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Abstract

A simple approach for analyzing longitudinally measured biomarkers is to calculate summary 

measures such as the area under the curve (AUC) for each individual and then compare the mean 

AUC between treatment groups using methods such as t test. This two-step approach is difficult to 

implement when there are missing data since the AUC cannot be directly calculated for individuals 

with missing measurements. Simple methods for dealing with missing data include the complete 

case analysis and imputation. A recent study showed that the estimated mean AUC difference 

between treatment groups based on the linear mixed model (LMM), rather than on individually 

calculated AUCs by simple imputation, has negligible bias under random missing assumptions and 

only small bias when missing is not at random. However, this model assumes the outcome to be 

normally distributed, which is often violated in biomarker data. In this paper, we propose to use 

a LMM on log-transformed biomarkers, based on which statistical inference for the ratio, rather 

than difference, of AUC between treatment groups is provided. The proposed method can not only 

handle the potential baseline imbalance in a randomized trail but also circumvent the estimation 

of the nuisance variance parameters in the log-normal model. The proposed model is applied to a 
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recently completed large randomized trial studying the effect of nicotine reduction on biomarker 

exposure of smokers.

Keywords

area under the curve; biomarker; longitudinal; missing data; mixed effects model

1 ∣ INTRODUCTION

Cigarette smoking is responsible for most of tobacco-related mortality and morbidity.1 

Reducing the nicotine content of cigarettes is a strategy to reduce the addictiveness of 

cigarettes,2,3 which can also reduce the prevalence of smoking and result in the reduction 

of tobacco toxicant exposures.4 A large-scale randomized trial studying the effects of 

immediate vs gradual nicotine reduction on tobacco toxicant exposures was recently 

conducted by the Center for the Evaluation of Nicotine in Cigarettes (CENIC).5 The primary 

outcome variables of this study were a panel of biomarkers repeatedly measured over a 

20-week intervention period.

In longitudinal studies, a simple approach to analyze repeatedly measured data is to 

calculate a summary measure for each individual.6 The area under the measurement-time 

curve (AUC) is one commonly used summary measure. Besides the statistical simplicity, 

the AUC also has scientific or clinical significance that makes it useful for various types 

of research.7-9 In the CENIC study, the intent was to determine the cumulative exposure 

to cigarette smoke toxicants over time across different approaches to reducing nicotine 

in cigarettes, referred in this article as treatment groups, and hence the AUC of the 

concentration of toxicant biomarkers was chosen as the primary endpoint.5

In the absence of missing data, a common approach to estimate AUC is using the linear 

trapezoidal method.10 After obtaining the AUC for each individual, the average AUC 

between treatment groups can be analyzed using simple statistical methods such as the t 
test or the nonparametric Wilcoxon rank-sum test. However, missing data are common in 

longitudinal studies.11,12 Some frequently encountered missing data patterns in longitudinal 

studies include dropout and intermittent missing. Missingness can be completely random 

(called missing completely at random or MCAR), dependent on the observed data (called 

missing at random or MAR), or dependent on both the observed and unobserved data (called 

missing not at random or MNAR). A comprehensive review of missing data methods can be 

found in Little and Rubin.13

In the presence of missing data, a simple two-step approach can be used to compare AUCs 

between different groups: first calculating each individual's AUC using methods such as 

complete case, simple imputation, and multiple imputation (MI), then comparing the mean 

AUC between different groups as adopted in the planned primary analysis of the CENIC 

data which motivated our study.5 It has been shown that tests based on estimated AUC 

using a simple imputation may suffer some poor properties including inflated type I error 

and poor power, even when the data are MCAR.14 Alternatively, one can fit a linear mixed 

model12 or a general linear model7 on the repeatedly measured biomarkers and construct 
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the difference in AUC between groups using the estimated regression parameters. The linear 

mixed model has been shown to perform better than using individually calculated AUC 

with imputed data.12 Although these model-based methods provide a way to analyze AUCs 

with missing data in repeatedly measured biomarkers, there are some issues that remain 

to be solved. First, in the linear mixed model, the normal distribution is assumed for the 

error term and random effects, which implies that the linear outcome variable also follows a 

normal distribution. However, many biomarkers are found right-skewed,15,16 including those 

studied in tobacco research.17 And in such circumstances, the log-normal distribution has 

been found more appropriate than the normal distribution for biomarkers.18 To normalize 

such variables, a log-transformation on the response variable before the analysis is needed 

and the relative effect rather than absolute effect of predictors can be estimated from such 

models.19 Second, the existing mixed model for analyzing the AUC12 does not consider 

the possible imbalance in the biomarker between treatment groups at baseline, while by 

chance unforeseen imbalances in baseline measurements may be observed in a randomized 

trial.20 Under this circumstance, one may adjust for baseline measurements using an analysis 

of covariance (ANCOVA) approach as suggested by a guidance document for analyzing 

randomized trials by the Food and Drug Administration.21 This method has been adopted in 

the published CENIC study5 and other studies.22

In this paper, we propose a mixed effects model for log-normally distributed biomarker 

outcomes, based on which, statistical inference for the comparison of AUC between 

treatment groups can be provided. In addition, we propose to use the baseline-scaled 

AUC when calculating the AUC ratio between two groups, to adjust for the potential 

imbalance in baseline biomarker levels. We show that by using the baseline-scaled AUC 

we can not only handle the potential baseline imbalance in a randomized trial but also 

circumvent the estimation of nuisance variance parameters in the log-normal model. Monte­

Carlo simulations were conducted to compare the performance of the proposed mixed 

effects model to the two-step approach with two frequently used imputation approaches 

in tobacco research: the MI approach and the last observation carried forward (LOCF) 

simple imputation, while we acknowledge that the LOCF is not recommended as the 

primary approach in applications due to its bias, unless its assumption can be justified 

scientifically.23,24 The proposed mixed effects model was then applied to the CENIC data to 

analyze the effects of different approaches to nicotine reduction.

2 ∣ MOTIVATING DATA EXAMPLE

The CENIC study was a randomized, multicenter, parallel and double-blinded study, 

including 1250 subjects who were randomized to one of the three groups: (a) immediate 

reduction to very low nicotine content; (b) gradual reductions of nicotine content in 

cigarettes; (c) conventional levels of nicotine in cigarettes (control). The primary outcome 

variables included: expired carbon monoxide (CO), urine 3-hydroxypropylmercapturic (3­

HPMA), a metabolite of the acrolein, a suspected cardiopulmonary toxin, and urinary 

phenanthrene tetraol (PheT), which is a biomarker of exposure to polycyclic aromatic 

hydrocarbons and metabolic activation of this class of carcinogens. In this paper, we focused 

on the biomarkers 3-HPMA and PheT, which were shown to be right-skewed. These 

biomarkers were measured every 4 weeks, including the baseline visit, over a 20-week 
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intervention period. The primary outcome of interest in this study was the area under 

the biomarker concentration-time curve or AUC, as a measure of the cumulative toxicant 

exposure of smokers. More details of the design and the population of this trial can be found 

in the main outcome paper.5

Figure 1 shows the trajectories of 3-HPMA and PheT over time for different treatment 

groups. A t test showed the potential imbalance in baseline PheT (on the log-transformed 

values). The missing data of 3-HPMA and PheT are summarized by visits and by different 

missing patterns in Table 1. The quantile-quantile (Q-Q) plots of the two biomarkers and 

their log-transformed values at baseline (Figure A1 in Appendix A) showed that the two 

biomarkers are skewed and log-transformation is appropriate for the two biomarkers.

3 ∣ METHODS

In this study, we proposed a mixed effects model for log-normally distributed biomarker 

outcomes. Let j = 0, 1,…, m index visits, and g = 0, 1,…, k index treatment groups with g = 

0 indicating the control group. We considered a balanced design as the CENIC study, where 

all subjects in the study had the same scheduled visits at time t0, t1, t2,…, tm, where t0 = 

0 indicates baseline, and Δtj indicates the time interval between two adjacent visits tj−1 and 

tj, for j≥1. Note that in the CENIC study, Δtj = 4 weeks for all j. The mixed model which 

allows a flexible treatment effect pattern over time includes the discrete time variable (visit), 

treatment group, and their interaction, in the following form:

log(Y ij) = β0 + βj
J + ∑g = 1

k βg
GI(Gi = g) + ∑g = 1

k βgj
GJI(Gi = g) + bi + eij for j

= 1, …, m, and

log(Y i0) = β0 + ∑
g = 1

k
βg

GI(Gi = g) + bi + ei0 for j = 0,
(1)

where Yij is the biomarker value of the ith participant at the jth visit, Gi denotes the 

treatment group of the participant, bi ∼ N(0, σb
2) represents between-person effects, and 

eij ∼ N(0, σe2) represents the random error. The regression coefficient β0 is intercept and 

the mean log-biomarker of the control group at baseline, while the superscripts J, G, and GJ 
for β are for distinguishing the effect of time (discrete), group, and the interaction of time 

and group, and the subscripts j, g, and gj are for different strata of these factors. Specifically, 

βj
J, j = 1,…, m are the differences of the mean log-biomarker of the control group at visit j 

compared with the baseline; βg
G, g = 1,…, k are the differences of the mean log-biomarker 

of group g at baseline compared with the control group's baseline; and βgj
GJ, j = 1,…, m,g 

= 1,…, k are the regression coefficients for the interactions between visit and treatment, 

which are the difference between treatment group g and control in terms of the change in 

log-biomarker at visit j from baseline. We denote the estimated regression coefficients by β’s 

and the estimated variance parameters by σ2's.
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We know that for a log-normally distributed variable Y, with logY ∼ N(μ, σY
2 ), the 

expectation of Y is E(Y ) = exp(μ + σY
2 ∕ 2), rather than the simple transformation of the mean 

of logY, exp (μ). Thus, the mean biomarker level of group g at tj can be estimated by:

μgj = exp β0 + β j
J + βg

G + βgj
GJ + σb

2 + σe
2 ∕ 2 for j = 1, …, m, and

μg0 = exp β0 + βg
G + σb

2 + σe
2 ∕ 2 for j = 0 .

(2)

Hence, the AUC for group g based on the estimated mean biomarker level at each visit can 

be estimated by:

AUCg = ∑
j = 1

m
Δtj μg, j − 1 + μgj ∕ 2

= 1
2exp β0 + βg

G + σb
2 + σe

2 ∕ 2

× t1 1 + exp β1
J + βg1

GJ + ∑
j = 2

m
Δtj

exp β j − 1
J + βg, j − 1

GJ + exp β j
J + βgj

GJ .

(3)

We propose a baseline-scaled AUC to deal with the potential imbalance of baseline 

biomarkers between groups as follows:

AUCg = AUCg ∕ AUCg0, (4)

where AUCg0 = tmμg0 = tmexp β0 + βg
G + σb

2 + σe
2 ∕ 2  is the estimated mean AUC of group 

g if the biomarker level were time-invariant over the whole time period, 0 to tm. The 

baseline-scaled AUC in (4) can then be expressed as:

AUCg = 1
2tm

t1 1 + exp β1
J + βg1

GJ + ∑
j = 2

m
Δtj

exp β j − 1
J + βg, j − 1

GJ + exp β j
J + βgj

GJ .
(5)

It is noteworthy to mention that the AUC estimator for group g in Equation (3) and that 

for the control group both involve the estimators for the two variance parameters σb
2 and 

σe2, which are usually considered as nuisance parameters, while the baseline-scaled AUC 

estimator in Equation (5) is free of the nuisance parameters. Additionally, the baseline­

scaled AUC estimator in Equation (5) is free of the baseline parameters β0 and βg
G.

One can then calculate the ratio of baseline-scaled AUCs between different groups g and g' 
as AUCg ∕ AUCg′.
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The maximum likelihood estimation (MLE) method can be used for the estimation of the 

parameters in the mixed model. The variance of the log-transformed ratio of baseline-scaled 

AUCs can be estimated using the delta method, which can then be used to construct 95% 

confidence intervals (CIs) for the log-transformed ratio of baseline-scaled AUCs and the 

ratio of baseline-scaled AUCs after a simple exponentiation transformation.

4 ∣ SIMULATIONS

4.1 ∣ Simulation methods

We conducted a series of Monte-Carlo simulation studies with scenarios mimicking the 

CENIC data except that only two treatment groups were generated, that is, g = 0,1. Different 

trajectories of the biomarkers, missing data patterns, missing data mechanisms, and missing 

rates were considered. For each scenario, a total of 1000 Monte Carlo simulations were 

performed, with 200 subjects (100 treatment and 100 control) per simulation. Six regular 

visits, including the baseline visit (j = 0,…, 5) were simulated for each subject. For 

simplicity, we assumed that the mean biomarker level for the control group did not change 

over time, that is, βj
J = 0, and all subjects had the same scheduled, equally spaced visits with 

Δtj = 1 for j ≥ 1.

First, to examine the type I error rate for different methods, we simulated data where there 

was no difference in the baseline-adjusted AUC between the two groups (ie, no treatment 

effect) while allowing the baseline biomarker level of the two groups to be unbalanced, by 

setting β = (β0, β1
G, β1, 1

GJ , β1, 2
GJ , β1, 3

GJ , β1, 4
GJ , β1, 5

GJ) = (2, 1, 0, 0, 0, 0, 0), where β1
G ≠ 0 indicates that the 

biomarker is unbalanced at baseline between the two groups. Under this scenario, the true 

value of baseline-scaled AUC ratio = 1.

We then considered two simulation scenarios with nonzero treatment effect but with an 

unbalanced baseline (by setting β1
G ≠ 0) (See Figure 2A,B). Specifically, in Panel A, the 

treatment group had a linear decline trend in the expectation of log(Yij) by setting β = (2,1, 

−0.08, −0.16, −0.24, −0.32, −0.40). Under this scenario, the true value of log(baseline-scaled 

AUC ratio) = −0.19, implying a positive treatment effect if the biomarker is harmful. The 

scenario in Panel B is similar to that in Panel A, except that the treatment group had a linear 

spline decline trend in the expectation of log(Yij) by setting β = (2,1, −0.10, −0.20, −0.30, 

−0.30, −0.30) (Figure 2B). Under this scenario, the true value of log(baseline-scaled AUC 

ratio) = −0.20.

The performance of the proposed model when the baseline biomarker is balanced was 

investigated with additional simulation scenarios by setting β1
G = 0 but keeping the other 

parameters (the other β's and all pj's) the same as previously assumed. The trajectories of the 

biomarker for these scenarios are presented in the lower panel of Figure 2C,D.

After simulating the “complete” data following the model described above, we generated 

various missing data patterns with different missing rates (25% and 50%, referred to as 

“low” and “high” missing rate, respectively) under different missing data mechanisms. Two 

missing data patterns were considered: dropout and intermittent missing data, and two 
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missing data mechanisms, MCAR and MAR were considered. To generate MCAR data, we 

randomly deleted observations according to the missing pattern based on missing rates. For 

dropout, none of the baseline observations are missing, and the probability of dropout for the 

other visit is pj = 1 − (1 − missing rate)1/5, j = 1,2,…,5; for intermittent missing data, neither 

the baseline observations or the last observations are missing, the probability of missing for 

the other visits is pj = 1 − (1 − missing rate)1/4, j = 1,2,…,4. When generating MAR data, the 

missing probabilities depended on the observed response values, and the probability that Yij 

(j = 1,…,5 for dropout missing, j = 1,…,4 for intermittent missing) was set to missing was a 

function of log(Yi,j−1) and log(Ȳ j − 1), where Ȳ j − 1 is the mean of the observed responses up 

to time tj−1:

1 ∕ 1 + exp − log Yi, j − 1 ∕ log Ȳ j − 1 log pj ∕ 1 − pj .

When simulating MAR dropout with low missing data, we set pj = 0.018, 0.028, 0.038, 

0.048, 0.058 for j = 1,…,5, respectively. When simulating MAR dropout with high missing 

data, we set pj = 0.078, 0.098, 0.118, 0.138, 0.158 for j = 1,…,5, respectively. When 

simulating MAR intermittent missing data with low missing rate, we set pj = 0.0355, 0.0455, 

0.0555, 0.0655 for j = 1,…,4, respectively. When simulating MAR intermittent missing with 

high missing rate, we set pj = 0.12, 0.14, 0.16, 0.18 for j = 1,…,4, respectively.

We compared the performance of the proposed mixed effects model with the two-step 

methods using the LOCF simple imputation and the MI methods. Specifically, for the 

LOCF method, we carried forward the last available observation for dropout or intermittent 

missing and carried backward the first available observation for baseline missing. We used 

the Markov chain Monte Carlo (MCMC) method for MI11,25 with 20 imputations, where 

variables were log-transformed before imputation and imputation was performed separately 

for each treatment group. The AUC for each individual was then calculated based on the 

imputed data and log-transformed as the outcome variable in a linear regression: log{AUCi/

(tmYi0)}, where the denominator tmYi0 is the area under the straight line at the baseline 

biomarker level Yi0, which renders the ratio to be the individual-level analogy to AUC, 

the baseline-scaled AUC at the population level in the proposed method. We evaluated the 

performance of the two-step methods and the proposed mixed effects model by comparing 

their coverage, power, relative bias in estimating the baseline-scaled AUC ratio, and the 

Monte-Carlo empirical standard deviation (SD) and the mean standard error (SE) of the 

log-transformed baseline-scaled AUC ratio.

4.2 ∣ Simulation results

When there was no treatment effect, that is, no difference between the treatment and control 

groups in terms of the baseline-adjusted AUC, the type I error rate of the proposed mixed 

effects model and the comparison methods were all close to 0.05, regardless of the extent of 

missing data or missing data mechanism (not shown).

The two simulation scenarios with nonzero treatment effect with unbalanced baseline are 

presented in Table 2 for the scenario when the treatment group's log-biomarker has a linear 

decline trend or a linear spline trend. When there were no missing data (shown in the top 
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panel of Table 2), the estimation of both individually calculated AUC (with no imputation) 

and the proposed mixed effects model showed negligible bias, as expected. However, in 

the presence of missing data, the LOCF estimates were biased in all scenarios and the 

bias increased with the extent of missing data, even when the missing data mechanism 

was MCAR. The MI with MCMC method and the proposed mixed effects model showed 

negligible bias under all scenarios, while the proposed mixed effects model had smaller SEs 

and larger power than the MI method under all simulation scenarios.

The results when the baseline biomarker is balanced for different missing rates and missing 

patterns are presented in Table 3. Note that when there are no missing data or the missing 

data mechanism was MCAR, the results of the simulation scenarios with balanced baseline 

(the top panel of Table 3) or unbalanced baseline (the top panel of Table 2) are the same 

because the estimations of the individually calculated AUC approach and the proposed 

mixed model are not affected by the value of β1
G. The rest of Table 3 has similar patterns 

as Table 2, showing that when there are missing data, the proposed method outperforms the 

two-step methods under the simulation scenarios with balanced baseline between the two 

treatment groups.

We provide power curves for different sample sizes (n = 100 to 400) under different missing 

mechanism and missing patterns, using the simulated data with a linear decline trend and 

unbalanced baseline in Appendix B. It shows that the proposed method has bigger power 

than the comparison methods in all scenarios.

5 ∣ DATA APPLICATION

We first applied the mixed model for the two biomarkers of the CENIC study, 3-HPMA 

and PheT without transformation with a model similar to Equation (1) except that the 

outcome variable was Yij. The residual Q-Q plots (left panel of Figure A2 in Appendix A) 

showed that the normality assumption for the error term was not plausible. We then applied 

the proposed mixed effects model on the log-transformed biomarker in Equation (1). The 

residual Q-Q plots of the proposed model (right panel of Figure A1) and the residual plot 

(right panel of Figure A2) confirmed that the log-transformation was appropriate for the two 

biomarkers. The mixed model with the log-transformed biomarker then takes the same form 

as Equation (1) but with m = 5, k = 2:

log(Y i0) = β0 + β1
GI(Gi = 1) + β2

GI(Gi = 2) + bi + ei0,
log(Y i1) = β0 + β1

J + β1
GI(Gi = 1) + β2

GI(Gi = 2) + β11
GJI(Gi = 1) + β21

GJI(Gi = 2) + bi + ei1,
⋯
log(Y i5) = β0 + β5

J + β1
GI(Gi = 1) + β2

GI(Gi = 2) + β15
GJI(Gi = 1) + β25

GJI(Gi = 2) + bi + ei5 .

Two comparison models, the LOCF and the MI methods, using individually imputed or 

calculated AUC's in the outcome variable, were also applied to the data. For the MI method, 

we followed the published CENIC study5 to include a number of baseline demographic 

variables and smoking variables as auxiliary variables and applied two different approaches: 

(a) impute the components of the AUC, that is, the biomarker values at individual visits, 
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with the MCMC method, then calculate the AUC (this method was used in the simulation 

study and also as the primary approach in the published study); (b) impute the composite 

outcome AUC together with its components, with a fully conditional specification (FCS) 

method, where linear regression was used for continuous variables and logistic regression 

for categorical variables. As shown in Table 4, the results of these two approaches were 

similar.

To adjust for the potential baseline imbalance in the biomarkers when using the LOCF 

or MI method, we used two ad hoc approaches. In the first approach, we followed the 

simulation studies to use log{AUCi/(tmYi0)} as the outcome variable in linear regression 

(referred to as Linear Regression Model 1 or LRM1). In the second approach (also the 

primary approach in the published CENIC study5), we adjusted the log-transformed baseline 

level of the corresponding biomarker as a covariate (referred to as Linear Regression Model 

2 or LRM2). The analysis result using the proposed mixed model (the SAS macro for this 

model is available in Data S1) and the linear regression models with individually imputed 

and calculated AUC's are shown in Table 4.

The results in Table 4 show that the MI method and the proposed mixed model provided 

similar point estimates of the AUC ratio between the immediate and gradual reduction 

groups, while the LOCF method gave a slightly underestimated treatment effect (toward 

null, ie, ratio = 1). Based on the mixed model, there was a 20% (95% CI, 15-26%) and 15% 

(95% CI, 10-19%) reduction in the 20-week cumulative exposure of 3-HPMA and PheT, 

respectively, comparing the immediate and gradual reduction groups. Similar amounts of 

reduction in 3-HPMA (18%) and PheT (14%) were found between the immediate reduction 

and control groups based on all three methods. No significant difference was found between 

the gradual reduction and the control groups. We also found that, compared with the LOCF 

method, the mixed model and the MI method provided larger estimated treatment effects 

(ie, the estimated AUC ratios were further from 1.0) of the immediate reduction group vs 

the gradual reduction or the control group. Between the mixed model and the MI method, 

the former provided a slightly narrower 95% CI. These findings are consistent with the 

simulation results.

6 ∣ DISCUSSION

Missing data is a frequently encountered problem in longitudinal studies. The estimation 

for AUC is difficult when there are missing data in repeatedly measured response variables. 

A simple two-step approach is to first impute the missing values, using simple or multiple 

imputation methods, and then calculate the AUC for each individual based on the imputed 

data. The individually calculated AUCs can then be used as response variables to make 

group comparisons. In this paper, we proposed a mixed effects model approach, which 

circumvented the calculation of individual AUCs by fitting a mixed effects model on 

repeatedly measured, log-normally distributed biomarker data from all individuals, where 

the between-group difference in log-transformed AUC can be expressed as a function of 

regression parameters from the mixed model. The proposed mixed effects model showed 

negligible bias for various studied scenarios and were shown to provide larger powers and 

narrower 95% CIs than the LOCF and MI methods. The proposed method was also shown 
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to be flexible enough to handle data with different missing patterns or no missing, with 

or without baseline imbalance. In addition, the computing of the proposed method was 

found more efficient and easier to implement than the two-step approach, especially with the 

computationally intensive multiple imputation method.

We recognize that there exists the situation where the response variable has a skewed 

distribution while the covariate of interest has an absolute effect rather than a relative effect 

on the response variable. In this case, a linear form of the model rather than a log-linear 

form, as the one studied in this paper, would be more appropriate. A maximum likelihood 

(ML)-based approach has been studied for the univariate case,26 which may be extended 

to the repeated measure case and applied to draw inference on the absolute effect of the 

covariate on the AUC of the response variable. It will be interesting to investigate the 

relative performance of such a model compared with the existing linear mixed model.12

Note that the proposed method for estimating the treatment effects in the AUC is built on a 

linear mixed model (for log-transformed biomarkers), which is known for its robustness in 

terms of the mean model estimation with respect to misspecification of the random effects 

distribution.27 However, a thorough investigation of the robustness of the proposed method 

for the estimation of the treatment effects on the AUC can be a future research direction. 

We also note that a GEE marginal model is a robust and popular competitor to the linear 

mixed model and that when the outcome is continuous, both methods' regression coefficients 

in the mean model have a marginal interpretation. However, the proposed mixed effects 

model based approach has the advantage that the inference of the baseline-scaled AUC can 

be easily obtained by using the SAS NLMIXED procedure (see the SAS macro in Data S1), 

which we think is an appealing feature in applications.

Our proposed model assumed that subjects in the study had the same sequence of visit 

times and the outcome variables were log-normally distributed. Future studies can extend the 

model to deal with different visit-time sequences and biomarkers with other distributions. 

Additionally, as the MI and many other missing data methods, the proposed mixed effects 

model requires the data to be MAR, which includes the MCAR as a special case. However, 

the missing mechanism could be MNAR in applications, especially for the dropout, and it 

is well known that the observed data alone does not allow us to distinguish between MAR 

and MNAR. A potential way to deal with MNAR mechanism is to use joint models for 

longitudinal and time-to-event data by explicitly modeling the dropout process in a survival 

sub-model.28,29 A future research direction could be using the joint modeling approach to 

make inference on the AUCs, while taking into account the MNAR data. Finally, in our 

data there were no biomarker values below a detection limit, hence log-transformation was a 

valid method to use. However, it is not uncommon to observe biomarkers below a detection 

limit, referred to as left-censoring in statistical literature, in which case, the computation of 

the AUC can be complicated. A likelihood approach has been proposed to explicitly account 

for the left-censoring of markers in a linear mixed model based on the nontransformed 

response variable.30 Extension of such a model for a log-transformed response variable is 

warranted.
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Appendix

APPENDIX A.

Model diagnosis plots for the cenic data

The quantile-quantile (Q-Q) plots of the two biomarkers (3-HPMA and PheT) and their 

log-transformed values at baseline are shown in Figure A1. The residual Q-Q plots of the 

linear mixed model for the original scale of the biomarkers by using Bell et al. model12 and 

for the log-transformed biomarkers by using the proposed model are shown in Figure A2.
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FIGURE A1. 
Normal Q-Q plots for biomarkers and log-transformed biomarkers at baseline for the CENIC 

study: A, 3-HPMA; B, log (3-HPMA); C, PheT; D, log(PheT)

FIGURE A2. 
Residual plots for the mixed models with biomarkers and log-transformed biomarkers in 

the CENIC study as the outcome variable: A, 3-HPMA; B, log(3-HPMA); C, PheT; D, 

log(PheT)
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APPENDIX B.

Power curve for simulations

We present the power curves for different missing mechanism and missing patterns, using 

the simulated data with a linear decline trend and unbalanced baseline. The power curves 

for the simulated data with no missing are presented in Figure B1, and those for MCAR and 

MAR are presented in Figures B2 and B3, respectively.

FIGURE B1. 
Power curve for simulation scenarios with no missing data, linear decline trend with 

unbalanced baseline; LR, linear regression; Proposed, the proposed method
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FIGURE B2. 
Power curve for simulation scenarios under MCAR, linear decline trend with unbalanced 

baseline: A, Low missing rate, dropout missing; B, Low missing rate, intermittent missing; 

C, High missing rate, dropout missing; D, High missing rate, intermittent missing; LOCF, 

last observation carried forward; MI, multiple imputation; Proposed, the proposed method
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FIGURE B3. 
Power curve for simulation scenarios under MAR, linear decline trend with unbalanced 

baseline: A, Low missing rate, dropout missing; B, Low missing rate, intermittent missing; 

C, High missing rate, dropout missing; D, High missing rate, intermittent missing; LOCF, 

last observation carried forward; MI, multiple imputation; Proposed, the proposed method
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FIGURE 1. 
Geometric mean and 95% confidence interval (CI) of biomarker level at each visit by 

treatment group for the CENIC study: A, 3-HPMA; B, PheT. The line chart with median and 

boxplot with mean, interquartile range, and other statistics of the same data were presented 

by Hatsukami et al.5
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FIGURE 2. 
Trajectory of E(Y) by group for simulated data with, A, a linear decline trend (in 

E[log(Yij)]) for treatment with unbalanced baseline; B, a linear spline decline for treatment 

with unbalanced baseline; C, a linear decline for treatment with balanced baseline; D, a 

linear spline decline for treatment with balanced baseline
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TABLE 1

Summary of missing data of 3-HPMA and PheT of the CENIC study

3-HPMA PheT

Week
Overall
n (%)

Immediate
n
(%)

Gradual
n (%)

Control
n (%)

Overall
n (%)

Immediate
n
(%)

Gradual
n (%)

Control
n (%)

0 0 0 0 0 4 (<1) 1 (<1) 2 (<1) 1 (<1)

4 133 (11) 86 (17) 31 (6) 16 (6) 134 (11) 86 (17) 32 (6) 16 (6)

8 210 (17) 124 (25) 57 (11) 29 (12) 201 (16) 122 (24) 53 (11) 26 (10)

12 261 (21) 147 (29) 80 (16) 34 (14) 249 (20) 143 (28) 75 (15) 31 (12)

16 293 (23) 162 (32) 92 (18) 39 (16) 279 (22) 155 (31) 88 (18) 36 (14)

20 312 (25) 171 (34) 102 (20) 39 (16) 295 (24) 161 (32) 95 (19) 39 (16)

Missing pattern

Baseline 0 0 0 0 4 (<1) 1 (<1) 2 (<1) 1 (<1)

Intermittent 53 (4) 22 (4) 19 (4) 12 (5) 22 (2) 9 (2) 9 (2) 4 (2)

Dropout 312 (25) 171 (34) 102 (20) 39 (16) 295 (24) 161 (32) 95 (19) 39 (16)

Abbreviations: Baseline, missing at the baseline visit; Control, conventional level of nicotine group; Dropout, dropout missing; Gradual, gradual 
nicotine reduction group; Immediate, immediate nicotine reduction group; Intermittent, intermittent missing.
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TABLE 4

Analysis of area under the curve for the CENIC study

Immediate vs gradual Immediate vs control Gradual vs control

Model
a Biomarker Est. ratio (95% CI)

b P Est. ratio (95% CI) P Est. ratio (95% CI) P

LOCF 3-HPMA 0.83 (0.78, 0.89) <0.001 0.83 (0.76, 0.90) <0.001 0.99 (0.92, 1.08) 0.89

(LRM1) PheT 0.88 (0.84, 0.93) <0.001 0.89 (0.84, 0.96) <0.001 1.01 (0.95, 1.08) 0.71

LOCF 3-HPMA 0.84 (0.79, 0.89) <0.001 0.81 (0.76, 0.87) <0.001 0.97 (0.90, 1.04) 0.35

(LRM2) PheT 0.90 (0.86, 0.95) <0.001 0.89 (0.84, 0.95) <0.001 0.99 (0.93, 1.05) 0.65

MI (cpnt) 3-HPMA 0.82 (0.76, 0.89) <0.001 0.83 (0.76, 0.91) <0.001 1.01 (0.93, 1.11) 0.77

(LRM1) PheT 0.86 (0.81, 0.91) <0.001 0.87 (0.81, 0.93) <0.001 1.01 (0.94, 1.08) 0.79

MI (cpnt) 3-HPMA 0.83 (0.77, 0.88) <0.001 0.81 (0.75, 0.88) <0.001 0.98 (0.91, 1.06) 0.64

(LRM2) PheT 0.88 (0.83, 0.93) <0.001 0.86 (0.81, 0.92) <0.001 0.98 (0.92, 1.04) 0.52

MI (comp) 3-HPMA 0.82 (0.76, 0.88) <0.001 0.82 (0.75, 0.90) <0.001 1.01 (0.92, 1.10) 0.87

(LRM1) PheT 0.86 (0.81, 0.91) <0.001 0.87 (0.80, 0.94) <0.001 1.01 (0.94, 1.09) 0.78

MI (comp) 3-HPMA 0.82 (0.77, 0.87) <0.001 0.80 (0.75, 0.86) <0.001 0.98 (0.91, 1.05) 0.52

(LRM2) PheT 0.88 (0.83, 0.93) <0.001 0.86 (0.80, 0.93) <0.001 0.98 (0.92, 1.05) 0.54

Proposed 3-HPMA 0.80 (0.74, 0.85) <0.001 0.81 (0.74, 0.89) <0.001 1.02 (0.94, 1.11) 0.64

PheT 0.85 (0.81, 0.90) <0.001 0.86 (0.80, 0.92) <0.001 1.00 (0.94, 1.07) 0.93

a
LOCF and MI: the two-step approach with the missing data imputed by the last observation carried forward (LOCF) simple imputation or the 

multiple imputation (MI) method; MI (cpnt): impute the components of AUC with MCMC method then calculate the AUC; MI (comp): impute the 
composite outcome AUC together with its components, with the FCS method; LRM1: linear regression model 1, where the outcome variable was 
log{AUCi/(tmYi0)}; LRM2: linear regression model 2, where baseline log-biomarker was adjusted as a covariate; Proposed: the proposed mixed 

effects model.

b
The estimated ratio of AUC (baseline-scaled AUC for the proposed model) between two treatment groups and 95% confidence interval (CI).
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