the splitting variable Z can be defined in a way that incorporates the response variable y and covariates X̃ .
Specifically, some supervised dimension reduction methods can be applied to find the candidates of thresholding variable,
such as supervised PCA.47,48 Operationally, we can also easily add the observed response y as a “covariate” into the empiri-
cal covariate matrix and then perform the factor analysis or PCA. This method may be suitable for subgroup identification
methods not based on a regression model. However, such analysis cannot be easily included in this paper because the
resulting model may invoke the reverse causality issue and hard to interpret. More theoretical study is helpful to explore
this idea.

3.2 Generic TSMCD method
After a decision is made on the thresholding variable Z, we follow up with a TSMCD procedure to estimate the regression
coefficients and the number and locations of the thresholds.19 In the first splitting stage, we set r = ⌊k

√
n⌋ and set

qn = ⌊n∕r⌋ − 1, where k is constant. The value of r will be discussed more in the end of this method. The data sequence
is split into qn + 1 segments. The first segment 1 = {i ∶ Zi ≤ Z(n−qnr)} involves n − qnr observations, and the other
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segments 𝑗 = {i ∶ Z(n−(qn−𝑗+2)r) < Zi ≤ Z(n−(qn−𝑗+1)r)}, j = 2, … , qn + 1 involves r observations, where Z(1) ≤ · · · ≤ Z(n)
are ordered thresholding variables in the sample. Then, the estimator of parameters is given by minimizing

qn+1∑
𝑗=1

b𝑗

2n
∑
i∈𝑗

(
𝑦i −

𝑗∑
k=1

x′
i𝜽k

)2

+
qn+1∑
k=2

Γ𝜆n,𝛾n(||𝜽k||), (10)

where bj is the cluster size of 𝑗 , and 𝜆n > 0 and 𝛾n > 1 are tuning parameters, Γ𝜆n,𝛾n(||𝜽k||) is a penalty function, and|| · || is the L2 norm. The smoothly clipped absolute deviation (SCAD) penalty49 and the minimax concave penalty50 are
usually recommended to be the penalty function Γ. In this paper, we use the SCAD penalty. Similar to the works of Li
and Jin19 and Jin et al,51 we set the penalty parameter 𝛾n = 2.4 for SCAD penalty. The regularization parameter 𝜆n can
be chosen by minimizing the Bayesian information criterion (BIC)

BIC = n log(RSS∕n) + log(n)DF, (11)

where DF is the number of 𝜃ij ≠ 0, i = 1, … , p + 1, j = 1, … , qn + 1, and RSS = ||y − X�̂�||, and �̂� is the estimate of 𝜽
when 𝜆 is used in the SCAD penalty.

After we obtain the estimated parameters �̂� = (�̂�′
1, … , �̂�

′
qn+1)′, we may then determine the thresholds by checking the

nonzero jumps in the estimated coefficients. Let ̂ = {𝑗 ∶ �̂�𝑗 ≠ 0, 𝑗 = 1, … , qn + 1} and let ̂∗ = {𝑗 ∶ 𝑗 ∈ ̂, 𝑗 − 1 ∉
̂, 𝑗 = 2, … , qn + 1} = {k̂1, … , k̂ŝ}. If ŝ = 0, there is no threshold. If ŝ > 0, the true threshold aj is highly likely located
in (Z(n−(qn−k̂𝑗+3)r),Z(n−(qn−k̂𝑗+1)r)], 𝑗 = 1, … , ŝ. That gives the first-stage estimation.

In the second stage, we refine the estimation procedure and obtain consistent estimators of the thresholds by min-
imizing the segmented least square errors. To this end, let ̂𝑗 = {i;Z(n−(qn−k̂𝑗+3)r) < Zi ≤ Z(n−(qn−k̂𝑗+1)r)}, let ̂𝑗,𝜁− =
{i;Z(n−(qn−k̂𝑗+3)r) < Zi ≤ 𝜁}, let ̂𝑗,𝜁+ = {i; 𝜁 < Zi ≤ Z(n−(qn−k̂𝑗+1)r)}, and let b̂𝑗,𝜁− , b̂𝑗,𝜁+ , and b̂𝑗 be the size of the set ̂𝑗,𝜁− ,
̂𝑗,𝜁+ , and ̂𝑗 , respectively,

Q𝑗(𝜁−,𝜽) =
b̂𝑗,𝜁−

b̂𝑗

∑
i∈̂𝑗,𝜁−

(
𝑦i −

𝑗∑
k=1

x′
i𝜽k

)2

,

Q𝑗(𝜁+,𝜽) =
b̂𝑗,𝜁+

b̂𝑗

∑
i∈̂𝑗,𝜁+

(
𝑦i −

𝑗∑
k=1

x′
i𝜽k

)2

.

Here, 𝜁− and 𝜁+ represent the left and right limits for a splitting position 𝜁 . The two Q sums represent the left and right
sums of squared errors when 𝜁 is used to divide the region. We then estimate each threshold aj by

â𝑗 = argmin𝜁∈(Z(n−(qn−k̂𝑗+3)r),Z(n−(qn−k̂𝑗+1)r)]
Q𝑗(𝜁 ), (12)

where Q𝑗(𝜁 ) = min𝜽Q𝑗(𝜁−,𝜽) + min𝜽Q𝑗(𝜁+,𝜽), 𝑗 = 1, … , ŝ.
After we obtain â𝑗 , 𝑗 = 1, … , ŝ, by (12), it is sensible to use the weighted least squares to compute the final estimates

of the coefficients in model (1). Specifically, let ̂∗
𝑗
= {i ∶ â𝑗−1 < Zi ≤ â𝑗}, 𝑗 = 1, … , ŝ + 1, â0 = −∞, âŝ+1 = +∞, and

estimate the regression coefficients 𝜽 = (𝜽′
1, … ,𝜽′

ŝ+1)
′ = (𝜃1, … , 𝜃(p+1)(ŝ+1))′ by minimizing the penalized least squares

ŝ+1∑
𝑗=1

b̂∗
𝑗

2n
∑
i∈̂∗

𝑗

(
𝑦i −

𝑗∑
k=1

x′
i𝜽k

)2

+
(p+1)(ŝ+1)∑

k=1
Γ𝜆n,𝛾n(|𝜃k|), (13)

where b̂∗
𝑗

is the size of set ̂∗
𝑗

, and the penalty function Γ𝜆n,𝛾n(| · |) is the same as in (10), |𝜃k| is the absolute value of 𝜃k.
The performance of �̂� depends on the initial segment length r, and so it is important to choose a proper r. We choose

the optimal r by applying a modified version of BIC. First, apply the splitting stage to the data sequence L times with the
common segment length (excluding the first segment) rl, l = 1, … ,L. We set rl = ⌊kl

√
n⌋, l = 1, … ,L, where kl takes

values from L grid-points in the interval [0.1, 2]. For each rl applying the two-stage generic method (TSMCD), we obtain
a set of estimated thresholds ̂l = {â1l, … , âŝll}, l = 1, … ,L. Then, we use BIC to choose the best index

l̂ = argminl=1,… ,L{BIĈ},

where
BIĈl

= n log(RSS∕n) + (p + 1)(ŝl + 1) log(n), (14)

with ̂𝑗,l = {i ∶ â𝑗−1,l < Zi ≤ â𝑗,l}, â0,l = −∞, âŝl+1,l = +∞. Our final estimates are results with index l̂.
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Remark 1. It is known that the ordinary BIC is a liberal measure when the model spaces are large. There are proposed
modifications for the criterion when the number of variables increases with the sample size.52-54 We use the BIC
proposed by Wang et al52 when the dimensions of the covariates are relatively large and modify Equations (11) and
(14) by

BIC = n log(RSS∕n) + log(n)DF · Cn, (15)

and Cn is a positive constant, which increases to infinity as n increases. The choice of each Cn can be different for
these two BIC measures, and usually it takes values C log(DF), where C is a positive constant.

Remark 2. An important condition for the aforementioned change point detection algorithm to work well is that the
proportion for each subgroup should be positive and bounded away from zero (see condition (A1) in the work of Li
and Jin19). The practical implication of this condition is that we cannot detect a rare group with very small prevalence
in the population. Under the technical conditions in the work of Li and Jin,19 it can be shown that the estimated
number of change points ŝ is equal to the true s with probability one using the TSMCD algorithm. In addition, the
estimated locations of the change points are also consistent to the true change points when the sample size is large.19

These asymptotic results provide solid theoretical justification to the subgrouping results.

4 SIMULATION STUDIES

We now perform simulations to compare the performances of the various proposed algorithms, ie, 1-TSMCD, A-TSMCD,
F1-TSMCD, F2-TSMCD, and PC-TSMCD, with existing subgrouping methods including AIM-rule, seq-BATTing, PRIM,
and MOB. All our simulation programs are run using the R software. Following suggestions in the work of Huang et al,20

the cross-validation is implemented when using the SubgrpID package. If the cross-validation p-value < 0.05, we claim
that the subgroup is identified.

Our simulation setup consists of eight cases designed to evaluate the performance of different subgrouping methods.
In all cases, we repeat the simulation 500 times using sample sizes n = 300 and 500, and all models have a normally
distributed error term 𝜖i, with mean 0 and variance 0.25. Unlike previous simulation studies, where the thresholding
variable is usually one of the observed covariates, we form subgroups either by splitting the unobserved latent variables
(Cases I to IV) or by selecting a fixed linear combination of observed covariates (Cases V to VIII).

For Cases I to IV, we apply the factor analysis method to estimate the thresholding variable and generate the covariates
xi = (xi1, … , xip)′ from the following factor model:

xi = 𝚲f i + 𝜺i, i = 1, … ,n.

Here, 𝚲 is a p × m loading matrix where each row is generated from the standard multivariate normal distribution, the
factors fi = ( fi1, … , fim)′ are generated from the multivariate normal distribution N(0, Im), and the stochastic error 𝜺i is
generated from the multivariate normal distribution N(0, 0.1Ip). There are p = 10 covariates and m = 3 factors.

Case I: We generate data from the model without any change point (ie, no subgroups)

𝑦i = 1 + xi1 +
1
2

xi2 + 2(xi3 + xi4) + 𝜖i,

for i = 1, … ,n.
Case II: We generate data from the model

𝑦i = 1 + xi1 + xi21{𝑓i1≤0} + 2(xi3 + xi4)1{𝑓i1>0} + 𝜖i,

for i = 1, … ,n. This model involves only one change point (two subgroups). The threshold 0 is chosen so that we have
balanced groups in this example. Figure 1 shows how the mean response depends differently on each of the covariates
when a data set of size n = 500 is generated from the model.
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FIGURE 1 Scatter plots of the response variable y and covariates for different subgroups under case II: “Subgroup 1” is under condition
fi1 ≤ 0 and “Subgroup 2” is under condition fi1 > 0 [Colour figure can be viewed at wileyonlinelibrary.com]

Case III: We generate data from the model

𝑦i = 1 + xi1 − xi21{𝑓i1≤a1} +
(

2xi3 +
1
2

xi4

)
1{a1<𝑓i1≤a2} + 1{𝑓i1>a2} + 𝜖i,

for i = 1, … ,n, where a1 = −0.5 and a2 = 0.5 are two change points. The two thresholds are chosen so that the three
groups are of roughly the same size and the intermediate group is of a relatively greater size. Figure 2 shows how the
response variable depends on each of the covariates when a data set of size n = 500 is generated from the model.

Case IV: We generate data from the following model that contains a treatment variable

𝑦i = 1 + xi1 + (ui + xi2)1{𝑓i1≤0} + 2(xi3 + xi4)1{𝑓i1>0} + 𝜖i,

where ui ∼ Bernoulli(0.5) is a binary treatment indicator. This model involves only one change point and hence two
subgroups. Figure 3 shows how the response variable depends on each of the covariates when a data set of size n = 500
is generated from the model.

http://wileyonlinelibrary.com
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FIGURE 2 Scatter plots of the response variable y and covariates for different subgroups under case III: “Subgroup 1” is under condition
fi1 ≤ − 0.5, “Subgroup 2” is under condition −0.5 < fi1 ≤ 0.5 and “Subgroup 3” is under condition fi1 > 0.5 [Colour figure can be viewed at
wileyonlinelibrary.com]

Cases V to VIII are designed to examine the performance of PCA-based thresholding. The thresholding variable could
be some combination of covariates. Here, we simply use the mean of the covariates as thresholding variable. For Cases V,
VI, and VIII, we have p = 6 and generate the covariates xi1, … , xi6, i = 1, … ,n from a multivariate normal distribution
with mean 0 and a covariance matrix 𝚺1 given by

𝚺1 =

⎡⎢⎢⎢⎢⎢⎣

1 0.36 0.285 0.248 0.229 0.219
0.36 1 0.36 0.285 0.248 0.229

0.285 0.36 1 0.36 0.285 0.248
0.249 0.285 0.36 1 0.36 0.285
0.229 0.248 0.285 0.36 1 0.36
0.219 0.229 0.248 0.285 0.36 1

⎤⎥⎥⎥⎥⎥⎦
.

For Case VII, we generate a high-dimensional vector of p = 50 covariates xi1, … , xi50, i = 1, … ,n, from the multivari-
ate normal distribution with zero mean. The covariance of the first six variables is 𝚺1 and the remaining p − 6 variables
are uncorrelated with unit variances.

http://wileyonlinelibrary.com


WANG ET AL. 2615

−2 −1 0 1 2

−
2

0
2

4
6

8
10

x1

y
Subgroup 1
Subgroup 2

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

−
2

0
2

4
6

8
10

x2

y

Subgroup 1
Subgroup 2

−3 −2 −1 0 1 2 3

−
2

0
2

4
6

8
10

x3

y

Subgroup 1
Subgroup 2

−2 −1 0 1 2

−
2

0
2

4
6

8
10

x4

y

Subgroup 1
Subgroup 2

FIGURE 3 Scatter plots of the response variable y and covariates for different subgroups under case IV: “Subgroup 1” is under condition
fi1 ≤ 0 and “Subgroup 2” is under condition fi1 > 0 [Colour figure can be viewed at wileyonlinelibrary.com]

Case V: We generate data from the following model with only one group:

𝑦i = 1 + xi1 − 2xi2 + xi3 +
1
2

xi4 + 0 · xi5 + 0 · xi6 + 𝜖i. (16)

Case VI: We generate data from the model

𝑦i = −1 + xi1 − 2(1 + xi2)1{zi≤a1} + 2(xi2 + xi3)1{a1<zi≤a2} + 3xi41{zi>a2} + xi5 + 𝜖i,

with zi =
∑6

𝑗=1 xi𝑗 , i = 1, … ,n, and a1 = −2 and a2 = 2 are the 30% and 70% quantiles of zi. Figure 4 shows how the
response variable depends on each of the covariates when a data set of size n = 500 is generated from the model.

Case VII: We generate data from the model

𝑦i = 1 + xi1 + xi21{zi≤0} + 2(xi3 + xi4)1{zi>0} + 𝜖i,

with zi =
∑6

𝑗=1 xi𝑗 , i = 1, … ,n. Figure 5 shows how the response variable depends on each of the covariates when a data
set of size n = 500 is generated from the model.

http://wileyonlinelibrary.com
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FIGURE 4 Scatter plots of the response variable y and covariates for different subgroups under case VI: “Subgroup 1” is under condition∑6
𝑗=1 xi𝑗 ≤ −2, “Subgroup 2” is under condition −2 <
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𝑗=1 xi𝑗 ≤ 2 and “Subgroup 3” is under condition
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FIGURE 5 Scatter plots of the response variable y and covariates for different subgroups under case VII: “Subgroup 1” is under condition∑6
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FIGURE 6 Scatter plots of the response variable y and covariates for different subgroups under case VIII: “Subgroup 1” is under condition∑6
𝑗=1 xi𝑗 ≤ 0 and “Subgroup 2” is under condition
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Case VIII: We generate data from the model with a treatment variable

𝑦i = 1 + xi1 + xi21{zi≤0} + 2(xi3ui + xi4)1{zi>0} + ui + 𝜖i,

where zi =
∑6

𝑗=1 xi𝑗 , i = 1, … ,n and ui is a treatment variable that follows a Bernoulli distribution with parameter 0.5.
Figure 6 shows how the response variable depends on each of the covariates when a data set of size n = 500 is generated
from the model.

Table 1 shows the summarized simulation results for cases I to VIII, which also include results from the oracle TSMCD
method with known true thresholding variable (but with unknown number and location of change points). We note
that AIM-rule, seq-BATTing, and PRIM can only split the sample into two subgroups, hence, in Table 1, the identified
subgroup numbers ŝ+ 1 for these methods are always two. We also calculate the rate of true subgroup numbers identified
(RT) and the positive predictive value (PPV) for each subgroup, and we summarized the results in Table 2.

In case I and case V, there is no subgroup and an appropriate subgrouping method should not recommend to divide the
subjects into more than one group. All methods have comparable MSE for both training set and test set. From Table 2,
we can find that MOB, F1-TSMCD, F2-TSMCD, and PC-TSMCD can identify the group with very high probability when
there is only one group. Since AIM-rule, seq-BATTing, and PRIM all tend to split the sample into two subgroups, their
RTs are relatively lower.

For case II, the true subgroup number s + 1 is 2. Table 1 shows that F1-TSMCD (factor analysis by weighted least
square estimator), F2-TSMCD (factor analysis by Thomson's regression estimator) and MOB achieve much smaller MSE
for both training and test sample than AIM-rule, seq-BATTing, and PRIM. Furthermore, both F2-TSMCD and F1-TSMCD
are slightly better than MOB in terms of prediction error. While our proposed F1-TSMCD and F2-TSMCD can give closer
value to the true number of subgroups, MOB gives a slightly larger groups. In case III, we make a similar observation as
in case II.

http://wileyonlinelibrary.com
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TABLE 1 Summary of results for case I to VIII. MSE.tr(sd): averaged mean squared error for response among 500
simulations(standard deviation) for the training sample; MSE.te(sd): averaged mean squared error for response among 500
simulations(standard deviation) for the test sample; s+1: true number of subgroups; ŝ + 1 (sd): averaged estimated number of
subgroups and standard deviation; AIM-rule: multiplicative rules-based modification of the adaptive index model; seq-BT:
sequential BATTing; PRIM: patient rule induction method; MOB: model-based recursive partitioning method; F1-TSMCD: TSMCD
with factor analysis (weighted least square estimator); F2-TSMCD: TSMCD with factor analysis (regression estimator); PC-TSMCD:
TSMCD with principal components; LM: linear regression model; TSMCD: TSMCD with known true thresholding variable

n= 300 n= 500
Method MSE.tr(sd) MSE.te(sd) ŝ+𝟏 (sd) MSE.tr(sd) MSE.te(sd) ŝ+𝟏 (sd)

Case I AIM-rule 0.2228(0.0212) 0.2824(0.0440) 2(0) 0.2346(0.0181) 0.2671(0.0314) 2(0)
s+1=1 seq-BT 0.2231(0.0216) 0.2818(0.0447) 2(0) 0.2392(0.0153) 0.2521(0.0295) 2(0)

PRIM 0.2228(0.0214) 0.2814(0.0440) 2(0) 0.2344(0.0180) 0.2671(0.0311) 2(0)
MOB 0.2354(0.0230) 0.2640(0.0403) 1.0180(0.1331) 0.2414(0.0189) 0.2597(0.0306) 1.0520(0.2222)

F1-TSMCD 0.2422(0.0228) 0.2591(0.0392) 1(0) 0.2461(0.0191) 0.2545(0.0292) 1(0)
F2-TSMCD 0.2422(0.0228) 0.2591(0.0392) 1(0) 0.2461(0.0191) 0.2545(0.0292) 1(0)

LM 0.2361(0.0223) 0.2660(0.0405) 1(0) 0.2425(0.0187) 0.2584(0.0297) 1(0)
Case II AIM-rule 0.7000(0.1394) 0.8751(0.2215) 2(0) 0.7482(0.1188) 0.8551(0.1683) 2(0)
s+1=2 seq-BT 0.6340(0.0975) 0.7770(0.1655) 2(0) 0.6908(0.0800) 0.7830(0.1344) 2(0)

PRIM 0.4910(0.1625) 0.7273(0.3739) 2(0) 0.5031(0.1424) 0.6344(0.2618) 2(0)
MOB 0.3283(0.0534) 0.5366(0.8617) 2.0160(0.1256) 0.3406(0.0415) 0.5859(1.0362) 2.0860(0.2806)

F1-TSMCD 0.2966(0.0424) 0.3672(0.0972) 2(0) 0.2422(0.0228) 0.2591(0.0392) 2.0040(0.0632)
F2-TSMCD 0.2850(0.0392) 0.3664(0.1101) 2(0) 0.2422(0.0228) 0.2591(0.0392) 2.0020(0.0447)

TSMCD 0.2394(0.0244) 0.2714(0.0520) 2(0) 0.2441(0.0202) 0.2616(0.0357) 2(0)
Case III AIM-rule 0.4198(0.0455) 0.5075(0.0746) 2(0) 0.4289(0.0359) 0.4856(0.0620) 2(0)
s+1=3 seq-BT 0.4496(0.0485) 0.5308(0.0783) 2(0) 0.4592(0.0402) 0.5115(0.0616) 2(0)

PRIM 0.4228(0.0425) 0.5128(0.0732) 2(0) 0.4336(0.0324) 0.4909(0.0549) 2(0)
MOB 0.3609(0.0536) 0.5949(0.2978) 2.5824(0.5501) 0.3362(0.0347) 0.5957(0.3027) 3.2784(0.5839)

F1-TSMCD 0.3659(0.0667) 0.4577(0.0913) 2.7118(0.5256) 0.3462(0.0359) 0.4086(0.0639) 2.9780(0.1939)
F2-TSMCD 0.3406(0.0553) 0.4309(0.0817) 2.7588(0.4373) 0.3278(0.0371) 0.3895(0.0649) 2.9560(0.2494)

TSMCD 0.2394(0.0244) 0.2858(0.0448) 3(0) 0.2435(0.0193) 0.2673(0.0324) 3.0000(0.0627)
Case IV AIM-rule 1.4016(0.3054) 1.8241(0.5061) 2(0) 1.4925(0.2596) 1.7527(0.3516) 2(0)
s+1=2 seq-BT 1.2945(0.4429) 1.6795(0.7902) 2(0) 1.3664(0.4480) 1.5716(0.5499) 2(0)

PRIM 1.1633(0.3905) 1.5037(0.5387) 2(0) 1.2062(0.3863) 1.4032(0.4844) 2(0)
MOB 0.3584(0.0614) 0.5658(0.7032) 2.0151(0.1220) 0.3633(0.0471) 0.9574(1.8822) 2.1811(0.3904)

F1-TSMCD 0.3176(0.0479) 0.4200(0.1245) 2.0019(0.0434) 0.3239(0.0368) 0.3853(0.0784) 2.0019(0.0434)
F2-TSMCD 0.3095(0.0477) 0.4205(0.1343) 2(0) 0.3129(0.0361) 0.3793(0.0835) 2(0)

TSMCD 0.2375(0.0239) 0.2736(0.0530) 2(0) 0.2418(0.0179) 0.2637(0.0360) 2(0)
Case V AIM-rule 0.2323(0.0234) 0.2695(0.0387) 2(0) 0.2416(0.0190) 0.2620(0.0283) 2(0)
s+1=1 seq-BT 0.2376(0.0199) 0.2531(0.0379) 2(0) 0.2445(0.0150) 0.2524(0.0276) 2(0)

PRIM 0.2324(0.0236) 0.2683(0.0382) 2(0) 0.2416(0.0190) 0.2622(0.0278) 2(0)
MOB 0.2389(0.0251) 0.2621(0.0406) 1.0840(0.2848) 0.2453(0.0202) 0.2566(0.0315) 1.1040(0.3427)

PC-TSMCD 0.2429(0.0240) 0.2564(0.0361) 1(0) 0.2482(0.0192) 0.2549(0.0270) 1(0)
LM 0.2409(0.0239) 0.2585(0.0367) 1(0) 0.2469(0.0194) 0.2562(0.0273) 1(0)

Case VI AIM-rule 3.2233(0.3248) 3.6864(0.5603) 2(0) 3.2863(0.2826) 3.5802(0.4791) 2(0)
s+1=3 seq-BT 3.2220(0.3775) 3.7026(0.5997) 2(0) 3.2895(0.3400) 3.5941(0.5329) 2(0)

PRIM 3.1247(0.3358) 3.6877(0.5680) 2(0) 3.2676(0.2745) 3.6152(0.4397) 2(0)
MOB 2.3196(0.3261) 4.7345(2.2454) 3.0040(0.5182) 2.1001(0.2307) 4.1435(2.1897) 4.1235(0.6319)

PC-TSMCD 0.4215(0.1789) 1.1065(0.6282) 3.0260(0.1593) 0.4426(0.1770) 1.0047(0.4892) 3.0490(0.2161)
TSMCD 0.3361(0.1966) 0.4414(0.2584) 3.0060(0.0773) 0.3644(0.2112) 0.4333(0.2505) 3.0412(0.2085)

Case VII AIM-rule 0.7985(0.1466) 2.9443(1.6657) 2(0) 0.9023(0.1287) 2.1052(0.9457) 2(0)
s+1=2 seq-BT 0.7488(0.1160) 2.5086(1.0276) 2(0) 0.8727(0.1076) 1.7931(0.3189) 2(0)

PRIM 0.6503(0.1302) 2.1329(4.7812) 2(0) 0.7519(0.1210) 1.5892(0.3286) 2(0)
MOB 0.7110(0.3028) 2.2404(2.1449) 1.8700(0.3366) 0.7261(0.0983) 1.6432(0.2799) 1.9980(0.0447)

PC-TSMCD 0.6988(0.3268) 1.2524(0.5547) 1.9360(0.2450) 0.5805(0.1215) 0.9698(0.3437) 2(0)
TSMCD 0.2430(0.0229) 0.2800(0.0740) 2(0) 0.2473(0.0525) 0.2772(0.0850) 2(0)

Case VIII AIM-rule 1.0687(0.1906) 1.3090(0.3066) 2(0) 1.0121(0.134) 1.1971(0.212) 2(0)
s+1=2 seq-BT 0.9997(0.1879) 1.2058(0.2756) 2(0) 1.0811(0.1321) 1.2691(0.2315) 2(0)

PRIM 1.1967(0.1995) 1.4754(0.3293) 2(0) 1.2190(0.1747) 1.3924(0.2652) 2(0)
MOB 0.7774(0.1206) 1.0623(0.2534) 2(0) 0.6805(0.0999) 1.8066(1.5495) 3.1545(0.6212)

PC-TSMCD 0.4870(0.1988) 0.7233(0.3277) 2.1611(0.3779) 0.2991(0.1632) 0.4518(0.2380) 2.0255(0.1576)
TSMCD 0.2771(0.1887) 0.3298(0.2403) 2.0074(0.0858) 0.2664(0.1538) 0.2993(0.1793) 2(0)
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For cases V to VIII, we notice that PC-TSMCD method outperforms AIM-rule, seq-BATTing, PRIM, and MOB methods
with smaller prediction error. Moreover, our methods can correctly identify the number of subgroups, whereas the number
of subgroups given by MOB is much larger than 3 in case VI. We consider a relatively high-dimensional data set in case VII
with p = 50. When the number of subjects in a subgroup is smaller than 50, MOB cannot work any more because the
underlying regression model cannot be fit with large p and small n. While AIM-rule, seq-BATTing, PRIM, and PC-TSMCD
can still apply, we need additional high-dimensional model fitting program such as glmnet function in the software R.

We also consider the treatment effect to mimic a predictive signature development scenario in cases IV and VIII. Our
proposed methods perform better than other compared approaches in terms of smaller mean square error for both training
sample and test sample. We also observe from Table 2 that the rate of true subgroup numbers identified is very satisfactory.
This suggests that our methods can be potentially applied to predictive signature development studies.

5 APPLICATIONS

In this section, we apply our method to a clinical trial for Scleroderma patients and a breast cancer study (BCS). Both data
are available from the author in this paper.

5.1 Bovine Collagen Clinical Trial (BCCT)
We apply our subgrouping methods to an NIH-sponsored randomized Bovine Collagen Trial for Scleroderma patients
at 12 centers in the USA.55,56 Patients with diffuse Scleroderma were enroled in this multicenter phase II double-blind
placebo controlled trial and a total of 831 observations were collected. Patients were randomized to receive oral native
collagen at a dose of 500 𝜇g/day or a similar appearing placebo. The Modified Rodnan Skin Score (MRSS) was the primary
outcome variable and other key variables were disability index of the Health Assessment Questionnaire (HAQ), patient's
global assessment, patients pain assessment, and physicians global assessment. To implement the proposed methods to
predict MRSS, we consider six predictor variables x1, … , x6: over (disease progression), pain (index of pain), haq (health

TABLE 3 Results for BCCT data. MSE.tr(sd) and MSE.te(sd): averaged
mean squared error among 100 iterations of 5-fold cross validation for
training sample and test sample; ŝ + 1: mean of estimated number of
subgroups; AIM-rule: multiplicative rules-based modification of the adaptive
index model; seq-BT: sequential BATTing; PRIM: patient rule induction
method; MOB: model-based recursive partitioning method; 1-TSMCD:
TSMCD with covariates as thresholding variable; F1-TSMCD: TSMCD with
factor analysis (weighted least square estimator); F2-TSMCD: TSMCD with
factor analysis (Thomson's regression estimator); PC-TSMCD: TSMCD with
principal components; LM: linear regression model

Method MSE.tr(sd) MSE.te(sd) ŝ+𝟏 (sd)

AIM-rule 0.7794(0.0093) 0.8347(0.0170) 2(0)
seq-BT 0.7725(0.0116) 0.8342(0.0169) 2(0)
PRIM 0.7793(0.0102) 0.8312(0.0151) 2(0)
MOB 0.6977(0.0096) 0.8535(0.0577) 1.9020(0.1463)
1-TSMCD 0.7657(0.0060) 0.8299(0.0199) 1.3587(0.0769)
A-TSMCD 0.7753(0.0119) 0.8396(0.0176) 1.2140(0.1891)
F1-TSMCD 0.7438(0.0154) 0.8236(0.0201) 1.5840(0.2196)
F2-TSMCD 0.7447(0.0140) 0.8228(0.0220) 1.5520(0.1888)
PC-TSMCD 0.7592(0.0123) 0.8330(0.0133) 1.4000(0.2010)
LM 0.7610(0.0013) 0.8102(0.0121) 1(0)
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assessment questionnaire), pga (patient self assessment of disease progression), dlcop (lung performance measurement),
and age. After removing missing values, we have a sample of 295 observations in the downstream analysis. All variables
are standardized with mean zero and unit variance.

We implement our proposed TSMCD methods along with AIM-rule, seq-BATTing, PRIM, MOB, and linear regression
model (LM) to analyze the data. To evaluate the performance, we drive a 5-fold cross validation to this data set and repeat
this procedure 100 times. The analysis results are summarized in Table 3. We also present box plots of MSE for both
training and test sample in Figure 7. When we check the value of MSE, we can easily find that MOB has the smallest MSE
for training sample, but for test sample, MOB has the largest prediction error with a large standard deviation. For training
sample, the MSE of all subgrouping methods, expect MOB, is very close to the MSE of linear regression. For test sample,
linear regression has the smallest MSE and MSE for other methods are also very close to it.
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FIGURE 8 The frequency of subgroup numbers for Bovine Collagen Clinical Trial (BCCT) data [Colour figure can be viewed at
wileyonlinelibrary.com]

TABLE 4 Results for the first procedure of BCS data. MSE(sd):
averaged mean squared error for response(standard deviation);
ŝ + 1(sd): averaged estimated number of subgroups(standard
deviation); AIM-rule: multiplicative rules-based modification of
the adaptive index model; seq-BT: sequential BATTing method;
PRIM: patient rule induction method; 1-TSMCD: TSMCD with
covariates as thresholding variable; A-TSMCD: TSMCD with
average of all covariates as thresholding variable; F1-TSMCD:
TSMCD with factor analysis (weighted least square estimator);
F2-TSMCD: TSMCD with factor analysis (Thomson's regression
estimator); PC-TSMCD: TSMCD with principal components; LM:
linear regression model; time: the mean computing time for each
method

Method MSE(sd) ŝ+𝟏(sd) time(second)

AIM-rule 0.6763(0.0622) 2(0) 62.50
seq-BT 0.6916(0.0636) 2(0) 61.11
PRIM 0.6816(0.0732) 2(0) 18.79
1-TSMCD 0.7618(0.1042) 2.1314(0.5868) 249.21
A-TSMCD 0.7847(0.1536) 2.243(1.3715) 12.24
F1-TSMCD 0.6565(0.1190) 3.6700(1.2977) 75.82
F2-TSMCD 0.6762(0.1468) 3.0460(1.2518) 76.91
PC-TSMCD 0.6370(0.1523) 3.2900(1.3067) 57.87
LM 0.7384(0.0608) 1(0) -
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Table 3 shows the averaged numbers of subgroups identified by various methods and we observe that the AIM-rule,
seq-BT, PRIM, and MOB give two subgroups and our proposed methods give about 1.4 subgroups. Figure 8 displays the
frequency of identified number of subgroups except those for the AIM-rule, seq-BATTing, and PRIM methods because
they always give two subgroups. Eyeballing the plots, we observe that A-TSMCD and F2-TSMCD prefer to take the sample
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FIGURE 9 Box plots of mean squared error (MSE) for the first analysis procedure of breast cancer study (BCS) [Colour figure can be
viewed at wileyonlinelibrary.com]

1−TSMCD

1.0 1 2 3 4 5 6 1 2 3 4 5 6

1 2 3 4 5 6 1 2 3 4 5 6

1.5 2.0 2.5 3.0 4.03.5

20
40

60
80

12
0

C
ou

nt

0
10

0

C
ou

nt

0
20

40
60

80
10

0
12

0

C
ou

nt

0
10

0
50

15
0

C
ou

nt

0
10

0
50

15
0

C
ou

nt

0
20

40
60

80
10

0
12

0

14
0

A−TSMCD F1−TSMCD

F2−TSMCD PC−TSMCD

FIGURE 10 The frequency of the number of subgroups for the first analysis procedure of Breast Cancer Study (BCS). TSMCD, two-stage
multiple change-point detection [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


WANG ET AL. 2625

as one group and MOB has a high chance to identify two subgroups. We conclude that this BCCT data set can be deemed
as one group and we do not have to identify subgroups.

5.2 Breast cancer study
We next apply our methods to a high-dimensional BCS first reported in the work of van 't Veer et al.57 There were 97
lymph node-negative breast cancer patients who were 55 years old or younger in this study. Among them, 46 developed
distant metastases within 5 years (metastatic outcome coded as 1) and 51 remained metastases free for at least 5 years
(metastatic outcome coded as 0). Clinical risk factors (confounders) were age, tumor size, histological grade, angioinva-
sion, lymphocytic infiltration, estrogen receptor (ER), and progesterone receptor (PR) status. Expression levels for 24 481
gene probes were collected. Directly analyzing > 20 000 genes was problematic and, after removing genes with severe
missingness, we analyzed 24 188 genes. In this section, we implement three of our computational procedures to analyze
this breast cancer data set.

In the first procedure, we apply a bootstrap approach to build predictive models. We randomly pick 20 genes as the
covariates and use tumor size as the response variable. We implement our proposed methods to this bootstrap data set
and repeat the random sampling and computation for 500 times.

Table 4 summarizes the results. For the 1-TSMCD method, we take the average of MSE, which is obtained by taking each
of the 20 covariates as thresholding variable. Among all the methods, PC-TSMCD achieves the smallest prediction error.
Using PC-based thresholding and factor-based thresholding lead to, on average, more than three subgroups, whereas other
subgrouping methods only divide the sample into two groups. The PRIM method is fastest among all the subgrouping
methods. Figure 9 displays the box plots of the MSE over 500 repetitions for all methods. For comparison, we also consider
linear regression in this example. This approach does not yield a subgroup and has relatively higher prediction errors.
Figure 10 displays the corresponding frequencies of the number of subgroups by the TSMCD methods. A-TSMCD treats
all subjects as one group, whereas F2-TSMCD and PC-TSMCD tend to split the sample into 2, 3, and 4 subgroups.

Yu et al58 performed a screening analysis on this breast cancer data using the receiver operating characteristic–based
approach by adjusting for the clinical risk factors. Their methods produced 10 important genes and 10 genes by prac-
tical ranking. In this second analysis procedure, we use the same 20 genes and build models using them as predictors

TABLE 5 Results for the second procedure of BCS data.
MSE.tr(sd) and MSE.te(sd): averaged mean squared error among
100 iterations of 2-fold cross validation for training sample and
test sample; ŝ + 1: mean of estimated number of subgroups;
AIM-rule: multiplicative rules-based modification of the adaptive
index model; seq-BT: sequential BATTing; PRIM: patient rule
induction method; MOB: model-based recursive partitioning
method; 1-TSMCD: TSMCD with covariates as thresholding
variable; F1-TSMCD: TSMCD with factor analysis (weighted least
square estimator); F2-TSMCD: TSMCD with factor analysis
(Thomson's regression estimator); PC-TSMCD: TSMCD with
principal components; LM: linear regression model

Method MSE.tr(sd) MSE.te(sd) ŝ+𝟏 (sd)

AIM-rule 0.4989(0.1201) 1.4622(0.3930) 2(0)
seq-BT 0.5224(0.1317) 1.5061(0.4940) 2(0)
PRIM 0.5259(0.1256) 1.4649(0.4564) 2(0)
1-TSMCD 0.3817(0.0422) 1.9609(0.3380) 2.5194(0.1370)
A-TSMCD 0.4138(0.1271) 2.0159(0.6202) 2.4280(0.5302)
F1-TSMCD 0.4374(0.0813) 1.3328(0.2089) 2.4440(0.4174)
F2-TSMCD 0.4401(0.0859) 1.3682(0.2392) 2.4520(0.4685)
PC-TSMCD 0.4424(0.0927) 1.3659(0.2768) 2.4920(0.4622)
LM 0.4481(0.0469) 2.5049(0.8409) 1(0)
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x1, x2, … , x20. The 20 genes numbers are 10755, 16274, 13143, 10513, 19642, 7374, 22328, 296, 11285, 4682, 271, 403, 8,
272, 1439, 24023, 921, 194, 23488, and 593.

We use a 2-fold cross validation with 100 repetitions on this data. Table 5 reports the MSE results for the various models.
We observe that, although 1-TSMCD has the smallest MSE for training sample, it makes a bad prediction on the test sam-
ple. F1-TSMCD, F2-TSMCD, and PC-TSMCD achieve the smaller MSE for both the training sample and test sample and
they produce, on average, more than two subgroups. Figure 11 compares MSEs for these methods and Figure 12 displays
the bar plot for each method to compare the frequency of the number of subgroups. Overall, our proposed approaches
split the sample into more than two subgroups for this data set.

In the third analysis, we implement our proposed methods to analyze the genes identified by Cheng et al,59 who analyzed
the same data using a forward variable selection method. Four genes, namely, gene 2098, 23300, 19846, and 7844, were

0.
8

0.
6

0.
4

0.
2

M
S

E
 fo

r 
tr

ai
ni

ng
 s

am
pl

e

1
2

3
4

5
6

M
S

E
 fo

r 
te

st
 s

am
pl

e

LM

AIM−rule

seq−BT
PRIM

1−TSMCD

A−TSMCD

F1−TSMCD

F2−TSMCD

PC−TSMCD

LM

AIM−rule

seq−BT
PRIM

1−TSMCD

A−TSMCD

F1−TSMCD

F2−TSMCD

PC−TSMCD
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FIGURE 12 The frequency of the number of subgroups for the second procedure for Breast Cancer Study (BCS). TSMCD, two-stage
multiple change-point detection [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 6 Results for the third procedure of BCS data.
MSE.tr(sd) and MSE.te(sd): averaged mean squared error among
100 iterations of 2-fold cross validation for training sample and test
sample; ŝ + 1: mean of estimated number of subgroups; AIM-rule:
multiplicative rules-based modification of the adaptive index
model; seq-BT: sequential BATTing; PRIM: patient rule induction
method; MOB: model-based recursive partitioning method;
1-TSMCD: TSMCD with covariates as thresholding variable;
F1-TSMCD: TSMCD with factor analysis (weighted least square
estimator); F2-TSMCD: TSMCD with factor analysis (Thomson's
regression estimator); PC-TSMCD: TSMCD with principal
components; LM: linear regression model

Method MSE.tr(sd) MSE.te(sd) ŝ+𝟏 (sd)

AIM-rule 0.5988(0.0511) 1.0308(0.1677) 2(0)
seq-BT 0.6114(0.0551) 1.0290(0.1498) 2(0)
PRIM 0.6050(0.0591) 1.0363(0.1579) 2(0)
MOB 0.6733(0.0302) 0.9109(0.1302) 1.0050(0.05)
1-TSMCD 0.6352(0.0457) 1.1055(0.1928) 1.3350(0.1904)
A-TSMCD 0.6553(0.0868) 1.3230(1.1757) 1.2450(0.3138)
F1-TSMCD 0.6236(0.0898) 1.1850(0.9451) 1.3750(0.3718)
F2-TSMCD 0.6236(0.0898) 1.1850(0.9451) 1.3750(0.3718)
PC-TSMCD 0.6220(0.065) 0.9859 (0.1434) 1.3950(0.3356)
LM 0.6742(0.0285) 0.9105(0.1301) 1(0)
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identified and we used them as x1, x2, … , x4 in our models. As in the second analysis, we also drive the 2-fold cross
validation over 100 iterations. Table 6 outlines the averaged mean square error and the averaged number of subgroups.
In this case, MOB and LM have the largest MSEs, but these two methods achieve the smallest prediction errors for the
test sample. Although comparing with LM and MOB other subgrouping approaches have relative smaller MSE for the
training data set, they do report larger prediction errors for the test data set. Moreover, we also can see that the variance
of our proposed methods, A-TSMCD, F1-TSMCD, F2-TSMCD, and PC-TSMCD, are larger than AIM-rule, Seq-BT, PRIM,
LM and MOB in Figure 13. Figure 14 shows that almost all our proposed methods prefer to have one group for the data set.

The anonymized data sets used in this paper will be made available upon acceptance of the paper.
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FIGURE 14 The frequency of the number of subgroups for the third procedure for Breast Cancer Study (BCS). MOB, model-based
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6 DISCUSSION

Our work focuses on estimating the thresholding variable, which is an important component in the statistical analysis
of precision medicine. We consider a variety of candidates for a thresholding variable and, via extensive simulations,
provide recommendations for their choices. For example, when we have high-dimensional problems with a large number
of covariates, thresholding variables from PC-based methods tend to yield more efficient results. On the other hand, in
low-dimensional problems such as the bovine collagen trial data, factor analysis may yield quite helpful results and ought
to be treated as a competitive approach for subgroup analysis.

We develop a general framework for constructing thresholding variables. The options can be based on a weighted sum
of covariates, factors, principal components, or some other related variables as thresholding variables. This allows users
to have more choices when they do with subgrouping problems. Our extensive numerical works suggest that these flex-
ible choices may lead to more accurate prediction results for the medical outcome variables. When the analysts aim at
improving the prediction value, it is especially appealing to consider our proposal. Unfortunately, it is sometimes not as
easy to interpret the complicated thresholding variables as using a single covariate, which is the price we have to pay for
this general thresholding variable.

Furthermore, our proposed methods can split the groups into more than two subgroups, whereas some traditional
methods like AIM-rule, seq-BATTing, and PRIM only generate two subgroups. Allowing more subgroups in general could
discover more data heterogeneity and identify hidden subcategory in a mixing population. Such multigroup structure
may be fairly plausible for data sets with large n and large p, which becomes more and more common recently.

Many tree-based methods order the thresholding variables by Gini index, entropy function, or information gain.4,60

SIDES11 finds the best five (default) candidate covariates by optimizing some desired criteria (p-value, treatment effect,
safety, and so on). AIM-rule and sequential BATTing are based on score test statistics. Our proposed methods are different
from these recursive partitioning methods because we do not refit the change point models. Because we assume a true
data generating model in this paper, the subgroup identification problem becomes a model estimation problem. Once the
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model parameters are estimated, we obtain the grouping results automatically. Our procedure thus distinguishes from
the machine learning procedures, where data are repeatedly analyzed to reinforce the final prediction performance.

In this paper, we mainly focus on continuous outcome with a Gaussian error distribution. Our proposal can be extended
to address nonnormally distributed response variables too. For example, we may consider the censored survival time
problem, in which case we can insert the Kaplan-Meier weights in the least squares to deal with the random censoring as
in the work of Li and Jin.19 Most existing subgroup methods can also work for dichotomous or multicategory outcomes,
under a likelihood estimation framework. We then need to modify the objective function in this paper and seek a penalized
maximum likelihood estimator. More theoretical and numerical works are under development.
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