
UC Davis
UC Davis Previously Published Works

Title
Effects of system design and Co-product treatment strategies on the life cycle 
performance of biofuels from microalgae

Permalink
https://escholarship.org/uc/item/8m08c3bb

Authors
Zhang, Yizhen
Kendall, Alissa

Publication Date
2019-09-01

DOI
10.1016/j.jclepro.2019.05.137

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8m08c3bb
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


This manuscript is the pre-print form of the article published as: Y. Zhang,
A.  Kendall  (2019)  Effects  of  system  design  and  Co-product  treatment
strategies  on  the  life  cycle  performance  of  biofuels  from  microalgae,
Journal  of  Cleaner  Production,  Volume  230:  536-546.
https://doi.org/10.1016/j.jclepro.2019.05.137.

Effects of System Design and Co-product 
Treatment Strategies on the Life Cycle 
Performance of Biofuels from Microalgae

Yizhen Zhang a,b and Alissa Kendall a

a. Institute of Transportation Studies, University of California, 
Davis, US 95616

b. State Key Joint Laboratory of Environment Simulation and Pollution 

Control, School of Environment, Tsinghua University, China 
100084

Abstract

This study presents a life cycle greenhouse gas and energy 

assessment for two algal biofuel production pathways: biodiesel 

produced through lipid extraction (LE) and renewable diesel 

produced through hydrothermal liquefaction (HTL). The two 

production pathways generate different co-products, which are 

handled through allocation in life cycle assessment-based analyses. 

The method and assumptions used for co-product allocation effect 

the performance of the analyzed fuels, and were thus examined 

through scenario analysis; five co-product allocation strategies were

tested for the LE pathway and six were tested for the HTL pathway. 

After allocation, the carbon intensity of renewable diesel varied from

36 gCO2e/MJ to 54 gCO2e/MJ, while the carbon intensity of biodiesel 

ranged, remarkably, from -59 gCO2e/MJ to 125 gCO2e/MJ. The 

optimal algal oil production pathway is determined by comparing 

open-loop and closed-loop systems, considering not only the 
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estimated net environmental impacts, but also the confidence or 

uncertainty of those outcomes. 

Keywords 

Hydrothermal liquefaction, Lipid extraction, Close loop system, 
Displacement, LCA

1. Introduction

Interest in biofuels derived from microalgae as an alternative to 

traditional energy crops is growing because it may avoid some of 

the consequential effects of terrestrial oil crops (Chisti, 2007). 

Besides high productivity and oil content, microalgae require 

significantly less land area and do not require fertile cropland. 

However, microalgae require a large amount of fertilizer during 

cultivation to achieve high oil productivity. And the energy input 

during harvesting and dewatering of the biomass is intensive. Many 

life cycle assessment (LCA) studies of algal oil production have been

done to evaluate environmental impacts and identify energy 

intensive processes of the system with various assumptions for 

growth parameters and oil extraction or conversion technologies. 

Results from these studies show greenhouse gas (GHG) emissions 

from algae biodiesel vary from 20 to 500 g CO2e /MJ, while the 

energy return on energy investment (EROI) of algae biodiesel 

ranges from 0.2 to 6 (Quinn & Davis, 2015). This range of values is 

the result of both method- and model-induced variability and real 

variability in the performance of current and simulated future 
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systems (Yuan, Kendall, & Zhang, 2014). 

The sources of method and model-induced variability are many, and

among them the methods used to treat co-products stand out as 

requiring additional study and guidance. Most biofuel production 

processes are multi-functional systems that produce biofuel 

products along with economically valuable co-products, such as 

algal biomass residual (algal cake) that may be used as animal feed 

and fertilizers. Instead of assigning environmental burdens solely to 

the biofuel, some methods are required to represent impacts 

attributable solely to the biofuel, or distribute the environmental 

impacts between the biofuel and co-products. In the LCA of a biofuel

production system, practitioners often face the challenge of co-

product allocation, because more than one method can be used to 

handle co-products and there is no commonly shared understanding

on when different methods are applicable or preferable (Flysjö, 

Cederberg, Henriksson, & Ledgard, 2011). 

The allocation methods used for partitioning environmental burdens 

to primary products such as biofuels and co-products and the 

assumption of how co-products are utilized can significantly affect 

the results of a LCA (Hoefnagels, Smeets, & Faaij, 2010). Moreover, 

different allocation methods might be favored by different co-

product utilization assumptions, meaning the choice of allocation 

method might be affected by utilization choices (Zaimes & Khanna, 

2014). While harmonizing allocation methods across different 

studies could address this, due to differences in system boundaries, 
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pathway designs, and the quantities and quality of products, this is 

often impossible. Numerous studies have tested the weaknesses 

and advantages of each allocation method, and sometimes a hybrid 

allocation approach is employed to present a realistic utilization of 

the energy products and co-products. However, there is no 

agreement on which allocation method is the best for biofuel LCA, 

and comparing several allocation approaches is recommended for 

case studies (Cherubini, Strømman, & Ulgiati, 2011; ISO14040, 

2006). 

This  research  explores  the  real,  method-induced,  and  model-

induced  variability  of  algal  biofuels  by  comparing  two  algal  fuel

pathways:  renewable  diesel  from hydrothermal  liquefaction  (HTL)

and  biodiesel  from  a  solvent-based  lipid  extraction  (LE)  process.

Each of these pathways generates different co-products that can be

utilized in different ways.  

2. Materials and Methodology

2.1. Goal and Scope

The objective of this study is to evaluate and compare the life cycle 

GHG emissions and energy performance of biodiesel and renewable 

diesel produced from microalgae through two technology pathways 

under different co-product treatment strategies using a process-

based, prospective LCA approach. LCA is a technique for evaluating 

the environmental aspects and potential environmental impacts of a
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product throughout its life cycle, considering the full supply chain of 

inputs (ISO14040, 2006). Life cycle energy and GHG assessments 

are a narrow application of the LCA method, since full LCA considers

a suite of impact categories.

The research presented here applies this narrow form of LCA, 

accounting for energy, direct water consumption (meaning indirect 

and upstream water use are not accounted for) and global warming 

potential (GWP).  Energy and water consumption are reported 

simply as inventory values (e.g. MJ of energy and liters of water). 

GHGs are reported in units of CO2-equivalent (CO2e). The IPCC’s 

100-year GWPs are used to convert non-CO2 emissions into CO2e (28

for biogenic CH4, 30 for fossil CH4, and 265 for N2O) (IPCC, 2013). 

This means that 1 kg of methane released is equivalent to 30 kg of 

CO2 released when assessed over a 100 year period.

2.2. System Definition and Boundary

The system boundary of the two pathways (the LE pathway and HTL

pathway) is illustrated in Figure 1. The scope of this analysis is 

“cradle-to-gate,” meaning that the analysis stops at the biorefinery 

gate. Thus, the life cycle stages included in the analysis are 

microalgae cultivation in open raceway ponds (ORPs), algae 

harvesting and dewatering, biocrude production via LE or HTL, 

conversion of bio-crude oil into the final energy product (biodiesel or

renewable diesel), and utilization of co-products. Figure 1 describes 

the steps in each of the considered pathways.
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The processes of algae cultivation, harvesting and dewatering, 

drying, oil extraction, and utilization of algal cake occur within the 

same facility. From there the crude oil is transported to a nearby 

refinery for conversion to biodiesel or renewable diesel. 

Construction, repair and maintenance of infrastructure, production 

of equipment and waste management are excluded from the system

boundary. The functional unit of analysis is 1 MJ of algal biofuel, 

although 1 kg of dry biomass is used as a modeling unit of analysis 

to assess the material and energy consumption in each unit process

in the life cycle inventory (LCI) assessment.

2.3. The Microalgae Cultivation, Harvesting and Dewatering

The cultivation model of the microalgae Scenedesmus dimorphus, 

grown in ORPs, is adopted from previous work (Yuan et al., 2014). 

The production facility of 400 acres of open raceway ponds are 

assumed to be located in southern New Mexico (which determines 

water quality, groundwater depth for water pumping and 

evaporation rates), with pond dimensions of 100 meters by 10 

meters and a water depth of 0.3 meters.

In previous research (Yuan et al., 2014), four combinations of 

technologies for harvesting and dewatering were considered, 

including bioflocculation followed by dissolved air flotation (DAF) 

and centrifugation, flocculation with polymer followed by DAF and 

centrifugation, flocculation with alum followed by DAF and 

centrifugation, and centrifugation only. The most efficient 
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harvesting and dewatering technology route was found to be 

bioflocculation following DAF and centrifugation, because 

bioflocculation required no chemical inputs. These are used in the 

current model as the default harvesting and dewatering route. We 

assume no chemicals are used for bioflocculation. After dewatering, 

the density of microalgae biomass is assumed to be 180 g/L. Table 1

summarizes key parameter assumptions, material inputs, and 

energy inputs during the algae cultivation and harvesting stage.

2.4. Algae Renewable Diesel Production through HTL Pathway

HTL is a thermochemical process involving the reaction of biomass 

in water at subcritical temperatures (below 374 °C) and high 

pressure (10–25 MPa) for a certain reaction time with or without the 

use of a catalyst (Ross et al., 2010). HTL yields a product typically 

referred to as bio-crude or bio-oil along with gaseous, aqueous 

(liquid) phase, and solid phase (char) streams. In order to model the

HTL process under different operation conditions, a mathematical 

kinetic HTL model was employed (P. J. Valdez, Tocco, & Savage, 

2014). The LCA model includes nutrient recycling and six co-product

allocation strategies.

2.4.1 HTL modeling

The kinetic HTL model developed by Valdez et al. (2014) estimates 

product quantities including crude oil, aqueous phase, gas phase 

and solid phase as a function of the characteristics of the algae 

feedstock (P. J. Valdez et al., 2014). The model provides four 
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operating conditions, 250°C, 300°C, 350°C and 400°C, with 

retention times ranging from 1 to 90 minutes. The HTL product 

yields reflect the biochemical composition of microalgae and the 

operating conditions of the HTL system. Unfortunately, this kinetic 

model is not capable of defining the properties of each product. 

Instead the C and N content in each product are estimated from 

empirical data in the literature (as described in section 2.6.). Below 

some of the key features and assumptions beyond the kinetic 

modeling of the HTL technology pathway are described:

 HTL Process Model: The HTL process energy demand is 

assumed to be equal to the energy needed to heat the 

medium to operation temperature from ambient temperature 

at 20°C (Fortier, Roberts, Stagg-Williams, & Sturm, 2014). A 

spiral tube heat exchanger is integrated in the system, to re-

heat the incoming biomass with the outgoing streams from 

HTL reactor, assuming 80% of HTL heat can be recovered with

85% efficiency (Delrue et al., 2013).  Additional energy is 

needed to meet process energy demands; grid electricity is 

used for pumping, and natural gas (NG) is used for the 

remaining heat demand not met by heat re-circulation. NG is 

assumed to be combusted in a boiler with 85% efficiency.  

 HTL Products Separation. There is currently no consistent 

method used for separation of the HTL products (Xiu & 

Shahbazi, 2012). Various methods including water separation, 

solvent separation, filtration, vacuum and centrifugation were 
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reported to separate solid and oil under lab conditions (Huang 

et al., 2013; Zacher, Olarte, Santosa, Elliott, & Jones, 2014). 

Due to the inconsistency and lack of data for scaled 

application, the separation process is omitted in this analysis. 

 Bio-crude Upgrading. Bio-crude from HTL has high potential 

for co-processing with petroleum crude oil in conventional 

refineries to produce renewable transportation fuels such as 

renewable diesel, which has the identical properties as 

conventional diesel (Jensen, Hoffmann, & Rosendahl, 2016). 

However, the bio-crude has higher oxygen, nitrogen and sulfur

content than conventional crude oil. Because of the high 

oxygen content, an additional process for removing oxygen 

from the bio-crude, deoxygenation, is recommended before 

the co-processing (Xiu & Shahbazi, 2012). We assume 

biocrude oil can be co-processed directly with petroleum 

crude in a refinery (Jensen et al., 2016). The upgrading 

process of biocrude oil to renewable diesel is modeled using 

the refinery process of crude oil from the GREET model (Palou-

Rivera & Wang, 2010). Inputs and outputs of the HTL pathway 

are summarized in Table 2.

2.4.2 Co-products from HTL

When using HTL as the oil conversion technology, co-products 

including the nutrient-rich aqueous phase, gaseous phase and bio-

char, can all be reused within the production system to reduce the 

primary fertilizer, CO2 and energy inputs demand by the system

9



(Fortier et al., 2014; Frank, Elgowainy, Han, & Wang, 2013; Grierson,

Strezov, & Bengtsson, 2013; Liu et al., 2013; Ponnusamy, Reddy, 

Muppaneni, Downes, & Deng, 2014). Energy recovery may occur 

through the combustion of char and bio-crude to generate heat. The

nutrient-rich liquid stream can be recycled into the cultivation pond 

as a nutrient supply for microalgae growth, while the gaseous 

fraction is composed mostly of CO2 which can be reused for algae 

cultivation. Detailed modeling assumptions for each co-product are 

described in the supplementary material. 

2.5. Algae Biodiesel Production through the LE Pathway

Lipid extraction is a widely modeled microalgal biodiesel production 

pathway. In contrast to lipid extraction from dry biomass, a wet lipid

extraction technology is preferred for microalga because it avoids 

extensive thermal input for drying while still yielding relatively high 

crude oil. The extracted lipid is assumed to be transported and 

processed in a biorefinery. The algal biomass remaining after LE 

(algal cake) and glycerol co-produced from transesterification are 

two co-products that can be used in various applications.

2.5.1 LE Pathway Modeling

The model of lipid extraction from wet algae biomass using hexane 

extraction is adopted from a previous study (Yuan et al., 2014). 

Transesterification is the conversion technology used to convert 

crude algal oil to biodiesel. With production of 1 kg dry algae 

biomass, the yields of biodiesel, glycerol and algal cake are 5.75 MJ, 
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17 g and 0.84 kg, respectively.

2.5.2 Co-products from LE Pathway

Algal cake and glycerol are co-products from the LE and 

transesterification route. The modeled algal cake is composed of 8%

lipid, 39% protein, 43% carbohydrate and 10% ash (dry weight 

based). This nutrient rich algal cake has great potential to be used 

for animal feed, fish feed or organic fertilizer; the energy and 

nutrients can also be recycled and reused in the microalgae 

cultivation processes through energy recycling technologies. 

Glycerol can displace synthetic glycerol with a 1:1 mass ratio (Yuan 

et al., 2014), though currently glycerol from biodiesel production is 

the dominant source in the U.S. market. 

2.6. Co-product Treatment Methods

Allocation methods include partitioning methods and system 

expansion that expands the product system to include the 

displacement effects of a co-product on substitutable products in 

the market (ISO14044, 2006), where the displacement method and 

economic allocation are more recommended by several studies and 

economists than energy and mass based allocation methods

(Lardon, Hélias, Sialve, Steyer, & Bernard, 2009; Wang, Huo, & 

Arora, 2011). An alternative to utilizing co-products in the market is 

the reuse and recycling co-products within the production system to

reduce material inputs, leading to a closed-loop production system. 

A closed-loop system avoids uncertainties from co-product 
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allocation issues and is advocated under the concept of circular 

economy (Murray, Skene, & Haynes, 2017). We have considered 

potential applications of co-products from the two algae biofuel 

pathways, and investigated different treatment methods in the 

following section.

2.6.1 Co-product Treatment - HTL

Six co-product utilization scenarios and four co-product allocation 

strategies based on co-products of the HTL process are investigated 

(Table 3). Recycled nutrients are assumed to displace synthetic 

fertilizers. Recycled CO2 gas for algae cultivation displaces CO2 that 

would otherwise be piped in. The biochar is the only co-product that 

requires allocation strategies. System expansion methods are the 

default co-product allocation approach, but economic allocation and 

energy allocation are also included. 

Scenario 1: Economic Allocation

Economic allocation is an alternative approach to displacement 

calculations; it partitions the impacts of a production system among 

co-produced products based upon the economic value of each 

product. In this study, the price of renewable diesel is assumed to 

have the same market value of conventional diesel of $2.96/gallon

(DOE, 2018).  

The price of biochar is assumed to be equal to or less than agrichar 

and charcoal, reported in a large range from $0.08/kg to $13.5/kg. A
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mean value of $2.65/kg of biochar was used (Jirka & Tomlinson, 

2013; Kulyk, 2012).

Scenario 2: Energy Allocation

Energy allocation is similar to economic allocation, but partitions the

impacts based on the energy value of each product. The higher 

heating value (HHV) of biochar and crude oil are used to calculate 

the energy content in each. In this scenario, the environmental 

impacts are allocated based on energy content divided between 

crude oil and biochar, and upgrading of crude oil to renewable diesel

is included separately.

HHV of biochar is reported to range from 5 to 15 MJ per kg (Barreiro,

Prins, Ronsse, & Brilman, 2013; Jena, Vaidyanathan, Chinnasamy, & 

Das, 2011; Neveux et al., 2014), the HHV of crude oil ranges from 

33.6 to 37.3 MJ per kg (Barreiro et al., 2013; Biller, Ross, Skill, & 

Llewellyn, 2012; Vardon, Sharma, Blazina, Rajagopalan, & 

Strathmann, 2012), and the HHV of renewable diesel is assumed to 

be the same as conventional diesel at 37 MJ/kg.  A conservative 

value as 7 MJ/kg is used for HHV of biochar and 35.7 MJ/kg is used 

for crude oil. 

Scenario 3: Mass Allocation

The mass allocation method partitions environmental impacts based

on mass of biochar and biodiesel. The mass of biochar and crude oil 

resulting from HTL varies under different operation conditions as 
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modeled. The renewable diesel mass is estimated using bio-crude 

upgrading efficiency at 99% (Palou-Rivera & Wang, 2010). 

Scenarios 4: System Expansion

Biochar is used as a soil amendment that can reduce 10% of 

fertilizer application and 30% of N2O emission from the field as 

described previously. Fertilizer inputs for California corn production 

are used for evaluating the environmental benefits of biochar as soil

amendment. The GHG emission from fertilizer application on a 

typical California corn farm is 270 kg CO2e per hectare with 4.54 kg 

N2O emission per hectare (Zhang & Kendall, 2016). Fertilizer input 

data are adopted from University of California–Davis (UCD) cost and 

return studies (Brittan, Munier, Klonsky, & Livingston, 2004; Brittan, 

Schmierer, Munier, Klonsky, & Livingston, 2008; Frate, Marsh, 

Klonsky, & De Moura, 2008; Vargas et al., 2003). The potential for 

long-term carbon sequestration is not considered.

Scenario 5: Closed-loop co-product utilization

Biochar is combusted in a combined heat and power (CHP) unit and 

displaces natural gas and grid electricity. The efficiency of CHP to 

convert biochar into electricity and heat is 36% and 50%, 

respectively. The energy content in biochar is estimated using the 

HHV of biochar at 7 MJ/kg (Barreiro et al., 2013; Jena et al., 2011; 

Neveux et al., 2014). 

Scenario 6: Closed-loop co-product utilization 
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Biochar is combusted in a boiler to produce heat and displace 

natural gas use on site. The boiler operates at 85% efficiency.  

2.6.2 Co-product Treatment - LE

As described in table 3, four utilizations of algal cake are modeled: 

displacement of dairy cattle feed, displacement of fishmeal, on-site 

anaerobic digestion (AD) for energy and nutrient recycling, and on-

site HTL of biomass residual for energy and nutrient recycling. 

Glycerol is treated simply in these scenarios; either through 

economic allocation in Scenario 1, or displacement assuming one to 

one substitution for synthetic glycerol. The treatment of algal cake 

is described for each scenario below.

Scenario 1: Economic Allocation

Economic allocation is based on the market price of biodiesel and 

glycerol, which are biodiesel and glycerol use $3.48/gallon (DOE, 

2018) and $0.11/kg (Yuan et al., 2014), respectively. The market 

price of algal cake is estimated based on the Feed Value Calculator 

developed by Saskatchewan Ministry of Agriculture assuming the 

algal cake is used as cattle feed (2012). The Feed Value Calculator 

calculates the relative value of crude protein, total digestible 

nutrients (TDN), phosphorus, calcium and moisture content based 

on the market price of reference feeds. In the current estimation, 

the 2017 average price of canola meal and barley grain in US were 

used as reference. The algal cake was assumed to be sun dried to 

40% moisture content before transportation and use. A TDN value 
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for algal cake of 78% was used for price estimation (MišurCoVá, 

KráčMar, Klejdus, & Vacek, 2010). The market value of algal cake is 

estimated as $175 per metric tonne based on its biomass substrate 

characteristics. 

Scenario 2: System Expansion - Displacement of California Dairy 

Cow Feedstuffs

Based on review of the existing literature, no research or 

assessment of the displacement value for algal cake in California 

exists.  To conduct this calculation a feed optimization tool tailored 

to California is identified, PCDAIRY_2015_USA (Least Cost and Ration

Analysis Programs for Dairy Cattle), referred to hereafter as 

PCDAIRY (Robinson & Ahmadi, 2015). PCDAIRY uses an economic 

optimization based on the price of available feeds to recommend a 

balanced ration at lowest cost. To identify feedstuffs likely to be 

displaced by the introduction of algal cake, PCDAIRY is run with and 

without algal cake. By doing so, the consequential change induced 

by introducing algal cake into the feed market in California can be 

estimated.  Of course if algal cake is introduced in very large 

volumes, the price of algal cake and competing feeds could change; 

these displacement calculations implicitly assume that the 

introduction of algal cake from the simulated facility will not have a 

significant effect on the price of other feeds. Assumptions and 

operating parameters that were used in the PCDAIRY tool can be 

found in supplementary material.
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Table 4 was calculated using PCDAIRY, it reflects a model run with 

an optimization goal of milk sale profit given fixed nutrient 

composition and prices for each feed. Based on PCDAIRY 

calculations, the addition of algal cake in a standard dairy cattle 

feed ration would result in small changes to all ration constituents 

but notable increases in corn silage, and decreases in alfalfa hay 

and dry distiller’s grains and soluble (DGS). These changes 

constitute the effects of adding algal cake to a dairy feed ration and 

will be used to calculate its displacement value.

Scenario 3: System Expansion- Displacement of Fishmeal

Lipid-extracted algal biomass is a suitable candidate to partially 

replace the use of fishmeal in fish farming.  It is found that replacing

up to 10 percent of the crude protein in fishmeal and soybean 

protein by lipid-extracted algal biomass (including species Navicula 

sp., Chlorella sp. and Nannochloropsis salina) residual does not 

lower the growth rate or the feed efficiency in fish farming 

applications (Patterson & Gatlin, 2013). The displacement ratio of 

algal biomass to fishmeal in this study is estimated at 0.975 based 

on protein content (39% for algal cake and 40% for fishmeal). Based

on previous LCAs, a primary energy requirement of 19.85 MJ and 

emissions of 1.35 kg CO2e are associated with the production of 1 kg

of fishmeal (Patterson & Gatlin, 2013; Pelletier et al., 2009).

Scenario 4 and 5: Recycling and Reuse in a Closed-loop System

Two recycling technologies, AD and HTL, are tested for scenarios 4 
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and 5. AD produces biogas, suitable for use in a CHP unit, and 

digestate, from which the liquid fraction is recovered and fed into 

the ORPs for water and nutrient recycling, and the solid fraction is 

composted and used off-site as a nutrient-rich soil amendment. 

Just as when HTL is used to process whole algae, HTL applied to 

algal cake produces a CO2-rich gaseous stream, a nutrient-rich 

aqueous stream, a biochar and a biocrude product. The nutrient rich

stream is used for nutrient recycling while biocrude and biochar are 

combusted in a boiler for heat generation. The results for Scenario 4

and 5 are adopted from previous study by Zhang et al. (Zhang, 

Kendall, & Yuan, 2014).

2.7. Data Sources

The primary data for modeling parameters such as the algae growth

model, energy inputs for cultivation, harvesting and HTL and 

upgrading inputs, are based on peer-reviewed literature as 

described in each section. The reference LCI data including fertilizer 

production, gasoline production, grid electricity and natural gas 

production and related emissions come from the ecoinvent 

Database, the Gabi Professional database and the U.S. LCI database 

accessed through Gabi 6 software (Ecoinvent, 2011; National 

Renewable Energy Laboratory & PE International, 2012). LCI data 

are provided in supplementary material.
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3. Results and Discussion

3.1. Effects of HTL Operation Conditions without Co-product 

Allocation 

The effects of operation conditions on renewable diesel yield, 

primary energy consumption and GWP100 of the system before 

allocation are shown in figure 2. Among all tested conditions, the 

yield of renewable diesel is the highest at temperatures of 350°C for

15 minutes. The lowest primary energy consumption and life cycle 

GHG emissions from 1 MJ renewable diesel production occurred at 

temperatures of 300°C and 350°C with retention time from 15 

minutes to 60 minutes. Operating at 350°C for 15 minutes is used 

as the optimal condition because a shorter retention time is 

preferred for lower cost at industrial facilities. The following sections

report results using this operation condition as default. 

Table 5 shows process based contributions to energy and GWPs. 

Cultivation and harvesting of microalgae is the most energy 

intensive stage for renewable diesel production, predominately due 

to the electricity use for pumping. These values reflect reduced 

fertilizer inputs due to nutrients recycling from the aqueous phase.  

The upgrading stage has higher GHG emissions and energy use than

HTL processing. Before allocation of co-products, the GWP100 and 

total primary energy input for renewable diesel is 0.056 kg CO2e/MJ 

and 0.96 MJ/MJ, respectively. 
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3.2. Effects of Co-product Treatment on the HTL Pathway and 

LE Pathway

Figure 3 reports the results for un-allocated energy and emissions 

from the HTL pathway and Le pathway along with results from 

different co-products treatment scenarios. 

For the case of HTL pathway, economic allocation leads to the 

lowest energy and life cycle GHG intensity (or carbon intensity) for 

renewable diesel among all allocation approaches because of the 

high value estimated for biochar. When the price of biochar is set at 

$0.5/kg instead of $2.65/kg (default value), the economic allocation 

results in approximately equal carbon intensity of biochar to other 

allocation methods. Second to economic allocation in terms of 

favorable carbon intensity is the substitution of biochar for soil 

amendments. Depending on the long term carbon sequestration 

potential of biochar in soils, this use could result in even lower 

carbon intensity.  In terms of closed-loop utilization, combustion in a

CHP is slightly preferable to combustion in a boiler for heat 

generation only. Overall, the allocation approach has relatively small

effects on the final results due to the small yield of biochar from 

HTL.  This suggests the findings for renewable diesel produced 

through the HTL pathway are reasonably robust to changes in the 

value of co-products and the allocation method chosen.

Without  allocation  of  co-products,  biodiesel  production  from  LE

requires  much  higher  energy  (3.52  MJ/MJ)  than  renewable  diesel
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from HTL, because the yield of crude oil from 1 kg biomass under

the  LE  pathway  is  less  than  the  crude  oil  produced  under  HTL.

However, biodiesel is very sensitive to the treatment of algal cake

and allocation  strategies  due to  the  large quantity  of  algal  cake

production  (detailed  results  can  be  found  in  the  supplementary

material).  For  biodiesel  production,  using  algal  cake  as  feed

(scenarios  1,  2  and  3)  show higher  environmental  benefits  than

closed-loop nutrient and energy recycling scenarios (scenario 4 and

5). There are large uncertainties related to the algal cake treatment,

such as  the  price,  the  nutrient  content,  the  feasibility  to  use  as

animal feed, and perhaps additional processing. 

Comparing the recycling strategies of co-products in a closed-loop

and selling co-product in an open-loop system, a closed-loop system

design  avoids  the  allocation  process  and  results  in  fewer

uncertainties of environmental impacts, while the drawback is the

loss of potential economic value (as well as the environmental best-

use) from co-products. In general, the HTL pathway results in more

consistent  environmental  performance  results  and  is  subject  to

fewer effects from co-product treatment strategies. This is because

HTL yields a very small quantity of co-product (biochar) that can be

used outside the production system, reusing most non-fuel products

within the system. While the LE pathway exhibits higher uncertainty,

it  may also  hold  promise  for  higher  profits  from selling  the  high

value algal cake as animal feed, as illustrated in Figure 3 under the
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bars for Economic Allocation.

4. Uncertainties and Discussion

4.1. Uncertainty of Nutrient Recycling Capacity on HTL Pathway

Microalgae cultivation with recycling of the aqueous phase and 

gases from HTL may introduce heavy metals and inorganic 

contaminants into the growth media. However, there are no 

consistent estimates of nutrient content in the aqueous phase, nor 

are there studies that have definitively proven the feasibility of 

recycling the aqueous product to the ORP without affecting algae 

growth performance due to different experimental conditions and 

limited data (Biller et al., 2012; Jena et al., 2011; Liu et al., 2013; 

López Barreiro et al., 2014; Peter J Valdez, Nelson, Wang, Lin, & 

Savage, 2012). To better estimate the effects of nutrient recycling 

rates used in the ORP, three recycling rates for N and P from the 

HTL aqueous phase are tested: the low rate assumes 15% of total 

input N and 20% of total P can be reused for cultivation; the default 

rate assumes 50% of total N and 80% of total P can be reused; and 

the high recycling rate assumes 95% of total N and 95% of total P 

can be reused for cultivation. Effects on the HTL production system 

(before co-product treatments) are shown in figure 4.

Without allocation of co-products, HTL system GHG emissions range 

from 44.2 g CO2e to 67.2 g CO2e to produce 1 MJ renewable diesel 

from the low rate case to high rate case; while the total energy 
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input ranges from 1.10 MJ/MJ to 0.85 MJ/MJ. 

The impact of heavy metals and inorganic contaminants on algae 

growth and the fate of heavy metals need to be better understood 

in order to evaluate the potential or limits on recycling HTL 

products.

4.2. Uncertainty of Algal Cake Price on LE Pathway

Sensitivity analysis of life cycle displacement credits of algal cake at

different prices is conducted to understand the potential effect. At 

lower prices, algal cake offsets more GHG emissions and energy 

inputs, meaning the credit attributed to the algal biodiesel 

production system is higher (figure 5). At a lower price, algal cake 

displaces larger quantities of dry DGS in the feed ration, which has a

higher market price and involves higher environmental impacts to 

produce (as shown in supplementary material). This sensitive 

response of environmental impacts to prices is critical to the life 

cycle performance of biodiesel produced from LE pathway. However,

estimating the market price of algal cake as feed is challenging to 

this research, because algal cake is not yet a commercial product in 

the feed market. Moreover, algal cake may concentrate chemical 

elements which can be toxic to animal and human health, 

depending on algae species, cultivation or conversion processes. 

Thus, the feasibility of using algal cake used for feed still requires 

further research.
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5. Conclusion

This study conducted an LCA model to examine life cycle GHG 

emissions and energy use of biofuel production from microalgae via 

two pathways, a HTL renewable diesel and a LE biodiesel. Before co-

product allocation, the GHG emissions from renewable diesel (HTL) 

and biodiesel (LE) were 55 gCO2e/MJ and 226 gCO2e/MJ, 

respectively. After allocation, the carbon intensity of renewable 

diesel varied from 36 gCO2e/MJ to 54 gCO2e/MJ, while the carbon 

intensity of biodiesel had a dramatic range from -59 gCO2e/MJ to 

125 gCO2e/MJ. Not surprisingly, a comparison of these two pathways

subject to a variety of scenarios that varied the co-product 

utilization strategies and allocation methods, suggest that more 

robust carbon intensity estimates are achievable when co-products 

have little contribution to the performance of the biofuel, or when 

they are internally recycled. 
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Figure Captions 

Figure 1 Figure 1 System Description of Algal Biofuel Production through 
LE and HTL Pathway

Figure 2 Effects of operation conditions on renewable diesel yield, 
GWP100 and primary energy consumption

Figure 3 GHG emissions (A) and Total Primary Energy (B) for Biodiesel and 
Renewable Diesel Production with Co-product Treatment. For reference, 
GHGs from petroleum diesel is approximately 95 g CO2e/MJ

Figure 4 Effects of Nutrient Recycling Capacity on GHGs and Energy per MJ
Renewable Diesel Production (Before co-product treatments)
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Figure 5 Sensitivity Analysis of Avoided CO2e Emissions and Total Energy 
by 1 kg Algal Cake at Different Prices
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Table 1 Growth model assumptions and input summary for cultivation, 
harvesting and dewatering (all parameters are dry weight based)

Modified Growth Model

Parameter settings Unit Input Data Source

Growth rate g/m2/day 25.00 (Yuan et al., 2014)

Lipid content wt% 25.00 (Yuan et al., 2014)

Protein wt% 32.15 (Yuan et al., 2014)

Carbohydrate wt% 34.85 (Yuan et al., 2014)

Ash wt% 8.00 (Yuan et al., 2014)

C g/kg biomass 500.00 (Yuan et al., 2014)

N g/kg biomass 52.50 (Yuan et al., 2014)

P g/kg biomass 12.92 (Yuan et al., 2014)

CO2 requirement kg/kg biomass 1.83 (Yuan et al., 2014)

CO2 use efficiency 0.87 (Yuan et al., 2014)
Ammonium nitrate

(NH4NO3) requirement
kg/kg biomass 0.15 modeled

Triple superphosphate
(Ca(H2PO4)2) requirement

kg/kg biomass 0.10 modeled

Energy for CO2 injection MJ/kg biomass 0.18 (Yuan et al., 2014)

Energy for paddlewheel MJ/kg biomass 0.68 (Yuan et al., 2014)

Energy for water pumping MJ/kg biomass 0.78 (Yuan et al., 2014)
Energy for water pumping

within the system
MJ/kg biomass 0.76 (Yuan et al., 2014)

Mixing energy for
flocculation

MJ/kg biomass 0.0032 (Yuan et al., 2014)

Energy for DAF MJ/kg biomass 0.1203 (Yuan et al., 2014)
Biomass recovery from

harvesting
90% (Yuan et al., 2014)

Biomass recovery from
dewatering

96% (Yuan et al., 2014)

Electricity for
centrifugation

MJ/kg biomass 0.576 (Yuan et al., 2014)

Polymer Use for DAF g/kg biomass 20 (Yuan et al., 2014)
Water content after

dewatering
L/kg biomass 5.56 (Yuan et al., 2014)

Water Evaporation rate L/m2/day 5.97 (Yuan et al., 2014)

Evaporation Loss L/kg biomass 238.66 (Yuan et al., 2014)

Pond Area ha 400.00 (Yuan et al., 2014)

Annual Biomass Yield tonne/ha/yr 75.00 (Yuan et al., 2014)
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Table 2 Inputs and Outputs Summary of HTL Pathway at 350°C for 15 
minutes (dry weight based)

Parameter Unit Value Data source
HTL Electricity MJ/kg biomass 0.001 modeled

HTL Natural Gas (NG) MJ/kg biomass 0.003 modeled
Biocrude Oil Kg/kg biomass 0.420 modeled
Gas Phase Kg/kg biomass 0.014 modeled

Aqueous Phase Kg/kg biomass 0.485 modeled
Solid Phase Kg/kg biomass 0.081 modeled

Pumping Electricity MJ/kg biomass 0.001 (Yuan et al.,
2014) 

Oil Upgrading Electricity MJ/kg biomass 0.05 (Palou-
Rivera &
Wang,
2010)

Oil Upgrading NG MJ/kg biomass 0.80 (Palou-
Rivera &
Wang,
2010)

Oil Upgrading H2 MJ/kg biomass 0.20 (Palou-
Rivera &
Wang,
2010)

Oil Upgrading Gasoline MJ/kg biomass 0.002 (Palou-
Rivera &
Wang,
2010)

Oil Upgrading Water Gallon/kg
biomass

0.16 (Palou-
Rivera &
Wang,
2010)

Renewable Diesel MJ/kg biomass 15.05 modeled
N recycled from Aqueous phase g/kg biomass 26.25 modeled
P recycled from Aqueous phase g/kg biomass 10.33 modeled
Ammonium nitrate input after

recycling
kg/kg biomass 0.08 modeled

Triple superphosphate input
after recycling

kg/kg biomass 0.02 modeled
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Table 3 Scenario Description of Co-product Treatment for HTL Pathway 
and LE Pathway

Pathwa
y

Produc
ts

Scenario
1

Scenario
2

Scenario
3

Scenario 4 Scenario 5 Scenario 6

HTL

Bio-
char

Economi
c

Allocatio
n

Energy
Allocatio

n

Mass
Allocatio

n

Soil
Amendment
Displaceme

nt

Combusted in
CHP* to

produce Heat
and Electricity

Combusted in
Boiler to

produce Heat

Aqueo
us
Phase

Recycled Recycled Recycled Recycled Recycled Recycled

CO2

Reused
for

Cultivatio
n

Reused
for

Cultivatio
n

Reused
for

Cultivatio
n

Reused for
Cultivation

Reused for
Cultivation

Reused for
Cultivation

LE

Glycer
ol

Economi
c

Allocatio
n

Glycerol
Price

Displace
Glycerol
1:1 mass

Displace
Glycerol
1:1 mass

Displace
Glycerol 1:1

mass

Displace
Glycerol 1:1

mass
--

Algal
Cake

Economi
c

Allocatio
n Cattle

Feed
Price

Displace
CA Dairy

Cattle
Feed

PCDairy
Model

Displace
Fishmeal
Protein
Based

Recycle
Nutrients

and Energy
in AD

Recycle
Nutrients and
Energy in HTL

--

*CHP=Combined heat and power system
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Table 4 California Dairy Feed Rations with Algal Cake Addition ($175/ton, 
Dry Matter Based)

  No Algal Cake With Algal Cake
Algal cake (kg/day) 0.00 1.36
Corn silage (kg/day) 3.89 4.44
Wet GDS (kg/day) 3.79 3.81
Barley (kg/day) 5.50 5.88
Alfalfa hay (kg/day) 4.68 4.14
Almond  hulls&  shell
(kg/day)

3.03 3.04

Dry DGS (kg/day) 2.72 0.23
Beet pulp (kg/day) 0.00 0.80
Dicalcium  phosphate
(kg/day)

0.07 0.00

Limestone (kg/day) 0.05 0.11
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Table 5 Life Cycle GHGs and Energy by Process per MJ Renewable 
Diesel Production* without co-product allocation

Cultivation &
Harvesting

HTL
processing

Upgradi
ng

Sum

Primary Energy (MJ/
MJ)

8.51E-01 4.66E-04 1.05E-
01

9.57E-
01

Fossil Energy
(MJ/MJ)

6.64E-01 4.12E-04 1.02E-
01

7.66E-
01

GWP100 (kg CO2e/MJ) 5.71E-02 2.28E-05 4.3E-03 5.59E-
02

GWP20 (kg CO2e/MJ) 6.27E-02 2.69E-05 5.40E-
03

6.18E-
02

*HTL was modeled at 350°C for 15 minutes.
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Figure 1 System Description of Algal Biofuel Production through LE and 
HTL Pathway
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Figure 2 Effects of operation conditions on 
renewable diesel yield, GWP100 and primary 
energy consumption
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Figure 3 GHG emissions (A) and Total Primary Energy (B) for Biodiesel and
Renewable Diesel Production with Co-product Treatment. For reference, 
GHGs from petroleum diesel is approximately 95 g CO2e/MJ.
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