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ABSTRACT OF THE THESIS

Mathematically Modeling Glioblastoma and Radiotherapy: Signaling and Differentiation
By
Alice Vo
Masters of Science in Mathematical, Computational, and Systems Biology
University of California, Irvine, 2024

Professor John Lowengrub, Chair

Glioblastoma is the most lethal and prevalent form of cancer to the central nervous system.
Median life expectancy for patients is five years, and in that time the tumor evolves rapidly
while modifying its microenvironment in the process. When targeted with radiotherapy it
increases its fraction of cancer stem cell population, thereby increasing its resistance to ra-
diation. Recent evidence suggests that the underlying process of de-differentiation, whereby
more differentiated cells return to a stem-like state, also drives recurrence. By modeling
proliferation, differentiation, de-differentiation and the response to radiotherapy, this model
identifies the types of feedback consistent with an increase in CSC fraction and tumor size af-
ter radiotherapy, as well as a potential radiotherapy schedule by which treatment can improve
upon conventional radiotherapy scheduling. The mechanisms identified are the application
of treatment, the process of de-differentiation, and the existence of negative feedback on
differentiated cell division rates or positive feedback on differentiated cell death is consistent

with these outcomes.

X



Chapter 1

Introduction

1.1 Cancer Overview

Glioblastoma is the most lethal form of cancer of the central nervous system, with a median
survival time of 12-14 months. After treatment, tumors tend to relapse, become more re-
sistant, and progress to diffusive invasion due to treatment [1, 4, 2, 3]. A critical aspect of
this process is the enrichment of stem-like cancer cells [5]. After treatment, CSC cells are
known to increase in proportion [6]. There are a number of plausible mechanisms such as the
promotion of hypoxia [7], changes in gene expression and gene repair [10, 7, 9, 8], increases
in de-differentiation [11], and even changes in metabolism [12]. However, the contributions

of each of these mechanisms combined have yet to be fully investigated for GBM.

De-differentiation is the process of differentiated cells gaining pluripotency and becoming
stem-like. Treatment regimens like radiotherapy and chemotherapy can stimulate it in pa-
tients. This generally results in the tumor gaining resistance due to the increased amount of
treatment-resistant stem cells. [11, 7] To illustrate how de-differentiation increases surviv-

ability of tumors, we will take survivin as an example. Survivin is an inhibitor of apoptosis
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protein whose major functions include inhibiting cell death [13], promoting its own export
via exosome surfaces under stress [14, 13|, and promoting expression of genes associated with
stemness. [13] Dahan et al 2014 has shown it does play a role in glioma tumor resistance —
as exposure to radiation goes up, the fraction of stem cell goes up due to survivin. And as

previously noted by Wang et al 2017, HIF-1a contributes to dedifferentiation.

Tumors, especially glioblastoma, experiences positive and negative feedback on proliferation,
invasion, and other processes TGF-beta pathway suppression results in inhibited growth of
cancer stem cells (CSCs), indicating the existence of pathways that control GBM growth [15].
Major forms of negative feedback include miRNA upregulation that controls migration/pro-
liferation in normal cells and may pose a potential pharmaceutical target [16]. Additionally,
the PI3K/AKT pathway, which is constitutively expressed in many tumors and regulates
the cell cycle and proliferation, is subject to negative feedback via S6K and and IRS1 [17].
Manipulating musashi protein indicated the existence of a positive feedback loop that in-
fluences invasion, migration, and proliferation. [18] Survivin affects mitosis, stemness, and
death. Expression of HIF-1alpha means upregulation of cell proliferation, dedifferentiation,
and resistance to treatment. [8]. Studies like these indicate how feedback is an intrinsic part
of the growth of glioblastoma and the process of de-differentiation, but the exact relationship

remains unclear.

So far, resolving how tumor relapse occurs long after treatment has remained unclear. There
have been many clinical studies that characterize cancers like glioblastoma as adapting to
treatment, there is still a demand for treatments to improve and prolong the lives of pa-
tients [19, 20, 21]. To meet this goal, mathematical models can be used to test different
hypotheses regarding tumor growth for long periods of time when it may not be feasible
to do so experimentally. Though there has been some progress in understanding the role
of CSCs, growth control, and signaling, assessing how each of these processes contribute to

long-term relapse is not complete. [22, 23] Evidence shows that long-term increases cancer
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stem cell fraction and reduction in patient viability strongly correlate with one another [24],
suggesting that treatment forces the tumor to evolve into a more radioresistant state [4, 25].
Mathematical models can help us gain insight into the mechanisms connecting treatment,
relapse, and cancer stem cell growth. And given that insight, alterations to conventional

treatment scheduling can be done to take long-term increases in CSC fraction into account.

1.2 Model Overview

To address these biological issues, many models have been developed to attempt to give
insight into the underlying processes. They range from ODE models [27, 26] to PDE models
[28] to agent-based models [29] to neural network-based models, incorporating processes
related to proliferation, differentiation, and treatment as well as the proliferate/migrate
characterization, otherwise known as the go and grow model [30, 32, 31], hyperthermia [33],
and immunotherapy. Many models look at total tumor volume for the purposes of data
fitting and simpler dynamics, but this usually requires neglecting the effect of regulation or
cell-cell processing [34, 35, 36, 37]. These models focus on phenomena occurring over the

span of weeks at most, sometimes due to working closely with data for parametric estimation.

Many models do not look at CSC growth in the long-term since they are more concerned
with clinical application and thus restrict themselves to a more conservative time window for
extrapolation [36, 30, 26], and it is difficult to directly measure CSC percentage experimen-
tally. Other papers like [38], which focused on diffusion through white and gray matter and
using brain atlases, are more concerned with fitting for insight at the time of radiotherapy
rather than after radiotherapy, as with [35, 27]. However, there are some models that try to
characterize stem cell populations explicitly and model their dynamics [41, 39, 42, 40]. Even
among these however, those which explicitly include de-differentiation are less common. [30,

43| Similarly, not many models explicitly approach dynamics at least a half year out, which
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could be due to computational constraints or because data on cell growth is difficult to gather
that far into the future. [44, 45, 46] We’ll highlight a few papers closely related to the work

in this document.

Rhodes and Hillen [43] designed and analyzed a model that incorporated survivin and anti-
survivin drugs into the dynamics. After fitting their model to experimental results produced
by Iwasa et al[47], they found that even hypofractionated radiotherapy alone could not drive
down CSC numbers. Only through a combination of anti-survivin chemotherapy and radio-
therapy was this possible. However, there was no consideration of feedback on division or
differentiation, which could change this outcome through controlling long-term CSC popu-
lation levels. Furthermore, overfitting the model to the data is a concern expressed by the

authors since the model has so many parameters, so the results may be too optimistic.

Wodarz and Rodriguez-Brenes et al [39] developed a model of cancer growth that incor-
porated feedback, wound-healing, and chemotherapy. They showed permanent long-term
growth in cases with weak feedback on division by reducing its inhibition of rate of growth,
though they have also shown that chemotherapy alone would result in bigger tumors, so for
their model wound-healing amplified the effect of chemotherapy. The model predictions also
don’t necessarily concern themselves with growth after a significant relapse and are focused
on an increased proportion of CSC after treatment. Additionally, it is unclear if there are
any parameter regimes wherein CSC regrowth is permanently changed due to treatment and
wound-healing since the simulations largely focus on the duration of treatment and do not

look far after treatment.

Yu et al’s work [44, 45, 46] directly precedes the work done here. To model the cancer
dynamics, they used a two-state system that considered a cell lineage of CSCs and DCCs
only in tandem with the linear-quadratic model of radiotherapy and de-differentiation. The
general framework of growth dynamics and simplified radiotherapy dynamics allowed them

to find new optimal schedules that predict prolonging the life of patients while being below
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the threshold of toxicity in her 2021 paper [46]. The dynamics also showed increase in CSC
fraction and tumor size after treatment. However, the dynamical equations she used did
not incorporate feedback a la signaling pathways, and her description of de-differentiation is
flawed due to the potential for the process to de-differentiate more DCCs than there actually
are in the system, especially at higher doses. This could result in negative DCC counts and

exaggerate the elevation of CSC fraction.

Sottoriva et al [41] developed an agent-based model that incorporates a PDE for the oxygen
concentration, an agent-based model of stem cells and non-stem cells, and treatment of an
unspecified modality. They do convincingly show that CSC fraction increase and tumor
regrowth happens after treatment takes place while taking the sensitivity of stem and non-
stem cells into account. A possible extension would be to specify the kind of treatment used,
i.e. using the LQ model for radiotherapy, and including feedback and de-differentiation to

see how it would affect the response to radiotherapy.

These models have partially addressed the effects of treatment on tumor relapse and CSC
enrichment. While the models discussed above did indicate CSC fraction increases after
treatment, none have attempted to characterize the lifespan of this change. The question
remains if this change indicates a transient change or a long-term shift in homeostasis. And
mathematical models are well-positioned to test out various hypotheses regarding tumor
growth after treatment. It is particularly rare to find models that have feedback, dedifferen-
tiation, and treatment while studying long-term relapse and CSC dynamics. The highlighted
models overlook at least one of these components and focus on processes related to cancer,
like angiogenesis. Thus, it remains unclear how each component contributes to relapse. The
model in this paper will make attempts to clarify the contributions of signaling and differen-
tiation to relapse and CSC growth, as well as offer potential improvements over conventional

therapy.



Chapter 2

Model Overview

2.1 Cell Lineage Model

We characterize glioblastoma by considering a well-mixed system of ordinary differential
equations to describe cell lineages. This is based on the work done by Lander et al (2009)
[48] to describe dynamics of hierarchical tissues and extends them to allow for treatment and
dedifferentiation. These models typically involve pluripotent stem cells, transient-amplifying
cells, and post-mitotic differentiated cells. The stem cells act as an eternally dividing and
immortal pool of progenitors which means that they do not die. Below is the general form

of the two stage cell lineage model that we’ll be using:

dU

E = (2p — 1)TUU
dVv
T 2(1 = p)yryU + (ry — )V

Here, U represents the number of pluripotent stem cells and V represents the number of

post-mitotic cells. In this model, instead of transient-amplifying cells replicating, the V'
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i: number of radiotherapy sessions that have taken place
n: number of radiotherapy sessions to perform

gi: Radiotherapeutic dose at fraction i

c: fraction reprogrammed per Gy

Start: i =0
then
i=0, Uy =F-Numor, Vo =1 —=F) Numor, o =0 i—i+l
i>0, Uy =, Vo=V, wo=p| —
W=ptcg

U = (U+min{1, 4’} - V)- SFy
V' =V-SFy—min{l, '} - V

Initialize Uy, Vo, to

Ifi <n

p v

ru d Halt ODE

‘ at radiotherapy session time

Figure 2.1: The entire simulation is a sequence of initial value problems (IVPs). The first
IVP uses empirical proportions of stem cells to determine the initial conditions, which are
multiplied with Nyymor = % . %w -10? cells. After a brief period of time, 100 days in this
paper, radiotherapy takes place and the new CSC and DCC populations are determined by
damage and reprogramming. Then tumor dynamics resume with the reshuffled populations
as the new initial values. Then this repeats until the number of radiotherapy fractions have
been reached. After the final fraction, tumor dynamics resume for an arbitrary number of

days, in this case a few years’ worth of days (1000 days).
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population replicates. 7y and ry are the rates of division for U and V, respectively, d is
the death rate of DCC, and p is the probability of self-renewal of stem cell from existing
stem cells. The exact form is modified from the one used by Bachman and Hillen 2013 and
Hillen et al 2013 [50, 49]. The major difference between their equations and this one is
that their model focused on volume fractions directly. This required the usage of fractional
values of U and V' and much model exploration did not involve fractional values, so they
were dropped in favor of preventing CSC-independent growth and unrestricted growth via

feedback mechanisms based on population sizes.

What form will the feedback functions take?

e The more V there is, the lower p is. Mathematically, 0 < p < 1. In glioblastoma, there
is an inverse relationship between proliferation and migration, with some suggesting
that one cell type is more stem-like than the others due to the motility associated with
them.[53, 51, 52] One way to interpret this mathematically is to have p decrease as V'

creases.

e The less U there is, the less r, there is. Without having enough stem cells, the popu-

lation would collapse. And with additional V', there is more U.

e The more V there is, the lower r, or r, gets and/or the higher d gets. The system is
resource-limited, so the overall growth of the system will inevitably slow down, either

through having more cells die off or from fewer cells divide.

The conditions can be conveniently written via Hill equations (Eqs 2.1-2.4). While there
exist alternative formulations, a number of publications have commented on how varying the

particular functional form does not impact the qualitative nature of the dynamics greatly.



2.1. CELL LINEAGE MODEL CHAPTER 2. MODEL OVERVIEW

p
/ 2.1
P (2.1)
Iy
S 2.2
A v (22)
v h U v
. - 2.3
IV T U T T+ by V 2
- (L1ry —d)h
d gy v = dhaV (2.4)

1+ hgV

In Figure 2.1, red lines indicate negative feedback, the teal line indicates feedforward reg-
ulation of ry via U, and the blue line indicates positive feedback of V' onto its death rate.
Plausible mechanism driving feedforward regulation of U on 7y would be those related to
differentiation and transient-amplifying cells. While there are a variety of ways to mathe-
matically describe negative or positive feedback, empirical fit of growth and response curves
indicate that feedback is of the Hill equation type [30, 54, 55]. Thus their utilization in
2.1-2.4.

In Equation (2.3), there is negative feedback from V onto its own rate of growth, as well as
a positive feedforward circuit from U to V indicating a dependency of division of V' on the
level of U in the system. Equation (2.4) indicates the usage of positive feedback of V' onto
its own death rate due to constraints in the system, i.e. the V' cells incurs growth similar to
logistic growth, but the carrying capacity depends on the volume of V. Parameters [, hy,
hy, hg, and hy4 are feedback gains controlling self-renewal, rate of CSC division, rate of DCC
division, rate of DCC death, and feedforward regulation, respectively. We explicitly model

the fraction of the DCC population that will de-differentiate back into CSC and label it as
L.

In(2)
Ty

The work Bachman et al 2013 and Fowler et al 2010 indicate using (where T}, is the

doubling time of malignant brain tumors) for determining the rate of mitosis for CSCs and
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u hv Vv hv

| — —
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Figure 2.2: Comparing super long-term dynamics for the case when there’s negative feedback
on r, and on r,, with h; standing in as the feedback gain for negative feedback on r, and
hy standing in as the negative feedback gain on r,.

DCCs [50, 56]. Stem cells had zero rate of apoptosis, assuming that CSCs had unlimited
replicative potential. If the value of DCC death rate exceeds %, then the model will predict
no increase in CSC fraction. The value for ¢ was found from the linear regression in Figure
2.3. Additionally, the value of p was chosen from Yu et al’s work, with the idea to make p
close to .5 to not trivialize the increase of CSC fraction from a high value of p and thus make

make evaluating the effect of treatment more apparent. [44].

Feedback parameter values were selected for the purpose of showing the qualitative behaviour
of the system. A coarse-grained parameter sweep among feedback gains was performed, with
an example of such a parameter sweep shown in Figure 2.2. If we pay attention to the window
of time between 0 and 2000 days, there’s little difference between each of these simulations
qualitatively: U increases slowly and V' reaches equilibrium after awhile, despite quantitative

differences. As such, feedback gain was set to 10° for the purposes of qualitative exploration.

10
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Table 2.1: List of rate parameters and their values used for all simulations of dynamics.

Parameters P Ty v d hy | hy | hqg | ha l T,
Tog(2) Tog(2) Tog(2) 5 5 | 10° 9 5

Valges 0.505 gi% i% 52%19 1? 1? ? 1? 1? 3.9

Units none Gy oy Goy | ool | ool | coll | ool | ol day

References | s.t. (see text) | [50, 56] | [50, 56] | s.t. | s.t. | s.t. | s.t. | s.t. | s.t. | [44]

2.2 Simulating Radiotherapy

pW=ptcg
U' = (U +min(1,4)-V)-SFy,

V' =1 —min(1,u))-V-SFy
where

SF; = e~ 9(av+Bug)

SFy, = e~ 9(av+Bvyg)

Figure 2.1 represents a summary of how the model couples glioblastoma dynamics and treat-
ment. After initializing the simulation with observed amounts of CDC and DCC, the tumor
grows unperturbed until radiotherapy scheduling commences, when dynamical growth stops
in order to change in population levels from p to ¢/, U to U’, and V to V'. p is the fraction
of DCCs that are to be reprogrammed into U. This change re-initializes the system of equa-
tions before it continues the dynamics that ceases with the next fraction of radiotherapy.
This happens for n fractions of d doses, with each business day counting as a single fraction.

This kind of radiotherapy scheduling is called “fractionated radiotherapy”.

Best fit in Figure 2.3 gives rise to c¢. With signaling factors like survivin as reprsentatives of

11
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Table 2.2: Radiosensitivities for GBM line U373. Fit by Victoria Yu.[45]

a o4 ay Bu ay Bv
0.17 | 0.02 | 0.01 | 1.77e-7 | 0.125 | 0.028

1, wee also allow for p to decay dynamically according to
dp _
5 — oA —h).

We set i to 0, assuming that survivin plays no other role in cell dynamics.

2.2.1 Radiotherapy Model

SFy and SFy indicates the fraction of the population

that survived radiotherapy for stem cells and differen- - Rep’Og’a"fmi"Q % vs. Dose (Gy) )
1 : . s © g : Ez::::; . y =0.5196 x +1.0428 [ +
tiated cells, respectively. To calculate this surviving 2 X Patient3 7
@ ol Fit
E 91 O Averaged data C 0o
fracmon, we use the hnoar—quadratm modcl, which as- E, \ LT e *
e e X
i g | %
sumes that single-stranded and double-stranded DNA & 2 — 5
ol
. .. ) S T S
damage determine the surviving fraction (SF) of can- s
cer cells when afflicted with a single dose of g Grays: g

: Figure 2.3: Figure describing rela-
SF = %9799 = ¢—9(a+Py) tionship between p - 100% and dose
reproduced and modified from Victo-
ria Yu's thesis.[45]
The o and [ coefficients are cancer-specific and cor-

respond to the radiosensitivity of the tumor to single and double-stranded DNA damage,
respectively. These can be empirically measured, and for the glioblastoma cell line we're
considering, we have such coefficients. Not only for the whole tumor, but also for each sub-
population of cancer cell in our model [57, 45]. In other words, we can extend the model to

more than one cell type, as we've previously seen in the definitions of SFy and SFy. The

L2
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reader may have observed that the equation for U’ multiplies V' with SFy instead of with
SFy. We could model reprogramming due to radiotherapy in the latter format, but there is
an underlying uncertainty in exact choice of radiotherapy behavior. One would assume that
there is no increase in the total cell population due to reprogramming, but the protective
aspect of survivin makes this unclear. Do cells survive before reprogramming, or do they
reprogram before dying off? The former entails compounding V' with SFy, and the latter
V with SFy. At the same time, radiotherapy outcomes do not improve with higher doses.
After moderate hypofractionation, it gets worse. Between the two, only V' - SFy; follows this

pattern, as we can see in Figure 2.4.
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(a) The radiotherapy model when using SFy; does lead to non-monotonicity when varying RT dose.
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(b) The radiotherapy model when using SFy does not lead to non-monotonicity when varying RT
dose.

Figure 2.4: Comparing dose-response curves of two distinct radiotherapy models.
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2.2.2 Radiotherapy Scheduling

Conventional fractionated radiotherapy for glioblastoma is set to 2 Gray applied over 30
consecutive weekdays, or 30 fractions. While we can calculate different radiotherapy sched-
ules by delivering 60 Gray over a given number of days, we can use Biologically Equivalent
Dose (BED) to make a fairer comparison of the effect that radiotherapy has on a given
tumor. BED tells us what the expected effect of a radiotherapy scedule is. BED can be
calculated using the radiosensitivity parameters o and [ of the whole tumor, and is derived
from multiplying S'F with itself n times as a measure of the total efficacy of treatment after

the radiotherapy schedule is complete. [57]

BED:ng<1+§>.
5

It is worth noting that hypofractionated scheduling of radiotherapy glioblastoma - where
fewer fractions with larger doses than conventional are used - has been found to be a safe
alternative. In moderate amounts, it does not do worse than conventional treatment and

can even improve outcomes, in some cases.

2.2.3 ¢ % Reprogrammed Per Gray

The coefficient c¢ is critical to the simulation. If we look at Figure 2.3, we can see a few
data points where the kind of radiation amount is on the horizontal axis and % of DCC
reprogrammed is in vertical axis. It is measured as the percentage of DCC reprogrammed into
CSC per Gray of radiation. We will use the value of 0.5138 % reprogrammed DCC per Gray
that was obtained by Victoria Yu by fitting data from “Radiation-induced reprogramming
of breast cancer cells.”[58] This value was in turn derived from FACS-purified fresh tissue

ALDH1-negative samples from 3 patients that was irradiated and then measured for ALDH1
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five days later. As ALDH1 is a stemness factor in breast cancer, this acts as a reasonable

proxy for measuring de-differentiation due to radiotherapy only.
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Chapter 3

Results

3.1 Conditions for Accelerated Re-Growth and CSC

Enrichment

We have found that, alongside the feedforward regulation, reprogramming, and radiotherapy,
that at least one of the birth or death rates of V' need feedback in order for the model
to produce the enrichment of CSC that drives accelerated re-growth of glioblastoma and

development of resistance.

In order to see that, let us observe dynamics for when there are no forms of feedback. Since
the style of Figure 3.1a will be used throughout the paper, we describe the line types used

here.

e Green line indicates no treatment has been done to the tumor.
° line indicates treatment has been applied but there is no reprogramming.

e Purple line indicates that there is treatment and reprogramming is allowed.
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3.1. CONDITIONS FOR ACCELERATED RE-GROWTH ANICANPENR I HRIESNIL TS

Let us consider cases where there is not an increase in CSC fraction after treatment. In Figure
3.1a, there is no feedback in the system. We can see exponential growth take place for the
total tumor population (bottom left), with CSC’s growing slowly enough to appear like they
are saturated (top left) due to the 50.5% chance of self-renewal p used for all simulations
shown (Table 2.1 has all of them) and DCC’s dominating the population size (top right). The
CSC fraction plot all but confirms this last statement (bottom right). Even with radiation
and reprogramming providing a boost in CSC numbers over the case without trecatment,
the actual increase of CSC fraction of the case with full treatment and reprogramming over
the case without treatment is negligible. Without feedback, there is neither any notable
increase in CSC fraction nor of the total tumor volume. When we consider the addition of
only negative feedback on division of CSC in Figure 3.1b, the outcome is similar to that of
Figure 3.1a for CSC volume, DCC volume, total cell volume, and CSC fraction over time.
When looking at the graph of CSC volume over time, regulating the rate of CSC division
flattened the slow growth when using feedback on ry versus not using feedback, and the
DCC dynamics are largely unchanged over moderately long times. Negative feedback on
probability of self-renewal was considered but reducing the probability of stem cells forming
unilaterally makes CSC enrichment unlikely, per Figure 3.1c. Additional examples where
adding negative feedback on p in conjunction with other kinds of feedback are supplied in
Figure 6.3. All share the same pattern of lacking enrichment in CSC fraction in the case of
radiotherapy and reprogramming versus the untreated case. As such, they are ignored as

potential mechanisms for CSC fraction enrichment in this context of this model.

We now turn our attention to cases where CSC fraction does increase over time after treat-
ment. In Figure 3.2a, the only parameter changed from 3.1a is hy, the gain of negative
feedback on ry, from 0 to 10000 to take population effect of growth into account, per Table
2.1. Here we can see a dramatic change in dynamics. In the bottom left graph of Figure
3.2a, we see that the total cell count with reprogramming and radiotherapy has increased

over the total cell count without treatment, which clearly indicates accelerated re-growth.
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At the same time, the bottom right graph indicates that the fraction of stem cells that has
grown due to radiotherapy is nearly a hundred times larger than that without treatment.
Hence we can say that if these conditions hold, then accelerated re-growth and CSC enrich-
ment occurs in patient-relevant timescales. In Figure 3.2b, a similar outcome occurs when
making hy the only feedback gain with a positive value d by going from 0 to 107@)00’ per Table
2.1. While feedback on ry does not contribute to accelerated re-growth and CSC fraction
increase, combining it with other forms of feedback does somewhat affect CSC dynamics.
For example, when combining the feedback on 7y and d, as seen in Figure 3.2¢, the effect of
increasing feedback gain for hy on dynamics for both cell types is largely unchanged except
for much slower growth after treatment. Figure 6.2 in the Appendix shows the remaining
combinations of feedback that can be used on the system. In cach of these, the qualitative
nature of the dynamics is largely unchanged and the actual quantities are within an order
of magnitude of each other. Thus, when using feedback on 7y or d in conjunction with

radiotherapy and reprogramming (purple line), the system experiences accelerated regrowth

and increased CSC fraction.

3.2 Varying Radiotherapy Scheduling

Next, we wanted to ask if our model, when supplied with the appropriate feedbacks, point
to hypofractionation as an alternative to conventional radiotherapy scheduling [59, 60, 61,
64, 63, 62]. To this end, we calculated the BED of conventional radiotherapy, picked whole
number values for radiotherapy doses between 1 and 11 Gray, and calculated the weekdays it
would take to match that BED. If the number weekdays calculated was not a whole number,
then they would be rounded down. Radiotherapy in each case of radiation and fractions of
radiation was applied on consecutive weekdays. With these schedules, we calculate temporal

trajectories of CSC and DCC under each of these radiotherapy schedules for every combina-
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Doses 1 2 3 4 ) 6 7 8 9 10 11

Fractions | 66 30. 18. 12. 9 7 ) 4 4 3 2

BEDs | 73.76 | 74.12 | 73.06 | 70.5 | 71.47 | 71.65 | 63.82 | 62.12 | 74.12 | 65.29 | 50.47

Table 3.1: List of alternative radiotherapy schedules used and their corresponding BED
values. We assume that treatment occurs on every consecutive weekday.

tion of feedbacks. It isn’t necessary to see each and every one of them, but notable examples

will be shown here.

In Figure 3.3, we vary dose and measure CSC fraction for other schedules relative to that of
the conventional schedule of radiotherapy. A green line in each of these radiotherapy-varying
graphs is drawn for comparison of nonconventional treatment with conventional treatment.
Without any kind of feedback, per Figure 3.3a, there is a monotonic increase in CSC fraction
as dose is increased. However, in Figure 3.3b, we can see that having at least feedback on d or
ry results in a non-monotonic response. In particular, at intermediate values of radiation per

dose, hypofractionation is better than conventional in terms of measuring of CSC fraction.

In regards to total tumor size, we see in Figure 3.4 a parallel story of feedbacks necessary
for producing non-monotonicity, but with a small twist. Through hypofractionation at mod-
erately higher doses with the feedback on DC'C growth or on death do we see a reduction
in tumor size relative to tumor size due to conventional radiotherapy (Figure 3.4b). When
neither of the necessary feedbacks are included, a monotonic response arises (Figure 3.4a).
The twist is that the addition of negative feedback on CSC division rate weakens this effect

some time after the end of treatment (Figure 3.4c).
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3.3 Analytical Insights

To see how these results depend on the parameters, we performed long-term analysis of a

transformation of the model. If we define:

N=U+V
LU

N
v:le—%

then we arrive at the following system of equations by applying the division rule of differen-

tiation:
du oy du(l 3.1
dt_(p_ —u)ryu — (r, — d)u(l — u) (3.1)
dN
T N(ryu+ (ry — d)(1 —u)) (3:2)

With this system of equations, we can directly analyze the long-term stability of the CSC

fraction. Note that feedback forms can be freely added to the system in the same manner as

1 _ 1
1+hV — 1+h(1—u)N"

the original one in (U, V') coordinates, albeit with the new definitions, i.e.
Additionally, the analysis performed does not calculate a long-term value for N, as this
system does not stop growing over time, even under feedback. Fixing N for the total pop-
ulation’s expected values can be done without affecting the category of stability in the
u-direction. We can start to see why this is the case when we consider the feedbacks in the

(u, N') space. Here h; denotes a feedback gain coefficient and r; indicates a division rate for
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CSC or DCC for the sake of speaking of negative feedback within the system generically.

lim i = lim i
N—oo 1 + th  Nooo 1 + hj(l — u)N
, (L1lry —d)(1 + h4V) . (Llry —d)(1 + he(l —u)N)
lim d = lim d
N + 1+ hyV N + 1+ hg(1 —u)N

=0 (3.3)

= 1.17”1/

(3.4)

If ry has feedback then Equation (3.4) turns into (3.3). This effectively means that the
limy_ao % for any feedback regime will result in N falling out of the equation, meaning that
N has no influence on long-term dynamics for CSC fraction. Figure 3.5 characterizes how
‘é—’; does not change when varying N except for a small region near 0. But due to how large
N is at the beginning per Figure 3.1 and 3.2, we can safely assume that choice of N does
not affect our analysis for long-term stability and thus can calculate u. This statement is

true for all feedback combinations.

Figures 3.6 and 3.7 feature phase diagrams for the system generated in Mathematica. Gener-
ally, without treatment, there is an increase in CSC fraction due to the addition of feedback
and there is only one steady state value u that’s smaller than 1 and larger than 0. In each of
these subfigures, we can see the pace at which each system approaches its single equilibrium
u. In particular, the more components V' regulates via feedback, the higher the value of u,

and the system’s growth is slower without the addition of feedback on r,,.
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(a) RT schedule variation for dynamics without
feedback on ry or d leads to monotonic response.
Here, no feedback is used.

(b) RT schedule variation for baseline dynam-
ics involving feedback on ry or d leads to non-
monotonic response. Here, feedback on d is used.

Figure 3.3: Characteristic plots comparing radiotherapy schedules for particular feedback
regimes in terms of CSC fraction. The y-axis is “relativized” because it measures the CSC
fraction at a particular dose divided by the CSC fraction of conventional dose at a given
time point. EOT is End of Treatment, and time is relativized to EOT because that will let
us fairly assess the consequences of each treatment schedule. The green line denotes when
the tumor size at a certain time point for a non-conventional treatment schedule matches
that of the conventional treatment schedule.
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Figure 3.4: Characteristic plots comparing radiotherapy schedules for the effect of particular
feedback regimes on total tumor size. The y-axis says “relativized” because it measures the
total tumor size at a particular dose divided by the total tumor size of conventional dose at a
given time point. EOT is End of Treatment, and time is relativized to EOT because that will
let us fairly assess the consequences of each treatment schedule. The green line denotes when
the tumor size at a certain time point for a non-conventional treatment schedule matches
that of the conventional treatment schedule.
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Figure 3.5: Case where there is only feedback on ry. The fact that the 3D plot does not
change in the N direction except for very small values of N indicates that u does not depend
on N.
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Figure 3.6: Comparing the phase diagrams of the model with the feedforward circuit and
various feedbacks added to it (no feedback on r, is used here). The magenta line indicates
the value of u calculated and given above the plot.
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Chapter 4

Discussion

The combination of feedforward regulation,

reprogramming, and radiotherapy, and neg-

ative feedback on ry, positive feedback on d, ¢ Y
or both, are necessary in order for acceler- - ;
ated re-growth and sustained CSC fraction

clevation to take place. See Figure 4.1 for a @ 2

visualization. There may be other forms of

Figure 4.1: A diagram summarizing the feed-
backs that, in conjunction with RT and re-
by this phenomenon, however. programming, result in tumor accelerated re-
growth and CSC enrichment. At least one of
the gold arrows is enough.

feedback yet to be explored that are entailed

The fact that the phase diagrams point to
a single value of u suggests that there isn’t
a new level of CSC fraction that holds in the long term. The temporal dynamics for one
case are in Figure 4.2 to demonstrate this. While the results in the section on temporal
dynamics is sufficient for the median lifespan of glioblastoma patients, this does point to the

transient nature of CSC enrichment within this model. The model used by Rodrigues-Brenes
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et al. used feedback on division rates and also additional compartments within the model
to create permanent long-term changes in CSC fraction. However, model extensions that
produce multiple steady states in the space of fractions of stem and non-stem cells would
provide a result distinct from previous work that has studied multistability in the context of

cell counts or populations [65].

There are some plausible biological interpretations for the positive feedback on DCC death.
It may represent a logistic growth term of sorts, where crowding or resource competition
ends up reducing the DCC population. There is experimental evidence to give at least some
credence to this finding, in particular regard to positive feedback on death. Necrosis induced
by neutrophils can stimulate GBM growth, which means that death can drive overall cell
growth through allowing space for growth. [66] Iron dependency and ferroptosis seem to be

at the heart of this mechanism. [67, 68].

In addition to providing potential mechanisms for tumor accelerated re-growth and CSC
enrichment, our model indicates that the radiotherapy schedules we used at 5 Gray would
be optimal for reducing CSC fraction, though the other schedules between 3 and 7 Gray
are at a similar level of improvement compared to the 5 Gray schedule. This recapitulates
observations of the improvement to treatment outcome that moderate hypofractionation can
bring to elderly glioblastoma patients. Many clinical papers have confirmed this in patients,
so there may be use for the model to help provide targets for combination therapy. [59, 60,
61, 64, 63, 62]
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Figure 4.2: Extension of Figure 3.2a into a longer time scale, indicating that the increase is
temporary, albeit after a long time under the given parameter values specified.
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Chapter 5

Next Steps

5.1 Adding Stages and Combinatorial Feedback for Mul-

tistability

The reported results regarding long-term changes in the CSC fraction and overall tumor size
are transient and thus dependent on the parameters. However, by introducing combinatorial
feedback (i.e. having positive and negative feedback from V' act simultaneously onto U),
changes in CSC fraction may become permanent through multistability and would expand
the predictive potential of a mathematical model of glioblastoma that combined feedback,
de-differentiation, and treatment[65]. This would allow us to identify permanent changes
in the system if treatment is sufficiently influential on the population levels. Additionally,
considering such feedback in the context of the CSC fraction-total cell number system would
extend Kunche et al’s paper since they used feedback on systems of populations of cells and

not of cell fractions.
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5.2 Extending to a Hybrid Model

Additionally, while the ODE-based model has allowed us to directly analyze the system,
expanding to an ABM may help with addressing the unmet needs described in the intro-
duction. One assumption of the model that allowed us to use an ODE-formulation was
the homogeneous application of radiation to the entire tumor. However, radiotherapy and
chemotherapy is usually more targeted [69, 70], not to mention the inherent heterogeneity
cancers like glioblastoma possess [71]. While a partial differential equation (PDE) model is
able to capture spatiotemporal heterogeneity, there is an issue of the stem cell population usu-
ally being orders of magnitude smaller. Since populations are represented as concentrations
or volumes, a population that should be zero will be instecad nearly zero, i.c. overrepre-
sented. Thus, the difference in scale of populations might not be accurately captured by a
PDE model since it is a continuous model and not a discrete one. Using discrete cell counts
would allow us to bypass this issue. One more potential use for the agent-based model would
be to implement multiscale dynamics, specifically in the form of intracellular dynamics with
intercellular dynamics regarding de-differentiation, as the consequences of the application of
radiation to specific regions of the tumor span the intracellular and intercellular and mani-
fest themselves differently in the short-term and in the long-term [72, 73]. Additionally, the

production and dissemination of factors of de-differentiation spans several timescales.

5.3 Deriving the Radiotherapy Equations

While our model of radiotherapy is based on the linear-quadratic model, the fact that survivin
levels and export correlate with radiation damage [14, 74] lead us to believe that it would
be during radiotherapy that reprogramming would have the most effect. In other words, we

would like to justify the equations used in 2.2.
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Let u and v represent CSC and DCC volumes, with p describing the rate of reprogramming

and d, and ¢, representing death due to radiation for CSC and DCC, respectively.

(j;; = pv — 0, u (5.1)
dv

R 2
g pU — Oyv (5.2)

we can arrive at a set of equations that we later use for the effect of radiotherapy.

The form of the model above falls under the following assumptions:

e The timescale of radiation is quicker than that of a cycle of proliferation, so cell division

is dwarfed by cell death in these rate equations.
e Reprogramming happens dynamically during this timeframe.

e The radiotherapy happens during a very short amount of time, labeled A.

With these two key assumptions, we can solve the system.

VA = vge dvRe PR

_ PUo _ A —
up = uge A 4 — LT (e70B _ pT0ReTPA)
P + 61} - 6u

Let us grant the interpretation that

e A — SEy, = e—g(ochrﬁvg)7

with an equivalent definition for SFy. At the same time, let us suppose pA = u. Then we
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can find the following:

va = voSFye ™

W
p+ gl —ap) + ¢*(By — Bu)

UA ZUQSFU+U0 (SFU—SFVe_“)

SFye " is a negligible amount since SFy and e™* are small numbers, which means that

with this model there is a cross-term between the amount of DCC and the fraction of

CSC that survive treatment. However, the fraction 3 does not neatly

%
ptglav —av)+g%(Bv —Bu
correspond to the radiotherapy equations used to generate earlier results since the fraction is
roughly approximated by a é relation not present in the equations used. As-is, the approach

somewhat corresponds to the radiotherapy equations used in the model used to generate the

results of the paper.
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Chapter 6

Conclusion

This thesis featured a model of the dynamics of glioblastoma undergoing radiotherapy and
simulated different conditions and regimes of feedback. A combination of dedifferentiation,
radiotherapy, and feedback on division or death rate of DCC is necessary and sufficient
for CSC enrichment and tumor recurrence in patient-relevant timescales. The model also
indicates that changing from conventional radiotherapy to hypofractionation (higher dose,
fewer fractions) can provide more effective treatment schedulin. Despite the limitations
investigated regarding long-term stability of the system’s steady state, the present model

still can characterize dynamics at patient-relevant timescales.
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Appendix: Derivation of

Radiotherapy Equations

Let us for now slightly generalize the equations to the following:

d
ditt = Py — Oy u (6.1)
d
d—: = —pyU — OV (6.2)

Looking at (6.2) we integrate over the interval [0, A]. Noting that the form of the differential

equation matches that of the exponential, we can state that it evaluates to

v(A) =va = voe drBeTPeA,

Now, looking at the (6.1),
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d
di; = pPuU — Oy U (6.3)
= pyvoe e P — §u (6.4)
d
d—? + 0yu = puvge”lem P! (6.5)
d
e‘gut(di; + dyu) = (puvoe_d”te_p”t)e‘s"‘t (6.6)
d
= e <e6“tu) = (pyvge ®te Prt)edut (6.7)
A d A
/ &<e§“tu) dt =/ (puvoe 2tePrh)edut dt (6.8)
0 0
A
By — uy = / puvoe PO TPt qt (6.9)
0
(§u_5U_PU)A
PuV0 / s
= —— e’ ds 6.10
<5u - 51} - pv) 0 ( )
— Pulo (Bu—0v—pv)A
=———— (e —1 6.11
(5u - 51} - pv)( ) ( )
Sul, Pulo (Gu=bu=pu)A _ q 12
™Sy u0+(5u_5v_pv)(e ) (6.12)
u(B) = ua =g o - oy TR =) (6.13)
up = e By + S (el70vmp)A _ pm0ulty (6.14)
(5u - 51} - pu)
_ A Pul0 —6uA (=By—pu)A 6.15
up =e u0+—(pv+5v_6u)(e e ) (6.15)
If p, = po = p, (6.16)
_ A Pl —6uA  (=b,—p)A 6.17
up = e u0+—(p+5v_5u)(e e ) (6.17)

Additional Figures
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Figure 6.1: Y-axis measures the value of the relative feedforward term for the baseline model,
which is between 0 and 1. We can see that feedforward regulation does not contribute much
to the dynamics of the model since it’s tuned to be saturated. Green line indicates no
treatment has been done to the tumor. line indicates treatment has been applied but
there is no reprogramming. Purple line indicates that there is treatment and reprogramming
is allowed.

73



BIBLIOGRAPHY

BIBLIOGRAPHY

Feedback onr_v,

S 510° {
s g10 [
= 10% = |
. o { ]
2 3 [
£ €sc 20,3007 €
5 €S (2.0, 30,01 reprogi EOY mea(a=11.7 E \‘
= w 4
Z10
o o
] 5
Q O
0 103 Q
g0 a
10° oce (2.0, 30010117
DCC (2.0, 30.01:n0 repros; EOT shimedio=1) 7
oo trestment 7
0 200 400 600 800 1000 0 200 400 600 800 1000
time (days) time (days)
€5 rac(20. 30.0M0=117
€56 act2.0, 30.0100 raprog; EOT shifedio=1) 7
- tment
=) |
S510% |
5 w0 ||
o H \
E \ £ :
z bt
T 10% 5
o
© -2
£ 1072 |
e
10 0, 0. =
- totat mo
0 200 400 600 800 1000 0 200 400 600 800 1000
time (days) time (days)

(a) Temporal dynamics for the baseline
model with the addition of negative feedback

on ry.
Feedbackonr_ v, d
105"
- csco, 30017 ~
P ———— _
" €SC, no treatment 7 L~ e e—
= - f
o o |
S S [
B ] 1
o 2104 i
€ [S w
3 >
z z
8 8
O 10* o]
8 a
10°
bCc (2.0, 30.000m117
DCC (1.0, 30,010 raprogi EOT shiad(a=1).7
— DCC. o treatment 7
0 200 400 600 800 1000 0 200 400 600 800 1000
time (days) time (days)
10° - — esc .
S S —
°
] |
o
2 | v 1 ‘
£ t 510 i
S 10* ‘ b= \
s bt -
o o
o
=
e
10° T Vol 3.0 3 0w repeos EOTahifade=1).7 102
| = -
0 200 400 600 800 1000 0 200 400 600 800 1000
time (days) time (days)

(¢) Temporal dynamics for the baseline
model with the addition of negative feedback
on 1y and positive feedback on d.

Feedbackonr_u, r_ v,

10% e I
= 10° {
B g |
o ) |
3 :
2 8
E IR s | 5 208 \\
e s
810 8
? 3
o =]
102
bcc 2.0,30.040-11.1
DGC (2.0, 30,01 repros, EGT shiRedom1) 1
S
0 200 400 600 800 1000 0 200 400 600 800 1000
time (days)
10% |
=)
S |
5 | 1071 \
o ] g
E £ ——
210t 9
o o
I~ |
s 1072 |
) \
'9 -
10° 7
0 200 400 600 800 1000 0 200 400 600 800 1000
time (days) time (days)

(b) Temporal dynamics for the baseline
model with the addition of negative feedback

on ry and ry.
Feedbackonr_u,r v, d

] e l
k) ° |
e 5108 i
3 e
[ csco, 00 € \‘
o CSC (2.0, 30.0)n0 reprog;, EOT-shifted(o=1) 1 3
S| S . z
3 10° 3
S 5
9]
3 ot
o 0103
0 200 400 600 800 1000 [
time (days)

El
o |
g \ |

i - |
£10* i 10 1 | .
5 &
s\ .
s v
o o
o
=
g
e

103 1072
[ 0 200 400 600 800 1000

time (days) time (days)
(d) Temporal dynamics for the baseline

model with the addition of negative feedback
on ry and ry and positive feedback on d.

Figure 6.2: Here we can see that every combination here leads to tumor accelerated re-
growth and CSC enrichment. Green line indicates no treatment has been done to the tumor.

line indicates treatment has been applied but there is no reprogramming. Purple
line indicates that there is treatment and reprogramming is allowed. Y-axes are as follows
starting from the top left and going clockwise: CSC number, DCC number, CSC fraction,

total cell number.
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Figure 6.3: Here are some examples of the application of negative feedback on p in conjunc-
tion with some other forms of feedback. All share the same pattern of a temporary CSC
enrichment in the case of radiotherapy and reprogramming versus the untreated case. Green

line indicates no treatment has been done to the tumor.

line indicates treatment has

been applied but there is no reprogramming. Purple line indicates that there is treatment
and reprogramming is allowed. Y-axes are as follows starting from the top left and going
clockwise: CSC number, DCC number, CSC fraction, total cell number.



