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Abstract

Background: Nicotine and illicit stimulants are very addictive substances. Although associations 

between grey matter and dependence on stimulants have been frequently reported, white matter 

correlates have received less attention.

Methods: Eleven international sites ascribed to the ENIGMA-Addiction consortium contributed 

data from individuals with dependence on cocaine (n = 147), methamphetamine (n = 132) and 

nicotine (n = 189), as well as non-dependent controls (n = 333). We compared the fractional 

anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD) and mean diffusivity (MD) of 20 

bilateral tracts. Also, we compared the performance of various machine learning algorithms in 

deriving brain-based classifications on stimulant dependence.

Results: The cocaine and methamphetamine groups had lower regional FA and higher RD 

in several association, commissural, and projection white matter tracts. The methamphetamine 

dependent group additionally showed lower regional AD. The nicotine group had lower FA and 

higher RD limited to the anterior limb of the internal capsule. The best performing machine 

learning algorithm was the support vector machine (SVM). The SVM successfully classified 

individuals with dependence on cocaine (AUC = 0.70, p < 0.001) and methamphetamine (AUC = 

0.71, p < 0.001) relative to non-dependent controls. Classifications related to nicotine dependence 

proved modest (AUC = 0.62, p = 0.014).
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Conclusions: Stimulant dependence was related to FA disturbances within tracts consistent 

with a role in addiction. The multivariate pattern of white matter differences proved sufficient to 

identify individuals with stimulant dependence, particularly for cocaine and methamphetamine.

Keywords

Addiction; DTI; FA; Myelin; Machine learning

1. Introduction

Substance abuse has negative consequences for health and entails a heavy economic 

and societal burden (Degenhardt et al., 2018). Despite worldwide efforts in reducing its 

consumption, nicotine remains one of the most used legal drugs and is the leading cause 

of preventable and premature death due to smoking-related conditions such as cancer, 

respiratory, and cardiovascular illnesses (West, 2017). While less common, the use of illicit 

stimulants is on the rise (Center for Behavioral Health Statistics and Quality, 2018). Cocaine 

and methamphetamine are both very addictive and neurotoxic substances (Gonçalves et al., 

2014). Whilst grey matter alterations relative to nicotine (Fritz et al., 2014; Hanlon et al., 

2016; Kaag et al., 2018; Kuhn et al., 2010; Mackey et al., 2019; Wetherill et al., 2013) and 

illicit stimulants have been widely studied (Hall et al., 2015; Mackey et al., 2019; Mackey 

and Paulus, 2013; Yang et al., 2020), differences in white matter have received less attention.

Diffusion-tensor imaging (DTI) has been broadly used to assess white matter composition 

(Basser et al., 1994), and assumes that water diffusion within tissue is anisotropic, or 

highly coherent, due to the physical boundaries myelin sheaths impose (Basser et al., 1994). 

Fractional anisotropy (FA) considers the ratio of parallel to perpendicular diffusion. Values 

closer to 1 suggest greater anisotropy such that water is diffused in parallel to the tract’s 

predominant direction. Tracts can be ordered based on such direction as commissural (left-

right, and vice versa), projection (top-down), or associative tracts (anterior-posterior) (Mori 

et al., 2008). While FA is very sensitive to microstructural differences it does not illuminate 

the exact source. Hence, incorporating other metrics may help in understanding the nature 

of white matter disruptions. For example, parallel or axial diffusivity (AD) is sensitive to 

axonal injury, perpendicular or radial diffusivity (RD) reflects myelin density. The average 

of AD and RD, mean diffusivity (MD), reveals the amount of diffused water irrespective of 

direction and may hint at edema or swelling (Alexander et al., 2007).

Findings on DTI for nicotine dependence are controversial as studies have shown both 

higher and lower FA among tobacco smokers (Huang et al., 2020; Van Ewijk et al., 2015; 

Wang et al., 2017; Yu et al., 2016; Zhang et al., 2010, 2013). It has been proposed that 

higher FA might be related to the age of onset of smoking and be transient (Gogliettino 

et al., 2016; Kochunov et al., 2013). Findings in cocaine and methamphetamine are 

less ambiguous since both have been related to lower FA (Huang et al., 2020; Lederer 

et al., 2016; Suchting et al., 2020). Still, most of the studies on illicit stimulants are 

likely underpowered and focus on a priori selected tracts to avoid multiple comparisons 

issues. In the current work, authors joined the ENIGMA-Addiction consortium’s data 

pooling initiative (https://www.ENIGMAaddiction.com) that provides larger sample sizes 
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to both replicate and extend findings from the literature. Additionally, we tested a variety 

of machine learning algorithms to assess whether DTI-derived metrics can discriminate 

substance dependent individuals from controls. Machine learning implementation in 

substance dependence research has received increased attention in recent years (Barenholtz 

et al., 2020; Mak et al., 2019). However, the few studies that have tested brain-based 

classifications for stimulant dependence focused on other MRI modalities (Li et al., 2019; 

Mackey et al., 2019; Mete et al., 2016; Wetherill et al., 2019). Unlike conventional mass-

univariate approaches, multivariate-based classification methods may detect interactions and 

non-linear relations that would otherwise pass unnoticed.

2. Materials and methods

2.1. Participants

Eleven sites from the ENIGMA-Addiction consortium contributed 14 studies with 808 

participants for this project, including non-dependent controls (n = 333) and individuals 

with dependence on cocaine (n = 154), methamphetamine (n = 132), and nicotine (n = 

189). A variety of tools served to diagnose substance dependence (see Table ST1 in the 

Supplementary materials). Participants were grouped according to their primary substance 

of choice and required to not meet any other axis-I psychiatric diagnoses, neurological 

diseases, or additional dependencies besides nicotine (see Table 1). Long-term abstinent 

individuals (> 365 days) were excluded (n = 7, all from the cocaine group; n = 147) to avoid 

confounding effects of recovery. This work was carried out under the code of ethics of the 

World Medical Association (Declaration of Helsinki). All sites obtained local ethical review 

and informed consent from all participants.

2.2. Diffusion MRI acquisition and processing

Scanner and protocol details can be found in ST1. Eddy currents and b0 distortions 

were removed at each site accordingly with the ENIGMA DTI protocols (http://

enigma.ini.usc.edu/protocols/dti-protocols/). After tensor fitting, scalar maps were eroded, 

registered, and projected to the ENIGMA’s template and skeleton (Jahanshad et al., 2013) as 

part of the Tract-based Spatial Statistics (TBSS) pipeline. Registration, vectors’ orientation, 

and projection distances to the skeleton were locally inspected. Following ENIGMA-DTI 

protocols, the average diffusivity metrics (i.e., FA, AD, RD, and MD) were derived from 

43 tracts (i.e., 5 bilateral and 38 lateralized) in accordance with the ICBM-DTI-81 atlas 

(Mori et al., 2008). The corpus callosum, the internal capsule, and the corona radiata were 

removed in favor of their divisions (e.g., body, genu, and splenium of the corpus callosum). 

The inferior fronto-occipital fasciculus was excluded because of well-known issues in the 

ENIGMA DTI protocol with this tract (see ENIGMA-DTI protocol link for more details), 

i.e., one bilateral and three lateralized tracts were excluded (n = 7). Lateralized tracts (n = 

32) were bilaterally averaged (n = 16) generating a total of 20 tracts to examine. Scanner 

influence was adjusted with ComBat while preserving group, age, age2, and sex effects. 

ComBat uses an empirical Bayes framework to improve the variance of the parameter 

estimates and has proven robust in settings where the biological covariate of interest (e.g., 

group) is not well-balanced across sites (Fortin et al., 2017). This approach has been recently 
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used in various work from the ENIGMA consortium (Favre et al., 2019; Hatton et al., 2020; 

Villalón-Reina et al., 2020).

2.3. Statistical analyses

2.3.1. Univariate group comparisons—Linear regression models included the mean 

FA of each tract as the dependent variable. The main predictor, group, was a 4-level 

factor variable where non-dependent controls were the reference group. Age, age2, and 

sex were entered as covariates to account for linear and non-linear effects (Kochunov et 

al., 2012). All statistical analyses were performed using R version 4.1.0 (R Core Team, 

2018). Assumptions of normality and homoscedasticity of residuals were examined for 

each model with Shapiro’s and Levene’s tests. Robust models were conducted if any 

of these assumptions were violated with the robustbase package (Maechler et al., 2021). 

The residuals of the FA of the posterior corona radiata and the splenium of the corpus 

callosum, and the residuals of the MD of the uncinate fasciculus were further tested with 

robust regressions as they violated the homoscedasticity assumption. Effect sizes were 

calculated using the effectsize package (Ben-Shachar et al., 2020). Results were plotted 

with the ggseg3d package (Mowinckel and Vidal--Piñeiro, 2019). All the resulting p-values 

from each test (i.e., three predefined contrasts [cocaine, methamphetamine, and nicotine vs 

non-dependent controls] for 20 tracts totaling 60 tests) were further corrected with a False 

Discovery Rate (FDR) adjustment (Benjamini and Hochberg, 1995). Significance level was 

set as p-corrected (q) < 0.05. Separate post-hoc tests were conducted on AD, RD, and MD 

on tracts where groups differed for FA. These p-values did not include further adjustments as 

they were deemed in-depth analyses to explore the underlying sources of differences in FA.

Additional comparisons were performed on tracts where the illicit stimulant dependent 

groups differed from non-dependent controls. Concretely, a subsample of individuals with 

dependence on cocaine (n = 108) and methamphetamine (n = 115) and co-dependence 

on nicotine was compared with the nicotine group to test if differences with controls 

were influenced by comorbid nicotine dependence. Furthermore, we repeated the main 

analysis with the lateralized version of all tracts to test for laterality effects (n = 36; all 

FDR-corrected).

2.3.2. Multivariate machine learning classifiers—Base out-of-sample performance 

was calculated for each classification task according to a 5-fold cross-validation (CV) 

scheme, where the ratio of case to control was matched between all training and validation 

sets. The main classifier examined was a support vector machine (SVM) with radial 

basis kernel function-based pipeline and a front-end robust scaler, where each feature, 

i.e., the site-adjusted FA, RD, AD and MD values of 20 tracts, was standardized by 

first removing the median and next scaled according to the 5th and 95th percentiles of 

its distribution (Amari and Wu, 1999). Age, age2, and sex were residualized to prevent 

estimations based on non-brain data (Schwarz et al., 2019). Hyper-parameters for the SVM, 

the strength of regularization as well as the kernel coefficient, were selected by a random 

hyper-parameter search. Sixty combinations were tested with a nested 3-fold CV. The best 

performing combination was used to train the final evaluated SVM following the 5-fold 

CV. Moreover, other machine learning pipelines (i.e., regularized logistic regressions, light 
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gradient boosting, random forest, and AutoGluon AutoML) were compared to the SVM to 

validate its choice. More details are available in the supplementary materials (SM7). The 

average area under the receiving operating curve (AUC) of each machine learning algorithm, 

representing its performance, is reported. Feature importance of each SVM estimation was 

computed based on the greatest change in cost function after removing individual features 

(Guyon et al., 2002). Machine learning algorithms were implemented and evaluated with the 

python-based brain predictability toolbox (Hahn et al., 2021).

Permutation tests (Golland and Fischl, 2003; Noirhomme et al., 2014) were done to establish 

the statistical significance of each cross-validated classification (i.e., a certain classification 

was re-evaluated after labels were randomly permuted). The significance was calculated 

by comparing the average k-fold performance from the real dataset relative to the average 

k-fold performance from the randomly permuted dataset (i.e., the rank of the real average 

score within the sorted null distribution scores is calculated and converted to a p-value). Due 

to the unbalanced structure unique to this multi-site dataset, permutations were constrained 

to participants from the same imaging site because of concerns about case or control-only 

sites (Dinga et al., 2020).

3. Results

Relative to non-dependent controls, the cocaine dependent group had lower FA in the 

posterior thalamic radiation (t794 = −2.91, q = 0.025, d = −0.21 [−0.35, −0.07]), the 

retrolenticular part of the internal capsule (t794 = −3.59, q = 0.006, d = −0.26 [−0.40, 

−0.12]), and the sagittal stratum (t794 = −3.12, q = 0.019, d = −0.22 [−0.36, −0.08]) (see Fig. 

1). Post-hoc contrasts revealed that individuals with cocaine dependence had higher RD in 

the retrolenticular part of the internal capsule (t475 = 3.16, p = 0.002, d = 0.29 [0.11, 0.47]) 

and the sagittal stratum (t475 = 2.12, p = 0.035, d = 0.20 [0.01, 0.38]), and higher MD in the 

retrolenticular part of the internal capsule (t475 = 2.83, p = 0.005, d = 0.26 [0.08, 0.44]), and 

the sagittal stratum (t475 = 3.13, p = 0.002, d = 0.29 [0.11, 0.47]). A summary of the results 

is available in the Supplementary materials (see ST2).

The methamphetamine dependent group had lower FA in the cingulum (t794 = −3.95, q 
= 0.001, d = −0.28 [−0.42, −0.14]) and its hippocampal part (t794 = −3.92, q = 0.001, 

d = −0.28 [−0.42, −0.14]), the genu (t794 = −3.60, q = 0.002, d = −0.26 [−0.40, −0.12]) 

and splenium of the corpus callosum (t794 = −2.93, q = 0.014, d = −0.21 [−0.35, −0.07]; 

robust linear regression results: t794 = −3.16, p = 0.001, d = −0.22 [−0.36, −0.09]), the 

posterior thalamic radiation (t794 = −2.36, q = 0.046, d = −0.17 [−0.31, −0.03]), the 

superior fronto-occipital fasciculus (t794 = −2.39, q = 0.046, d = −0.17 [−0.31, −0.03]), 

the superior longitudinal fasciculus (t794 = −3.11, q = 0.010, d = −0.22 [−0.36, −0.08]), and 

the sagittal stratum (t794 = −2.48, q = 0.044, d = −0.18 [−0.32, −0.04]) when compared 

to non-dependent controls (see Fig. 2). Post-hoc tests shown that the methamphetamine 

dependent group had lower AD along the cingulum (t460 = −4.08, p < 0.001, d = −0.38 

[−0.56, −0.20]), the genu of the corpus callosum (t460 = −2.33, p = 0.020, d = −0.22 [−0.40, 

−0.03]), and the superior longitudinal fasciculus (t460 = −3.37, p < 0.001, d = −0.31 [−0.50, 

−0.13]). Individuals from this group showed higher RD in the cingulum (t460 = 2.42, p = 

0.016, d = 0.23 [0.04, 0.41]), its hippocampal part (t460 = 4.25, p < 0.001, d = 0.40 [0.21, 
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0.58]), and the genu (t460 = 2.35, p = 0.020, d = 0.22 [0.04, 0.40]) and splenium of the 

corpus callosum (t460 = 2.17, p = 0.027, d = 0.21 [0.02, 0.39]). Also, this group showed 

higher MD in the hippocampal part of the cingulum (t457 = 4.01, p < 0.001, d = 0.37 [0.19, 

0.56]) (see ST3).

The nicotine dependent group had lower FA in the anterior limb of the internal capsule (t794 

= −3.17, q = 0.032, d = −0.23 [−0.37, −0.09]) (see Fig. 3) in comparison to non-dependent 

controls. Post-hoc contrasts revealed that individuals with nicotine dependence had higher 

RD (t517 = 3.57, p < 0.001, d = 0.31 [0.14, 0.49]) and higher MD (t517 = 2.18, p = 0.029, d = 

0.19 [0.02, 0.36]) in this tract (see ST4).

Supplementary contrasts showed that the cocaine group had lower FA in the posterior 

thalamic radiation (t407 = −2.08, p = 0.038, d = −0.21 [−0.40, −0.01]) and the sagittal 

stratum (t407 = −2.02, p = 0.044, d = −0.20 [−0.40, −0.01]) relative to the nicotine group. 

Likewise, the methamphetamine group demonstrated lower FA in the cingulum (t407 = 

−2.12, p = 0.035, d = −0.21 [−0.41, −0.02]), its hippocampal part (t407 = −3.13, p = 0.002, d 

= −0.31 [−0.51, −0.12]), and the splenium of the corpus callosum (t407 = −2.56, p = 0.011, d 

= −0.25 [−0.45, −0.06]) compared to the nicotine group.

Results from the laterality analyses can be found in the Supplementary materials (see 

ST5-ST7). Differences in the cocaine group remained unchanged except for the posterior 

thalamic radiation whose effects were present in the left portion of the tract only. Results 

in the methamphetamine group were similar to the main analysis although three additional 

tracts, the left posterior limb (t794 = −3.11, q = 0.036, d = −0.18 [−0.32, −0. −04]) and 

the right anterior limb of the internal capsule (t794 = −2.40, q = 0.046, d = −0.17 [−0.31, 

−0. −03]), and the left posterior thalamic radiation (t794 = −3.11, q = 0.010, d = −0.22 

[−0.36, −0. −08]), showed lower FA relative to controls. Nicotine’s group original results 

(i.e., anterior limb of the internal capsule) did not survive FDR correction (q = 0.06, both left 

and right portions).

The best performing machine learning algorithm was the SVM, with significant 

classifications for cocaine dependence (AUC = 0.70, p < 0.001), methamphetamine 

dependence (AUC = 0.71, p < 0.001), and nicotine dependence (AUC = 0.62, p = 0.014). 

SVM performance and the importance of each feature are available in Figs. 4 and 5, 

respectively. The performance of the remaining algorithms and the importance of each 

feature from the SVM classifications can be found in the Supplementary materials (SM8 and 

SM9).

4. Discussion

The study of white matter differences in relation to dependence on nicotine and illicit 

stimulants has received less attention than grey matter differences. While findings on 

nicotine dependence are often contradictory, cocaine and methamphetamine dependence 

work tend to be seriously confounded by comorbid dependence on other drugs and 

underpowered. Here, we found drug-specific white matter differences in a relatively large 

sample of individuals dependent on cocaine, methamphetamine, or nicotine. Dependent 
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groups showed lower regional FA compared to non-dependent controls. The greatest 

differences were observed in methamphetamine dependence. Lower regional FA was found 

together with higher RD in all groups. Lower regional AD was related to methamphetamine 

dependence. Finally, we demonstrated that the SVM classifier successfully identified 

individuals dependent on cocaine and methamphetamine and to a lesser extent nicotine.

The cocaine group had lower FA in projection tracts such as the posterior thalamic radiation, 

the retrolenticular part of the internal capsule, and the sagittal stratum. While there is limited 

prior evidence implicating the posterior thalamic radiation in cocaine dependence (Yip et 

al., 2017), the thalamus has been proposed to play a role in substance use and dependence 

(Huang et al., 2018). FA differences in the internal capsule have been reported previously in 

cocaine addiction (He et al., 2020; van Son et al., 2016; Yip et al., 2017) and correlated to 

long-term abstinence, compulsive-like behaviors, and distress (Kopell and Greenberg, 2008). 

Lower FA along the sagittal stratum have been related to cocaine dependence (Ma et al., 

2017; Yip et al., 2017).

The methamphetamine dependent group showed lower FA in the cingulum and its 

hippocampal part, the genu and splenium of the corpus callosum, the superior fronto-

occipital fasciculus, and the superior longitudinal fasciculus. Similar to the observed cocaine 

effects, the methamphetamine group had lower FA in the posterior thalamic radiation 

and the sagittal stratum. While effects in the genu of the corpus callosum have been 

widely replicated (Huang et al., 2020; Kim et al., 2009; Lederer et al., 2016; Salo et 

al., 2009; Tobias et al., 2010), differences in the splenium have not. A recent TBSS 

work also found lower FA in the cingulum, superior longitudinal fasciculus, superior 

fronto-occipital fasciculus, sagittal stratum, and posterior thalamic radiation in participants 

with methamphetamine dependence (Huang et al., 2020). Most of these tracts have been 

implicated in cognitive control and emotion regulation (Bubb et al., 2018; Fitsiori et al., 

2011; Kamali et al., 2014). Lower FA within these tracts has been associated with both 

impulsivity and aggression in methamphetamine dependent individuals (Huang et al., 2020; 

Lederer et al., 2016). Notably, this group showed the most substantial FA differences. 

Beyond statistical significance, all differences moved in the same direction suggesting a 

global pattern of lower FA. Methamphetamine remains longer in the brain than cocaine 

and blocks dopaminergic reuptake while increasing its release. Thus, it is more neurotoxic 

and entails a greater risk for serious psychiatric and cognitive sequelae (Yang et al., 2018a, 

2018b). Moreover, individuals with methamphetamine dependence are more likely to have 

abused multiple drugs in their life which can have a severe impact on the brain (Kaag et al., 

2017; van Son et al., 2016).

The cocaine and methamphetamine groups had higher RD in tracts showing lower FA, 

which is in line with prior reports (Huang et al., 2020; Kaag et al., 2017; Lane et al., 

2010; Lederer et al., 2016; Salo et al., 2009). Higher RD suggests that lower FA may 

be linked to demyelination. There are several pathological processes concerning the abuse 

of such stimulants that are deleterious to myelin (Gonçalves et al., 2014; Pereira et al., 

2015; Yang et al., 2018a, 2018b). Both substances reduce glial cell efficiency in regulating 

glutamate homeostasis (Bachtell et al., 2017; Matute et al., 2007), boost reactive oxygen 

species presence triggering oxidative stress responses (Lassmann and van Horssen, 2016), 
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and down-regulate myelin expression (Smith et al., 2014). Stimulant-type drugs also cause 

vasoconstriction and increase the risk of hypoperfusion (Buttner, 2012; Polesskaya et al., 

2011), expose the brain to toxins due to blood-brain barrier dysfunctions (Sajja et al., 

2016), and prompt neuroinflammation by priming glial cells into relentlessly releasing 

pro-inflammatory cytokines (Bachtell et al., 2017). The methamphetamine group had lower 

AD within the cingulum, the genu of the corpus callosum, and the superior longitudinal 

fasciculus, which points instead to axonal damage. Our results contradict prior work 

reporting higher AD (Huang et al., 2020; Uhlmann et al., 2016) or null effects (Beard et 

al., 2019; Breen et al., 2017). Combined with lower FA, bidirectional AD changes might 

still suggest axonal damage. Concretely, higher AD may hint at neurofilament damage. This 

would provoke axons to be less tightly packed and lead to a widening of the interstitial space 

resulting in increases in the amount of water to diffuse (i.e., higher MD, lower FA) (Moore 

et al., 2018; Winklewski et al., 2018). This pattern of lower FA together with higher AD and 

MD was seen in Huang et al. (2020) and Uhlmann et al. (2016). Here, we exposed lower 

AD indicating axonal damage or fragmentation. Aggregation of cellular debris, disordered 

microtubules, and damaged neurofilaments following axonal injury barricade longitudinal 

water diffusion overall resulting in lower FA (Aung et al., 2013).

The nicotine group had lower FA in the anterior limb of the internal capsule, a projection 

tract that connects thalamic, basal ganglia, and prefrontal areas. Prior evidence is conflicting 

as various studies have reported higher (Jacobsen et al., 2007; Van Ewijk et al., 2015; Yu et 

al., 2016) and lower FA (Savjani et al., 2014; Wang et al., 2017; Yuan et al., 2018; Zhang 

et al., 2010) in this tract. The potential benefits of nicotine exposure during adolescence 

remain a matter of debate. Nicotine appears to promote glial maturation, boost nerve growth 

factor release, and prevent arachnoid acid-induced injury and apoptosis (Hudkins et al., 

2012; Jacobsen et al., 2007; Liao et al., 2011; Van Ewijk et al., 2015; Yu et al., 2016). 

Other researchers have suggested the effects of nicotine exposure not only fade but reverse 

as lifetime use escalates and addiction develops (Gogliettino et al., 2016; Paul et al., 2008; 

Umene-Nakano et al., 2014; Yu et al., 2016). Similarly, lower FA was found together with 

greater RD (Savjani et al., 2014; Yuan et al., 2018). Studies in mice found that nicotine 

exposure was related to lower myelin expression (Cao et al., 2013) and other potential 

myelin insults such as vasoconstriction, oxidative stress, or inflammation (Liao et al., 2011; 

Sajja et al., 2016).

The best performing machine learning algorithm in the present dataset was the SVM that 

successfully detected individuals with cocaine and methamphetamine dependence relative to 

non-dependent controls. Although significant, neither the SVM nor the rest of the algorithms 

were as successful in classifying nicotine dependence (AUC = 0.62). Of note, the SVM 

algorithm favored features that were omitted in the mass-univariate tests suggesting that 

multivariate methods may be more useful in the development of neuroimaging markers 

of stimulant dependence than those exploring brain regions in isolation. Our results add 

to a growing body of work that leverages machine learning methods to identify patterns 

associated with stimulant dependence using MRI data (Li et al., 2019; Mackey et al., 2019; 

Mete et al., 2016; Wetherill et al., 2019). This is the first application of machine learning 

using DTI data in relation to stimulant dependence.
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Comparisons of the nicotine group with the cocaine and methamphetamine groups revealed 

that the nicotine group showed higher FA. Differences in FA were localized on tracts where 

the control group also showed higher FA relative to the cocaine and methamphetamine 

groups. Nevertheless, the differences between the nicotine and the other stimulant groups 

were less widespread than those observed in comparison to the control group. Thus, it 

is possible that being dependent on both nicotine and cocaine or methamphetamine is 

associated with additional deleterious effects. In a recent report, FA negatively correlated 

with the number of additional drugs used by cocaine dependent individuals. In that study, 

however, most participants were co-dependent on nicotine making it difficult to divorce the 

results from this particular effect (Kaag et al., 2017).

In the present work, we have demonstrated that dependence on stimulants is related to 

lower regional FA, and that such differences are more prominent in the cocaine and 

methamphetamine dependent groups. We based our analyses on tracts extracted according 

to the ICBM-DTI-81 atlas (Mori et al., 2008) to facilitate comparisons of results to other 

ENIGMA disease working groups (Favre et al., 2019; Hatton et al., 2020; Villalón-Reina 

et al., 2020). Most ROI-based studies on substance dependence have adopted manual 

segmentation approaches on a priori selected tracts, such as the corpus callosum in 

methamphetamine dependence research, that limit sample size and delays replication. We 

offer new evidence on white matter differences related to methamphetamine dependence 

beyond the corpus callosum. Also, we assessed other DTI-derived metrics to clarify 

the underlying sources of lower FA, which is often overlooked or explored in ways 

precluding interpretation (i.e., when lacking FA differences). Additionally, we confirmed 

the potential of multivariate-based machine learning methods using DTI-derived data to 

classify dependence on stimulants. The current work also has several limitations. Besides 

demyelination and axonal injury, differences in FA may also emerge from non-pathological 

sources such as fiber alignment differences or the presence of crossing fibers (Jones et 

al., 2013). Therefore, we cannot confirm that differences in FA were solely related to 

demyelination or axonal damage. With cross-sectional data, it is also possible that the 

observed effects existed before any drug exposure. To control the number of tests, we used 

bilaterally averaged tracts that may have masked lateralized effects. However, we showed 

that the pattern of effects remained similar using lateralized tracts. The cocaine group was 

significantly older and thus age was controlled in all the analyses. We additionally tested 

whether results changed with an age-matched subsample of controls (n = 147, 38.64 ± 8.48 

age) and effects remained unaltered. Another limitation was the number of males within the 

cocaine group (n = 125, 85%). Although sex was controlled in all the analyses, we did not 

have sufficient statistical power to explore sex-specific effects. The comorbid dependence 

on nicotine in the cocaine (74%) and methamphetamine (87%) groups made it difficult to 

isolate the effects of being dependent on illicit stimulants from those of being dependent on 

nicotine too. However, similar effects were observed when comparing a subset of individuals 

with co-dependence on illicit stimulants and nicotine with the nicotine dependent only 

group and the non-dependent control group. Finally, and despite excluding individuals with 

dependence on other substances, information about recreational or sub-clinical use of other 

drugs was unavailable at most sites.

Ottino-González et al. Page 10

Drug Alcohol Depend. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In summary, in a relatively large and well-defined multi-site sample, we found lower 

regional FA in the cocaine and methamphetamine groups in various white matter tracts. 

Lower FA was also observed in the nicotine group but limited to the anterior limb of the 

internal capsule. Lower regional FA was found together with higher regional RD, suggesting 

demyelination in all groups. The methamphetamine group also exhibited lower regional AD 

consistent with axonal damage. Significant brain-based classifications identified through the 

SVM algorithm indicate that there is sufficient signal within DTI-derived patterns of effects 

to identify individuals with dependence on stimulants. The best classifications were achieved 

for cocaine and methamphetamine dependent individuals relative to non-dependent controls.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Panel A: Effect sizes and confidence intervals from group comparison. Highlighted bars 

indicate a significant effect (q < 0.05) of the cocaine dependent group as compared to 

the control group. Bars falling to the left indicate lower FA in the cocaine dependent 

group. Panel B: Location of the effects. Panel C: Post-hoc analyses on the rest of the DTI 

metrics (i.e., AD, RD, and MD along the X-axis) for those tracts showing a significant FA 

difference (ns, non-significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001). The Y-axis reflects 

site-adjusted AD, RD, and MD values after being residualizing for sex, age and age2. ACR: 

Anterior corona radiata, ALIC: Anterior limb of the internal capsule, BCC: Body of corpus 

callosum, CGC: Cingulum, CGH: Cingulum hippocampal part, CST: Corticospinal tract, 

EC: External capsule, FX: Fornix, FXST: Fornix stria terminalis, GCC: Genu of corpus 

callosum, PCR: Posterior corona radiata, PLIC: Posterior limb of the internal capsule, 

PTR: Posterior thalamic radiation, RLIC: Retrolenticular part of the internal capsule, SCC: 

Splenium of corpus callosum, SCR: Superior corona radiata, SFO: Superior fronto-occipital 

fasciculus, SLF: Superior longitudinal fasciculus, SS: Sagittal stratum, UNC: Uncinate 

fasciculus.

Ottino-González et al. Page 18

Drug Alcohol Depend. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Panel A: Effect sizes and confidence intervals from group comparison. Highlighted bars 

indicate a significant effect (q < 0.05) of the methamphetamine dependent group as 

compared to the control group. Bars falling to the left suggest lower FA (negative deviation). 

Panel B: Location of the effects. Panel C: Post-hoc analyses on the rest of DTI metrics (i.e., 

AD, RD, and MD along the X-axis) only for those tracts previously showing a significant 

FA difference (ns, non-significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001). The Y-axis 

reflects site-adjusted AD, RD, and MD values after being residualizing for sex, age and 

age2. Tract abbreviations are the same as in Fig. 1.
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Fig. 3. 
Panel A: Effect sizes and confidence intervals from group comparison. Highlighted bars 

indicate a significant effect (q < 0.05) of the nicotine dependent group as compared to 

the control group. Bars falling to the left suggest lower FA (negative deviation). Panel B: 

Location of the effects. Panel C: Post-hoc analyses on the rest of DTI metrics (i.e., AD, 

RD, and MD along the X-axis) only for those tracts previously showing a significant FA 

difference (ns, non-significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001). The Y-axis reflects 

site-adjusted AD, RD, and MD values after being residualizing for sex, age and age2. Tract 

abbreviations are the same as in Fig. 1.
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Fig. 4. 
Area under the curve (AUC) of each of the 5-fold CV estimations on the SVM classifier for 

every group.
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Fig. 5. 
Mean and standard error of the importance of each feature in the SVM classifications. Note 

that the Y-axis is sorted by importance of each feature and thus it differs between groups. 

Red and blue colors suggest positive or negative contributions to the average AUC on the 

classification.
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Table 1

Age and sex distribution of each group (mean, SD).

N Age Range Females

Control group 333 30.7 (9.76) 18 – 55 141

Cocaine dependent group 147 39.8 (9.14) 19 – 58 22

Subset co-dependent on nicotine 109 39.0 (9.22) 19 – 58 16

Methamphetamine dependent group 132 30.9 (7.67) 18 – 54 46

Subset co-dependent on nicotine 115 31.2 (7.77) 18 – 54 35

Nicotine dependent group 189 29.0 (9.94) 18 – 54 81
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