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Abstract

The creation of sophisticated AI systems that are able to pro-
cess and produce images and text creates new challenges in
assessing the capabilities of those systems. We adapt a behav-
ioral paradigm from developmental psychology to characterize
the counting ability of a model that generates images from text.
We show that three model scales of the Parti model (350m,
3B, and 20B parameters respectively) each have some count-
ing ability, with a significant jump in performance between the
350m and 3B model scales. We also demonstrate that it is pos-
sible to interfere with these models’ counting ability simply by
incorporating unusual descriptive adjectives for the objects be-
ing counted into the text prompt. We analyze our results in the
context of the knower-level theory of child number learning.
Our results show that we can gain experimental intuition for
how to probe model behavior by drawing from a rich litera-
ture of behavioral experiments on humans, and, perhaps most
importantly, by adapting human developmental benchmarking
paradigms to AI models, we can characterize and understand
their behavior with respect to our own.

Introduction
Modern AI systems are capable of performing sophisticated
tasks using images and text, such as generating a picture
based on a description. With such text-to-image multimodal
models gaining widespread use, it is more important than ever
to characterize and methodically study their behaviors. Re-
cent research has focused on studying whether these models
demonstrate compositionality, appropriately producing the
right combination of abstract concepts (Thrush et al., 2022).
Here we focus on an even simpler form of abstraction: un-
derstanding number. For example, we might wonder whether
a model can reliably count to ten, and whether its internal
understanding of number concepts matches what we would
expect of a human. Many of the questions now being asked
about a model’s “understanding” of concepts are the same
questions previously asked about human children (Frank,
2023a, 2023b). Developmental psychologists have devised
tests and measures that probe many aspects of a child’s un-
derstanding of number. For example, researchers discovered
that children often produce (speak) number words in order
(“one, two, three”) before they understand how to use them
or what they mean (before they can produce 3 objects, or even
correctly count the 3 objects placed in front of them; Frye et
al., 1989; Fuson, 2012; Sarnecka and Carey, 2008). Here we
adapt these procedures to study multimodal models.

Standard evaluations of multimodal models focusing on a
broad set of capabilities also often include some measure of

counting ability among a larger set of metrics (Cho, Hu, et al.,
2023; Cho, Zala, & Bansal, 2023; Hu et al., 2023; Lee et al.,
2023). In contrast to these broader metrics designed to pro-
vide a standard measure of a wide range of model abilities,
here we provide a deeper behavior-based analysis which sys-
tematically and specifically varies counting along controlled
lines, supporting direct comparison with human children.

Number Concepts in Children
While number concepts may seem simple to learn, the mech-
anisms by which children acquire them are nuanced and still
debated (Condry & Spelke, 2008; Le Corre & Carey, 2007).
Although children recite an ordered list of number words
early on, usually between 2-3 years old (Geary et al., 2018),
it takes them surprisingly longer to ground these number
words and thoroughly understand number concepts (Condry
& Spelke, 2008). We can take cues from these studies of chil-
dren’s acquisition of number words and concepts to develop
in-depth studies for models that seem to exhibit some knowl-
edge of number words.

Several studies support the idea that there are at least two
distinct systems related to number. Up to counts of about 3 to
4, children can represent objects exactly (Condry & Spelke,
2008; Feigenson & Carey, 2005) and often understand each
number as a separate concept representing a set of precisely
that many objects. Beyond 3 to 4 objects, their mechanism
for learning larger numbers seems to involve an understand-
ing of the idea that adding 1 to a previous number produces
each subsequently larger number (Condry & Spelke, 2008;
Sarnecka & Carey, 2008). We discuss this idea and the re-
lated “knower-level” framework of child number learning in
the analysis of our results.

There is also evidence that children learn “one” differently
and earlier than larger numbers. Wynn (1992) found that a
group of 2.5-year-old children produced a single object when
asked for “one” and multiple objects when asked for a num-
ber greater than one, but they were not able to accurately pro-
duce the correct number of the multiple objects. This indi-
cates that they understood “one” fairly early on, and distin-
guished it from larger numbers, but did not fully understand
the larger numbers until much later. Further studies in Wynn
(1992) suggest that children learn to successfully produce
“two” many months after learning “one,” and that the learning
of these early number words can be context-dependent.

1235
In L. K. Samuelson, S. L. Frank, M. Toneva, A. Mackey, & E. Hazeltine (Eds.), Proceedings of the 46th Annual Conference of the Cognitive
Science Society. ©2024 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY).



Qualitative analyses have complemented these quantitative
results to provide a richer, more detailed picture of number
learning in children. In a qualitative observational study Mix
(2002) noted that child understanding of number was highly
context-dependent, saying that “numerical competence can
appear full-blown in one context but nonexistent in another.”
In the study, a 26-month-old child gave one dog treat to each
of his dogs, but could not (or would not) give one freeze-
dried pea to each of his toy trains. Our experiments take in-
spiration from these studies, investigating whether models’
understanding of number is also context-dependent.

Behavioral studies of number understanding in children
provide ample evidence that there is nuance and complex-
ity involved in learning number concepts – there is much
more diversity of behavior than meets the eye. Contradictions
and inconsistencies in child behavior are reminiscent of some
of the more unpredictable behavior anecdotally observed in
models. Three-year-old children have been shown to skip
and double count numbers in a verbal counting list, invent
their own number words, and use the same numeral twice in
a count (Baroody & Price, 1983; Briars & Siegler, 1984; Frye
et al., 1989; Fuson, 2012; Sarnecka & Carey, 2008; Wagner
& Walters, 1982). Furthermore, Condry and Spelke (2008)
showed that three-year-old children who recited numbers up
to “ten” but could not produce a correct number of objects
beyond “two” also failed to understand that a set of eight ob-
jects is better labeled by “eight” than “four.” However, once
they were told that the set was “eight” objects they understood
that it was not also “four.” They also understood that “eight”
is more than “two,” but not that “eight” is more than “four.”
These incredibly subtle nuances in children’s acquisition of
number concepts illustrates the challenge of characterizing
their developmental trajectory for this task, and demonstrates
the need for both depth and nuance in such behavioral stud-
ies. The developmental psychology methods that have illumi-
nated how counting works in children can help us understand
similar behavior that models are now beginning to exhibit.

A key feature of many developmental psychology tests for
counting ability in children is the combination of number
words with visual and sensorimotor modalities (pointing to
pictures on cards, giving toys to a puppet) to provide evidence
of understanding of the words. Reciting a list of number
words usually comes much earlier than understanding them
and demonstrating that understanding in the physical world
(Sarnecka & Carey, 2008). Now that AI systems have gen-
erative capabilities in multiple modalities including language
and vision (Radford et al., 2021; Ramesh et al., 2021), we
can probe them in a way that mirrors the tests created by de-
velopmental psychologists for characterizing these very same
skills in human children.

Methods
Models
One way to characterize a developmental trajectory in mod-
els is to explore several different scales of one model type.

The Pathways Autoregressive Text-to-Image (Parti) model
(Yu et al., 2022) provides just such an opportunity, because
it presents a common model architecture at multiple scales.
For our experiments we use three different scales of the Parti
model: 350M, 3B, and 20B parameters.

The model architecture follows a Transformer-based
(Vaswani et al., 2017) encoder-decoder framework, with
the decoder receiving the major share of the increase in
each increasingly large model size. The Parti models take
text input such as “five lemons” and output generated im-
ages. Transformer-based models like Parti use the same self-
attention-based architecture that has led to recent advances in
large language models (LLMs). One feature of this architec-
ture is that it can be easily scaled, allowing for studies like this
one with a common model architecture at different scales.

Parti treats text-to-image generation as a sequence-to-
sequence modeling task (Sutskever et al., 2014), a type of
task initially developed for language translation. In order to
do so, Parti treats the input text prompt as a sequence of text
tokens, and also uses an image tokenizer to break the images
in the training data into a sequence of smaller visual “patch”
tokens whose vector representations are also learned during
training. A contrastive loss function is used to align the image
representations with the text representations, as is standard
for text-image alignment in multimodal vision and language
models (Radford et al., 2021; Ramesh et al., 2021).

Task
The task often used as the gold standard for measuring a
child’s understanding of number concepts is known as the
Give-N task (Frye et al., 1989; Fuson, 2012; Marchand et al.,
2022; Wynn, 1990, 1992). The idea is simple: prompted with
an instruction like “give five lemons,” the child must physi-
cally count out and give five toy lemons to a puppet. Instead
of other tasks that ask children to count sets of objects they
are given (as in the How-Many task; Schaeffer et al., 1974),
the Give-N task is understood to provide a rigorous standard
for number understanding; many children who can verbally
count up to 5 cannot successfully produce sets of 5 items, so
their performance on the Give-N task indicates that they thor-
oughly understand a number (Wynn, 1990, 1992).

Generative vision and language models can now be probed
using something similar to the Give-N task, prompted with
text like “five lemons” and asked to generate an image from
scratch. This is in contrast to classification or captioning
models, in which you can only be asked to count the number
of objects in an input image, corresponding to the more lax
How-Many task (Connor et al., 2024; Wynn, 1992). We gave
the Parti models our text prompts based on the Give-N task.
We engaged a pool of human raters through a crowdsourcing
contractor to count objects in the generated images.

Standard prompts
To approximate the Give-N task in a way that makes sense
with the modalities of our models, we start with child word
learning data. The “object” words used to create the prompts
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Figure 1: Images generated by each of the three scales of Parti models for the input text prompts “seven apples” and “six birds”.

of our version of the Give-N task were the 40 most easily
learned food and animal words (20 of each) of all the words
in the WordBank database of child vocabulary development
(Frank et al., 2017). These are words most children learn
prior to 36 months, and are close analogues to the food and
animal toys in the original Give-N experiments. We give each
model prompts of these 40 objects, with counts from 1-15.

Common and uncommon adjective prompts
In addition to the standard prompts, we also constructed a
smaller set of prompts to probe how dependent counting per-
formance is on the familiarity of the objects in the prompt – in
other words, can we interfere with counting ability by mod-
ulating other things about the prompt? We refer to these as
the common and uncommon prompts, fully listed in Table 1.
We use a subset of the objects used in the standard prompts:
apples, oranges, bananas, cats, and dogs. For each of these
object types, we modulate an adjective: we use one that is
common for the object, such as “fluffy” for dogs, and one
that is uncommon, such as “spiky” for dogs.

Different media prompts
Although we use child development to ground our behavioral
analysis, the Parti models also possess abilities we would not
normally expect in children – for example, producing correct
counts in different artistic styles.

When creating our standard prompts, in order to create

Table 1: Common and uncommon prompts

Common prompts Uncommon prompts

“six red apples” “six spotted apples”
“two black cats” “two green cats”
“four yellow bananas” “four blue bananas”
“three fluffy dogs” “three spiky dogs”
“eight shiny oranges” “eight hairy oranges”

simple prompts as faithful to the analogous child develop-
ment studies as possible, we did not specify any type of me-
dia. However, in order to separately explore this ability, we
designed a smaller subset of prompts specifically around dif-
ferent types of media. Once again, as with the common and
uncommon adjective prompts, we used a subset of five ob-
jects: apples, oranges, bananas, cats, and dogs. We then
used five different types of media: graffiti, painting, sculp-
ture, DLSR high-resolution photo, and screen. The types of
prompts used are listed in Table 2.

Results
For each of the prompt categories (standard, common and
uncommon, different media prompts) we provide a detailed
breakdown of the correlation between the number of objects
in the model-generated images (as recorded by human eval-
uators) and the true count from the text prompt given to the
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Figure 2: Examples of images generated for the common and uncommon adjective prompts. These outputs were generated by
the Parti 3B model.

Figure 3: Examples of images generated by the different media prompts. These outputs were generated by the Parti 20B model.

Table 2: Different media prompts

Different media prompts

“graffiti of two apples”
“a painting of five dogs”
“a sculpture of two bananas”
“a dslr high-resolution photo of three cats”
“a screen showing four apples”

model (Tables 3, 4, 5). In addition, Figure 4 gives a detailed
breakdown of each model’s count-by-count performance on
the standard prompts.

In Table 3, all three scales of model (350m, 3B, and 20B)
have some statistically significant counting ability, as evi-
denced by the model outputs’ correlation with the true num-
ber in the input text prompt. However, there is a substantial
increase in counting ability between the 350m and 3B scales;
there is a statistically significant difference in correlation be-
tween the 350m model and both the 3B (z = 6.37, p < .0001
for Pearson, z = 6.63, p < .0001 for Spearman) and 20B
(z = 6.79, p < .0001 for Pearson, z = 6.42, p < .0001 for
Spearman) models. All significance tests use the Fisher r-to-z

transformation for comparing independent correlations.
For the common and uncommon adjective prompts, we

compare each model scale pairwise according to correlations
with true number as shown in Table 4. We observe that com-
mon vs. uncommon adjectives result in a statistically signif-
icant difference in counting ability for both the 350m (z =
3.14, p < .01 for Pearson, z = 4.86, p < .0001 for Spearman)
and 3B (z = 3.53, p < .001 for Pearson, z = 3.41, p < .001
for Spearman) models, but only for one correlation metric for
the 20B model (Spearman, z = 2.20, p < .05).

Finally, for the different media prompts in Table 5, we ob-
serve the same pattern as we did for the standard prompts:
there is once again a substantial increase in counting ability
between the 350m and 3B scales; there is a statistically signif-
icant difference in correlation between the 350m model and
both the 3B (z = 3.91, p < .001 for Pearson, z = 5.04, p <
.0001 for Spearman) and 20B (z = 4.18, p < .0001 for Pear-
son, z = 4.65, p < .0001 for Spearman) models.

Discussion
We used the Give-N task from developmental psychology to
evaluate the large multimodal model Parti at three different
model scales. Our results show that all three scales of the
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Table 3: Correlations between model-generated image count and true input count from text prompt

Model Pearson p Spearman p

Standard prompts 350m 0.4071 < .0001 0.4735 < .0001
3B 0.6647 < .0001 0.7159 < .0001
20B 0.6781 < .0001 0.7099 < .0001

Figure 4: Standard prompt results in greater detail: counts of objects in images generated by each of the three scales of
Parti model, compared to the true count as specified in the text prompt. Model accuracy plots show the counting accuracy
demonstrated by each model scale for each number.

Table 4: Correlations between model-generated image count and true input count from text prompt for the common and un-
common adjective prompts

Model Pearson p Spearman p

Common prompts 350m 0.6334 < .0001 0.6873 < .0001
3B 0.7768 < .0001 0.7810 < .0001
20B 0.6458 < .0001 0.6648 < .0001

Uncommon prompts 350m 0.2882 < .0001 0.1438 < .0001
3B 0.4862 < .0001 0.5062 < .0001
20B 0.4734 < .0001 0.4508 < .0001

Parti model have some counting ability, with a steep increase
in performance between the 350m model and the 3B model.
Both the 3B model and 20B model have similar performance
in most categories, indicating that counting skills may be “un-
locked” at the 3B model scale.

In analyzing the results, we also draw from the knower-

levels framework often used to understand Give-N task re-
sults in child psychology studies (Sarnecka & Carey, 2008;
Wynn, 1992). At the “one-knower” level, which most chil-
dren reach by 2.5-3 years, they understand only the concept
of 1. A few months later, a child becomes a “two-knower,”
when they reliably give 1 and 2, but not 3, 4, 5. Then slowly
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Table 5: Correlations between model-generated image count and true input count from text prompt for different media prompts

Model Pearson p Spearman p

Different media prompts 350m 0.3598 < .0001 0.2431 < .0001
3B 0.5220 < .0001 0.4692 < .0001
20B 0.5320 < .0001 0.4533 < .0001

Figure 5: Many of the models’ generated output images for
prompts starting with “nine” produced 3 × 3 object grids,
which might relate to the increase in counting accuracy for
“nine” in Figure 4. We observed this increased tendency from
both the Parti 3B and Parti 20B models.

comes the “three-knower” and, some studies report, the “four-
knower” level before the child learns the subsequent numbers
not slowly, as before, but all at once and through induction
(they have learned that adding one to a prior number results
in the next number).

Interestingly, our results suggest that this inductive step is
missing from all three scales of the models’ behavior. The
20B model seems to be inching along in this direction, getting
fairly reliable results up to 4 and improved results on 5 and
6 compared to both the 350m and 3B models. However, this
behavior obviously has not scaled past 5-6, and from 7 on-
ward it is quite difficult for the models, in contrast to children
who learn 5 onward quickly and inductively. Our approach il-
luminates this gap, and shows behavioral similarities between
these models and children of approximately 3-4 years of age.

Furthermore, the results for the common and uncommon
adjective prompts demonstrate a gap in performance across
all models and particularly in the 350m and 3B models, in-
dicating that unusual adjective and noun combinations do in-
deed interfere with the model’s counting ability. This high-
lights an area for further training, investigation, and improve-
ment in these models.

The results on the common, uncommon, and different me-
dia prompts indicate that for models, like for child learners,
context does matter (Mix, 2002). In this case, the context
is provided by the additional (often confusing) information
given in the text prompt. In the case of the common adjec-
tives, this seems to help generative counting abilities, and in
the case of uncommon adjectives, it seems to hinder count-
ing abilities. All three model scales seem very susceptible to
effects from this added textual context.

The different media prompts demonstrate the models’

skills in an area where we would not expect corresponding
skills in human children. As the results in Table 5 show, all
three model scales demonstrate some ability to produce the
correct number of objects despite the demanding changes in
media. Producing a painting of five bananas is not some-
thing we ordinarily expect children to do, and it illustrates an
area where generative text-to-image models have developed
considerable and unexpected skill. The gap between mod-
els’ ability to successfully transform media and their very
child-like inability to thoroughly and reliably count to ten
(even given the simplest standard prompts) highlights one
way that models are not human-like in their developmen-
tal trajectories. These divergences are just as important to
study as the commonalities. One way to characterize these
differences is through hybrid tasks like the different media
prompts, which we designed based on model creators’ knowl-
edge and intuition of the models’ advanced capabilties with
different media. We combined this intuition with experimen-
tal paradigms from developmental psychology to produce
these hybrid prompts designed specifically for models. In fu-
ture work, we hope to continue combining these two powerful
sources of knowledge and intuition to probe model behavior
both within and outside the scope of behavior we would ex-
pect from human children and adults.

There are also interesting qualitative observations that re-
late to the quantitative results in Figure 4. One puzzling ar-
tifact is the uptick in accuracy for all three model scales for
counting the number “nine.” While the reasons for this uptick
remain obscure, in investigating this tendency we made an in-
teresting qualitative observation: given a prompt of the form
“nine x,” models often produced images that showed the nine
objects in a 3× 3 grid (Figure 5). Our qualitative observa-
tion was that this occurred more for the number “nine” than
it did for any other number. This may be a peculiarity re-
sulting from an over-representation of such image-text pairs
in the training data, or some other attribute that makes such
3× 3 grids easier for the model to reliably produce. What-
ever the reasons, both the 3× 3 grids and the accuracy in-
crease are particularly noticeable for the Parti 3B and 20B
models. Such artifacts illustrate the need for further in-depth
behavioral studies of model behavior, complete with qualita-
tive components.

We hope this approach empowers model designers to ad-
dress developmental gaps in knowledge and performance,
and that the practice of using developmental psychology
paradigms to probe model behavior continues to help us de-
velop more reliable, responsible AI systems.
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