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TOPICAL REVIEW
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Abstract
Climate change poses significant risks to large-scale infrastructure systems and brings considerable
uncertainties that challenge historical planning approaches. Here we focus on how climate
awareness might be better incorporated into planning and decision-making in the electric power
sector. To do so, we consider lessons from decision science literature where researchers have
specifically focused on how to make better decisions under uncertainty. We perform a three-part
review: of decision science literature on best practices for decision-making under uncertainty, of
industry practice documents to understand how new uncertainties may affect the types of
decisions electric utilities are making today, and of literature on electricity sector planning under
climate change to assess how lessons from decision science might fit into sector-specific analyses.
We discuss how characterizations of uncertainty from the decision science literature might guide
approaches in the electricity sector to appropriately capture climate-related uncertainties. We also
distill three key ideas from the decision science literature that can be incorporated into electricity
sector planning to manage these new uncertainties: robustness, adaptive planning, and
multi-stakeholder engagement. We offer example recommendations for how these key ideas might
be incorporated into one essential type of planning activity, capacity expansion.

1. Introduction

Changing climate patterns have already begun to
strain society’s infrastructure systems, and projec-
ted trends in ambient and extreme conditions por-
tend significant stresses in the coming years. Billions
of people worldwide rely on large-scale infrastruc-
ture systems, such as electric power, water, and trans-
portation, for their daily needs. Despite consider-
able attention on documenting the mechanisms and
potential impacts of climate change on these systems,
morework is needed to incorporate climate awareness
into actual planning decisions, which today often rely
on historical data and outdated assumptions (Gerlak
et al 2018).

We focus here on electric power systems, which
are affected by climate and weather patterns in
myriad ways and face ongoing and acute stresses from

changing conditions (Ward 2013, Chandramowli and
Felder 2014, Panteli and Mancarella 2015, Craig et al
2018, Brockway and Dunn 2020, Perera et al 2020).
Centralized electric grids consist of generation and
delivery infrastructure that supplies electricity to end-
use customers. Recent events—such as widespread
service interruptions and price spikes due to cold
weather in Texas in February 2021 (Busby et al
2021, Doss-Gollin et al 2021); in California, heat-
related rolling blackouts in August 2020 as well as
grid-caused wildfires and associated power shutoffs
intended to prevent additional fires from 2017 to
2021 (Dale et al 2018, Abatzoglou et al 2020, Wolak
2021); and extensive storm-induced outages in New
Orleans in late summer 2021 (Blau et al 2021)—
demonstrate that system planning and operational
practices have not adequately accounted for climate
change. Such events jeopardize the electric sector’s
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core goals of safety, reliability, and cost-effectiveness.
We define resilience here broadly, as the ability to
preserve these goals without significant disruption
and/or impact on customers, and to return to safe,
reliable, and cost-effective operation quickly if dis-
ruptions occur.

Building climate awareness into electricity sector
planning and decision-making is far from straight-
forward.Current planning processes commonly focus
on predicting a likely future in terms of electri-
city demand, weather conditions, and technology
options, and identifying investments that are expec-
ted to achieve specified reliability targets under
those planning assumptions. Changing climate con-
ditions and associated uncertainties—including those
related to infrastructure impacts, policy and regulat-
ory actions, and consumer behavior—challenge this
underlying deterministic premise (Grubler et al 2011,
Chattopadhyay et al 2016, Moallemi and Malekpour
2018). Yet openings may now exist to rethink plan-
ning approaches, as high-profile service disruptions
have focused public, regulatory, and legal scru-
tiny on electricity sector planning and preparedness
(Lacommare et al 2017, Gundlach 2020). In response,
some electric utilities have begun producing vulner-
ability assessments to evaluate where their systems
may face specific threats (PG&E 2016, Ralff-Douglas
2016, ConEd 2019c, McMahan and Gerlak 2020).

A major barrier to change is that the uncer-
tainties inherent in future climate trajectories and
their implications require a deeper grappling with the
unknown than is present in electricity sector plan-
ning today. While electricity sector planners have
always had to make decisions in the context of uncer-
tain future conditions (e.g. those related to demand
growth, technological innovation, fuel prices, etc),
existing practices to account for uncertainty rely
extensively on historical trends and expert intuition
honed in the context of previous climate condi-
tions (Kuhn and Madanat 2005). In the face of cli-
mate uncertainty, these approaches will no longer
hold. Making better decisions in the face of these
uncertainties will require taking stock of the avail-
able science and integrating it into planning pro-
cesses, evaluating existing baked-in assumptions and
revising where needed, considering compounding
impacts, and reviewing expectations about accept-
able levels of risk and resilience (Linkov et al 2014,
Craig et al 2018, Brockway and Dunn 2020). Sep-
arately, decision science researchers have focused on
how we can make better decisions even with signi-
ficant uncertainties, and concepts from decision sci-
ence can help provide systematic ways of accounting
for them. Here, we review their insights in the context
of advancing climate-aware planning in the electricity
sector.

We perform a three-part literature review with
the goal of making pragmatic recommendations on
how climate awareness can be better incorporated

into electricity sector planning today. First, we review
academic and grey literature in decision science and
its applications to assess best practices for decision-
making under climate-induced uncertainties as well
as tools to manage uncertainty in planning processes.
Next, we review industry practice documents from
two electric utilities to ground ourselves in the types
of decisions made now and consider how poten-
tial new uncertainties created by climate change may
impact those decisions. Then, we review literature on
electricity planning under climate change to assess
how decision science insights may be implemented in
this space.

We assess how climate-induced uncertainties in
the electricity sector fall within decision science
frameworks used to categorize uncertainties. Such
frameworks provide insights about how these uncer-
tainties may be appropriately captured in planning
models, and indicate that methods designed for
handling deep uncertainty should be employed. We
further distill three key ideas from the decision science
literature: robustness, adaptive planning, and multi-
stakeholder engagement, and assess how these build
on current practices in the electricity sector. We dis-
cuss how the electricity sector could incorporate these
ideas into industry practices, and highlight existing
approaches that can form a scaffolding for climate-
aware planning. Further, we focus in on one cat-
egory of electricity sector decision-making—capacity
expansion planning—and provide tangible examples
of how climate awareness can be better incorporated
via the key ideas identified from decision science. We
suggest that embracing the concept of multiple plaus-
ible futures, setting up signposts that identify tipping
points as the future evolves, and involving boundary
organizations to help translate insights between cli-
mate science and electricity planning can help electri-
city sector decision-makers better plan for the future.
In doing so, we bring together insights from three
fields: decision science, electricity systems, and cli-
mate science, to advance how decision-makers in
critical infrastructure sectors might rethink planning
processes to better prepare for climate change.

2. Methodology

2.1. Decision science review
Decision science refers to the process of how indi-
viduals and organizations make decisions based on
available information. It is an interdisciplinary field
that draws on theories from economics, operations
research, forecasting, behavioral science, and stat-
istics. Growing complexities in infrastructure plan-
ning due to climate uncertainties have spurred the
development of planning approaches that borrow
theories from this field (Kwakkel and Van Der Pas
2011). The new planning approaches aim to provide
planners with a more holistic view and assist in
solving ‘wicked’ problems in infrastructure planning.
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We reviewed both academic and grey literature on
decision-making processes related to climate adapta-
tion and resilience policy across critical infrastructure
sectors. We focus on how uncertainty can be incor-
porated during the modeling process, rather than on
how these frameworks might be implemented within
regulatory entities.

For the academic literature, we used 14 com-
binations of search terms in Scopus (supplementary
table 1). This yielded a total of 1018 peer-reviewed
journal papers. We then removed duplicates and
reviewed the abstracts using the following inclu-
sion criteria, keeping only papers that met all of the
criteria:

(a) The paper considers climate as a source of uncer-
tainty.

(b) The paper is related to planning for an uncer-
tain future or adaptation strategies in a critical
infrastructure sector, or it is a review of decision-
making frameworks in the context of critical
infrastructure planning or adaptation planning.

(c) The paper was published after 2000 and is
presented in English.

This selection process left us with 86 papers in
our full text review, for which criterion (a) was a
primary limiting factor. We then identified concepts
and techniques used to handle uncertainty in each
paper and categorized them into overarching con-
cepts with associated techniques.

Our focus on decision-relevant planning
approaches prompted us to also review the grey lit-
erature, where innovations by practitioners work-
ing in critical infrastructure sectors may be docu-
mented. We used four combinations of search terms
(supplementary table 2) in three databases: Adapta-
tion Clearinghouse, Climate-ADAPT andUSClimate
Resilience Toolkit. These databases contain a rich set
of public documents produced by government agen-
cies and nonprofits with a specific focus on climate
adaptation. Down-selection was performed via the
filtering functions embedded in each database rather
than through keyword searches.

This search yielded 109 reports across the three
databases. We then removed duplicates and reviewed
report summaries using the following inclusion
criteria, keeping only papers that met all of the
criteria:

(a) The report considers climate as a source of
uncertainty.

(b) The report is a planning or guidance docu-
ment that discusses the decision-making process
to address climate change for critical infra-
structure planning (reports such as vulnerabil-
ity assessments or climate impact studies are not
included).

(c) The report was published after 2010.

This selection process left us with 15 reports for
full text review.We then identified concepts and tech-
niques used to handle climate uncertainty in each
report and categorized them into overarching con-
cepts with associated techniques.

2.2. Industry practice review
To better understand the ways that climate change
may impact the electric power sector, we aim to
document the types of decisions that electric utilit-
ies are making today. In the United States, roughly
three-quarters of electricity customers are served by
investor-owned utilities (IOUs) (Energy Informa-
tion Administration 2019). IOUs operate as regulated
monopolies, with their investment decisions and cus-
tomer rates overseen by state public utility (or public
service) commissions in general rate case (GRC) pro-
ceedings. These proceedings are rich sources of public
information on how electric power systems are main-
tained, operated, and invested in today. As these doc-
uments are extensive, we select just two utilities to
compare in order to keep our scope manageable. In
selecting these utilities, our criteria include: (a) geo-
graphic diversity, (b) large utilities that serve a mix of
customer types (including both urban and rural rep-
resentation), and (c) utilities that have been heavily
impacted by extreme weather events.

We focus here on two utilities: Pacific Gas and
Electric (PG&E), which serves approximately 16 mil-
lion customers in urban and rural Northern Califor-
nia, and Consolidated Edison (ConEd), which serves
over 3 million customers in the New York City area.
Notably, PG&E and ConEd have already been signi-
ficantly impacted by climate change: increasing wild-
fire activity inCalifornia andHurricane Sandy inNew
York have drawn scrutiny to utility operations and
focused attention on electric system safety and resi-
lience. Here, we review the 2020 GRC filings of both
utilities, focusing attention on electric power system
operation and energy delivery. The approved costs
and rates in these GRC filings set utility spending and
investment thresholds for 3 years, from 2020 to 2022.

For PG&E, we focus on the utility’s filing request-
ing cost recovery for 2020 spending, as approved by
the California Public Utilities Commission (CPUC)
(CPUC2020b). For ConEd, we focus on the joint pro-
posal documenting the results of a settlement agree-
ment on utility spending from the utility and other
stakeholders (ConEd 2019b), expert testimonies that
provide additional context about utility planning and
investments (ConEd 2019a), a report documenting
anticipated capital expenditures (ConEd 2020), and
the approval from the New York State Public Service
Commission (NYPSC 2020). For both utilities, we
seek to identify where and how they propose to invest
in their systems and the decisions they are making
about them. We code investment decisions by activ-
ity area (see supplementary note 1), then summar-
ize current utility practices within each space. For
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each activity area, we identify emerging uncertainties
that will affect electric power system planning going
forward.

2.3. Electricity sector planning under climate
change review
We performed a literature review of papers related
to electricity sector planning that also consider cli-
mate change. Search terms used are summarized in
supplementary table 3 along with the number of
papers these terms returned in Scopus. From the ini-
tial returned list of papers, we removed duplicates
and papers written in a language other than English,
which left us with 683 total papers. Then we reviewed
the abstracts using the following inclusion criteria:

(a) We filtered out papers whose primary focus was
not relevant to planning for electricity infra-
structure and/or did not include some consider-
ation of climate change or sustainability.

(b) We removed papers with a primary focus on
modeling only one area of energy systems
(e.g. building energy use, energy demand, solar
photovoltaic generation), or where electricity
infrastructurewas not amajor focus of the paper.

(c) We removed papers that focused on describing
climate change impacts rather than planning for
them or on resource characterization (e.g. solar
availability).

(d) We focused on electricity system planning in
geographic areas with developed grid systems,
though we did include some papers looking at
decentralized electricity systems as an option.

Following this down-selection process, we were
left with 168 papers. We then reviewed the papers
to identify how the authors handle climate change
and uncertainty and whether and how they incorpor-
ated the key concepts identified in the decision science
review. While reviewing, we also sorted the papers
into topic areas (table 5).

3. Results and analysis

Decision science researchers have developed
approaches that can help advance how electricity
sector decision-makers may consider and address
climate-induced uncertainties. Here, we focus first on
uncertainty characterization (section 3.1), then eval-
uate how different types of uncertainties may emerge
in the electricity sector (section 3.2) and how they
may impact electric utility practices and decisions
(section 3.3). Then, we consider key concepts from
decision science that may be used to manage uncer-
tainty in planning processes (section 3.4) and evalu-
ate the extent to which these show up in literature on
electricity sector planning (section 3.5). Sections 3.1
and 3.4 are based on our review of the decision science
literature (section 2.1); sections 3.3 and 3.5 are based

on our review of the industry practice (section 2.2)
and electricity sector planning (section 2.3) literat-
ures, respectively. Section 3.2 draws from our review
of all three areas of literature.

3.1. Characterizing climate-related uncertainties
There aremany different classifications of uncertainty
and debates about their characterization and import-
ance (Kujala et al 2013), so a standard framework
or taxonomy for uncertainty in the context of cli-
mate change and infrastructure planning does not
exist5. This lack of distinction leads to confusion and
impedes clear communication about uncertainty to
decision-makers. Climate uncertainty is also often
perceived differently by decision-makers and scient-
ists (Berkhout et al 2014, Döll and Romero-Lankao
2017). We aim to reconcile some differences in inter-
pretation by classifying uncertainties in a decision-
relevant context. Specifically, we approach uncer-
tainty from a modeling perspective and distinguish
the technical methods used to treat uncertainties.
We expand upon work done by Hawkins and Sutton
(2009) and Kwakkel et al (2010) and frame uncertain-
ties in a grid planning context.

Uncertainty is generally defined as incomplete
knowledge and/or disagreement about what is known
or even knowable (Walker et al 2010, Kunreuther
et al 2014). Five levels of uncertainty were proposed
by Kwakkel et al (2010) (figure 1). These levels cor-
respond to different degrees of numerical certainty,
which constrain how information can be appropri-
ately represented in models and analyses.

• Level 1 uncertainty (shallow) represents a situation
when a reasonable estimate of the outcome is pos-
sible. This uncertainty may be appropriately cap-
tured with a point estimate and a range of possible
deviations (e.g. tomorrow’s electricity demand will
peak at 5:30 p.m.,+/− 5min).

• Level 2 uncertainty (shallow) refers to an uncer-
tainty that can be reliably described through stat-
istical terms. One can capture level 2 uncertainty
through forecasting techniques (scenarios) with
associated probabilities (e.g. a new generation plant
is 70% likely to be operational this year, 30% likely
to be delayed). Analyses may appropriately assume
that historical data can be used to develop reliable
future forecasts.

• Level 3 uncertainty (shallow) are situations with
known multiple alternatives where it is pos-
sible to rank the alternatives by perceived likeli-
hood, but no probabilities can be reliably assigned

5 Uncertainties are commonly categorized as either aleatory (ran-
dom variability in the system) or epistemic (lack of knowledge
about the system) across different disciplines (Kunreuther et al
2014). However, this categorization may not offer an adequate
delineation in the context of climate-aware decisionmaking as their
distinctions are blurry, andmany uncertainties have characteristics
of both (Fletcher et al 2018).
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Figure 1. Levels of uncertainty. Reproduced fromWalker et al (2013b), with permission of Springer Nature.

(Patt and Dessai 2005). One can appropriately cap-
ture level 3 uncertainty with trend-based scenarios
that reflect different assumptions of the driving
force (e.g. three trend-based scenarios of electric
vehicle demand, based on three different assump-
tions about product costs).

• Level 4 uncertainty (deep) are situations with
known multiple alternatives but where ranking the
alternatives in terms of likelihood is not possible,
potentially due to inadequate data or decision-
makers’ disagreement on the rankings (e.g. an
optimal location for building new generation in
2030, given demand patterns, population growth
and movement, community impacts, and land-
use change). Analysts may struggle to specify the
appropriate models, select the probability distribu-
tions to represent uncertainty about key paramet-
ers in themodels, and/or to value the desirability of
alternative outcomes (Lempert et al 2003).

• Level 5 uncertainty (deep) represents the deep-
est level of recognized uncertainty. We can only
acknowledge that we do not know.

These levels can be simplified to two levels:
‘shallow uncertainty’ and ‘deep uncertainty’. Shallow
uncertainty can be treated through probabilities or
assigned likelihood for different future alternatives,
whereas deep uncertainty refers to conditions where
parties do not know and/or cannot agree on the prob-
abilities or likelihood of different future alternatives.
These levels map onto different ways of represent-
ing parameter uncertainty, which may range from
probabilistic information, to bounds on a range, to

trend estimation or effective ignorance (Kandlikar
et al 2005). Lempert et al (2003) further define deep
uncertainty as the condition where decision-makers
cannot agree upon:

(a) the appropriate models to describe interactions
among a system’s variables,

(b) the probability distributions to represent uncer-
tainty about key parameters in the models,
and/or

(c) how to value the desirability of alternative
outcomes.

The electricity sector faces uncertainties that
span each of these levels. Determining which uncer-
tainties meaningfully impact various planning and
decision contexts is critical for identifying the con-
ceptual frameworks and analytic methods that are
needed to effectively advance climate-informed
practice.

3.2. Uncertainties in electricity sector planning
We can evaluate climate-induced uncertainties faced
by the electricity sector through the framework dis-
cussed above. Figure 2 shows a conceptual mapping
of how climate uncertainties may propagate through
to impacts on the electricity system. This mapping
broadly reflects the attributes of coupled natural and
human systems under deep uncertainty discussed
in Sharmina et al (2019). These uncertainties dir-
ectly pertain to decisions made today (table 1) and
should be accounted for in climate-aware planning
and decision-making. To do so appropriately, we
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Figure 2. Conceptual mapping of progression of uncertainties in the electricity sector that are related to climate change. This
figure is not meant to be exhaustive, but to illustrate the types of uncertainties and impacts that will emerge due to climate change.

must consider the nature of the uncertainties and how
they might be represented to decision-makers.

3.2.1. Uncertainties in climate conditions
Climate scientists have made substantial progress in
developing standard approaches to work with uncer-
tainties related to climate conditions (figure 2(a)).
Uncertainty in climate prediction comes from three
sources: scenario uncertainty, model uncertainty,
and internal variability (Hawkins and Sutton 2009,
Lehner et al 2020), which have different impacts
depending on the decision time and spatial scale.
In the climate science space, scenario uncertainty
corresponds to uncertainty in how greenhouse gas
emissions will evolve. Uncertainties in continuing
emissions are represented by scenarios (often, rep-
resentative concentration pathways or RCPs, see van
Vuuren et al 2011) that describe how emissions may
evolve over the coming decades, and constitute a
range of possible outcomes. Which scenario is real-
ized depends upon societal characteristics, behavior,
and climate policy, and so is constrained by future
socioeconomic scenarios. These are often considered
as shared socioeconomic pathways (SSPs) (O’Neill
et al 2016, 2017), each of which is constructed around
a self-consistent narrative describing plausible future
outcomes for population, economic growth, etc. The
SSPs enable a structured exploration of how alternat-
ive societal dynamics and decisions influence future
climate outcomes. The range of future emissions
can be loosely bounded by such plausible socioeco-
nomic and policy scenarios, as well as by physical
constraints on fossil fuel usage. However, the SSPs
and RCPs are just a handful of the infinite possible
futures that lie between and around them in the scen-
ario space. It may be possible to qualitatively assign
some expected likelihood to the class of similar scen-
arios represented by each emissions scenario based
on expert judgment regarding the underlying factors

that contribute to the scenarios (e.g. Hausfather and
Peters 2020). However, assigning formal probabilit-
ies remains elusive, placing emissions scenario uncer-
tainty at Level 3 or 4 from figure 1. The climate
signatures of alternative emissions scenarios tend to
broadly agree through approximatelymid-century, so
scenario uncertainty typically matters more for long-
term planning decisions such as system expansion.

Uncertainties in how climate patterns might
respond to continuing emissions are captured by
global circulation models (GCMs), which take emis-
sions scenarios as inputs. Model uncertainty refers
to how these different models simulate changes in
climate given the same amount of emissions. Each
GCM constitutes a plausible representation of how
future conditions may evolve. Model-based uncer-
tainty is deep in the sense that these models are not
randomly drawn from a space of possible models and
their relative likelihoods cannot therefore be form-
ally assigned probabilities. While certain model pro-
jections can be ruled out as less credible by examin-
ing their historic performance against observational
benchmarks (e.g. Brunner et al 2020, Liang et al
2020, Tokarska et al 2020), it is often impossible
to narrow the range to a single ‘most likely’ pro-
jection or ‘most credible’ model. Nor is it appro-
priate to think of models as equally likely since
some models may share development histories and
therefore common biases (Knutti et al 2013). Some
researchers have developed credibility-based model
weighting schemes, but in practice it is necessary
to evaluate many metrics to build confidence that a
particular weighting approach appropriately reduces
uncertainty. Another reasonable strategy is to treat
each projection that passes a skill-based screen as
an equally plausible yet non-probabilistic outcome
(i.e. corresponding to Level 4 from figure 1). GCMs
describe climate impacts at large-scale resolution, and
finer geographical resolution is desirable for actual
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planning decisions. Downscaling methods translate
GCM outputs into regional climate impacts, and
these methods also contain separate model uncer-
tainties about how these large-scale outputs may be
experienced locally (Barsugli et al 2013).

Climate projections are also subject to internal
variability, or the natural fluctuation of the climate
system even in the absence of emissions (Deser 2020).
Internal variability is stochastic in nature and in
principle can be estimated probabilistically through
either observation or a sufficient number of simu-
lated climate projections contingent on a given cli-
mate model and emissions scenario. However, the
rarer an extreme event (e.g. a large storm or extreme
heatwave) is, the more data is required to prop-
erly characterize its probability (Tebaldi et al 2021),
presenting challenges when the historic record or
future projections are limited. The recent advent of
large climate projection ensembles (inwhich the same
scenario is modeled dozens to hundreds of times) has
led to better statistical resolution of extreme events
(Kirchmeier-Young et al 2017), but still does not
address the deep uncertainty arising from the choice
of climate model itself or from alternative emissions
scenarios.

3.2.2. Uncertainties in direct climate impacts
Changing climate conditions will directly impact
infrastructure, consumer behavior, and decision-
maker response (figure 2(b)). In particular, these may
include how climate variables (e.g. humidity, tem-
perature) impact power equipment performance and
lifetimes, as well as the demands consumers put on
that equipment (e.g. through increasing air condi-
tioning use). Direct impacts will include those from
changes in ambient conditions (i.e. trends in sur-
rounding air temperature, precipitation, wind pat-
terns, etc. that infrastructure is exposed to in routine
operation), and in extreme conditions (i.e. increas-
ing magnitude and frequency of events likely to
cause disruptions). Researchers have estimated spe-
cific impacts from climate trends in these areas, and
this ongoing work in conjunction with reasonable
near-term confidence in felt local climate impacts
(e.g. overall temperature trends)maymake it possible
to represent some uncertainties in these parameters
through statistics. Yet such representations still rely
on projecting the underlying climate impacts, which
are nevertheless deeply uncertain (section 3.2.1). Cli-
mate conditions may also impact consumer and
decision-maker responses that are more difficult to
characterize empirically, such as population migra-
tion and/or political pressure.

3.2.3. Uncertainties in indirect climate impacts
Climate will also have additional indirect impacts
on the electricity sector (figure 2(c)). These may
include changing maintenance and operating prac-
tices, increasing danger for customers fromheat-wave

induced outages, and compounding stresses between
consumer behavior and infrastructure performance.
Policy actions in response to changing climate con-
ditions may also prompt both increasing consumer
actions (e.g. incentives for new technology adoption),
and changing industry practices (e.g. decentraliza-
tion). Adaptive responses by consumers and policy-
makers may pose further risks to electricity system
stability and cost-effectiveness (Simpson et al 2021).
These uncertainties emerge from the interrelation-
ships among entities involved in electric power sys-
tems, infrastructure impacts, and climate conditions,
and are compounded by feedback loops, including
with other complex infrastructure sectors (e.g. water,
transportation) (Reed et al 2022). Therefore, they are
more difficult to estimate and capture through statist-
ical approximations or modeling tools. Such uncer-
tainties may thus be squarely considered deep, and
require careful assessment that does not rely on pre-
dicting a deterministic future that may generate false
confidence (Sharmina et al 2019).

3.3. Electric utility practices and emerging
uncertainties
New uncertainties that arise from changing climate
conditions are already disrupting the normal oper-
ation and performance of electric power systems.
Accounting for these uncertainties in electricity sec-
tor planning will require evaluating how decisions
are made today and how decision-making and plan-
ning processes will need to be updated for the future.
From our review of the GRC filings of PG&E and
ConEd (supplementary note 1), we identify six activ-
ity categories and 16 activity areas in which utilities
are making decisions today that will be impacted by
new uncertainties from a changing climate. We dis-
cuss each activity area in supplementary note 2 and
summarize them in table 1.

These activity areas illustrate the range of prac-
tices that are exposed to new climate uncertainties.
While the uncertainties discussed in section 3.2 and
shown in figure 2 will impact all utility decisions,
in table 1 we indicate specific climate uncertainties
that may be particularly relevant to each activity
area. These are meant to be illustrative rather than
comprehensive:

(a) Severe events refers to uncertainties in the mag-
nitude and frequency of events with the poten-
tial to disrupt day-to-day operations (e.g. strong
storms, heat waves, droughts, etc).

(b) Ambient conditions refers to uncertainties in how
average conditions (e.g. temperature, precipita-
tion, humidity, etc) will change over time.

(c) Speed of changes refers to uncertainties in the rate
of relevant changes in both severe and ambient
conditions.

(d) Demand changes refers to uncertainties in
changing consumer demand patterns and the
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Table 1. Summary of utility activity areas and relevant climate-induced uncertainties (see supplementary note 2 for more).

Activity area Description Climate uncertainties

Real-time
operations

System
operations

Activities performed in real time to manage system
operation and respond to current conditions.

Severe events

Monitoring and
situational
awareness

Inspection and monitoring of infrastructure
readiness and grid performance, either through
special equipment (e.g. sensors) or human attention
(e.g. patrols).

Ambient conditions;
Speed of changes

Emergency
response

Response to emergency events and real-time repair
work to restore service.

Severe events;
Demand changes

Maintenance System
maintenance

Maintenance of electric power system equipment
and associated infrastructure, costs may include
those related to labor, capital, and permitting.

Ambient conditions;
Demand changes

Vegetation
management

Inspection, identification, clearing, and removal of
vegetation located near electric power equipment.

Ambient conditions;
Severe events

Planning System planning Ongoing projects to evaluate system condition and
day-to-day needs and to plan for the future.

Ambient conditions;
Demand changes

Preparatory
planning

Investments in planning specifically for emergency
events, which may include technology,
communication, human capital, and coordination
with other responders.

Severe events;
Demand changes

Investments System
expansion

Deployment of new equipment and infrastructure
designed to accommodate new demand on the
system.

Severe events;
Demand changes

Repairs and
replacements

Repairing or replacing equipment that has reached
the end of its useful life, or where investment is
needed to maintain an appropriate level of
performance.

Ambient conditions;
Speed of changes;
Demand changes

Grid hardening Upgrading or reinforcing equipment with the goal of
mitigating a specific and emerging threat that would
not have originally been planned for, or to improve
performance under non-standard operating
conditions.

Severe events;
Speed of changes

System
awareness and
security

Developing new capabilities to maintain system
awareness, improve safety and resiliency, and enable
coordination, with a focus on non-power assets (e.g.
system mapping, security upgrades, threat and
vulnerability detection).

Changing regulatory
and policy landscape

Performance Performance
assessment

Development and implementation of systems and
processes to evaluate and measure utility
performance (e.g. reliability metrics, customer
satisfaction).

Changing regulatory
and policy landscape

Customer
programs

Direct consumer engagement related to outage
management, demand response, time-of-use rates,
etc

Demand changes

Business
operations

Regulatory
standards and
compliance

Permitting and implementation of required
technical or process standards, licenses, or
environmental management practices.

Changing regulatory
and policy landscape

Internal
operations

Costs required to perform core duties (e.g. labor,
training, management, tools, office space, and land
maintenance).

Changing regulatory
and policy landscape

Cost
management

Accounting programs for managing infrastructure
and operational costs (e.g. expenditures that are
uncertain in time, decommissioning, recovery of
cancelled projects).

Changing regulatory
and policy landscape;
Severe events

resulting impacts to customers of disruptions
(e.g. increasing electrification will mean greater
reliance on the electricity grid for new loads,
such as heating).

(e) Changing regulatory and policy landscape refers
to uncertainties about how decision-makers will
respond, including potential new requirements

for utilities with regards to risk and cost
management (e.g. insurance).

In real-time operations, increasing frequencies of
extreme events and changing ambient conditionsmay
stress existing approaches to system operation, data
collection and monitoring, as well as the ability of
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Figure 3. Uncertainties, inputs, and outputs of capacity expansion models. Part (a) builds on figure 2.

crews to effectively restore power after outages. In
system maintenance, changing ambient conditions
may alter the expected lifetime of system components
(e.g. through corrosion or thermal stress) and neces-
sitate more frequent maintenance and labor needs to
ensure satisfactory operation. Further, while new cli-
mate patterns (e.g. drought) may place more stress
on vegetation management practices, such practices
will become increasingly important to preserve oper-
ation in light of extreme events and severe storms.
In performance and business operations, changing
regulatory and policy practices, including direct-to-
customer incentives for new technologies, may also
continue to drive changes in how utilities operate.
Further, new insurance risks may threaten existing
accounting practices.

Here, we focus on two activity categories—
planning and investments—in which utilities make
and execute long-term decisions about their sys-
tems. Activities in these areas will need to contend
with the impacts to technology of changing ambi-
ent conditions and increasing severe events, chan-
ging consumer demands for electricity, and a chan-
ging regulatory and policy landscape (effectively, all
uncertainties depicted in figure 2). To illustrate how
these new uncertainties may challenge current util-
ity planning and decision-making practices, we focus
here on capacity expansion planning, which is widely
used in the electricity sector to evaluate the need
for investments in electricity generation and deliv-
ery infrastructure to serve new and changing demand
patterns (Gacitua et al 2018, Miara et al 2019). These
planning activities rely heavily on capacity expan-
sion models, which incorporate information about
existing infrastructure and make technology, market,

and policy assumptions to determinewhere andwhen
system investments should be made to accommod-
ate load growth at least cost (figure 3). The extent to
which the results of these models represent the real
world depends on how they incorporate uncertain-
ties in climate and its direct and indirect impacts and
stakeholder objectives (figure 3(a)), as well as how
well the model itself represents the electricity system
(i.e.model uncertainty, figure 3(c)).

Current implementations of capacity expansion
models typically make assumptions about these
uncertainties to create a single plausible future to plan
for. In California and New York, the capacity expan-
sion planningmodels that feed into and inform infra-
structure investments are primarily deterministic, i.e.
they seek to make the best possible predictions of
a single plausible future given current information,
assume that uncertainties can be treated probabilist-
ically, and then plan for that future (Brockway and
Dunn 2020). While scenario planning approaches
are used, investments are still tailored to one (typic-
ally median) scenario. Further, while in some cases
such models take in weather and climate data dir-
ectly (e.g. using temperature to predict electricity
demand), they also contain embedded assumptions
that implicitly incorporate climate conditions (e.g.
equipment lifetimes). Feedback loops are also neces-
sary to consider: for example, increasing consumer
adoption of air conditioning due to increasing tem-
peratureswill increase demandon the grid at the same
time as hotter days reduce line capacity and genera-
tion efficiency.

The potential impact that climate uncertain-
ties may have on the results of these models is
unknown until such uncertainties are more formally
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and systematically explored. Certainly, not all climate
uncertainties will matter equally for all decisions, but
relying on historical weather data as well as histor-
ical performance neglects the impact of climate as a
source of uncertainty. Moreover, relying on histor-
ical weather datameans, in practice, accepting the full
risk of impacts due to climate change rather than pre-
paring appropriately. Building climate awareness into
capacity expansion planning is critical, and literat-
ure that evaluates the impacts of planning with cli-
mate considerations consistently show that it is better
to plan for climate impacts upfront rather than after
the fact (e.g. Miara et al 2019, Peter 2019, Sridharan
et al 2019, Fonseca et al 2021). By not accounting
for climate uncertainty, we are planning for an inac-
curate future, which may compound existing grid
inadequacies.

3.4. Key concepts from decision science for
managing uncertainties
Traditional decision-making approaches that use
the framework of expected utility theory (Savage
1972, Weitzman 2009), such as benefit-cost analysis
(Boardman et al 2005), and cost-effectiveness ana-
lysis (Garber and Phelps 1997), hinge on the ability to
assign a probability density function to future events
and assume all uncertainties are quantifiable. How-
ever, any single projection of the future is likely to be
inaccurate (Bishop et al 2007). Moreover, planning
for climate change is a case of deep uncertainty, where
long-term climate uncertainties in infrastructure
planning are hard to quantify and futures are hard to
predict. Therefore, these traditional approaches can-
not provide planners with a holistic view, adequately
integrate climate uncertainty, or grapple with the
long-term multiplicity of plausible climate futures
(Lempert et al 2003, Ackerman et al 2009, Hallegatte
2009, Ranger 2010, Masur and Posner 2011, Dittrich
et al 2016). Relatedly, oft-cited reasons for not includ-
ing climate data in decision-making processes include
the perceived poor reliability of climate forecasts and
difficulty in assessing the credibility of climate projec-
tions (Rayner et al 2005, Barsugli et al 2013). These
reasons may also stem from the need to optimize
under a single future and treat climate uncertainty in
a probabilistic manner.

To address the limitations of the traditional
decision-making approaches and climate uncertainty
in policy making, a growing body of literature within
the climate-aware decision science space uses con-
cepts from decision-making under uncertainty and
decision-making under deep uncertainty across dif-
ferent infrastructure sectors (table 2). These concepts
are not new (Morgan et al 1990), particularly within
the water and transit sectors, but they have not sig-
nificantly factored into work by practitioners in grid
infrastructure planning.

Table 2. Summary of sector identified in review of papers related
to decision making under climate uncertainty.

Sector N (academic) N (grey)

Water 37 7
Transit 12 3
Climate adaptation 11 4
Energy 7 1
Conservation 2 0
Telecommunication 1 0
Nexus 1 0
N/A (conceptual review paper) 15 0
Total 86 15

A majority of this literature is targeted at water
resources planning. The relatively high prevalence of
these concepts in the water resources planning sec-
tor might be due to the early introduction by Matalas
and Fiering in 1977 (National Research Council 1977,
Herman et al 2015, Dittrich et al 2016, Giuliani and
Castelletti 2016). However, the similarities between
water resource and grid planning (e.g. high likelihood
of path-dependence, sensitivity on both demand and
supply to climate impacts, long infrastructure life-
time, investment irreversibility) make these concepts
transferable. As discussed in section 3.2, climate
uncertainties significantly affect all decision activit-
ies (e.g. system planning, investment, maintenance)
and create compounding uncertainties (e.g. policy
response, consumer behavior, infrastructure per-
formance). In particular, long-term decisions such
as capacity expansion planning may need a different
approach to incorporate uncertainty in the decision-
making. Three key concepts that emerged from our
review could offer an alternative approach to the tra-
ditional methods:

(a) Robustness. Rather than an optimal outcome
for a single future, a robust outcome performs
reasonably well in a wide range of plausible
future climate scenarios.

(b) Adaptive planning. Uncertainties in climate
conditions evolve over time, and adaptive plan-
ning refers to setting up the institutional capa-
city to take actions over extended time horizons.
This can include identifying short-term actions,
developing different long-term options, and per-
forming continuous monitoring to assess appro-
priate long-term paths.

(c) Multi-stakeholder engagement. Tensions
between conflicting perspectives and policy
objectives may be resolved through an iterative
multi-stakeholder engagement process.

Table 3 shows a summary of those concepts
with associated techniques and papers. The following
sections provide deeper dives into each of those con-
cepts and discuss opportunities to implement them
into organizational decision-making.
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Table 3. Summary of key concepts and their associated techniques.

Key concepts Key Techniques Example Papers

Robustness: ensuring the
outcome is insensitive to errors
and uncertainties in the
parameter assumptions and
performs reasonably well in a
wide range of possible future
scenarios.

• Exploratory modeling or scenario
discovery: developing a set of scenarios in
a systematic manner to expand the
understanding of how the future might
unfold and trade-offs between different
prioritization of objectives.

• Vulnerability assessment: Leveraging the
systematic scenario discovery process to
evaluate when a chosen policy performs
poorly using a set of predefined metrics.

Herman et al (2015),
Taner et al (2017),
Lempert (2019),
Bartholomew and Kwakkel (2020),
Workman et al (2021)

Adaptive planning: identifying
short-term actions, but also
developing different long-term
options for implementation
based on continuous
monitoring.

• Signpost & tipping points: Identifying
the point (signpost) when a policy
outcome would become inadequate and
tracking specific indicators (tipping
point) that inform future actions.

• Monitoring plan: A formalized plan that
provides instruction on how to monitor
signposts and tipping points and map out
long-term actions to take when
thresholds for the signpost are triggered.

Haasnoot et al (2013, 2018),
Hamarat et al (2013),
Beh et al (2015),
Wall et al (2015)

Multi-stakeholder engagement:
facilitating interactions of
different actors within and across
sectors, at different levels, and
within different organizations to
incorporate their perspectives
and priorities.

• Participatory modeling and scoping
process:Having ‘knowledge brokers’ or
‘boundary spanners’ to translate jargon
and knowledge among different
stakeholders in an interactive workshop.
It is most effective when engagement is
conducted iteratively throughout
planning process.

Kwakkel et al (2016a),
Lawrence and Haasnoot (2017),
Roelich and Giesekam (2019),
Rădulescu et al (2020),
Lempert and Turner (2021),
Stanton and Roelich (2021)

Table 4. Number of times the key concepts appeared in literature
review.

Concept N (academic) N (grey)

Robustness 48 5
Adaptive planning 27 4
Multi-stakeholder engagement 27 6

Table 4 shows the prevalence of key concepts
in the literature. Robustness is more commonly
discussed in academic literature compared to adapt-
ive planning and multi-stakeholder engagement.
However that prevalence did not translate over to
practice in the grey literature. The lack of prevalence
in implementing robustness concept is perhaps due to
the technical complexity and knowledge gap on how
uncertainties may impact planning outcomes, partic-
ularly in the context of climate change.

3.4.1. Robustness
The concept of robustness originated in ecology dur-
ing the 1970’s, when it was introduced to water
resources planning in the context of climate change
by Matalas and Fiering (National Research Council
1977). They defined a robust design as one that
may not be the optimal choice under any one
scenario, but that performs reasonably well under

a variety of possible climate scenarios. Robustness
further refers to the insensitivity of system design
to any potential errors in assumptions affecting
decision performance (National Research Council
1977). Although the mathematical backbone of
robustness has evolved, the definition is still broadly
valid. Forgoing the optimal choice may seem coun-
terintuitive, but decision-makers are often will-
ing to sacrifice optimality for robustness (Clímaco
2004, Difrancesco and Tullos 2015, Herman et al
2015, Rosenhead et al 2017). This preference for
robustness is at odds with traditional decision-
making approaches, where the goal is to produce the
optimal outcome under the assumption that uncer-
tainty is well-characterized (i.e. shallow uncertainty).
Given the irreducibility and depth of climate uncer-
tainty and irreversibility of infrastructure investment,
approaching planning with the robustness concept
enables decision-makers to identify viable solutions
that work across many possible futures without
needing to predict which of those futures is most
likely.

In recent years, an increasing number of decision
frameworks are integrating robustness concepts into
their approach, including Decision Scaling (Brown
et al 2012), robust decision making (RDM) (Lempert
et al 2003), Information-Gap (Ben-Haim 2004),
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many-objective robust decision-making (Kasprzyk
et al 2013), and Epoch–Era analysis (Curry and Ross
2015). Other authors have compared these meth-
ods (Hall et al 2012, Matrosov et al 2013, Roach
et al 2016, Kwakkel et al 2016b, Marchau et al 2019,
Bartholomew and Kwakkel 2020, Moallemi et al
2020), and developed a common taxonomy of robust-
ness across those frameworks (Herman et al 2015,
McPhail et al 2018). Here, we focus on extrapolating
robustness concepts and techniques that may be rel-
evant to the electricity sector.

The exact definition of robustness is dynamic
depending on the decision context and stakehold-
ers’ attitudes (Giuliani and Castelletti 2016). How-
ever, the underpinning technique to achieve a robust
outcome is by exploring how different policy altern-
atives perform in a wide range of plausible scenarios
and evaluating trade-offs among multiple perform-
ance measures (Moallemi et al 2020). There are four
distinct components within a robust decision ana-
lysis: a set of decision alternatives, a range of plausible
scenarios, performance measures or robustness met-
rics, and vulnerability assessment or robustness con-
trols. We will provide a simplified overview of each
component, refer to Herman et al (2015) for a more
comprehensive discussion.

(a) A set of discrete policy alternatives. These
are the different decision options that may be
implemented based on future scenarios and
current institutional constraints. They may be
pre-specified by decision-makers or developed
through a computational search. For example,
a discrete policy alternative might be a set
of investment choices generated by a capa-
city expansion model under a particular set of
inputs, including a given climate scenario. This
policy alternative may then be evaluated along-
side other alternatives developed by running the
same model with different inputs (see (b) range
of plausible scenarios). In practice, the set of
decision alternatives is more likely to be pre-
specified due to resource constraints. A multi-
stakeholder engagement process may be effective
in ensuring different objectives are incorporated
into the initial policy alternatives and determ-
ining whether adaptive planning is necessary or
possible.

(b) A range of plausible scenarios that considers
all uncertainties and translates them into para-
meters in the model. For example, uncertainties
around the change of temperature or precipit-
ation in the next decade would become para-
meters with assigned plausible ranges. The dif-
ferent scenarios are different combinations of
those uncertainties. Amulti-stakeholder engage-
ment processmay be effective to create a compre-
hensive list of uncertainty factors and agree on
plausible ranges for uncertainty parameters. The

goal is not to predict future scenarios rather to
explore what could happen. Each policy altern-
ative is evaluated in each of the scenarios using
robustness metrics.

(c) Performance measures or robustness metrics
for each policy alternative are a list of criteria
that policy alternatives are evaluated against in
each scenario. Stakeholders and analysts may co-
develop multi-objectives and robustness met-
rics. Robustness metrics are developed in a
similar manner to traditional decision-making
approaches, where decision-makers choose spe-
cific metrics to evaluate policy performance
based on the decision context (i.e. properties
of the problem space such as regulatory envir-
onment and technical constraints). Example
robustness metrics are GHG emissions, system
reliability, and investment cost. The perform-
ance of one policy alternative may be evalu-
ated using a combination of several robust-
ness criteria. Robustness is commonly assessed
using two methods, least-regret or satisficing.
Least-regret quantifies each policy alternative’s
deviation from expected performance based on
robustness metrics and identifies the policy that
deviates the least over a wide range of plaus-
ible futures (Lempert and Collins 2007). Satis-
ficing evaluates each policy alternative against
the robustness metrics and identifies the policy
that performs reasonably well compared to the
alternatives over a wide range of plausible futures
(Hall et al 2012). Robustness metrics provide
decision-makers with a systematic approach to
evaluate and compare each policy under a wide
range of climate futures.

(d) Vulnerability assessment or robustness con-
trols refer to the process of isolating the uncer-
tain factors most responsible for system vulner-
abilities and examining where policies could fail
(i.e. produce unacceptable outputs with respect
to the performance metrics). A common tech-
nique is scenario discovery, which simulates
the performance of different policy alternatives
under a wide range of plausible futures and
identifies where some policy alternative may
fail (Bryant and Lempert 2010). This is sim-
ilar to sensitivity analysis in traditional decision-
making approaches. The goal is to help decision-
makers target specific vulnerabilities anddevelop
adaptive strategies to address them (Haasnoot
et al 2013).

In the grey literature, robustness is discussed as an
overarching concept but it is rare for planners to con-
duct and implement robustness concept in the stand-
ard decision-making process. Some reports acknow-
ledge the need to move away from deterministic and
definitive prediction about future climate conditions
and the importance of incorporating uncertainty by
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planning for wide range of futures (Means et al 2010a,
US Department of Energy 2016, World Association
forWaterborneTransport Infrastructure 2020).How-
ever, this is often not operationalized; there are only
several pilot projects in the water resources sector
that leverage RDM to test its technical capability and
value of running a wide range of future scenarios.
One notable example is the work done by the Bureau
of Reclamation in the Colorado River (Groves et al
2019, Smith et al 2022). Other examples include work
done inwater utilities andwater planning (Means et al
2010b, Zeff et al 2014, Herman et al 2016, Gorelick
et al 2018, Gold et al 2019). Both academic and grey
literature suggest that the barriers to implementing
the robustness concept center on the difficulty in
changing the conventional decision-making process
and planners’ unfamiliarity (Means et al 2010b, Bhave
et al 2016, Roelich and Giesekam 2019).

3.4.2. Adaptive planning
Adaptive planning is another tool used to cope
with uncertainties in long-term infrastructure plan-
ning. Adaptive plans are designed to be iteratively
updated with newly available information, leading
to more resilience against uncertainties and more
effectiveness in guiding future actions. Similar to the
concept of robustness, adaptive plans also examine
a wide range of uncertainties and plausible futures
(Walker et al 2013a). In addition, adaptive plan-
ning refers to the flexibility of a policy alternative
to change course based on the evolving environment
through continuous learning (Rosenhead et al 2017,
Haasnoot et al 2018). The objectives are to reduce
path dependencies due to technological, institutional,
and behavioral lock-ins (Fouquet 2016, Maier et al
2016) and increase tolerance to future uncertain-
ties (Jeuken et al 2015). To achieve those object-
ives, adaptive planning identifies short-term actions
and long-term options by systematically monitoring
the environment, gathering information, and iterat-
ively adjusting strategies to new circumstances (Yzer
et al 2014). The literature presents several frameworks
that encourage adaptive planning, such as Assump-
tionBased Planning (Dewar andWachs 1993), Adapt-
ive Policy Making (Kwakkel et al 2010), Engineering
Options Analysis (Smet 2017), and Dynamic Adapt-
ive Policy Pathways (Haasnoot et al 2013). The fun-
damental idea across those frameworks is that cop-
ing with uncertainty involves a robust short-term
strategy and monitoring for changes that indicate a
need to develop new strategies. Here, we again focus
on the common and essential components of adaptive
planning.

Adaptive planning can either be static or dynamic.
Static adaptive planning aims to protect a basic policy
from failing through contingency actions and mon-
itoring (Walker et al 2001, Haasnoot et al 2013).
Dynamic adaptive planning goes beyond contingency

planning and aims to monitor policy performance
over time and develop alternative policies to switch
to when certain thresholds are met (Wall et al 2015).
The success of any adaptive plan depends on monit-
oring and anticipating ongoing developments such as
changing climate and social context. Both approaches
consist of two crucial components: a monitoring plan
and a list of signposts (Maier et al 2016). We provide
a simplified overview of those two components. Refer
to Herman et al (2015) and Haasnoot et al (2018) for
a comprehensive discussion.

(a) A monitoring plan aims to learn and continu-
ously improve the existing policy based on new
information (Preston et al 2011). Specifically,
it monitors assumptions or uncertainty factors
that affect policy performance and iteratively
evaluates whether the current policy is at risk of
failing given the changing environment. Multi-
stakeholder engagement may be an effective
way to develop a monitoring plan. The cent-
ral goals of a monitoring plan are identify-
ing what variables to monitor and establish-
ing methods to analyze the information to get
timely and reliable signals that indicate a change
of action. Furthermore, a monitoring plan
may also include flexible long-term planning
options based on the changing environment
and formalize stakeholder engagement activities
to iteratively improve the long-term planning
actions.

(b) Signposts are a list of variables to track to eval-
uate policy performance over time and are a
central component of the monitoring plan. Each
signpost is accompanied by critical values or
thresholds that indicate when new actions are
needed. An effective signpost consists of three
quality criteria: salience, credibility, and legit-
imacy (Cash et al 2005). Salience refers to how
decision-relevant a signpost is. A salient sign-
post will provide insights to address policy con-
cerns and is measurable, timely, and reliable.
Credibility refers to how scientifically sound are
the critical values assigned to each signpost and
how convincing they are at motivating poten-
tial changes needed. Legitimacy refers to the
acceptability of the technical process around data
gathering.

In grey literature, planners discuss the idea of
adaptive plan within the context of adaptive capacity.
It is often defined as the ability to adjust to change
via building redundancy, resilience or recoverabil-
ity (Johnson 2012, US Department of Energy 2016,
World Association for Waterborne Transport Infra-
structure 2020). The water sector is most advanced in
incorporating ideas of monitoring plan and triggers
when discussing adaptive planning.
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3.4.3. Multi-stakeholder engagement
Multi-stakeholder engagement is an essential com-
ponent for incorporating uncertainties into the plan-
ning process. Successfully developing a robust out-
come and an adaptive plan relies on gathering
decision-relevant information and considering per-
spectives from different stakeholders throughout the
planning process (Babovic et al 2018). Conducting
multi-stakeholder engagement is especially crucial in
the context of climate planning because misrepres-
entations of future scenarios may exacerbate neg-
ative climate impacts on marginalized populations
(Jafino et al 2021).

The literature presents many different frame-
works of conducting multi-stakeholder engagement
for infrastructure planning (Tompkins et al 2008,
Gardner et al 2009, Herman et al 2014, Mok et al
2015, Bourne 2016, Cuppen et al 2016). A ‘one size
fits all’ approach for multi-stakeholder engagement
does not exist, since it is highly dependent on the
decision context and planning stage (Rountree et al
2021). Moreover, there are discrepancies around the
exact definition of a ‘stakeholder’ (Carney et al 2009).

Here, we use the IPCC’s definition: stakehold-
ers are individuals or groups that can influence or
may be affected by the decision outcome. They might
be policy-makers, scientists, communities, and/or
managers in the sectors and regions most vulner-
able to infrastructure failure (Rowe and Frewer 2000,
Conde et al 2004). Stakeholder engagement is broadly
defined as any activity such as a survey, interview,
or interactive workshop with the purpose of inform-
ation exchange between analysts, decision-makers,
and stakeholders. There are some common frame-
works infrastructure planners use to conduct stake-
holder engagement. Delphi Method is commonly
used to generate parameter bounds for climate scen-
arios (Grime and Wright 2016). Approaches such
as the rapid assessment process and participatory
planning are also common ways to understand dif-
ferent stakeholders’ perspectives and generate scen-
arios (Meadow et al 2015). There is much room for
improvement to increase input from affected stake-
holders, engage with diverse values, and examine
conflicting objectives during the planning process to
ensure procedural equity (Cradock-Henry et al 2020,
Leal Filho et al 2021). Stakeholder engagement in
the energy sector can take different forms. Currently,
these include intervention by non-profit and com-
munity organizations in regulatory proceedings, pub-
lic comments on infrastructure siting decisions, and
technical advisory groups established by regulators on
specific topics (Baldwin et al 2018, Solman et al 2021).
A full review of stakeholder engagement practices is
out-of-scope here, but this topic deserves additional
attention in the context of questions about procedural
and distributional equity that have been documented
by other researchers in infrastructure planning efforts

(Sovacool et al 2016, Heffron and McCauley 2017,
Fletcher et al 2022). Procedural equity starts with
considering how to represent perspectives of affected
community members by selecting a wide range of
stakeholders and ensuring they are involved through-
out the planning process. We offer some additional
thoughts on this in section 4.3.

Although multi-stakeholder engagement takes
many forms, the common objectives for engaging
stakeholders in the context of climate-aware decision
making are fourfold:

(a) Co-produce decision-relevant metrics to meas-
ure robustness and monitoring plan perform-
ance;

(b) Increase transparency to the planning process
with greater input and feedback from stakehold-
ers regarding their preferences;

(c) Seek active support and build consensus from
stakeholders for the decisions which are made;
and

(d) Incorporate diverse perspectives from different
stakeholders.

Infrastructure planners cannot effectively imple-
ment the concepts of robustness and adaptive plan-
ning without multi-stakeholder engagement. Inputs
from stakeholders are critical for defining policy suc-
cess or failure.Many frameworks for decision-making
under uncertainty include stakeholder engagement as
an important step of the planning process. Ideally,
analysts and decision-makers would engage differ-
ent stakeholders to understand various priorities and
develop decision-relevant performance criteria at the
beginning of the planning stage (Ranger et al 2013,
Stanton and Roelich 2021). Then analysts would
translate those insights into parameters and con-
straints during the modeling process (Bhave et al
2016). Once modeling is complete, stakeholders are
brought back for deliberation to build consensus and
iteratively improve the decision outcome (Lempert
et al 2003). Moreover, having a boundary spanner or
boundary organization during the engagement pro-
cess may help to increase effectiveness of the co-
production process. The role of boundary organiza-
tion is to facilitate the engagement process by allowing
scientists and decisionmakers to maintain their inde-
pendence and objectivity while also creating some
permeability of the boundary to co-produce robust-
ness metrics and monitoring plans (Clark et al 2011).

The grey literature suggests that multi-
stakeholder engagement is already ubiquitous in
large-scale long-term infrastructure projects as a way
to manage risk and obtain public buy-in. However,
there is a literature gap in how to conduct stake-
holder engagement to effectively incorporate uncer-
tainties and reconcile competing priorities (Stanton
and Roelich 2021).
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Table 5. Summary of topic areas identified in review of papers
related to electricity sector planning under climate change. While
some papers may span multiple topic areas, each was assigned to a
single topic for organizational ease.

Topic area N (papers)

Adaptive capacity 7
Capacity expansion 18
Climate impacts on power systems 12
Climate policy 9
Community energy systems 10
Complex systems 5
Decision support 18
Multi-sector optimization 10
Power system modeling 8
Resilience in power systems 23
Risk optimization 13
Robustness 9
Socio-technical transition 26
Total 168

3.5. Electricity sector planning under climate
change
Researchers studying electricity systems in the context
of climate change have taken a variety of approaches
to this subject. To facilitate our review, we first sor-
ted the identified papers into topic areas based on an
initial survey of their titles, abstracts, and keywords
(table 5). These topic areas formed clusters of papers
with some commonality in their perspective, scope,
approach, and/or methodology. We reviewed papers
in each topic area to understand how the authors con-
sidered climate change and uncertainty, and assessed
to what extent the three key concepts identified in the
decision science review (robustness, adaptive plan-
ning, and stakeholder engagement) showed up in this
literature. A full review of modeling methodologies
used in the energy sector is out of scope here, but
we direct readers to Keirstead et al (2012), Bale et al
(2015), Li et al (2015), Ioannou et al (2017), Sellak
et al (2017), Sharmina et al (2019), Witt et al (2020),
Hanna and Gross (2021) for more discussion on the
types of models used.

3.5.1. Climate change and uncertainty
Uncertainties, including those inherent in climate
predictions as well as those stemming directly and
indirectly from climate change (see section 3.2),
have been considered in various ways at different
stages of analyses. Researchers acknowledge the pres-
ence and potential impact of uncertainties such as
technical system characteristics (e.g. generator per-
formance, line capacity), policy goals (e.g. renew-
able energy targets, carbon prices), and consumer
behavior (e.g. rates of technology adoption, demand
growth). However, to capture these uncertainties,
there is widespread reliance on tools that would only
be appropriate for shallow uncertainty. These include
directly estimating individual values, perhaps with
some sensitivity (appropriate for Level 1 uncertainty;
see Li et al 2015, Hanna and Gross 2021), assuming

a probabilistic distribution of possible values (appro-
priate for Level 2 uncertainty; see Bessani et al 2019,
Willems et al 2019, Ji et al 2020b), and employing
scenario approaches with known alternatives (appro-
priate for Level 3 uncertainty; see Kichonge et al 2015,
Chen et al 2016, Moksnes et al 2019, Peter 2019).
Some researchers instead set a bounded interval or
range of values without assuming a probabilistic dis-
tribution, which would fall between Levels 3 and
4 (Heinrich et al 2007, Cao et al 2010, Lin et al 2017,
Ji et al 2020a).

Relying on value estimation and/or probabil-
istic estimates may further enable researchers to
resolve parameter uncertainty within their analyses
and report a sole solution. This raises the concern of
seeking an optimized solution, which may inadvert-
ently suggest to decision-makers that it is possible to
model perfect knowledge (i.e. fully settle uncertainty)
when the future is not deterministic (Chattopadhyay
et al 2016). An alternative is to depict uncertainty dir-
ectly in results, for example by presenting a possible
range of outcomes (Willems et al 2019, Bloomfield
et al 2021). Such results may more appropriately con-
vey the continued need to consider uncertainty when
presented for discussion inmulti-stakeholder engage-
ment processes.

Further, few researchers acknowledge model
uncertainty (see structural uncertainty in Sharmina
et al 2019). Model uncertainty is present in all
types of modeling exercises, including climate mod-
els (section 3.2.1) and capacity expansion models
(section 3.3), but, unlike in the climate modeling lit-
erature, little attention is paid in the electricity plan-
ning literature to systematically evaluating a diversity
of structural assumptions in model design.

Authors who explicitly use climate information
in their analyses also take a variety of approaches.
In some cases, a limited set of climate information
(e.g. one emissions scenario and GCM) are used as
a case study (Chen et al 2021). Others include more
climate information to explicitly represent possible
futures, for example by using several GCMs with one
emissions scenario (Miara et al 2019, Peter 2019), or
several emissions scenario with one GCM (Santos da
Silva et al 2021). In some cases, climate model out-
puts are aggregated (for example, by averaging their
results) (Miara et al 2019). Other researchers evalu-
ate climate models as distinct plausible futures, often
as a set with the goal of creating a reasonable range
on the phenomena of interest alongside several emis-
sions scenarios (Parkinson andDjilali 2015, Spalding-
Fecher et al 2017, Sridharan et al 2019, Voisin et al
2020, Figueiredo et al 2021, Fonseca et al 2021).

Importantly, authors in the reviewed literature
commonly focus on specific types of uncertainty
within a particular analysis rather than capturing the
full range of uncertainties that may exist within a
particular decision-making or planning process. For
example, some authors use a range of GCMs and
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emissions scenarios while holding other assumptions
constant (Li et al 2014, Miara et al 2019, Peter 2019,
Voisin et al 2020, Fonseca et al 2021), while others use
no or limited climate information but vary assump-
tions related to socioeconomic factors (Chen et al
2016). Such approaches emulate the concept of con-
trolled experiments and may provide valuable scop-
ing or case study information. However, they do not
account for the full range of plausible scenarios that
should be considered in a robust process.

3.5.2. Robustness
Relatively few reviewed papers focus on ensur-
ing robustness in their decision outcomes (for an
example, see Nahmmacher et al 2016). However, elec-
tricity sector researchers have developed computa-
tional techniques that capture components of the
robustness concept. These techniques are designed
with the acknowledgement that a single prediction of
a possible future is inadequate, multiple plausible tra-
jectories exist, and it is therefore worthwhile to con-
sider how a policy or decision may perform across
those potential futures. Techniques include:

(a) Stochastic programming tools may incorporate
different plausible futures and weight them by
specified probabilities. The overall objective is
then tominimize the expected system cost across
all futures (Chattopadhyay et al 2016, Ji et al
2020b).

(b) Robust optimization is frequently used to
determine the best (or, least-worst) solution for
a given scenario, but such tools may also con-
sider multiple futures, with the optimal solution
then defined as one that demonstrates satis-
factory performance (or, avoids the worst out-
comes) across alternative scenarios (Li et al 2014,
Parkinson and Djilali 2015).

(c) Trade-off approaches start from the develop-
ment of a vast possible solution set, then iterat-
ively screen out inferior approaches as evaluated
by predefined metrics (Heinrich et al 2007). A
final solution set is evaluated against all proposed
futures.

Beyond these techniques, authors in the elec-
tricity planning literature selectively employ com-
ponents of robustness approaches. For example,
authors commonly include the development of mul-
tiple plausible scenarios and performance metrics.
Some also include a vulnerability assessment or
robustness controls (Chen et al 2016). It is less
common in the electricity sector literature that we
reviewed to explicitly incorporate multiple policy
alternatives within the design of a set of scenarios
(for examples, see Moallemi and Malekpour 2018,
Bloomfield et al 2021). While few authors incorpor-
ate all elements of the robustness concept as discussed
in the decision science literature, these frameworks

nevertheless present scaffolding on which additional
components of robustness could be integrated. It is
important to note that these approaches may quickly
become computationally intensive with the gener-
ation of additional scenarios and incorporation of
policy alternatives.

3.5.3. Adaptive planning
Planning in the electricity sector is heavily influ-
enced by decisions that have already been made;
for example, existing investments will impact where
new investments will need to go. Recognizing the
importance of long planning timescales withmultiple
decision points, researchers have made use of multi-
stagemodeling tools to create the foundation for eval-
uating system conditions and resolving uncertainties
over time (Szolgayová et al 2012, Ji et al 2017, 2020a,
Peter 2019). For example, models may be run once to
a selected point in time, then evaluated again based on
new information about how conditions have evolved
(Chattopadhyay et al 2016). Such two-stage processes
are particularly useful for uncertainties that have def-
inite dates of resolution.

Other modeling tools may prioritize main-
taining flexibility throughout a given timeline, for
example, by selecting scenarios that maintain flexib-
ility towards long-term uncertainties (see stochastic
programming with recourse in Heinrich et al 2007)
or by incorporating feedback signals for real-time
adaptability (Hung and Chang 2017). Other authors
discuss adaptation options but donot explicitly incor-
porate them into analyses (Nierop 2014, Burillo et al
2019).

Such approaches differ from the adaptive plan-
ning methodologies proposed in the decision sci-
ence literature as they do not necessarily incorpor-
ate a monitoring plan or signposts, rather relying on
discrete points in time and/or metrics of flexibility.
However, they may provide a computational basis
for incorporating those components to improve plan-
ning resiliency.

To some extent, current electricity sector practices
do incorporate elements of adaptive planning, spe-
cifically via regulatory proceedings that require utilit-
ies to evaluate and justify their investment needs every
3 years (section 2.2). However, these short times-
cales do not facilitate looking ahead at future climate
conditions, and may thereby further path depend-
ence and technology lock-in. This could occur, for
example, by investment in conventional grid harden-
ing at the expense of building flexibility into the elec-
tricity system through distributed assets. Moreover,
planning on short timelines neglects the impact of
long-term climate trends (e.g. sea level rise) that may
threaten technology investments with long imple-
mentation and performance timelines (e.g. new gen-
erating facilities built near coastlines). Instead, adapt-
ive planning principles call for proactively tracing out
the different long-term options when certain trigger
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points are met, thereby giving signals to electricity
sector participants to lay the groundwork for new
approaches (e.g. legislative or regulatory actions that
create markets for energy storage).

3.5.4. Multi-stakeholder engagement
We encountered relatively few papers that expli-
citly considermulti-stakeholder engagement. In some
cases, authors consider assumptions about risk toler-
ance or other decision-maker preferences (Szolgayová
et al 2012, Ji et al 2017, 2020a), or formulate solutions
to be decision-relevant (Burillo et al 2019, Voisin et al
2020, Santos da Silva et al 2021), but do not actu-
ally show evidence of having consulted stakeholders.
Other papers involve stakeholders at the beginning or
end of a particular analysis, whether to assist in scop-
ing or to present results (Spalding-Fecher et al 2017,
Willems et al 2019, Yang et al 2019). Extensive stake-
holder engagement is present but somewhat rare (see
Moallemi and Malekpour 2018, Panula-Ontto et al
2018, Pereira et al 2018, Sharmina et al 2019).

Other authors have considered stakeholder
involvement theoretically, such as by developing
frameworks for engagement (Araújo and Shrop-
shire 2021), simulating preferences via agent-based
models (Hoekstra et al 2017, Teixeira et al 2018,
Hanna and Gross 2021), or evaluating computa-
tional approaches capable of accounting for vari-
ous perspectives by solving for multiple objectives
and/or including appropriate uncertainty ranges on
parameters (Heinrich et al 2007). Authors have also
proposed that stakeholder engagement can be used to
determinewhere to focuswithin a solution space once
a set of solutions are obtained, and, as each individual
view is necessarily a simplification of all considera-
tions, to provide a check on other perspectives by
helping ensure that a planning exercise accounts for
needed nuances (Bollinger et al 2014, Nierop 2014).

4. Recommendations

We have identified three key concepts from decision
science—robustness, adaptive planning, and multi-
stakeholder engagement—that can be directly
incorporated into electricity system planning and
decision-making. Here, we return to capacity expan-
sion planning (see section 3.3) as a concrete example
to illustrate how these key ideas could be incorporated
into electricity sector activities.

4.1. Improving robustness in capacity expansion
planning
Current capacity expansion models used in industry
practice do not adequately account for the range of
uncertainties and plausible futures created by chan-
ging climate conditions (section 3.3). The electri-
city planning literature (section 3.5) contains ample
examples of approaches to uncertainty that would

be appropriate if those uncertainties were shal-
low. However, deep uncertainties present in climate
change impacts and responses make even stochastic
approaches inadequate.

Fully embracing robustness methodologies from
the decision science literature would involve run-
ning capacity expansion models with a full range of
climate, policy, behavior, and technology scenarios
to identify the wide range of plausible futures, then
evaluating the performance of investment options to
identify those that perform acceptably well across
those futures. Such an effort could involve thou-
sands of relevant scenario combinations, and extens-
ive computational and human effort to create scen-
arios, track performance, and interpret outputs. This
approach would undoubtedly present electricity sec-
tor decision-makers with valuable information, but
may face practical barriers to implementation. A
more incremental approach may help ensure buy-
in and enable learning (as well as minimize mis-
takes) while implementing modifications to current
industry practices. Alongside this initial incremental
approach, there is an opportunity for the research
community to investigate a much broader range of
scenarios and develop recommended approaches for
electricity sector decision-makers to utilize richer
information in decision-making.

A key step towards building robustness into capa-
city expansion planning is to embrace the concept of
multiple plausible futures rather than planning for
one possible (however well-justified) future. In prac-
tice, this could mean that electricity sector planners:

(a) Develop scenarios of plausible climate change
futures on the basis of projections from mul-
tiple climate models (without averaging). Con-
sider that plausible futures may be more diverse
than just low/medium/high climate change scen-
arios. (For example, of the ten climate projec-
tions recommended for use in California, four
labeled as ‘priority models’ represent qualitat-
ively different futures, including ‘warm/dry’ and
‘cool/wet’, see CalAdapt (2021).)

(b) Develop combined scenarios where different
climate futures are considered alongside scen-
arios that account for uncertainties in demand
growth, market, policy, and technology options
(see also Giudici et al 2020). Risk mitigation
options (e.g. greater deployment of batteries,
demand response, operating reserves, and other
strategies that contribute to system robustness)
could also be included in combined scenarios.

(c) Select several of these combined scenarios that
may complement and/or form a plausible range
when evaluated in conjunction with a median
combined scenario.

(d) Run capacity expansion models with a median
and several range scenarios and evaluate invest-
ment needs for each.
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(e) For each set of calculated investment needs,
assess how these investments would perform
under all other scenarios to identify vulnerabilit-
ies in investment choices (i.e. evaluate the coun-
terfactual impacts or unmitigated risks of plan-
ning for a lower demand and climate impact
scenario if instead a higher demand and climate
impact scenario is realized).

(f) Evaluate thresholds for acceptable risks to how
investments will perform and incorporate those
thresholds into planning decisions.

Planners may also consider identifying which
uncertainties are most consequential to the outcomes
of interest and using those as a feedback loop to
identify dimensions to explore further with addi-
tional scenarios. Such an approach, while limited in
the number of scenarios assessed, would still create
measurable progress towards building climate aware-
ness and working with irreducible uncertainties.

4.2. Incorporating adaptive planning principles
into capacity expansion decisions
Ranges of plausible outcomes can be defined for a
variety of uncertainties, and adaptive planning prin-
ciples can be used to refine those ranges as the future
evolves. To aid this effort, decision-makers should
develop a monitoring plan with input from model-
ers and stakeholders to identify signposts that sig-
nal when we need to take certain actions or change
our planning assumptions. Notably, such adaptive
planning principles were considered, though not ulti-
mately prescribed, for inclusion in a recent CPUC
decision requiring California’s IOUs to publish cli-
mate vulnerability assessments (CPUC 2020a).

We offer three examples of signposts that could be
applied to electricity sector planning in California:

(a) When California’s Sierra Nevada snowpack
reaches <30% of historical baseline for 3 con-
tinuous years (Siirila-Woodburn et al 2021), stop
counting on late summer hydropower resources
in future models and deploy battery storage
instead.

(b) Define planning scenarios for low, medium, and
high demand growth; if air conditioning adop-
tion reaches>5% of households annually, know
that we are in the high demand growth scenario.

(c) If wintertime peak electricity use due to heating
electrification hits >80% of summertime peak,
know that we need to start evaluating climate
scenarios for their impact on cold months.

We stress that these are just example criteria.
While the specific implementations of these sign-
posts will vary, the key concept here is that set-
ting signals now can aid which plausible futures are
assessed and which assumptions are made in capa-
city expansion models over time. Furthermore, there

may be organizational barriers to incorporate and
implement adaptive planning. Decision-makers may
need to formalize this concept at the beginning of the
planning process and provide institutional support to
reduce resistance for the potential adaptive measures.
For example, the decision-making entity may estab-
lish a working group with stakeholders and experts,
assign specific personnel to gather and analyze the
data, and build stakeholder consensus on the specific
adaptive measures.

4.3. Multi-stakeholder engagement in capacity
expansion
Capacity expansion planning for regulated utilities
occurs within public rate cases that provide oppor-
tunities for stakeholder involvement. However, the
complexity of growing climate impacts on utility
operations will require increased attention on multi-
stakeholder engagement as a tool to identify and
refine uncertainties, plausible futures, and paths for-
ward. Decision-making entities such as utilities and
regulatory bodies could consult boundary organiza-
tions to translate technical climate science informa-
tion and complex planning processes between differ-
ent stakeholders.

Broad stakeholder input and increased transpar-
ency is necessary at every step of the capacity expan-
sion planning process:

(a) Determining appropriate inputs (climate data,
demand data, infrastructure data).

(b) Identifying relevant uncertainties and appropri-
ate numerical ranges for uncertain parameters.

(c) Developing salient robustness metrics to evalu-
ate different capacity expansion policy outcomes
under a range of plausible climate futures.

(d) Establishing consensus on planning goals.
(e) Evaluating each policy alternative’s performance

for different objectives and discussing tradeoffs
among objectives.

Joint deliberation on how best to implement
infrastructure plans must happen throughout the
process in an iterative manner. At each step, key ques-
tions about the scope andmechanisms of stakeholder
engagement efforts must be considered. For example:
Who are the right set of participants to include, and
how should conveners ensure they equitably rep-
resent necessary perspectives? Who will decide how
stakeholder input should be weighted, resolve ten-
sions, and balance the relative influence of differ-
ent voices? What if some stakeholders do not want
to engage and/or consensus is not possible? Further,
what is the appropriate mechanism of and limits to
stakeholder engagement, to ensure deliberations are
not unduly sidetracked or prolonged at each step?
These questions have beenmore thoroughly explored
in the water sector than in the electricity sector,
and evidence exists that insights from this work are
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not necessarily transferable between resource con-
texts (Rountree et al 2021). More foundational work
is therefore needed here. Answering these questions is
beyond the scope of the present review, but theymerit
additional focus in the context of climate-aware elec-
tricity sector planning.

5. Conclusions

Current planning processes in the electricity sec-
tor are not equipped to account for the stresses or
uncertainties posed by a changing climate. Recent
extreme weather events and service disruptions make
it clear that climate change will continue to challenge
electricity sector performance and operating prac-
tices. To better address these impacts, utility decision-
making and planning approaches must incorporate
a greater awareness of climate change and associated
uncertainties. Here, we perform a three-part liter-
ature review to distill lessons from decision science
researchers and assess how they might be incorpor-
ated into electricity sector planning to better account
for the uncertainties posed by climate change.

First, we refer to the decision science literature
to characterize climate-related uncertainties as shal-
low and deep uncertainties. This framework provides
insights on how quantitative approaches may appro-
priately capture uncertainty. For example, shallow
uncertainties (levels 1–3), where reasonable estimates
of the relative likelihoods of different outcomes are
possible, may be appropriately represented through
probabilistic or trend-based scenarios. Deep uncer-
tainties (levels 4–5), where multiple alternatives can-
not be ranked by likelihood, cannot be reduced to
statistical treatments.

Climate-induced uncertainties that must be con-
sidered in electricity sector planning include uncer-
tainties in climate conditions as well as their dir-
ect and indirect impacts on electricity infrastructure,
consumer behavior, and decision-maker responses.
Efforts to characterize these uncertainties must con-
sider complex interrelationships and deeply uncer-
tain climate futures. Therefore, incorporating climate
awareness into electricity sector planning will require
making use of decision science practices that are
equipped to handle deep uncertainty.

We distill three key ideas from decision science—
robustness, adaptive planning, andmulti-stakeholder
engagement—that have been developed to deal with
deep uncertainty and may help incorporate cli-
mate awareness into electricity sector planning and
decision-making. Robustness requires considering
multiple plausible futures and identifying planning
approaches that perform acceptably well across them.
Adaptive planning uses signposts and monitoring
plans to refine plausible futures in time, building the
institutional capacity to respond as climate condi-
tions evolve.Multi-stakeholder engagement offers the
potential to iteratively consider policy objectives and

possible responses to adapt to new conditions, as well
as to reconcile competing objectives.

Existing literature on electricity sector planning
under climate change incorporates these key ideas
to varying—but often only limited—degrees. How-
ever, existing tools that have been developed for use
in the electricity sector, such as robust optimization
and multi-stage modeling, can provide a scaffold-
ing for implementing relevant insights from decision
science.

Further, these three key ideas can guide action-
oriented steps to build climate awareness in the elec-
tricity sector. We offer recommendations for how
insights from these key ideas can be implemen-
ted within capacity expansion planning, a key area
of decision-making in the electricity sector that is
affected by all levels of uncertainty posed by cli-
mate change. Specifically, embracing the concept
of multiple plausible futures, setting up signposts
that signify tipping points as the future evolves, and
including boundary organizations during stakeholder
engagement can help electricity sector decision-
makers better plan for the future.

Future work is needed to better connect les-
sons from decision science to industry practice. In
particular, we suggest that social science research
may provide insights on institutionalizing concepts
of robustness and adaptive planning by decision-
makers, and more effectively communicating uncer-
tainty to and involving stakeholders in planning
processes.

Climate change poses significant and ongoing
challenges for critical infrastructure systems.Here, we
offer some initial steps that can be taken today to help
decision-makers incorporate climate awareness into
electricity sector planning.
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