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Abstract 
 

This work revolves around developing, applying, and evaluating computational methods 

for the analysis of genomic datasets of recently admixed populations. Individuals from recently 

admixed populations, such as African Americans and Hispanic Latinos, derive their genomes 

from multiple genetically distinct ancestral populations. For example, African Americans have 

locus-specific ancestry from African and European genomes, which reflects demographic history 

and influences disease predisposition. Genomic studies of admixed populations therefore provide 

an enormous opportunity to investigate the influence of genetic variation on human phenotypic 

diversity. Furthermore, such studies offer a framework to test the generalizability of findings on 

genotype-phenotype relationships originally obtained in more homogeneous populations (i.e. 

Europeans), potentially yielding insights into underlying mechanisms. Here we present four 

novel statistical/computational approaches that leverage the unique genetic makeup of admixed 

populations to aid in deepening our understanding of the effect of human genetic variation on the 

phenome. 
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Introduction 

 Recent major advances in technologies have led to explosive growth in the volume of 

biological data available for research. Whole-genome, transcriptome, epigenetic, and other omics 

data for thousands of individuals are now available for scientific research(T. 1. G. P. 

Consortium, 2012; Gibbs et al., 2003; The ENCODE Project Consortium, 2004). Many of these 

datasets are linked to health records or other medically relevant phenotypes and covariates that 

have been collected through carefully planned scientific studies(Burchard, Avila, Nazario, & 

Casal, 2004; T. C. A. D. C. G. Consortium, 2011; Sudlow et al., 2015). However, analyzing 

these datasets come with numerous well-known challenges, including population structure, data 

size, and environmental noise(Aschard et al., 2012; Bryc et al., 2010; Seldin, Pasaniuc, & Price, 

2011; Sul et al., 2016). To address these issues, computational and statistical methods have been 

developed to analyze these datasets in a computationally efficient and statistically powerful 

manner. These methods have often been fruitful and resulted in a large number of discoveries to 

date(Visscher, Brown, McCarthy, & Yang, 2012). Of note is the large number of Genome Wide 

Association Studies (GWAS) loci that have been found to be associated with a wide range of 

phenotypes(Welter et al., 2014). Although we have had successes in identifying genetic loci that 

contribute to disease risk, the majority of GWAS studies have been and continue to be focused 

on individuals of European descent(Bustamante, La Vega, & Burchard, 2011; Popejoy & 

Fullerton, 2016). As Bustamante et al. have warned, however, failing to incorporate diverse 

populations in genomic studies may result in a biased understanding of the impact of genetic 

variation on the human phenome, and genomic medicine may end up benefiting “largely a 

privileged few”(Bustamante et al., 2011).  
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 This work revolves around developing, applying and evaluating computational methods 

for the analysis of datasets of recently admixed populations. Recently admixed populations, such 

as African Americans and Hispanic Latinos derive their genomes from multiple genetically 

distinct ancestral populations. For example, African Americans derive parts of their genome 

from African and European ancestors, reflecting recent demographic history and influencing 

predisposition to disease and other traits. Consequently, genomic studies of admixed populations 

provide a unique opportunity to evaluate the generalizability of findings initially derived from 

more homogeneous populations (i.e. Europeans).  

First, we present improvements to existing methods that are used to analyze human 

genetic data and apply them to admixed populations. We start by presenting an approach for 

improved detection of segments of the genome that are inherited identical-by-descent (IBD). 

IBD has been used for such applications as detecting cryptic relatedness between individuals, 

estimating components of heritability, inferring evolutionary and demographic history, and 

mapping disease loci(B. L. Browning & Browning, 2011; Gusev et al., 2011; He, 2013; 

Palamara, Lencz, Darvasi, & Pe'er, 2012; Zaitlen et al., 2013). Therefore, the identification of 

IBD segments from genotyping and sequencing data has important implications for studies of 

complex human phenotypes. We then consider how to improve summary statistics based 

approaches by learning local genetic correlations. Summary statistics of association tests, such as 

effect size estimates and their standard errors, are becoming the datatype of choice for many 

analyses because they are orders of magnitude faster than their genotype-based counterparts and 

because they are often necessary due to privacy and legal issues(Schork et al., 2013). Moving 

forward, integration of summary statistics into genomic analyses will be vital for advancing our 

knowledge of various complex diseases and phenotypes. 
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Next, we present methods that leverage the unique genetic makeup of admixed 

populations to detect the existence of gene-environment interactions and quantify the effects of 

the genetic component versus environmental factors on quantitative traits. Admixed genomes can 

be thought of as a mosaics of different ancestral genomic segments(Seldin et al., 2011). For each 

individual, the proportion of ancestry derived from population p (𝜃𝑝) can be accurately 

estimated (e.g. the fraction of European/African ancestry in African Americans). 𝜃𝑝, or global 

ancestry, has been shown to be correlated with an array of environmental and biomedical 

covariates as well as many genetic markers(Burchard et al., 2004; Cheng et al., 2012; Florez et 

al., 2011; Ziv et al., 2006). 𝜃𝑝 can therefore be used as a proxy for environmental and genetic 

covariates and tested for interaction with genetic loci. We present a method for testing for gene-

ancestry interactions and investigate its suitability for studies of the transcriptome and the 

methylome. We also develop a method that partitions the correlation between phenotype and 

genetic ancestry 𝜃𝑝 into genetic and environmental components. Suppose a disease has 

differential prevalence between Africans and Europeans. The extent to which genetic component 

drives the difference, will induce a correlation between disease status and genetic ancestry in 

admixed populations that derive their genomes from the two continental populations. However, 

genetic ancestry has also been shown to be correlated with environmental factors such as 

smoking and socio-economic status, and thus it is unclear how much of a given trait-ancestry 

correlation is due to genetic variation(Fejerman et al., 2008; Florez et al., 2011). Partitioning the 

correlation into genetic and environmental components has important implications for precision 

medicine and global health since knowing their relative contribution to a disease may provide 

crucial insights into pathophysiological mechanisms and therapeutic strategies. 
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Finally, we will end by discussing the future implications of the methods developed here. 

Previously isolated populations are now significantly less isolated from each other as a result of 

world-historical demographic events such as colonization, slave trade, and mass migration. 

These events are reflected in the existence of recently admixed populations, such as Native 

Hawaiians and Hispanic Latinos(Seldin et al., 2011). In the future, further admixtures between 

populations are likely to occur, given the enormous advances that have brought populations into 

closer contact; analyzing admixed genomes will thus require powerful approaches that leverage 

and account for their unique ancestral genetic makeups. As we will discuss, this will allow for a 

greater understanding of the relative contributions of genetic and environmental components to 

disease risk and other traits. This understanding promises to tailor treatment options as well as to 

create therapies for previously untreatable diseases. As discussed previously, most studies to date 

have focused on individuals of European descent and there is an urgent need to broaden our 

understanding of human genetic variation. This is especially the case since knowledge of genetic 

variation in one population is not broadly applicable to other populations, as Martin et al. has 

previously suggested(Martin et al., 2017). This work hopes to contribute to the broadening of 

understanding of the impact of genetic variation on human phenotypic diversity. 
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Chapter 1: Building Upon Existing Methods in Statistical Genetics 

1. Improving Identity-by-Descent Segment Discovery by Probabilistic IBD Graph Sampling 

 

Introduction 

Identity-by-descent (IBD) is a fundamental genetics concept with broad applications to 

both medical and population genetics(Visscher, Hill, & Wray, 2008). Two haplotypes are 

identical-by-state (IBS) if they share the same sequence. Two haplotypes are IBD if they are both 

IBS and were inherited from a common ancestor(Whittemore & Halpern, 1994). IBD therefore 

contains information both about sequence similarity and about the historical relationship of 

individuals. IBD has been used for such applications as detecting cryptic relatedness between 

individuals(Weir, Anderson, & Hepler, 2006), estimating components of heritability(Zaitlen et 

al., 2013), inferring evolutionary and demographic history(Albrechtsen, Moltke, & Nielsen, 

2010; Hochreiter, 2013; Palamara et al., 2012), and mapping disease loci(Albrechtsen et al., 

2009; B. L. Browning & Browning, 2011; S. R. Browning & Thompson, 2012; Gusev et al., 

2009; Han, Kang, Raychaudhuri, & de Bakker, 2013; Purcell et al., 2007). Therefore, the 

identification of IBD segments from genome-wide genotyping studies, and more recently 

sequencing studies, has important implications for studies of complex human phenotypes.  

The identification of IBD segments is challenging for both statistical and computational 

reasons. IBD segments may be missed due to genotyping or sequencing errors. Since IBD occurs 

at the level of haplotypes, the data are typically phased and phasing errors can induce false 

negatives. Small segments of IBD are especially challenging because their haplotype frequency 

must be accurately modeled often resulting in both false positive and false negative IBD calls(B. 

L. Browning & Browning, 2013). Finally, there are computational challenges because the 
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number of potential IBD relationships at a locus is O(2h(h−1)/2), where h is the number of 

haplotypes.  

Two classes of methods for computing the probability of IBD between haplotypes have 

been developed. Multiway methods such as Moltke et al. 2011(Moltke, Albrechtsen, Hansen, 

Nielsen, & Nielsen, 2011), simultaneously estimate the probability of IBD over the haplotypes of 

all individuals in a study. While powerful, generally multiway approaches are not 

computationally efficient enough to examine whole genome data sets over a large number of 

individuals(Letouzé et al., 2012). Recently an efficient mulitway method, 

HapFABIA(Hochreiter, 2013), has been proposed but focuses on detecting very ancient IBD 

segments (i.e. <<1cM) and relies on the existence of rare variation in the data. In practice, 

pairwise methods such as Germline(Gusev et al., 2009) and Refined IBD(B. L. Browning & 

Browning, 2013) are used to detect segments of IBD between pairs of haplotypes independently. 

Germline uses a sliding-window dictionary approach to find putative IBD segments and relies on 

fragment length to estimate IBD probability. Refined IBD utilizes the Germline approach to 

identify putative IBD segments and then applies a hidden markov model (HMM) to compute 

haplotype frequencies and estimate IBD probabilities. Since these methods consider pairs of 

individuals independently, they are computationally efficient at the genome-wide scale. 

However, they do not exploit the clique structure of true IBD segments(Gusev et al., 2011; He, 

2013), and lack power relative to multiway approaches for smaller IBD segments(He, 2013; 

Hochreiter, 2013; Moltke et al., 2011).  

Here we introduce a novel method PIGS, which combines the computational efficiency 

of pairwise methods with the power of multiway methods. PIGS takes as input the IBD 

probabilities output by pairwise approaches. Then, to update the probability that a pair of 
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haplotypes are IBD, it computes the probability of IBD conditional on the IBD probabilities of 

all other haplotypes pairs at the locus. Consider a pair of haplotypes with a low probability of 

being IBD according to a pairwise method. If both haplotypes are IBD with high probability to a 

shared set of many other haplotypes, then that pair has a higher probability of being IBD 

conditioned on the shared set. By leveraging the graph structure of the complete set of IBD 

segments we are able to produce more accurate estimate of IBD probabilities and thereby 

produce more powerful identification of IBD segments. We first present an exact algorithm for 

computing conditional IBD probabilities. However, because of the large number of potential IBD 

graphs we cannot compute exact probabilities in all cases. Instead, we propose an efficient 

sampling algorithm to approximate these probabilities in practice.  

 

Method 

We begin by defining an IBD graph that is constructed over a set of N haplotypes at a 

genomic locus as follows. Each haplotype is represented by a node and there exists an edge 

between nodes if the two haplotypes to which the nodes correspond are IBD at the locus. Valid 

IBD graphs obey a transitivity property such that if individuals 1 and 2 are IBD and individuals 2 

and 3 are IBD, then individuals 1 and 3 are IBD(Braak et al., 2010). An IBD graph is transitive if 

the edges obey the transitivity property; otherwise the graph is intransitive and cannot represent 

the true state of IBD at the locus. Due to the transitivity property, all connected components of a 

valid IBD graph at a locus are cliques. We leverage the clique property of IBD graphs to improve 

the pairwise probabilities of IBD output by existing software packages such as Refined IBD(B. 

L. Browning & Browning, 2013).  

Given the probability of IBD between all pairs of N haplotypes at a genomic locus, we 
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construct a probabilistic IBD graph 𝐺𝑝=(N, P) as follows. Each haplotype i is represented by a 

node ni ∈ N. For every pair of haplotypes there is an edge assigned probability 𝑝𝑖𝑗∈ P where 

𝑝𝑖𝑗 is the probability of IBD between haplotypes i and j at that locus.  

Given a probabilistic IBD graph 𝐺𝑝 we consider a proposed IBD graph g=(N,E) over the 

nodes of 𝐺𝑝. Any proposed IBD graph g represents a different scenario of how individuals in 𝐺𝑝. 

can be IBD to each other at the given genomic locus. The probability of g conditional on the 

probabilistic IBD graph 𝐺𝑝is computed as follows. We define I as the set of all IBD graphs 

derived from the nodes of 𝐺𝑝. For each g ∈ I the conditional probability of g on 𝐺𝑝, P(g|𝐺𝑝) is 

the product of induced edge probabilities. An edge eij = 1 if it is present in g and it has induced 

probability 𝑝𝑖𝑗. An edge eij = 0 if it is not in g and has induced probability (1-𝑝𝑖𝑗).  

Eq. 1 

𝑃(𝑔|𝐺𝑝) = ∏ 𝑝𝑖𝑗
𝑒𝑖𝑗(1 − 𝑝𝑖𝑗)(1−𝑒𝑖𝑗)

∀𝑖,𝑗;𝑖≠𝑗

 

Our objective is to update the probability of each pair of individuals being IBD by 

conditioning on the probabilities of all pairs in the graph. The intuition is best understood with an 

example. Consider a probabilistic IBD graph with three nodes (i ∈ {1, 2, 3}) and suppose the 

initial pairwise probabilities have been assigned by a pairwise IBD-calling algorithm such that 

p12 = 0.9, p13 = 0.9, and p23 = 0.1. The edges e12 and e13 have a higher probability of IBD than 

e23, but given that true IBD graphs obey transitivity, the probability of e12 and e13 conditioned on 

edge e23 will be lower. Similarly, the probability of e23 will be higher when conditioned on e12 

and e13 as shown in Figure 1b. By the transitive rule when 2 of the 3 edges in a triangle have a 

high probability of IBD we expect the third edge to have a high probability of IBD as well.  

The conditional probability of an edge given the probabilities of the graph, �̇�𝑖𝑗 =
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𝑃(𝑒𝑖𝑗 = 1| 𝐺𝑝), is the sum of the probabilities of all transitive graphs in which the edge is 

present, divided by the sum of the probability of all transitive graphs. We compute the 

conditional probability using only transitive graphs since we know that an intransitive graph is a 

biologically implausible scenario. We define V as the set of transitive IBD graphs derived from 

the nodes of 𝐺𝑝.  

Eq. 2 

�̇�𝑖𝑗 = 𝑃(𝑒𝑖𝑗 = 1| 𝐺𝑝) =  
∑ 𝑃(𝑔|𝐺𝑝)𝑔∈𝑉;𝑒𝑖𝑗∈𝑔

∑ 𝑃(𝑔|𝐺𝑝)𝑔∈𝑉
 

All such transitive graphs and their respective probabilities are shown in Figure 1a. For 

illustrative purposes, we include an intransitive graph in the bottom right of Figure 1a. We 

update each edge by using Equation 2 and the resulting graph with updated probabilities is 

shown in Figure 1b. To further clarify how we compute a conditional edge probability, we 

compute the conditional probability of edge 𝑒23:  

�̇�23 = 𝑃(𝑒23 = 1| 𝐺𝑝) =  
1(0.081) + 1(0.001) + 0(0.081) + 0(0.081) + 0(0.009)

(0.081) + (0.001) + (0.081) + (0.081) + (0.009)
= 0.324 

 

Computing exact conditional probabilities requires computing the probability of every transitive 

IBD graph, which has a sample space of size O(2h(h−1)/2), where h is the number of haplotypes. 

Unfortunately, this is computationally infeasible to enumerate and so we develop a sampling 

method that can be used to efficiently approximate conditional edge probabilities.  
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Efficient Computation of Conditional IBD Probabilities 

Our sampling method starts by generating the probabilistic IBD graph for a given 

genomic location. We only consider the unique positions along the genome where the IBD graph 

changes, or more specifically, the points where the initial IBD segments begin or end. Analyzing 

other positions would be redundant because the positions provide no information about how the 
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IBD graph changes. An initial graph is generated by adding in all edges output by Refined IBD 

that pass a LOD score threshold. Alternative pairwise IBD probability methods may be used if 

desired. We identify the connected components of this graph because edges that are part of 

disjoint components have no effect on each other when computing updated probabilities. For 

each connected component c, we construct 𝐺𝑝 by translating the RefinedIBD LOD scores to 

probabilities. A connected component c may have edges that were never called by Refined IBD 

and thus have a probability of 0. We assign uncalled edges the probability ε = 0.0046 in order to 

ensure that 𝑃(𝑔|𝐺𝑝) > 0 and that the edge can be sampled. Then instead of enumerating the set 

of all possible valid graphs V inducible by 𝐺𝑝 we sample from V. We define 𝑁𝑔 as the current 

sum of probabilities of all sampled graphs so far and 𝑁𝑖𝑗 as the current sum of probabilities of all 

sampled graphs containing edge 𝑒𝑖𝑗. At any stage in the sampling process, the estimate of the 

conditional probability that individuals i and j are IBD is �̂�𝑖𝑗 =  𝑁𝑖𝑗

𝑁𝑔
. If all valid graphs are 

sampled with equal 𝑁𝑔 probability, this converges to the exact conditional probability shown in 

equation 2. The sampling procedure is given in Algorithm 1.  
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Algorithm 1 Graph sampling  
Input: 𝐺𝑝   
Output: 𝑁𝑔, 𝑁𝑖𝑗 (∀i,j; 𝑖 ≠ 𝑗)  
 
Set 𝑁𝑖𝑗= 0, 𝑁𝑔= 0  
for all i, j do  

if 𝑝𝑖𝑗≥ 0.99 then 𝑒𝑖𝑗=1  
else 𝑒𝑖𝑗= 0  

Add edges to make all connected components of 𝐺𝑝cliques  
Compute 𝑃(𝑔|𝐺𝑝) 
𝑁𝑔+= 𝑃(𝑔|𝐺𝑝) 
for all i, j where 𝑒𝑖𝑗=1 do 𝑁𝑖𝑗+= 𝑃(𝑔|𝐺𝑝) 
while �̂�𝑖𝑗 has not converged ∀i, j do 

 Sample a random 𝑒𝑖𝑗and set 𝑒𝑖𝑗= 1 with probability 𝑝𝑖𝑗 
Ensure graph transitivity  
Compute 𝑃(𝑔|𝐺𝑝) 
 𝑁𝑔+= 𝑃(𝑔|𝐺𝑝) 
 for all i,j where 𝑒𝑖𝑗=1 do 𝑁𝑖𝑗+= 𝑃(𝑔|𝐺𝑝) 

 
Edges are sampled according to a weighted distribution where weight 𝑤𝑖𝑗  is based on 𝑝𝑖𝑗 

and is defined as:  

𝑤𝑖𝑗 = {
𝑁𝑜𝑟𝑚𝑎𝑙 𝐶𝐷𝐹(𝑝𝑖𝑗;  𝜇 = 0.5, 𝜎 = 0.234), 𝑖𝑓 (𝑝𝑖𝑗) ≤ 0.5
1 − 𝑁𝑜𝑟𝑚𝑎𝑙 𝐶𝐷𝐹(𝑝𝑖𝑗;  𝜇 = 0.5, 𝜎 = 0.234), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

If σ ≈ 0, then edges with pij ≈ 1 or 0 will almost never be sampled since the selection weights of 

such edges will be infinitesimally small. Similarly if σ is too large, then all edges will be 

assigned similar selection weights and as a result graphs will be sampled uniformly instead of in 

proportion to their probability. We selected σ = 0.234 because it allows for efficient convergence 

times. 

This weighted sampling scheme assures that edges with 𝑝𝑖𝑗≈ 1 or 0 are sampled less often 

than edges with 𝑝𝑖𝑗≈ 0.5. Intuitively this makes sense because we sample proposed IBD graphs 

in proportion to their respective 𝑃(𝑔|𝐺𝑝). Edges with 𝑝𝑖𝑗≈ 1 induce a proposed graph with a 
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greater 𝑃(𝑔|𝐺𝑝) when they are present. Similarly edges with 𝑝𝑖𝑗≈ 0 induce a proposed graph 

with a greater 𝑃(𝑔|𝐺𝑝) when they are missing. Thus, to sample the most probable graphs more 

often, edges with high values of 𝑝𝑖𝑗 should typically have 𝑒𝑖𝑗= 1 and edges with low values of 

𝑝𝑖𝑗should typically have 𝑒𝑖𝑗= 0. Changing the state of an edge can cause the proposed graph g to 

be intransitive. Therefore we add or remove edges from g to ensure transitivity. At each iteration 

if an edge has p ≥ 0.99 then 𝑝𝑖𝑗 is set to 1 so that we never sample very high probability edges.  

 
Algorithm 2 Ensure graph transitivity  
Input: 𝐺𝑝, 𝑒𝑖𝑗that was just added or removed  
Output: Transitive 𝐺𝑝 
 
if 𝑒𝑖𝑗= 1 then  

Add edges to make all connected components of 𝐺𝑝cliques  
else  

𝑆𝑖 = nodes connected to i, 𝑆𝑗= nodes connected to j  
for all 𝑝𝑚𝑘<0.99 do 𝑒𝑚𝑘=0  
for each connected component X, where |X| > 1 do  
 �̅�𝑖𝑋 = 𝑝𝑖𝑋

|𝑋|
, �̅�𝑗𝑋 = 𝑝𝑗𝑋

|𝑋|
 ∀ nodes 𝑥 ∈ 𝑋 

 if �̅�𝑖𝑋 > �̅�𝑗𝑋 then add all nodes of X to 𝑆𝑖 
 else if �̅�𝑖𝑋 < �̅�𝑗𝑋 add all nodes of X to 𝑆𝑗 
 else flip a fair coin 
for randomly selected 𝑘 ∈ (𝑆𝑖 𝑈 𝑆𝑗) do 
 �̅�𝑘𝑆𝑖 = 𝑝𝑘𝑦

|𝑆𝑖|
, ∀𝑦 ∈ 𝑆𝑖  

 �̅�𝑘𝑆𝑗 = 𝑝𝑘𝑧
|𝑆𝑗|

, ∀𝑧 ∈ 𝑆𝑗 

 if �̅�𝑘𝑆𝑖 >  �̅�𝑘𝑆𝑗 then add k to 𝑆𝑖 
 else if �̅�𝑘𝑆𝑖 <  �̅�𝑘𝑆𝑗 then add k to 𝑆𝑗 
 else flip a fair coin 
Make 𝑆𝑖 and 𝑆𝑗 cliques 
 
 

We continue selecting edges until we reach a convergence criterion or a user-set time limit has 

been reached. As a convergence criterion we check if all edge probabilities change less than 

1x10−11 for 5000 sequential iterations. With larger graphs that may never reach the convergence 
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criteria, we allow the user to set a runtime limit. After convergence or hitting the user runtime 

limit, we output all edges and their respective updated probabilities. We tried a variety of 

sampling schemes to explore the space of graphs and selected this one due to its performance 

over simulated datasets. 

IBD segments can span multiple regions and our method analyzes IBD at a single region. 

The probability of IBD between two individuals can therefore be output at multiple adjacent 

regions by our method. Furthermore, the IBD probability may be assigned a different value in 

each region due to the inexact nature of the sampling method. If the same IBD segment is 

assigned different probabilities across multiple loci we use the maximum value across all 

regions.  

Once an IBD graph is analyzed using the sampling procedure, edges that were previously 

missing (i.e. those that were not called by Refined IBD) are output with a start and stop site that 

is equal to the intersection of all IBD segment boundaries in the graph. Since we do not look in 

the region for sequence identity between haplotypes we can only output the probability that IBD 

exists somewhere within the region. These new segments may also overlap with other called IBD 

segments. In order to reconcile overlapping IBD segments, we merge them provided that they 

pass a probability threshold set by the user and that they lie on the same haplotype. As the final 

probability, we use the maximum �̂�𝑖𝑗 of the merged segments. For all analyses presented here, 

we only merged segments that had a probability of 0.99 or greater.  

 

Converting LOD Scores to Probabilities 

To find the relationship between 𝐿𝑂𝐷 scores and the true positive rate of IBD segments 

we ran Refined IBD on simulated data using a 𝐿𝑂𝐷 score cutoff of 0.1 and a length cutoff of 0.1 
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centimorgans. A true positive segment is defined as a predicted segment that is at least 50% true 

IBD. We fit a curve to the observed relationship between 𝐿𝑂𝐷 score and true positive rate of 

IBD segments (see Figure 2). The equation of our curve is of the form p = (2o+af)/(o+f) where o 

= posterior odds, f = (prior*(103)/.997)−(prior*(103)), a = (1 − 𝐿𝑂𝐷)3/7 if 𝐿𝑂𝐷 ≤ 1 1, and a = 

−0.15 otherwise. The values for f and a were chosen to maximize the fit of the curve.  Since the 

Refined IBD LOD score is the negative base 10 log likelihood of one shared haplotype divided 

by the likelihood of no shared haplotypes, we use Bayes rule for odds to convert a 𝐿𝑂𝐷 score 

into a posterior odds: 𝑂(𝐴|𝐵) = 𝑂(𝐴) ∗  𝐿(𝐴|𝐵)
𝐿(𝐴𝑐|𝐵)

, where 𝑂(𝐴|𝐵) is the posterior odds, 𝑂(𝐴) is the 

prior odds, and 𝐿(𝐴|𝐵)
𝐿(𝐴𝑐|𝐵)

 is the likelihood ratio.   

For the prior, we use the probability of any two individuals in the sample being IBD at 

any point in the genome, 𝜀 = 0.0046. This is the average proportion of the genome shared IBD 

between all pairs of individuals estimated using results from Refined IBD over simulated data. 

For edges that have a probability of 0 (i.e. an edge with no pairwise call), we assign a probability 

equal to the prior because otherwise these edges would never be sampled and graphs would have 

a probability of 0. 
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Ideally, the relationship between LOD score and true positive rate is given by p  = odds/ 

(1 + odds). However, the relationship between LOD score and true positive rate in our sample of 

simulated individuals deviates from this theoretical relationship. Our function and p  = odds/ (1 

+ odds) are of the same form (i.e. g (x ) = (cx +d )/ (mx +n )). This served as our motivation in 

defining the conversion function. Lastly, given that the simulated data we generated is reflective 

of European population growth, the relationship between LOD score and true positive rate may 

differ in other populations. 
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Merging Results Across Graphs and Inferring New Segments 

IBD segments can span multiple regions and our method analyzes IBD at a single region. 

The probability of IBD between two individuals can therefore be output at multiple adjacent 

regions by our method. Furthermore, the IBD probability may be assigned a different value in 

each region due to the inexact nature of the sampling method. If the same IBD segment is 

assigned different probabilities across multiple loci we use the maximum value across all 

regions.  

Once an IBD graph is analyzed using the sampling procedure, edges that were previously 

missing (i.e. those that were not called by Refined IBD) are output with a start and stop site that 

is equal to the intersection of all IBD segment boundaries in the graph. Since we do not look in 

the region for sequence identity between haplotypes we can only output the probability that IBD 

exists somewhere within the region. These new segments may also overlap with other called IBD 

segments. In order to reconcile overlapping IBD segments, we merge them provided that they 

pass a probability threshold set by the user and that they lie on the same haplotype. As the final 

probability, we use the maximum �̂�𝑖𝑗 of the merged segments. For all analyses presented here, 

we only merged segments that had a probability of 0.99 or greater. 

 

Creating Simulated IBD Data 

We generated simulated genotype data as previously described by Browning et al.(B. L. 

Browning & Browning, 2013). To start, we use Fastsimcoal(Excoffier & Foll, 2011) to generate 

phase known DNA sequence data of 2000 diploid individuals. A single individual is represented 

as one chromosome consisting of ten independent 30 MB regions, each with a mutation rate of 2. 
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5 x 10-8  and a recombination rate of 10-8. The population simulated begins with an effective 

population size of 3000 diploid individuals with a growth rate of 1.8% at time t=300 (where t is 

the number of generations ago from the present). Moving forward in time, the growth rate was 

changed to 5% and to 25% at times t=50 and t=10 respectively, resulting in a final effective 

populations size of 24,000,000 at t=0. The simulation is reflective of European population sizes 

estimated from the linkage disequilibrium of common variants(Tenesa et al., 2007). 

Using the DNA sequence data we create genotype data by first filtering single nucleotide 

polymorphisms (SNPs) that were not bi-allelic with a minor allele frequency (MAF) less than 

2%. Next, we choose 10,000 variants uniformly by MAF (where 2% ≤ MAF ≤ 50%) per 30 MB 

region. This SNP density is in line with that of a 1,000,000 SNP genotyping array. Finally, we 

remove all phase information and apply a genotyping error at a rate of .05% by turning 

heterozygous genotypes into homozygous genotypes and vice versa. Using the simulated 

genotype data, we use Refined IBD to phase the data and call pairwise IBD. We define true IBD 

segments as those segments longer than or equal to 0.1 centimorgan. A potential consequence of 

this approach to creating simulated data is that the resulting IBD graph may not completely obey 

transitivity.  

 

Results 

Convergence Properties and Runtime 

We first verify that the conditional probabilities estimated from our sampling ap- proach, 

�̂�𝑖𝑗, converge to the true edge conditional probabilities, �̇�𝑖𝑗. We randomly create three to eight 

node probabilistic IBD graphs with edge probabilities drawn uniformly from the open interval (0, 

0.99). For each graph, we enumerated every transitive IBD graph to compute the exact 
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conditional edge probability �̇�𝑖𝑗. It is computational infeasible to compute exact probabilities for 

graphs larger than 8 nodes since all transitive graphs must be enumerated. We then ran our 

sampling approach over each graph and at each iteration l, we calculated the average percent 

difference between �̂�𝑖𝑗 and �̇�𝑖𝑗, which we call𝛿𝑙. 

𝛿𝑙 = ∑
|𝑝𝑖𝑗 − �̂�𝑖𝑗

𝑙 |
𝑝𝑖𝑗

, where �̂�𝑖𝑗
𝑙 = conditional edge probablities at iteration 𝑙

∀𝑖≠𝑗

 

 

We ran PIGS 25 times and calculated 𝛿𝑙
25. which is 𝛿𝑙 averaged over all 25 runs. From 

Figure 3 we see that for graphs with 3 to 7 nodes, edges are within 1% of true conditional 

probability after 5000 iterations. For 8 node graphs, the probabilities are within 15% of the true 

�̇�𝑖𝑗 after 5000 iterations and within 5% within 7500 iterations. We recorded the average runtime 

of the 25 runs and show the results in (Table 1). While it is computationally feasible to sample 

until convergence for small graphs, this approach will not scale to genome-wide IBD studies of a 

large number of individuals. Instead PIGS takes as input a user specified time limit for sampling 

each region. 
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Application to Simulated Data 

Ultimately, the metrics of merit are the IBD calls themselves, not IBD probabilities. IBD 

calls can be made from IBD probabilities using a thresholding approach in which all probabilities 

exceeding a threshold are output as IBD. Alternatively, methods such as DASH(Gusev et al., 

2011), EMI(Qian, Browning, & Browning, 2013), and IBD-Groupon(He, 2013) leverage the 

clique nature of IBD graphs to output cliques over a region as opposed to IBD pairs. The choice 

of IBD calling method is a function of the objective of the study. For example, DASH was 

designed specifically for association testing in which individuals in a clique are given a psuedo-

genotype of 1 and all others are given a pseudo-genotype of 0. Other testing methods examine 

the distribution of IBD between cases and controls(S. R. Browning & Thompson, 2012; Han et 

al., 2013; Purcell et al., 2007) and rely on IBD calls that powerfully and accurately cover true 

IBD segments. For population genetics purposes such as inferring demographic history(Palamara 

et al., 2012), the distribution of IBD segments sizes is the figure of merit.  

This diversity of uses of IBD precludes any single metric as being the gold standard for 

assessing the quality of IBD calls. Therefore, we compare several different methods of 

computing IBD probabilities and calling IBD over a range of metrics. We compare a 

thresholding approach to calling IBD applied to PIGS probabilities as well as Refined IBD LOD 

scores. We also examine the behavior of the clique-calling approaches DASH and EMI when 

applied to Refined IBD output and PIGS output. We attempted to include IBD-Groupon but in its 

current implementation some hard-coded parameters make it unsuitable for the sample sizes we 

examined here. This will be addressed in a future release (personal communication with Dan 

He). We created simulated genotype data on ten 30MB regions for 2000 individuals (see 

Creating simulated IBD data).  
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We generated IBD calls from Refined IBD by using a LOD threshold of 3. For PIGS, we 

first generated pairwise graphs from Refined IBD by using a LOD threshold of 0.1 and a 

segment length cutoff of 0.1 centimorgans. PIGS was then run over the pairwise graphs for a 

maximum of 2 minutes and IBD calls were made using a probability threshold of 0.99. IBD calls 

for Germline were generated using their suggested parameters “-haploid -bin out -min m 1 -bits 

32 -err hom 1 -err het 1”(Gusev et al., 2009) after phasing genotype data using fastIBD(B. L. 

Browning & Browning, 2011). DASH was run over the Refined IBD calls passing a LOD 

threshold of 3. All results were filtered to have a minimum segment length of 0.5 centimorgans.  

 

Identification of IBD Segments 

For a given genomic locus, the power of tests comparing the distribution of IBD in cases 

or between cases and controls(S. R. Browning & Thompson, 2012; Han et al., 2013; Purcell et 

al., 2007), is a function of the number of true IBD segments intersected by predicted segments. 

We therefore performed an analysis of the total number of true IBD segments intersected by IBD 

calls from Refined IBD, Germline, and PIGS. The results shown in Figure 4a show that PIGS 

substantially outperforms Refined IBD for small IBD segments. DASH was not included in this 

analysis because it was not designed for this purpose and the resulting error rates were 10 fold 

higher than PIGS and Refined IBD even at 1 centimorgan segments. For predicted segments of 

size 0.5, 0.6, 0.7, 0.8, 0.9, and 1 centimorgans, there was an increase of 95%, 43%, 27%, 17%, 

12%, and 9% in the number of predicted segments intersecting a true segment over Refined IBD. 

For predicted segments of size 1.1, 1.2, and 1.3 centimorgans, Germline was able to detect 60%, 

27%, and 12% more segments than PIGS but the calls were less accurate.  

In order to assess the error rate we examined the fraction of segments that did not 



 23 

intersect any true IBD segment. Note that this is error rate may be inflated due to the fact that 

true segments are required to be at least 0.1 centimorgans. The results shown in Figure 4b 

demonstrate that PIGS has nearly identical error rates to Refined IBD at small segments. 

However, at 0.5 centimorgans the error rate increases from 0.3% to 0.7%; this is a modest 

increase relative to the 95% increase in the number of segments identified. Germline, in general, 

was similar to the other methods in terms of error rates for segments between 1 and 2 

centimorgans.  

 



 24 

 
 



 25 

 

Accuracy of IBD Segments 

In population genetics settings, such as inferring demography(Palamara et al., 2012; 

Tenesa et al., 2007), methods often rely on the distribution of IBD segment lengths. The figure of 

merit here is related to the accuracy of predicted segments recovered. We first examined power, 

the average proportion of true IBD segments that were overlapped by predicted segments. For 

true segments between 0.5 and 2.5 centimorgans our method had modestly greater power (Figure 

5a). This came at the expense of a slight increase in false discovery rate (FDR) as shown in 

Figure 5b. The false discovery rate is defined as the average proportion of predicted segments 

that does not overlap a true IBD segment. This is somewhat expected since new segments from 

PIGS use existing IBD segment boundaries to approximate the new start and stop sites. The 

greatest decrease comes at 0.5 centimorgans where PIGS predicts 95% more segments than 

Refined IBD. However, the difference in FDR between Refined IBD and PIGS is still less than 

5% (10% versus 14%). On the other hand, for segments of size between 0.6 and 1.5 

centimorgans, PIGS predicts 23% more segments while keeping the FDR within 1% of Refined 

IBD.  

We also examined the true positive rate, defined as the percentage of predicted segments 

with at least 50% overlap with a true segment. Compared to Refined IBD the true positive rate 

for PIGS drops slightly for segments that are smaller than 1 centimorgan but the difference is 

less than 1% for all sizes except for at 0.5 centimorgans where it is 3% (Figure 6). The reason for 

this drop in performance is at least partly due to the fact that we add new segments according to 

the IBD graph without specifically examining the sequence. Given the results of the previous 

section, the most likely explanation is that the PIGS predicted segments intersect true IBD 
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segments, but not at the 50% threshold required by definition of a true positive. Based on these 

results PIGS could be used for population genetics purposes, but users should take into account 

the slight increase in error rates for smaller segment sizes.  
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Identification of Cliques 

In a genome wide association study (GWAS) association tests are typically per- formed 

on individual single nucleotide polymorphisms. Cliques of IBD segments can also be leveraged 

to increase power in association tests(S. R. Browning & Thompson, 2012; Gusev et al., 2011). In 

this setting IBD serves as a representation of SNPs not contained on the genotyping platform, 

and the figure of merit is how well the true IBD cliques are captured by predicted IBD segments. 

For 10000 random positions along the genome, we created predicted IBD graphs for Refined 

IBD, PIGS, P-DASH, P-EMI (DASH and EMI using PIGS as input), R-DASH, and R-EMI 

(DASH and EMI using Refined IBD as input). For Refined IBD and PIGS, all segments of size 

0.5 centimorgans or greater were used if they passed a LOD threshold of 3 and probability 

threshold of 0.99 respectively. DASH and EMI are both algorithms that create cliques in a given 
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window. DASH starts with the biggest connected component and creates dense subgraphs by 

cutting out false-positive edges. EMI on the other hand starts with seed subgraphs and adds 

edges that it believes to be true IBD. For DASH we used default parameters “- win 500000 -

density 0.6 -r2 0.85 -min 4”. For EMI we used the parameters “-win bp 200000 -den 0.6 -min 3 -

wgt bp 100000 1000000”. However with these EMI parameters, R-EMI had an error rate 3 to 8 

times greater than the other methods depending on the size of the clique. Instead we used the 

weight parameter “-wgt 7th 3 40” for Refined IBD input to EMI which uses the LOD score 

instead of the length to weight the edges and improved performance.  

At each position we examined cliques in the true graph that overlapped with a connected 

component in the predicted graph for any method. The true graph was generated with all true 

IBD calls regardless of size and all connected components were converted to cliques. Table 2 

shows the power of each method to detect an edge of a true clique of a given size. The power 

here is defined as the average proportion of edges in a true clique that are called correctly by a 

given method. This is not the power to recover an entire clique, but an estimate of the number of 

edges in a clique that are recovered. At any clique size, PIGS detects a higher proportion of 

edges than Refined IBD. For P-DASH and R-DASH the power of both methods are very similar 

with P-DASH only showing a very modest increase in power depending on the clique size. 

However, when comparing P-EMI and R- EMI we see 2-5% increases in power for P-EMI. To 

verify that the gain in power for P-DASH and P-EMI was due to PIGS and not due to leveraging 

clique information twice, we used EMI and DASH output as input into a second round of EMI 

and DASH. We observed virtually no change in power or error rate showing that PIGS is 

providing the increase in performance. All methods lacked power when considering very large 

cliques and this is most likely due to the fact that very large cliques are generated from small 
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segments of IBD (i.e. < 0.5 centimorgan).  

 

We also assessed the false positive rate of each clique-based method. The false positive 

rate was defined as the average proportion of predicted edges that are not part of a true clique. 

Table 3 shows the false positive rate of each method for a given size of a predicted clique. The 

false positive rate of PIGS is slightly higher than Refined IBD for most clique sizes, but the 

increase in false positive rate is modest (within 2%) for all clique sizes. As was the case with 

power, the error rates of P-DASH and R-DASH are nearly identical. The biggest difference is for 

cliques with 60-89 nodes, where P-DASH has a 4% higher false positive rate. We see similar 

behavior for R-EMI and P-EMI, where for cliques of size 90-119 nodes, the error rate goes from 

5% to 9%. Based on these results we recommend using EMI to perform clique calling on PIGS 

output as it provides lower error rates and higher power than DASH.  
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Application To Real Data 

Identification of IBD Segments 

We applied PIGS, RefinedIBD, DASH, and EMI to 489 Latino trios from the Genetics of 

Asthma in Latino Americans (GALA) cohort(Burchard et al., 2004). The availability of trio 

genotype data allows us to phase the genotypes with high accuracy by taking into account the 

rules of Mendelian segregation. The increased phasing accuracy in turn boosts the power to 

detect IBD segments because phasing errors are a major source of difficulty in calling IBD(B. L. 

Browning & Browning, 2013). To evaluate how well a given method is able to identify segments 

of IBD in real data we used IBD segment calls made using Refined IBD in a trio-aware mode 

(trio-IBD segments). Trio-IBD segments were thresholded at a length of 0.1 centimorgans and at 

a LOD score of 3. We then asked how many IBD calls made by a given method without access 

to the near-perfect trio phasing overlapped with trio-IBD segments. DASH and EMI were run in 

the same way as we described for identifying cliques (using PIGS and RefinedIBD as input), 

how- ever the resulting clique edges were converted into IBD calls and merged with the original 

input. We include the clique calls here as IBD calls because we do not know the structure of the 

real IBD graph. All IBD calls were thresholded at a segment size of 0.5 centimorgans.  

As shown in Figure 7, when considering PIGS and Refined IBD calls at 0.5 

centimorgans, there is an increase of 10% in the number of segments identified by PIGS over 

Refined IBD. After applying DASH and EMI to the input of both methods we see an increase of 

8% and 7%, respectively, for PIGS input. It is clear that both DASH and EMI improve the power 

of both main approaches to detect IBD for use in association studies regardless of the segment 

size. DASH and EMI seem to per- form similarly in terms of boosting power when called 

segments are bigger than 0.8 centimorgans, but EMI appears to have the upper hand for anything 
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smaller. For example, at 0.5 centimorgans the difference between EMI and DASH for PIGS 

input is 8% but at 0.8 centimorgans the difference is only 0.8%. Across all segment sizes, we see 

increases of 4%, 3%, and 2.5% for PIGS, P-DASH, and P-EMI over their Refined IBD 

counterparts. The increases are more modest than in the simulated data, most likely due to the 

fact that without sequencing data we are underpowered to detect small segments of IBD even 

when trio phased genotypes are available.  

PIGS and Refined IBD called 3134591 and 2968480 segments that overlapped with at 

least one of trio-IBD segment, respectively, which equates to a 6% increase. Similar increases 

are also seen when using PIGS input to DASH and EMI, with a 4% increase (3177234 versus 

3047734) for DASH and a 3% increase (3263594 versus 3158818) for EMI. 1330207 PIGS and 

803527 Refined IBD calls did not overlap with any trio-IBD segments. Because we only have 

access to true positives in the real data, there is no perfect way to determine the false positive 

rate of any of these methods, and it could be argued that PIGS increases the power to detect IBD 

at the expense of a higher false positive rate. To determine if this was the case, we made random 

IBD calls along the genome. As an example consider the calls of size 0.5 centimorgans, where 

PIGS made 349221 calls and Refined IBD made 262064 calls, a difference of 87157 calls. Of 

these, 207122 PIGS and 187582 Refined IBD segments overlap a trio-IBD segment, which is an 

increase of 19540 segments. After making 87157 random calls (of length 0.5 centimorgans) we 

only identified 453 segments compared to the 19540 we observed originally. This means that 

even if Refined IBD were to make an additional 87157 random guesses along the genome we 

would not expect Refined IBD to have the same power as PIGS, showing the increase in 

performance is not entirely due to false positives. Furthermore, if we assumed all non-

overlapping segments are false positives both Refined IBD and PIGS have an error rate over 
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20%, which is not reflective of the simulations where the error rate for both methods was below 

1% (see Figure 4b)(B. L. Browning & Browning, 2013).  

Given these results, we conclude that the increased performance in PIGS was not driven 

by the extra IBD calls and that the majority of the non-overlapping segments are indeed true as 

suggested by the simulation results. Assuming that the true false positive rate in real data is 

similar to simulation data, the large increase in predicted segments that overlap trio-IBD 

segments when using PIGS (with or without a clique calling method) shows the potential for 

substantial power increases when using PIGS for IBD mapping studies.  
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Conclusion 

We have developed a new efficient method (PIGS) for simultaneously computing the 

probability of IBD between multiple haplotypes at a genomic region. PIGS combines the 

computational efficiency of pairwise methods with the power advantages of multiway methods. 

We demonstrated that PIGS converges to the correct probabilities of conditional IBD 

probabilities for small IBD graphs. For IBD graphs with both small and large numbers of 

individuals we showed that the approximate probabilities from PIGS produce a substantial 

improvement in the power to identify small IBD segments and recover IBD edges from cliques 

relative to previous approaches.  

PIGS relies on accurate pairwise probabilities in order to compute conditional 

probabilities. In this work we scaled the probabilities according to the results of simulated 

segments of IBD. This has been the approach of previous methods, as there is currently no 

mechanism for assessing true probabilities in real data. This approach is not guaranteed to be 

accurate for all populations(B. L. Browning & Browning, 2013; Gusev et al., 2011; He, 2013; 

Moltke et al., 2011; Purcell et al., 2007). If the demographic history of the population of interest 

is substantially different from the one simulated here, additional simulations should be done to 

assess the relationship between LOD scores and probability of IBD.  

In some scenarios, such as the inference of demographic history(Palamara et al., 2012), 

the metric of merit is not the power to identify segments, but the accuracy of the distribution of 

IBD segment lengths. Because PIGS does not currently utilize genotype or sequence data to 

refine newly identified IBD segments it is not as accurate as Refined IBD for small segments. 

One possible future approach is to use powerful, but computationally expensive multiway IBD 

calling methods such as the MCMC proposed by Moltke et al.(Moltke et al., 2011) to examine 
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the new regions identified from PIGS.  

In our analysis here we restricted our analysis to segments that were at least 0.5 

centimorgans in size. There may be IBD segments that are much smaller in size (<< 1 

centimorgan) and methods such as HapFABIA(Hochreiter, 2013) are able to identify these small 

segments. HapFABIA uses an efficient bi-clustering approach but relies on the existence of rare 

variation in the data. Given that we did not have sequencing data available, we did not compare 

our method to HapFABIA. However in the future, sequencing data will be more readily available 

and we hope to see how if PIGS can also be leveraged to improve the power existing methods.  

Clique-calling methods such as DASH, EMI, and IBD-Groupon use IBD probabilities 

such as those output from PIGS and Refined IBD to identify cliques of IBD segments. Clique-

calling methods are typically used to increase the power of IBD mapping studies. We showed 

that these methods can substantially increase the power to detect the edges of IBD graphs. The 

exact relationship between the power of a given IBD mapping approach and the number of edges 

discovered remains to be shown. Going forward, having a better grasp of how power and false 

positive rates of predicted graphs affect IBD mapping methods will be important to maximize the 

utility of clique based mapping approaches.  

The current sampling scheme for PIGS was selected for its performance in identifying 

IBD segments. There are many different methods of exploring the space of transitive graphs. Our 

focus in this work was medical genetics, but alternative sampling schemes could be explored to 

optimize segment accuracy instead of power to detect segments. Given the substantial 

improvement in the number of identified IBD segments of our method, we expect that PIGS will 

facilitate improvements in IBD based disease association studies and provide new inroads into 

identifying small segments of IBD.  
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2. Using Machine Learning to Create Combined Reference for Summary Statistic Based 
Methods in Admixed Populations 

 

Introduction 

Summary statistics of association tests, such as effect size estimates and their standard 

errors, are becoming the data type of choice in many genetic analyses due to two significant 

advantages. First, summary statistics based methods are generally orders of magnitude faster 

than their genotype based counterparts.  The rapidly increasing size of existing and planned 

cohorts is causing computational bottlenecks for some standard analyses.  Second, analyses of 

summary statistics are often a necessity since access to individual-level data is complicated by 

privacy and other issues(Gymrek, McGuire, Golan, Halperin, & Erlich, 2013). Publication of 

summary statistics is now required for all Nature Genetics genome wide association study 

(GWAS) papers, and these statistics have already been released for a large number of traits. For 

these reasons a growing number of summary statistics based methods, including imputation of z-

scores, joint-testing, fine mapping of causal variants, quality control of GWAS results, and gene 

based tests, have recently been published(Bulik-Sullivan et al., 2014; Han, Hackel, & Eskin, 

2011; Hormozdiari, Kostem, Kang, Pasaniuc, & Eskin, 2014; Kichaev et al., 2014; Liu et al., 

2010; Pasaniuc, Zaitlen, Shi, Bhatia, Gusev, Pickrell, Hirschhorn, Strachan, Patterson, & Price, 

2014; Yang et al., 2012).  Moving forward, the integration of summary statistics will be vital for 

increasing our knowledge of various complex diseases and phenotypes(Schork et al., 2013). 

Summary statistics based methods typically require estimates of linkage-disequilibrium 

(LD) between markers as input. Existing tools use “best guess” reference panels to estimate LD. 

For example, Yang et al.(Yang et al., 2012) used European ancestry individuals from the 

Queensland Institute of Medical Research reference panel to estimate LD for an analysis of 
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statistics produced from the European ancestry GIANT consortium(Speliotes et al., 2010). This 

approach is not optimal and has the potential to produce misleading results in the case of 

admixed populations. Admixed individuals' genomes can be viewed as mosaics, where different 

segments of the genome are derived from various ancestral groups.  Previous work has shown 

that the proportions of ancestry for individuals from admixed populations are highly 

variable(Bryc et al., 2010; Silva-Zolezzi et al., 2009; Wang et al., 2008).  Given this high 

variability in admixed populations, “best guess'' panels are more likely to have LD estimates that 

are not in concordance with original datasets, and which vary in their local structure.  This will 

be especially true if the population of interest has no reference panel available. Furthermore, 

several genotype based methods have shown that learning local structure from multi-population 

reference panels improves performance even in the case of homogenous study 

populations(Howie, Donnelly, & Marchini, 2009; Pasaniuc et al., 2013). 

In this work, we develop a method, Adapt-Mix, to accurately estimate the local SNP 

correlation matrix for each region of the genome from summary statistics of an arbitrary 

population study.  We compute the correlation matrix using a mixture of existing reference 

panels, such as the 1000 genomes(T. 1. G. P. Consortium, 2012), where the mixture proportion 

for each reference population is learned from summary statistics.  Unlike previous approaches, 

our method incorporates data from multiple reference panels when computing the correlation 

matrix and allows for adaptation to local structure. We first provide a closed form solution for 

the expected correlation structure from a mixture of populations in a genomic locus. Then, using 

this derivation, we efficiently search for the mixture of populations in each genomic locus that 

maximizes/minimizes an objective function most relevant to the problem in question. For 

example, in this work we consider the problems of imputation and joint-testing from summary 
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statistics, using imputation error and joint-test accuracy as the objective function, respectively. In 

practice, arbitrary objective functions can be used provided they can be computed efficiently. 

We apply our method to summary statistics from simulated phenotypes over real 

genotypes from the Genes-environments & Admixture in Latino Americans (GALA II, (Borrell 

et al., 2013)) cohort that is composed of Mexican and Puerto Rican individuals. We also apply 

our method to real coronary artery disease summary statistics from the CARDIoGRAMplusC4D 

consortium(T. C. A. D. C. G. Consortium, 2011; Schunkert et al., 2011). In the simulated data 

sets we show significant improvements in the mean-squared error of our mixture correlation 

coefficients compared to the most relevant reference panels. We also demonstrate the direct 

impact of the improved correlation estimates for imputation and joint-testing methods, which 

take correlation matrices as input. For both the simulated summary statistics over the GALA II 

study as well as the meta-analysis results we show significant improvement in both summary 

statistics based imputation and joint-testing(Pasaniuc, Zaitlen, Shi, Bhatia, Gusev, Pickrell, 

Hirschhorn, Strachan, Patterson, & Price, 2014; Yang et al., 2012). 

 

Methods 

First, we describe the situation where Adapt-Mix may be applied. We then derive a 

formula for the genotype correlation matrix as a mixture of several reference populations, and 

describe our procedure for optimizing the mixture frequencies for various objective functions. 

We end the section by discussing the simulation framework in which we evaluate our method. 

GWAS summary statistics typically consist of an effect size 𝛽𝑖 and standard error 𝜎𝑖 for 

each SNP i examined in a study. For simplicity, 𝛽𝑖 and 𝜎𝑖 can be converted to a Wald test 

statistic (Z-score) 𝑧𝑖. When dealing with case-control phenotypes 𝑧𝑖 =  √𝑁 𝑝𝑖
+− 𝑝𝑖

−

√2𝑝𝑖(1−𝑝𝑖)
, where N 
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is the sample size, 𝑝𝑖
+ ( 𝑝𝑖

−) is the frequency of the reference allele in cases (controls), and 𝑝𝑖 is 

the overall frequency. For quantitative phenotypes 𝑧𝑖 = √𝑁 ∗ 𝑐𝑜𝑟(�⃑�𝑖 , �⃑�), where �⃑�𝑖  are the 

genotypes of the individuals and �⃑� are the phenotypes. Here, �⃑�𝑖 =  {𝑔𝑖1 … 𝑔𝑖𝑁} for 𝑔𝑖𝑑 ∈ {0,1,2}, 

𝑔𝑖𝑑 being the count of the reference allele for individual d. 

As input, most summary statistics based methods take Z-scores and a correlation matrix 

Σ(Bulik-Sullivan et al., 2014; Han et al., 2011; Hormozdiari et al., 2014; Kichaev et al., 2014; 

Liu et al., 2010; Pasaniuc, Zaitlen, Shi, Bhatia, Gusev, Pickrell, Hirschhorn, Strachan, Patterson, 

& Price, 2014; Yang et al., 2012). For each pair of SNPs i, j the correlation matrix has the value 

Σ𝑖𝑗 = 𝑟𝑖𝑗, where 𝑟𝑖𝑗 is the Pearson correlation coefficient between the SNPs in the study. If 

individual level genotypes are available, the correlation can be computed by 𝑟𝑖𝑗 = 𝑐𝑜𝑟(�⃑�𝑖, �⃑�𝑗).  

When individual level genotypes are unavailable, 𝑟𝑖𝑗 is typically estimated using a reference 

panel of genotypes from a population similar to the source population of the data being analyzed.  

In this work we develop a method to provide a better estimate of 𝑟𝑖𝑗 using a combination of 

reference panels from different populations. Given a set of K reference populations, we generate 

a correlation matrix for each genomic locus using a new mixture population, where the 

frequency of population 𝑘 ∈ 𝐾 in the mixture population is 𝑓𝑘. The objective of our work is to 

select the frequencies, 𝑓𝑘, that optimizes the performance of the summary statistics method of 

interest.  

 

Estimating the Mixture Correlation Matrix 

Given a set of mixture frequencies, 𝑓 = {𝑓1, … , 𝑓𝐾}, where 𝑓𝑘 ∈ 𝑓 is the frequency for 

population 𝑘 ∈ 𝐾.  We wish to compute the expected correlation between each pair of SNPs in 

the mixture population. For simplicity, we begin by deriving the mixture variance of the allele 
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frequencies (𝜎𝑖
2) at SNP i, in a mixture population composed of 2 reference populations.  At SNP 

i, the 2 reference populations will have separate variances (𝜎1𝑖
2 , 𝜎2𝑖

2 ), sample sizes (𝑛1, 𝑛2), and 

allele frequencies (𝑝1𝑖, 𝑝2𝑖).   

Additionally, assume that each reference population has a mixture frequency equal to 

their proportion of sample size, i.e. 𝑓1 = 𝑛1
𝑛1+ 𝑛2

 and 𝑓2 = 𝑛2
𝑛1+ 𝑛2

.  We can then express the 

mixture variance as  

𝜎𝑖
2 =

∑ (𝑔1𝑧 − 2𝑝𝑖)2𝑛1
𝑧=1 + ∑ (𝑔2𝑞 − 2𝑝𝑖)

2𝑛2
𝑞=1

(𝑛1 + 𝑛2)  

where 𝑔𝑘𝑑 is the genotype of individual d in population k, and 2𝑝𝑖 = 𝑓12𝑝1𝑖 + 𝑓22𝑝2𝑖 is the 

genotype frequency in the mixture population.  Let us now consider only ∑ (𝑔1𝑧 − 2𝑝𝑖)2𝑛1
𝑧=1 .  

This term is equal to 

∑(𝑔1𝑧 − 2𝑝𝑖)2

𝑛1

𝑧=1

= ∑[(𝑔1𝑧 − 2𝑝1𝑖) + (2𝑝1𝑖 − 2𝑝𝑖)]2 =
𝑛1

𝑧=1

∑(𝑔1𝑧 − 2𝑝1𝑖)2 +
𝑛1

𝑧=1

𝑛1(2𝑝1𝑖 − 2𝑝𝑖)2

= 𝑛1𝜎1𝑖
2 + 𝑛1(2𝑝1𝑖 − 2𝑝𝑖)2 

Applying the same logic to ∑ (𝑔2𝑞 − 2𝑝𝑖)
2𝑛2

𝑞=1 we arrive at the formula for the variance for the 

mixture population. 

𝜎𝑖
2 =

𝑛1𝜎1𝑖
2 + 𝑛2𝜎2𝑖

2

𝑛1 + 𝑛2
+

𝑛1(2𝑝1𝑖 − 2𝑝𝑖)2 + 𝑛2(2𝑝2𝑖 − 2𝑝𝑖)2

𝑛1 + 𝑛2

= 𝑓1𝜎1𝑖
2 + 𝑓1(2𝑝1𝑖 − 2𝑝𝑖)2 + 𝑓2𝜎2𝑖

2 + 𝑓2(2𝑝2𝑖 − 2𝑝𝑖)2 

We now extend from 2 to K populations.  Suppose we have a set of reference panels representing 

K populations and their corresponding mixture frequencies, 𝑓.  Then for SNP i in population 𝑘 ∈

𝐾, let 𝜎𝑘𝑖
2  be the variance and 2𝑝𝑘𝑖 be the frequency.  The frequency in the mixture population is 

then 2𝑝𝑖 = ∑ 𝑓𝑘2𝑝𝑘𝑖
𝐾
𝑘=1 , and the combined variance at SNP i is 
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𝜎𝑖
2 = 𝑓1 ∑(𝑔1𝑧 − 2𝑝𝑖)2

𝑛1

𝑧=1

+ ⋯ + 𝑓𝐾 ∑(𝑔𝐾𝑙 − 2𝑝𝑖)2

𝑛𝐾

𝑙=1

= 𝑓1𝜎1𝑖
2 + 𝑓1(2𝑝1𝑖 − 2𝑝𝑖)2 + ⋯ + 𝑓𝐾𝜎𝐾𝑖

2 + 𝑓𝐾(2𝑝𝐾𝑖 − 2𝑝𝑖)2

= ∑ 𝑓𝑘[𝜎𝑘𝑖
2 + 4(𝑝𝑘𝑖 − 𝑝𝑖)2]

𝐾

𝑘=1

 

Next, we derive the covariance between SNPs i and j in the mixture population.  If x and y are 

random variables, 𝜎𝑥+𝑦
2 = 𝑐𝑜𝑣(𝑥 + 𝑦, 𝑥 + 𝑦) = 𝑐𝑜𝑣(𝑥, 𝑥) + 𝑐𝑜𝑣(𝑦, 𝑦) + 𝑐𝑜𝑣(𝑥, 𝑦) = 𝜎𝑥

2 +

𝜎𝑦
2 + 2𝑐𝑜𝑣(𝑥, 𝑦), and thus 𝑐𝑜𝑣(𝑥, 𝑦) =

𝜎𝑥+𝑦
2 −𝜎𝑥

2−𝜎𝑦
2

2
.  

Let 𝑐𝑜𝑣𝑘(𝑖, 𝑗) be the covariance of SNPs i and j in population k. Then the covariance in 

the mixture population is: 

2𝑐𝑜𝑣(𝑖, 𝑗)𝑖≠𝑗 = [𝜎𝑖+𝑗
2 − 𝜎𝑖

2 − 𝜎𝑗
2]

= ∑ 𝑓𝑘 {[𝜎𝑘𝑖
2 + 𝜎𝑘𝑗

2 + 2𝑐𝑜𝑣𝑘(𝑖, 𝑗) + 4(𝑝𝑘(𝑖+𝑗) − 𝑝(𝑖+𝑗))
2

]
𝐾

𝑘=1

− [𝜎𝑘𝑖
2 − 4(𝑝𝑘𝑖 − 𝑝𝑖)2] − [𝜎𝑘𝑗

2 − 4(𝑝𝑘𝑗 − 𝑝𝑗)
2

]}

= ∑ 𝑓𝑘 {[𝜎𝑘𝑖
2 + 𝜎𝑘𝑗

2 + 2𝑐𝑜𝑣𝑘(𝑖, 𝑗) + 4 ((𝑝𝑘𝑖 − 𝑝𝑖) + (𝑝𝑘𝑗 − 𝑝𝑗))
2
]

𝐾

𝑘=1

− [𝜎𝑘𝑖
2 − 4(𝑝𝑘𝑖 − 𝑝𝑖)2] − [𝜎𝑘𝑗

2 − 4(𝑝𝑘𝑗 − 𝑝𝑗)
2

]} 

⇒ 𝑐𝑜𝑣(𝑖, 𝑗)𝑖≠𝑗 = ∑ 𝑓𝑘[𝑐𝑜𝑣𝑘(𝑖, 𝑗) − 4(𝑝𝑘𝑖 − 𝑝𝑖)(𝑝𝑘𝑗 − 𝑝𝑗)]
𝐾

𝑘=1

 

By definition, the mixture correlation matrix is 

∑ =
𝑐𝑜𝑣(𝑖, 𝑗)

√𝜎𝑖
2𝜎𝑗

2𝑖𝑗
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Algorithm 1 details our procedure for computing the mixture correlation matrix over a set of 

SNPs.  Given K populations and M SNPs, it takes as input the mixture frequencies (𝑓), a matrix 

of SNP variances (𝐕𝐾x𝑀 = {𝜎𝑘𝑖
2 }), a matrix of the pairwise SNP covariances (𝐂𝐾x𝑀x𝑀 =

{𝑐𝑜𝑣𝑘(𝑖, 𝑗)}), and a matrix of the genotype frequencies (𝐏𝐾x𝑀 = {2𝑝𝑘𝑖}), and outputs the mixture 

correlation matrix. 

Algorithm 1 Graph sampling  
Input: 𝑓, 𝐕, 𝐂, 𝐏 
Output: Σ 
 
# Normalize mixture frequencies so they sum to 1 
𝑓 =  𝑓/𝑠𝑢𝑚(𝑓) 
 
# Compute weights for mixture variances 
WeightedGT = 𝐏 𝑓𝑇 
NegWeightedGT = 𝐏 [(𝑓 − 1)

𝑇
] 

D = empty K x M matrix 
for all k in {1…K} do 
 Dk  = NegWeightedGTk + sum(WeightedGTl), ∀𝑙 ≠ 𝑘 
 
# Compute mixture variances 
MixVar = (D2 + V) 
 
# Compute mixture covariances 
MixCov = empty K x M x M matrix 
for all k in {1…K} do 
 tmp =  𝑓𝑘(𝐂𝑘 + [Dk ⊗Dk]) 
 MixCov = 𝐂 + tmp 
 
# Compute mixture correlations 
denominators = √𝑀𝑖𝑥𝑉𝑎𝑟 ⊗ 𝑀𝑖𝑥𝑉𝑎𝑟, square-root applied element-wise 
Σ = 𝑀𝑖𝑥𝐶𝑜𝑣/𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟𝑠, element-wise division 
 
 
 
Optimization of Mixture Frequencies 

Given this algorithm for computing the correlation matrix Σ of the mixture population 

over a set of SNPs, we turn to the problem of selecting the mixture frequencies 𝑓. We formulate 
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this as a constrained optimization problem: minimizing (or maximizing) the value of a given 

objective function subject to the constraint that ∑ 𝑓 = 1 using the L-BFGS algorithm(Byrd, Lu, 

Nocedal, & Zhu, 2006). In this context, the “best guess” approach corresponds to setting 𝑓𝑘 = 1 

for the guessed population and 𝑓𝑗 = 0, ∀𝑗 ≠ 𝑘. In this work we consider the problems of 

imputation and joint-testing from summary statistics, and therefore selected the mean squared 

error (MSE) of imputed z-scores at observed SNPs and MSE of computed joint-test statistics as 

our objective functions, respectively (see the Imputation and Joint-testing sections below).  

However, other objective functions may be more appropriate depending on the purpose of the 

summary statistics based method. For example, one could chose to maximize the likelihood of 

the observed z-scores 𝑍 under a multivariate normal distribution. 

In order to allow for variation in local correlation structure, the genome is separated into 

𝑊 equally sized non-overlapping windows.  For each window, 𝑤 ∈ {1 … 𝑊}, we compute the 

correlation matrix using only SNPs in 𝑤, Σ𝑤.  Using  Σ𝑤, z-scores are imputed for all SNPs in 𝑤 

and the imputed values are used to compute the mean squared error from the true z-scores.  We 

exclude SNPs from Σ𝑤 with a minor allele frequency (MAF) less than 0.01 in any of the k 

populations, missing z-scores, 𝑟2 ≤ 0.003, or an undefined 𝑟 with the SNP we are imputing.  

These SNPs are excluded because they only add noise to the imputation process. To ensure that 

Σ is invertible, 𝜆 is added to the diagonal of the matrix.  The final correlation matrix is then Σ =

Σ𝑢𝑛𝑎𝑑𝑗 +  𝜆𝐼.  Σ𝑢𝑛𝑎𝑑𝑗 is the original correlation matrix prior to adding 𝜆. The exact algorithm to 

compute the imputation mean squared error for a set of SNPs in a window is described in 

Algorithm 2.  
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Algorithm 2 Mean squared error objective function 

Input: 𝑓, 𝐕, 𝐂, 𝐏, windowSize, 𝜆, 𝑍 
Output: meanSquaredError 
 
# Normalize mixture frequencies so they sum to 1 
𝑓 =  𝑓/𝑠𝑢𝑚(𝑓) 
 
# Compute number of windows 
windows = length(𝑍)/windowSize 
 
# Initialize numerator and denominator of MSE 
numerator = 0 
denominator = 0 
for all 𝑞 ∈ {1 … 𝑤𝑖𝑛𝑑𝑜𝑤𝑠} do 
 # Compute Sigma using SNPs in window q 
 Σ(𝑞) = 𝐶𝑟𝑒𝑎𝑡𝑒 Σ(𝑓, 𝐕(𝒒), 𝐂(𝒒), 𝐏(𝒒)), see Algorithm 1 
 Σ(𝑞) = Σ(𝑞) + 𝜆𝐼 
  
 # Impute SNPs in window 
 for all 𝑠 ∈ {1 … 𝑤𝑖𝑛𝑑𝑜𝑤𝑆𝑖𝑧𝑒} do  

 𝑧𝑠 = Σ𝑠𝑡
(𝑞) [Σ𝑡𝑡

(𝑞)]
−1

𝑍𝑡
(𝑞), ∀𝑡 ≠ 𝑠 

 numerator = numerator + (𝑧𝑠 − 𝑍𝑠
(𝑞))

2
 

 denominatoy = denominator + 1 
 
meanSquaredError = numerator/denominator 
 

The procedure we have described is easily extendable from a window to any region, be it 

a whole genome, chromosome, or single locus. In this case, 𝑓 is optimized by 

minimizing/maximizing the objective function over the sum of the non-overlapping windows. If 

there are a large number of SNPs in the region of interest, the convergence time of the algorithm 

will increase. To minimize the computation time when optimizing over the entire genome, we 

selected regions of the genome that have the largest absolute z-scores. Specifically, for every set 

of five adjacent windows we optimized using the two windows with the largest number of z-

scores > 1.5.  

Imputation 
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The z-score at a SNP i can be imputed from summary statistics and the correlation 

matrix, Σ, using the ImpG approach(Pasaniuc, Zaitlen, Shi, Bhatia, Gusev, Pickrell, Hirschhorn, 

Strachan, Patterson, & Price, 2014).  Pasaniuc et al. used a gaussian approximation combined 

with a windowing approach to impute the z-score at i.  The windowing aims to decrease runtime 

and reduce statistical noise that might be caused by distant SNPs with random non-zero 

correlation but no true LD.  Define 𝑍𝑡 as the set of observed z-scores within a given window size 

around i.  The imputed z-score is then 𝑧𝑖 = Σ𝑖𝑡
(𝑞) [Σ𝑡𝑡

(𝑞)]
−1

𝑍𝑡, for all SNPs t in the window.  

 

Joint Testing 

At genomic loci where at two SNPs are negatively correlated, using a marginal test often 

underestimates effect sizes(Galarneau et al., 2010; Sanna et al., 2011; Yang et al., 2012).  A joint 

analysis is more powerful than a marginal test when analyzing such SNPs.  Given two z-scores 

computed at SNPs i and j using a marginal test, a 𝜒2 test-statistic with 2 degrees of freedom, 𝐽𝑖𝑗  

can be calculated as shown in Equation 3. 

𝐽𝑖𝑗 =
1

1 − Σ𝑖𝑗
2 (𝑧𝑖

2 + 𝑧𝑗
2 − 2Σ𝑖𝑗z𝑖z𝑗) 

In our tests, the calculation of 𝐽𝑖𝑗  is restricted to SNPs that have a pairwise correlation |𝑟| <

0.8 because small changes in r can cause large fluctuations in 𝐽𝑖𝑗  as |𝑟| approaches 1.  

 

Simulation Framework 

We simulated data using individuals from the Genes-environments & Admixture in 

Latino Americans (GALA II) cohort(Borrell et al., 2013), which is composed of 1245 Mexican 

and 1785 Puerto Rican individuals.  The Mexican individuals have predominantly European and 
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Native American ancestry whereas their Puerto Rican counterparts tend to have mostly European 

and African ancestry.  We conducted separate simulations for each group due to the differences 

in ancestry.  We generated quantitative phenotypes and z-scores for every non-overlapping 

window of 1000 SNPs.  For each window, a binomial trial (p = 0.01) was used to determine if 

the phenotype should be drawn from the null or alternate.  Under the null, individuals' 

phenotypes were drawn from a 𝒩(0,1).  Under the alternate, we assumed an effect size of 0.2, 

and drew individuals' phenotypes from 𝒩(0.2𝑔𝑖𝑑, 1), where 𝑔𝑖𝑑 is the genotype of individual d 

at SNP i.  The phenotypes were generated using the SNP in the middle of each window, and z-

scores were computed at all SNPs as described in the introduction of the Methods section. 

 

Reference Panels 

Reference panels were generated using the 1000 Genomes (1KG) Phase 3 data from the 

following 11 populations: CEU, IBS, FIN, GBR, TSI, YRI, MXL, PUR, CHB, JPT, GIH.  For 

each dataset we analyzed (i.e. GALA II, CARDIoGRAMplusC4D) we removed any A/T and 

G/C SNPs to avoid strand issues.  We then took an intersection of rsids between our data and the 

1KG data to determine which SNPs to include in our reference panels.  All SNPs for the 

reference panels were coded as the number of reference alleles an individual had (i.e. 0, 1, 2). 

 

Results 

We applied Adapt-Mix to summary statistics from simulated and real data to estimate the 

pairwise SNP correlation matrix (Σ).  In this work, we use z-score imputation and joint-testing.  

For both datasets we used several approaches to estimate Σ and impute z-scores.  All imputation 

was done using a window size of 200 SNPs and 𝜆 = 0.1.  The values for window size and 𝜆 were 
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chosen based on the recommended settings used in Pasaniuc et al(Pasaniuc, Zaitlen, Shi, Bhatia, 

Gusev, Pickrell, Hirschhorn, Strachan, Patterson, & Price, 2014). We measured the impact of 

using different methods to estimate Σ on z-score imputation by computing the mean-squared 

error (MSE) and Pearson correlation coefficient (r) between the imputed z-scores and true z-

scores.  In addition to imputation, we also performed joint-testing in the simulated data because 

we had access to the individual genotypes and thus the could compute the true SNP correlation 

matrix.  Again, we measured the effect of several Σ estimation methods on joint-testing by 

computing the MSE and r between the true joint statistics and the estimated joint statistics. 

 

Simulated Data 

Simulated z-scores from the GALA II genotypes (see Simulation Framework) were used 

to determine whether our method gave more accurate results for a) imputing z-scores and b) 

computing joint-test statistics. Since there are multiple ways to optimize mixture frequencies 

using Adapt-Mix, we compared the use of several optimization strategies against the “best 

guess” approach.  Using Adapt-Mix, we estimated Σ using 1KG reference panels by optimizing 

over each chromosome (1KG-Chrom), over the whole genome (1KG-Genome), and per window 

(1KG-Window).  We note that any SNP used to measure imputation quality was excluded during 

optimization.  Additionally, to evaluate how our method affects imputation and joint-testing 

when a “best guess” panel is unavailable, we removed both MXL and PUR panels and optimized 

frequencies over the chromosomes (1KG-No-PUR-MXL). 

 

Population Frequencies 

We applied our method to simulated data over Mexican and Puerto Rican individuals 
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from the GALA II cohort(Borrell et al., 2013). Figure 1 shows the average frequency assigned to 

each population when frequencies were optimized per chromosome.  When matching reference 

populations are included in the optimization (MXL for the Mexicans and PUR for the Puerto 

Ricans), nearly one third of the mixture is assigned to the matching reference panel.  The rest of 

the frequencies are distributed to populations in a similar manner to the admixture proportions of 

each group(Baran, Pasaniuc, Sankararaman, Torgerson, Gignoux, Eng, Rodríguez-Cintrón, 

Chapela, Ford, Avila, Rodriguez-Santana, Burchard, & Halperin, 2012).  Having predominantly 

Native American and European ancestry, Mexicans have frequencies distributed amongst 

European and East Asian panels in addition to MXL.  However, when MXL and PUR are not 

included, we see an increase in frequency assigned to the East Asian panels. Puerto Ricans have 

more African ancestry than Native American ancestry, and we observe a correspondingly larger 

frequency of the YRI (African) panel and lower frequencies of East Asian panels.   
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Imputation  

We next evaluated the imputation performance of the different approaches to estimating 

Σ. We measured each method's impact on imputation by computing the mean-squared error 

(MSE) and Pearson correlation coefficient (r) between the imputed z-scores and true z-scores.  

We imputed the z-score of the 100th SNP in every window.  We restricted our analysis to SNPs 

with a MAF ≥ 0.01 in the reference panel since imputation quality tends to be poor for rare 

SNPs.  We also removed from Σ SNPs that had a 𝑟2 ≤ 0.003 with the SNP we were imputing.  

When using a mixture reference panel we filtered SNPs using a mixture MAF.  The mixture 

MAF for SNP i is ∑ 𝑓𝑘MAF𝑘𝑖
𝐾
𝑘=1 , where 𝑓𝑘 is the mixture frequency assigned to population k and 

MAF𝑘𝑖 is the MAF of SNP i in k.   

As the gold standard, the original GALA II genotypes were used to estimate Σ.  It is clear 

from Tables 1 and 2 that using the original genotypes results in very high imputation quality.  To 

demonstrate that using the wrong reference panel can cause a huge decrease in performance, we 

imputed z-scores using YRI and JPT as reference panels for the Mexicans and Puerto Ricans, 

respectively.  Using the wrong reference panel resulted in MSE increasing over 400% in the 

Mexicans and over 250% in the Puerto Ricans.   
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Next, z-scores were imputed using Adapt-Mix to estimate LD. We found that for 

imputation in admixed individuals, locally optimizing mixture frequencies over each window 

performs the best.  For z-scores imputed over the whole genome there is a 28.8% decrease in 

MSE for the Mexicans and a decrease of 15.7% for the Puerto Ricans (See Tables 1 and 2).  

Similar decreases in MSE are seen when optimizing frequencies over the chromosome and the 

entire genome.  Even when MXL and PUR were removed, we see that our method approach to 

estimating Σ outperforms the “best guess” panel.  We also see increases in the r of imputed and 

true z-scores in the Mexicans and the Puerto Ricans when using Adapt-Mix.  The increase in r is 
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equivalent to an increase of 25.0% and 12.8% in effective sample size for the Mexicans and 

Puerto Ricans, respectively.  Interestingly, the local optimization approach does not necessarily 

find mixture frequencies that are closest to the study's overall mixture of ancestry.  The results 

here indicate that using such a mixture may not be the best for imputation accuracy and 

highlights the benefits of using the correct objective function when optimizing mixture 

frequencies for the selected summary statistics based method. 

 

Joint-Test 

 Joint-testing of pairs of SNPs from summary statistics also relies on estimates of the 

pairwise correlation between SNPs(Yang et al., 2012). Using SNPs on chromosome 22 we 

computed true joint statistics using Σ computed from the genotypes of the GALA II individuals.  

The estimated joint statistics were computed using Σ estimated using Adapt-Mix.  The mixture 

frequency optimization strategies were the same as those used in z-score imputation.  We 

computed Joint statistics for SNPS that had a MAF or mixture MAF ≥ 0.05 in all of the Σ 

estimation approaches.  Tables 3 and 4 show that using a Σ estimated from a mixture reference 

panel results in increased performance over using a “best guess” reference panel.   
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In both populations, the frequencies optimized per chromosome (1KG-Chrom) performed 

the best.  Compared to using a “best guess” panel, we observed a 73.7% decrease in MSE for the 

Mexicans and a 70.2% decrease in MSE for the Puerto Ricans. We plotted the estimated joint 

statistics versus the true joint statistics for Mexicans and Puerto Ricans for different choices of Σ 

(Figure 2). The results show that joint statistics computed using the combined reference panels 

are in higher concordance with the truth than the “best guess'' panel.  Remarkably, even when 

MXL and PUR are removed from the mixture, estimates of Σ improvements can be clearly seen 

(Figure 2c and 2d). 
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To show that the joint statistics produced by using our method for estimating correlations 

are unbiased (i.e. 𝐸[𝐽𝑖𝑗 − 𝐽𝑖𝑗] = 0), we looked at the mean difference between the true statistics 

and estimated statistics.  Tables 3 and 4 show that the mean difference is closer to 0 when our 

approach is used in both the Mexicans and Puerto Ricans.  The 1KG-Chrom based correlation 

estimates generated differences in true versus estimated that were the closest to zero amongst all 
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approaches. We can see from Tables 3 and 4 that 1KG-Chrom has the smallest variance for the 

differences in true versus estimated joint statistics.  The “best guess'' panels had the highest 

variance of all approaches except for 1KG-Genome in the Puerto Ricans.  Additionally, we 

examined all estimated joint statistics that were more than 2 chi-squared units from the truth.  In 

Mexicans, we saw 122 such statistics for the MXL and 22 for 1KG-Chrom (Figure 3a).  A 

similar trend is seen in Puerto Ricans as well, with 53 large deviations for the PUR and 3 for 

1KG-Chrom (Figure 3b). The decrease in frequency and magnitude of large differences 

demonstrates that using Adapt-Mix can help reduce the number of false positives in a joint 

analysis using reference panels. However, high deviations seen in both methods indicate that 

regardless of approach there is potential to misestimate the pairwise correlation coefficients of 

SNPs.  
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Real Data 

We applied our method to the C4D coronary artery disease dataset from the 

CARDIoGRAMplusC4D consortium(T. C. A. D. C. G. Consortium, 2011; Schunkert et al., 

2011).  In the C4D study, the discovery cohort consisted of 14,790 South Asians and 15,692 

Europeans.  South Asians are known to have undergone admixture between two ancestral 

populations, with one of the ancestral populations being genetically similar to 

Europeans(Moorjani et al., 2013; Reich, Thangaraj, Patterson, Price, & Singh, 2009). Consistent 

with the admixture seen in South Asians, we see mixture frequencies for C4D that are assigned 

primarily to the European and the South Asian panels (see Figure 1).   

 

Imputation 

The C4D data provided us with an opportunity to assess how our method affects the 

performance of z-score imputation in the context of a dataset with different population structure 
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than that used in the simulations.  Unlike our simulations, where everybody was admixed, the 

summary statistics in C4D were generated using a mixture of individuals with homogenous 

ancestries (Europeans) and heterogeneous ancestries (South Asians).  As we did for the 

simulated data, we used MSE and r of the imputed z-scores as our performance metrics. Here, 

we estimated Σ using a “best guess” reference panel, 1KG-Chrom, and 1KG-Window.  We chose 

to optimize frequencies for the 1KG reference panels over each chromosome and each window 

because these two approaches performed the best in our simulations. We imputed the 100th SNP 

in each window and we restricted our analyses here to SNPs that had (mixture) MAF ≥ 0.01. 

As the “best guess” reference panel for C4D we used GIH and CEU because the C4D 

discovery cohort was composed of roughly an equal number of individuals with a European or 

South Asian ancestry.  When imputing we saw similar results to our simulations.  Compared to 

using CEU or GIH there was a decrease of 30.1% or 36% in MSE, respectively (Table 5).  In 

terms of r we saw increases of about 7% over CEU and about 9% over GIH for both 1KG-

Window and 1KG-Chrom.  The increase in correlation is equivalent to an increase of 15% in 

effective sample size compared to CEU. 

 

 

Discussion 

Summary statistics based methods requiring an estimate of the genetic correlation matrix 
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are becoming increasingly popular, however, very few GWAS include LD information in their 

released data. In prior work, this information has been approximated by using LD information 

from “best guess” reference panels, but here we show that this can lead to high error rates even 

when a population closely matching the study population is available(Zaitlen, Kang, & Eskin, 

2009). Our method can be used to improve the accuracy of any summary statistics based method 

that requires LD information by more accurately estimating the local genetic correlation structure 

using information available across several reference populations. 

Our simulations have demonstrated the importance of accurately estimating the genetic 

correlation matrix.  Using Adapt-Mix to estimate LD for summary statistics methods can 

increase their power and decrease their false positive rates.  For example for z-score imputation, 

Pasaniuc et al.(Pasaniuc, Zaitlen, Shi, Bhatia, Gusev, Pickrell, Hirschhorn, Strachan, Patterson, 

& Price, 2014) showed that as long as there is a “best guess” reference panel available, there is 

no increase in false positive rate when imputing summary statistics.  However, in the case that 

there is no “best guess” panel available, we have shown that there is a potential for increased 

false positives by using the wrong reference panel.   

One of the biggest benefits of our method is allowing the analysis of arbitrary populations 

when a matching reference panel is not available. We were able impute z-scores and compute 

joint statistics with better precision “best guess” panels alone even after leaving out the relevant 

“best guess” panels from our computation of Σ. For datasets with admixed individuals, the high 

variability of ancestry proportions may make it harder to consistently model LD in an accurate 

manner with a single reference panel.  For example, in in the Native American component 

Latinos, there is a high level of population substructure(Wang et al., 2008). In the 1000 Genomes 

reference panels, there are currently no Native American reference panels available.  Although 
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proxy populations such as CHB and JPT are often used, they are unlikely to capture the full 

resolution of each underlying sub-population.  Accounting for all the fine scale differences seen 

in admixed individuals will improve with the collection of additional reference panels. 

In this work we aimed to minimize the mean squared error of imputed summary statistics 

in our objective function because imputation was one of our main focuses. For other purposes it 

may be more appropriate to use a different objective depending on how the pairwise correlation 

estimates will ultimately be used.  For example, Hormozdiari et al.(Hormozdiari et al., 2014) use 

summary statistics to fine map causal variants by finding the set of variants that maximize the 

likelihood of a multivariate normal distribution.  In this case, optimizing frequencies for 

reference panels by using the multivariate normal likelihood may improve performance.  

Improvements to Adapt-Mix may be made by using an out-of-sample approach to 

learning the mixture frequencies due to the potential of overfitting. Typically, overfitting will 

cause high prediction error variances. We have shown though, with the example of joint-testing, 

that overfitting should not be a major concern as the error variances are smaller when using 

Adapt-Mix compared to a “best guess” panel.  Another enhancement could be made to Adapt-

Mix by using partial correlations.  Often covariates such as principal components are included in 

GWAS, which alter the genetic correlation structure of the individuals being studied.  Partial 

correlations, which account for these covariates may provide even more accurate estimates of the 

Σ for use in summary statistics methods. 
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Chapter 2: Leveraging Admixed Populations to Understand Genes and Environment 
 

1. An Ancestry Based Approach for Detecting Interactions 

 

Introduction 

Genetic association studies in humans have focused primarily on the identification of 

additive single nucleotide polymorphism (SNP) effects through marginal tests of association. 

There is growing evidence that both epistatic and gene-environment (𝐺×𝐸) interactions 

contribute significantly to phenotypic variation in humans and model organisms(Hemani et al., 

2014; Jemal et al., 2011; E. Y. Kang et al., 2014; M. Lee, Raj, & Castillo, 2012; Rouhani et al., 

2014). In addition to explaining additional components of missing heritability, interactions lend 

insights into biological pathways that regulate phenotypes and improve our understanding of 

their genetic architectures. However, identification of interactions in human studies has been 

complicated by the computational and multiple testing burden in the case of epistatic 

interactions, and the lack of consistently measured environmental covariates in the case of 𝐺×𝐸 

interactions(Eichler, Flint, Gibson, Kong, & Leal, 2010; Manolio et al., 2009). 

To overcome these challenges, we leverage the unique nature of genomes from recently 

admixed populations such as African Americans, Latinos, and Pacific Islanders. Admixed 

genomes are mosaics of different ancestral segments(Seldin et al., 2011) and for each admixed 

individual it is possible to accurately estimate 𝜃, the proportion of ancestry derived from each 

ancestral population (e.g. the fraction of European/African ancestry in African 

Americans)(Alexander, Novembre, & Lange, 2009). Ancestry has been previously leveraged to 

demonstrate that an array of environmental and biomedical covariates are correlated with 𝜃 

(Burchard, Ziv, Coyle, & Gomez, 2003 
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; Cheng et al., 2012; Choudhry et al., 2006; Florez et al., 2011; Kumar et al., 2013; 2010; 

Price et al., 2008; Reiner et al., 2007; Sanchez et al., 2010; Shaffer et al., 2007; Ziv et al., 2006) 

and we therefore consider its use as a surrogate for unmeasured and unknown environmental 

exposures. 𝜃 is also correlated with the genotypes of SNPs that are differentiated between the 

ancestral populations, suggesting that 𝜃 may be effectively used as a proxy for detecting multi-

way epistatic interactions. Therefore, we propose a new SNP by 𝜃 test of interaction in order to 

detect evidence of interaction in admixed populations.  

We first investigate the properties of our method through simulated genotypes and 

phenotypes of admixed populations. In our simulations we demonstrate that differential linkage-

disequilibrium (LD) between ancestral populations can produce false positive SNP by θ 

interactions when local ancestry is ignored. To accommodate differential LD, we include local 

ancestry in our statistical model and demonstrate that this properly controls this confounding 

factor. We also show that our approach, the Ancestry Test of Interaction with Local Ancestry 

(AITL), is well-powered to detect 𝐺×𝐸 interactions when θ is correlated with the environmental 

covariates of interest and multi-way epistatic interactions. The power for detecting pairwise 𝐺×𝐺 

interactions at highly differentiated SNPs is lower than direct interaction tests even after 

accounting for the additional multiple testing burden. However, the results of our simulations 

show that AITL is well powered to detect multi-way epistasis involving tens or hundreds of 

SNPs of small effects, not detectable by pairwise tests. 

We first examined molecular phenotypes by applying our method to gene expression data 

from African Americans, as well as DNA methylation data from Latinos. Gene expression traits 

have previously been shown to have large-scale differences as a function of genetic 

ancestry(Price et al., 2008). Other molecular phenotypes, such as LDL levels, have also been 
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shown to be associated with genetic ancestry (Fraser, Lam, Neumann, & Kobor, 2012; Galanter 

et al., 2016; Peralta et al., 2009; Price et al., 2008; Reiner et al., 2007; Spielman et al., 2007). For 

gene expression in particular, Price et al. showed that the effects of ancestry on expression are 

widespread and not restricted to a handful of genes. Additionally, molecular phenotypes are 

often used in deep phenotyping and Mendelian randomization studies and are thus directly 

relevant to elucidating disease biology(Delude, 2015; Vimaleswaran et al., 2013).  

We identified one genome-wide significant interaction (𝑝 < 5×10−8) associated with 

gene expression in the African Americans and eight significant interactions (𝑝 < 5×

10−8) associated with methylation in the Latinos. Two of the eight interactions associated with 

DNA methylation in the Latinos also replicated and the remaining six were enriched for low p-

values (𝑝 < 1.8×10−6). To demonstrate that our approach works in larger data sets we also 

applied AITL to asthma case-control data from Latinos and observed well-calibrated test 

statistics. Together, these results provide evidence for the existence of interactions regulating 

expression and methylation and show that our approach is statistically sound.  

 

Methods 

Our approach is best illustrated with an example. First consider testing a SNP for 

interaction with an environmental covariate E. θ can serve as a proxy for E if the two are 

correlated, even if E is unknown or unmeasured (see Figure 1a). Now consider testing a SNP s 

for interaction with a SNP jz s that is highly differentiated in terms of ancestral allele 

frequencies. For example, a SNP that has a high allele frequency in one ancestral population and 

a low allele frequency in the other ancestral population. θ can be used as a proxy for j because θ 

and the genotypes of SNP j will be correlated. Consider the case where j has a frequency of 0.9 
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in population 1 and frequency of 0.1 in population 2. Individuals with large values of θ 

(percentage of ancestry from population 1)  are more likely to have derived j from population 1 

and on average have greater genotype values at j. Similarly, individuals with small values of θ 

are more likely to have derived j from population 2 and on average have smaller genotype 

values. Thus, θ will be correlated with the genotypes of the individuals for highly differentiated 

SNPs and can serve as a proxy for detecting interactions (see Figure 1b). 
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Figure 1. Examples of How Genetic Ancestry Can Be A Proxy for Interacting Covariates.  
(a) Model of how genetic ancestry 𝜃 can be correlated with various environmental exposures, 
some of which affect a phenotype. (b) Example of how the correlation between the probability of 
an AA genotype (bars 2-4) and values of 𝜃 (bar 1) increase with higher levels of SNP allele 
frequency differentiation. In this plot p1 and p2 denote the allele frequency of allele A in ancestral 
populations 1 and 2 respectively. (c) Example of how effect sizes at a tag-SNP may differ due to 
differential LD on distinct ancestral backgrounds (here, EUR and AFR). 
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Consider an admixed individual i who derives his or her genome from k ancestral 

populations. We denote individual i’s global ancestry proportion as 

〈𝜃𝑖1, 𝜃𝑖2, … , 𝜃𝑖𝑘〉, where ∑ 𝜃𝑖𝑗
𝑘
𝑗=1 = 1.. The local ancestry of individual i at a SNP is denoted as 

𝛾𝑖𝑎 ∈ {0, 1, 2} and is equal to the number of alleles from ancestry 𝑎 ∈ {1 … 𝑘} inherited at that 

SNP. Current methods allow us to estimate ancestry directly from genotype data both globally 

and at specific SNPs(Alexander et al., 2009; Baran, Pasaniuc, Sankararaman, Torgerson, 

Gignoux, Eng, Rodríguez-Cintrón, Chapela, Ford, Avila, Rodriguez-Santana, Burchard, & 

Halperin, 2012; Sankararaman, Sridhar, & Kimmel, 2008). We denote the genotype of an 

individual i at a given SNP  as 𝑔𝑖 ∈ {0, 1, 2} and the corresponding phenotype as yi. 

In this work, we model continuous phenotypes in an additive linear regression 

framework. Assuming n (unrelated) individuals, define �⃗� to be the vector of all individuals’ 

phenotypes. The model for the phenotype is then  

�⃗� =  𝑿𝛽 +  𝜀 

where 𝜀 ~ 𝒩(0, 𝜎)  is a n×1 vector of error terms, X is a n×v matrix of v covariates, and 𝛽 is a 

v×1 vector of the covariate effect sizes. We note that in our notation �⃗�2 = �⃗�𝑇�⃗� for a vector �⃗�. 

Assuming independence, the likelihood under this model is: 

𝐿 =  (
1

𝜎√2𝜋
)

𝑛

 𝑒𝑥𝑝 (−
1

2𝜎2 (�⃗� − 𝑿𝛽)
2

) 

Then the log likelihood is given by the following expression: 

log(𝐿) =  −𝑛 log(√2𝜋) − 𝑛 log(𝜎) −
(�⃗� − 𝑿𝛽)

2

2𝜎2  

Let 𝐿1 denote the likelihood under the alternative and 𝐿0 the likelihood under the null. We can 

compute the log-likelihood ratio statistic (D) using a maximum likelihood approach: 
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𝐷 = −2 (log 𝐿1 − log 𝐿0)

= −2 (𝑛 log(𝜎𝐿1) +
(�⃗� − 𝑿�̂�𝐿1)

2

2�̂�𝐿1
2 ) + 2 (𝑛 log(𝜎𝐿0) +

(�⃗� − 𝑿�̂�𝐿0)
2

2�̂�𝐿0
2 ) 

where �̂�𝐿1 and 𝜎𝐿1are the maximum likelihood estimators of 𝛽 and 𝜎 under the alternative, 

respectively and �̂�𝐿0 and 𝜎𝐿0are the maximum likelihood estimators (MLEs) of 𝛽 and 𝜎 under the 

null, respectively.   

We note that for a case-control phenotype we would use the following likelihood and log-

likelihood ratio statistic, assuming a logistic regression model:  

𝐿 =  ∏ [
1

1 + 𝑒−𝑋𝑖�⃗⃗⃗�
]

𝑦𝑖

[1 −
1

1 + 𝑒−𝑋𝑖�⃗⃗⃗�
]

1−𝑦𝑖𝑛

𝑖=1

 

𝐷 = −2 (log 𝐿1 − log 𝐿0)

= −2 (∑ − log (1 + 𝑒−𝑋𝑖�̂⃗⃗⃗�𝐿1 )
𝑛

𝑖=1

+ ∑ 𝑦𝑖 (𝑋𝑖�̂�𝐿1)
𝑛

𝑖=1

)

+ 2 (∑ − log (1 + 𝑒−𝑋𝑖�̂⃗⃗⃗�𝐿0)
𝑛

𝑖=1

+ ∑ 𝑦𝑖 (𝑋𝑖�̂�𝐿0)
𝑛

𝑖=1

) 

 

where 𝑋𝑖is the i-th row of the matrix X, which correspond to the covariates of individual i and 𝑦𝑖 

∊ {0,1} is the phenotype of individual i. 

For linear regression, the MLE of the effect sizes is �̂� = (𝑿𝑇𝑿)−1𝑿𝑇�⃗�, and the MLE of 

the error variance is 𝜎2 = 1
𝑛

(�⃗� − 𝑿�̂�)
2
. (�̂�𝐿1, 𝜎𝐿1

2 ) and (�̂�𝐿0, 𝜎𝐿0
2 ) are the effect sizes and error 

variance estimates that maximize the respective likelihoods. D is distributed as 𝜒2 with k degrees 

of freedom (df), where k is the number of parameters constrained under the null. 
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1-df Ancestry Interaction Test (AIT) 

The first test we present is the standard direct test of interaction. We test for a SNP’s 

interaction with θ instead of an environmental covariate or another genotype. Let �⃗� =

〈𝑔1, … , 𝑔𝑛〉 be the vector of the individuals’ genotypes at a given SNP, �⃗�𝑎 = 〈𝜃1𝑎, … , 𝜃𝑛𝑎〉 be the 

vector of their global ancestries for ancestry a, and �⃗�×�⃗�𝑎 be the vector of interaction terms 

which result from the component-wise multiplication of the genotype and global ancestry 

vectors. We test the alternative hypothesis (�̂�𝐺×𝜃 ≠ 0) against the null hypothesis (�̂�𝐺×𝜃 = 0). 

 

𝐻1: �⃗� =  �̂�𝑔�⃗� + �̂�𝐺×𝜃(�⃗�×�⃗�𝑎) + �̂�𝜃�⃗�𝑎 

𝐻0: �⃗� =  �̂�𝑔�⃗� + �̂�𝜃�⃗�𝑎 

 

In this test of interaction, we test a single ancestry versus the other ancestries that may be present 

in the population of interest. One parameter is constrained under the null which results in a 

statistic with k=1 df. Let �̂�𝐿{0,1}(𝑔), �̂�𝐿{0,1}(𝐺×𝜃) , and �̂�𝐿{0,1}(𝜃) denote the effect sizes of genotype, 

interaction, and global ancestry under a given hypothesis respectively. The statistic is given 

below. 

 

𝐷 = −2 (𝑛 log(�̂�𝐿1) +
[�⃗� − 𝑿〈�̂�𝐿1(𝑔) , �̂�𝐿1(𝐺×𝜃) , �̂�𝐿1(𝜃)〉 ]

2

2�̂�𝐿1
2 )

+ 2 (𝑛 log(�̂�𝐿0) +
[�⃗� − 𝑿〈�̂�𝐿0(𝑔) , 0, �̂�𝐿0(𝜃)〉]

2

2�̂�𝐿0
2 ) 

where 𝑿 is an 𝑛×3 matrix composed of �⃗�, �⃗�𝑎, and �⃗�×�⃗�𝑎 as columns. 
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1-df Ancestry Interaction Test with Local Ancestry (AITL) 

Given that the individuals we analyze in this work are assumed to be admixed, there is 

potential for confounding due to differential LD. An interaction that is not driven by biology 

could occur due to the possibility that a causal variant may be better tagged by a SNP being 

tested on one ancestral background versus another (See Figure 1c). We account for the different 

LD patterns on varying ancestral backgrounds by including local ancestry as an additional 

covariate in AITL. By including local ancestry, we assume that the SNP being tested is on the 

same local ancestry block as the causal SNP that it may be tagging. Such an assumption is 

reasonable because admixture in populations such as Latinos and African Americans are 

relatively recent events and their genomes have not undergone many recombination events. As a 

result, local ancestry blocks on average stretch for several hundred kilobases(Price et al., 2007; 

M. W. Smith et al., 2004).  

Let �⃗�𝑎 = 〈𝛾1𝑎, … , 𝛾𝑛𝑎〉 be the vector of local ancestry calls for all individuals for ancestry 

a and let �⃗�×�⃗�𝑎 be the interaction terms from piecewise multiplication of the two vectors. We use 

the following alternative and null hypotheses: 

 

𝐻1: �⃗� =  �̂�𝑔�⃗� + �̂�𝐺×𝜃(�⃗�×�⃗�𝑎) + �̂�𝜃�⃗�𝑎 + �̂�𝛾�⃗�𝑎 + �̂�𝐺×𝛾�⃗�×�⃗�𝑎  

𝐻0: �⃗� =  �̂�𝑔�⃗� + �̂�𝜃�⃗�𝑎 + �̂�𝛾�⃗�𝑎 + �̂�𝐺×𝛾�⃗�×�⃗�𝑎  

 

Here we are testing for an interaction effect, i.e. �̂�𝐺×𝜃 ≠ 0, and constrain one parameter under 

the null resulting in a statistic with k=1 df. Let �̂�𝐿{0,1}(𝐺×𝛾)  and �̂�𝐿{0,1}(𝛾)  denote the effect sizes of 

the interaction between genotype and local ancestry and just local ancestry, respectively. The log 

likelihood ratio statistic is given by 
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𝐷 = −2 (𝑛 log(�̂�𝐿1) +
[�⃗� − 𝑿〈�̂�𝐿1(𝑔) , �̂�𝐿1(𝐺×𝜃) , �̂�𝐿1(𝜃), �̂�𝐿1(𝛾), �̂�𝐿1(𝐺×𝛾)〉 ]

2

2𝜎𝐿1
2 )

+ 2 (𝑛 log(�̂�𝐿0) +
[�⃗� − 𝑿〈�̂�𝐿0(𝑔) , 0, �̂�𝐿0(𝜃), �̂�𝐿0(𝛾), �̂�𝐿0(𝐺×𝛾)〉 ]

2

2�̂�𝐿0
2 ) 

where 𝑿 is an 𝑛×5 matrix composed of �⃗�, �⃗�𝑎, �⃗�×�⃗�𝑎, �⃗�𝑎𝑠 , and �⃗�𝑠×�⃗�𝑎𝑠 as columns. All of these 

test-statistics are straightforwardly modified to jointly incorporate several ancestries in the case 

of multi-way admixed populations. 

 

Standard Pairwise Test of Interaction and Controlling Confounding in Admixed 

Populations 

 Here we present the standard approach for testing for interaction between two SNPs s and 

j. We use the following alternative and null hypotheses. 

𝐻1: �⃗� =   �̂�𝑠�⃗�𝑠 + �̂�𝑗�⃗�𝑗 + �̂�𝑠×𝑗�⃗�𝑠×�⃗�𝑗 + �̂�𝜃�⃗�𝑎  

𝐻0: �⃗� =  �̂�𝑠�⃗�𝑠 + �̂�𝑗�⃗�𝑗 + �̂�𝜃�⃗�𝑎  

If AITL is significant for a given SNP s, then any SNP j tested for interaction with s may be 

biased if j is correlated with covariates that are also correlated with 𝜃. Furthermore, if the effects 

of the covariates correlated with 𝜃 are non-linear then controlling for the main effects of the 

SNPs and ancestry will account for the non-linear effects. We thus, propose the following 

alternative and null hypotheses: 

𝐻1: �⃗� =   �̂�𝑠�⃗�𝑠 + �̂�𝑗�⃗�𝑗 + �̂�𝑠×𝑗�⃗�𝑠×�⃗�𝑗 + �̂�𝜃�⃗�𝑎 + �̂�𝑠×𝜃�⃗�𝑠×�⃗�𝑎  

𝐻0: �⃗� =  �̂�𝑠�⃗�𝑠 + �̂�𝑗�⃗�𝑗 + �̂�𝜃�⃗�𝑎 + �̂�𝑠×𝜃�⃗�𝑠×�⃗�𝑎  

We note that the utility of this test will require further investigation (see Discussion). 
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Simulation Framework 

For all our simulations, we simulated 2-way admixed individuals. Global ancestry for 

ancestral population 1 (𝜃1) was drawn from a normal distribution with 𝜇 = 0.7 and 𝜎 = 0.2. 

Individuals i with 𝜃𝑖1 > 1 or 𝜃𝑖1 < 0 were assigned a value of 1 or 0, respectively. We simulated 

phenotypes of individuals to investigate our method in four different scenarios: 𝐺×𝐸 

interactions, pairwise epistatic interactions, multi-way epistatic interactions, and false positive 

interactions due to local differential tagging. 

To simulate phenotypes under the situation of a 𝐺×𝐸 interaction, we simulated a single 

SNP. For each individual i, we assigned the local ancestry or the number of alleles derived from 

population 1 (𝛾𝑖1) for each haplotype by performing two binomial trials with the probability of 

success equal to 𝜃𝑖1. We then drew ancestry specific allele frequencies following the Balding-

Nichols model by assuming a 𝐹𝑆𝑇 = 0.16 and drawing two population frequencies, p1 and p2, 

from the following beta distribution(Balding & Nichols, 1995). 

 

𝑝1, 𝑝2 ~𝐵𝑒𝑡𝑎 (
𝑝(1 − 𝐹𝑆𝑇)

𝐹𝑆𝑇
,
(1 − 𝑝)(1 − 𝐹𝑆𝑇)

𝐹𝑆𝑇
) 

 

where p is the ancestral population allele frequency and is set to 0.2. Genotypes were drawn 

using a binomial trial for each local ancestry haplotype with the probability of success equal to p1 

or p2  for values of 𝛾𝑖1 = 0, 1, or 2. Environmental covariates correlated with the proportion of 

ancestry from population 1, Ei, were generated for each individual i by drawing from a normal 

distribution 𝒩(𝜇 = 𝜃𝑖1, 𝜎𝐸), where  𝜎𝐸 is the standard deviation of the environmental 

covariates. 𝜎𝐸 was varied from 0 to 5 in increments of 0.005 to create Ei’s that were correlated 
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with individuals’ global ancestries in varying degrees. We generated phenotypes for individuals 

assuming only an interaction effect by drawing from a normal distribution, 𝒩(𝜇 = 𝛽𝐺×𝐸× 𝑔𝑖1×

𝐸𝑖, 𝜎 = 1) for a given interaction effect size (𝛽𝐺×𝐸). 

To simulate phenotypes based on pairwise epistatic interactions, we simulated two SNPs. 

At both SNPs, we assigned the local ancestry values as described for the 𝐺×𝐸 case. We assigned 

genotypes for individuals at the first SNP assuming an allele frequency of 0.5 for both 

populations and drawing from two binomial trials. We assigned genotypes at the second SNP 

over a wide range of ancestry specific allele frequencies to simulate different levels of SNP 

differentiation. Ancestry specific allele frequencies were initially 𝑝1 = 𝑝2 = 0.5 and iteratively 

increasing p1 by 0.005 while simultaneously decreasing p2 by 0.005 until p1 = 0.95 and p2 = 0.05. 

Genotypes at the second SNP were drawn using the same approach described for 𝐺×𝐸. Using 

the simulated genotypes, phenotypes were drawn from a normal distribution, 𝒩(𝜇 =

𝛽𝐺×𝐺× 𝑔𝑖1×𝑔𝑖2, 𝜎 = 1), where 𝑔𝑖𝑠 is the genotype for individual i at the simulated SNP.  

To simulate phenotypes based on multi-way epistatic interactions, we simulated a SNP s 

and m (independent) SNPs with pairwise interactions with s. Genotypes for individuals at SNP s 

were assigned assuming an allele frequency of 0.5 for both populations and drawing from two 

binomial trials. Genotypes at the m interacting SNPs were assigned in the same manner as the 2nd 

SNP in the pairwise interaction simulations. Using the simulated genotypes, phenotypes were 

drawn from a normal distribution, 𝒩(𝜇 = ∑ 𝛽𝑠×𝑗  𝑔𝑖𝑠×𝑔𝑖𝑗
𝑚
𝑗=1 , 𝜎 = 1) where 𝑔𝑖𝑥  is the genotype 

for individual i at the simulated SNP x. 

To simulate the scenario of differential LD on different ancestral backgrounds leading to 

false positives, we simulated phenotypes based on a single causal SNP that was tagged by 

another SNP. At both SNPs, local ancestries were assigned as described previously and 
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genotypes were drawn using ancestry specific allele frequencies. Ancestral allele frequencies 

were assigned such that the average r2 between the causal and tag SNP was 0.272 on the 

background of ancestral population 1 and 0.024 on the background of ancestral population 2. 

Thus, the tag SNP was only a tag on the population1 background and not on the population 2 

background. Phenotypes were drawn from a normal distribution, 𝒩(𝜇 = 𝛽𝐶𝑎𝑢𝑠𝑎𝑙×𝑔𝑖𝑐, 𝜎 = 1), 

assuming no interaction and 𝛽𝐶𝑎𝑢𝑠𝑎𝑙 = 0.7, where 𝑔𝑖𝑐  is the genotype of individual i at the causal 

variant c.  

We implemented our approach in an R package (GxTheta), which is available for 

download at http://www.scandb.org/newinterface/GxTheta.html 

 

Ancestry Inference 

Global ancestry inference was done using ADMIXTURE (Alexander et al., 2009) and 

local ancestry inference was done using LAMP-LD (Baran, Pasaniuc, Sankararaman, Torgerson, 

Gignoux, Eng, Rodríguez-Cintrón, Chapela, Ford, Avila, Rodriguez-Santana, Burchard, & 

Halperin, 2012). CEU and YRI from 1000 Genomes Phase 3 (T. 1. G. P. Consortium, 2012) 

were used as the European and African reference panels. For the Native American reference 

panels, 95 Native Americans genotyped on the Axiom LAT1 array were used(Drake et al., 

2014). 

 

Filtering for Related Individuals 

All analyses in real data were filtered for related individuals due to the possibility of 

cryptic relatedness causing false positives. To filter for related individuals, we estimated kinship 

coefficients between all pairs of individuals using REAP (Thornton et al., 2012). We defined two 

http://www.scandb.org/newinterface/GxTheta.html
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individuals as related if they had a kinship coefficient greater than 0.025. For a pair of related 

individuals, we removed the one with a greater number of other individuals to whom he or she 

was related. In the case of a tie, we removed one of the pair at random. 

 

 

Data Normalization 

Gene Expression Normalization 

Gene expression data (see Results) were first standardized for each gene such that mean 

expression was 0 and variance was 1. We then computed a covariance matrix of individual’s 

expression values and performed PCA on the covariance matrix. Residuals were computed for all 

expression values by adjusting for the top 10 principal components and the mean for each gene 

was added back to the residuals. Due to the high dynamic range of gene expression compared to 

methylation we conservatively chose to additionally perform quantile normalization. We then 

sorted the gene expression residuals and used the quantiles of their rank order to draw new 

expression values from a normal distribution, 𝒩(𝜇 = 0, 𝜎 = 1), by using the inverse cumulative 

density function24,25.  

 

Methylation Data Normalization 

Raw methylation values (see Results) were first normalized using Illumina’s control 

probe scaling procedures. All probes with median methylation less than 1% or greater than 99% 

were removed and the remaining probes were logit-transformed as previously described(Du et 

al., 2010). To control for extreme outliers, we truncated the distribution of methylation values. 

For a given probe, we first computed the mean and standard deviation of the methylation values. 
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We then set any methylation values deviating more than 2.58 standard deviations from the mean 

to the methylation value corresponding to the 99.5th quantile. 

 

 

Results 

Simulated Data 

To determine the utility of using 𝜃 as a proxy for unmeasured and unknown 

environmental covariates, we applied the AITL to simulated 2-way admixed individuals. We 

tested 𝜃1, the proportion of ancestry from ancestral population 1, for interaction with simulated 

SNPs (see Simulation Framework). Power was computed over 1,000 simulations, assuming 

10,000 SNPS being tested, and using a Bonferroni correction p-value cutoff of 5×10−6. We 

calculated the power using assumed interaction effect sizes (either 𝛽𝐺×𝐺 or 𝛽𝐺×𝐸) of 0.1, 0.2, 0.3, 

and 0.4 (see Simulation Framework). Although the few interactions reported for human traits and 

diseases have smaller effects in terms of the phenotypic variance they explain, we simulated 

large effects because genetic and environmental effect sizes in omics data, such as the expression 

and methylation data considered here, are known to be of larger magnitude. For example, some 

cis-eQTL SNPs explain up to 50% of the variance of gene expression(Grundberg et al., 2012). 

However for most phenotypes, known interactions will explain a very small proportion of the 

phenotypic variance, mainly due to the fact that so few interactions have been identified and 

replicated(Aschard et al., 2012). 

 

Power When Using 𝜃 as a Proxy for Highly Differentiated SNPs  
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To determine whether using 𝜃 as a proxy for highly differentiated SNPs is more powerful 

than testing all pairs of potentially interacting SNPs directly, we simulated two interacting SNPS 

in 1000 admixed individuals (see Simulation Framework). We then tested for an interaction 

using AITL by replacing the genotypes at the highly differentiated SNP with �⃗�1. We observed 

that even with moderate effect sizes, using 𝜃 in place of the actual genotypes does not provide 

any increase in power even after accounting for multiple corrections (see Figure 2a). This is in 

agreement with recent work showing the limited utility of local ancestry by local ancestry 

interaction test to identify underlying SNP by SNP interaction when genotype data are 

available(Aschard, Gusev, Brown, & Pasaniuc, 2015). For the larger effect sizes we simulated, 

we do see power increasing as the delta between ancestral frequencies increases. The plots show 

that AITL has little power unless the effect was very strong. Figure 2b reveals that even with the 

multiple correction penalty, testing all pairwise SNPS directly is always more powerful. We note 

that when testing the interacting SNPs directly, we used a cutoff p-value of 1×10−9 since in 

theory we were testing all unique pairs of 10,000 SNPs. Based on these results, we would 

recommend testing for pairs of interacting SNPs directly if pairwise 𝐺×𝐺 interactions are a 

subject of interest in the study.  
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Figure 2. Power Plots for Pairwise Interaction Simulations. 
Power of testing 𝐺×𝜃 (a) versus testing pairwise SNPs directly (b) as a function of the difference 
in the ancestral allele frequencies at a differentiated SNP. 
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However, when multi-way interactions are considered, AITL may become more powerful 

since differentiated SNPs across the genome will be correlated with genetic ancestry. These 

simulations are important as other studies have suggested that higher order interactions may be 

important for some traits(De, Hu, Moore, & Gilbert-Diamond, 2015; Hemani et al., 2014; 

Ritchie et al., 2001). To evaluate the ability of 𝜃 to serve as a proxy for multiple (independent) 

differentiated SNPs, we simulated a scenario where a candidate SNP z had interactions with m 

SNPs (see Simulation Framework). For each interaction, we assumed a small interaction effect 

size (𝛽𝐺×𝐺 = 0.025), which would not be detectable using a pairwise approach, as we 

demonstrated in the pairwise simulation. Figure 3 shows that AITL is better powered to detect 

the existence of interactions than a pairwise approach in the presence of multiple interacting 

SNPs with a candidate SNP.  
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Figure 3. Power Plots for Multi-way Pairwise Interaction Simulations.  
Power of testing 𝐺×𝜃 as a function of the difference in the ancestral allele frequencies for 
multiple interacting SNPs. 
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Power When Using 𝜃 as a Proxy Environmental Covariate  

When assessing the utility of 𝜃 as a proxy for an environmental covariate E, we simulated 

3000 individuals. E was simulated such that it was correlated with the global ancestries in 

varying degrees (see Simulation Framework). Figure 4 shows the power of the AITL as a 

function of the Pearson correlation between �⃗�1 and E. The power of testing E directly is exactly 

the power of the AITL when the correlation is equal to 1. As expected, as the correlation 

increases, the power increases as well.  When the effect size is 0.1, the power to detect a 𝐺×𝐸 

interaction is low whether one uses 𝜃1 or E. However, both tests are much better powered for 

effect sizes greater or equal to 0.2, with the AITL’s power being dependent on the level of 

correlation. Note that using 𝜃 as a proxy for E is equivalent to testing GxE in the presence of 

measurement error. Under the assumption of non-differential error with regard to the outcome 

(e.g. the correlation between 𝜃 and E is equal among cases and control) such a test is 

underpowered but has a controlled type I error rate under the null(Wong, Day, Luan, Chan, & 

Wareham, 2003). 
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Figure 4. Power Plots for 𝐺×𝐸 Interaction Simulations. 
Power of testing 𝐺×𝜃 as a function of the correlation between an environmental covariate and 
genetic ancestry. 
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Differential LD 

To demonstrate that differential LD has the potential to cause inflated test-statistics, we 

ran 10,000 simulations of 1000 admixed individuals. For each individual we simulated 2 SNPs, a 

causal SNP and a tag SNP.  The LD between the tag SNP and causal SNP was different based on 

the ancestral background the SNPs were on (see Simulation Framework). Over 10,000 

simulations, we computed the mean 𝜒1
2 test-statistic for the AIT and the AITL. We note that the 

phenotypes for these simulations were generated under a model that assumed no interaction. We 

observed a mean 𝜒1
2 = 0.996 with a standard deviation of 1.53 for AITL. AIT, which does not 

condition on local ancestry, had a mean 𝜒1
2 = 3.59 with a standard deviation of 3.60. We also 

looked at  genomic control 𝜆𝐺𝐶, the ratio of the observed median 𝜒2 over the expected median 

𝜒2 under the null(Devlin & Roeder, 2004). 𝜆𝐺𝐶 compares the median observed 𝜒2 test-statistic 

versus the true median under the null. In our simulations, we observed 𝜆𝐺𝐶 = 5.81 for AIT and 

𝜆𝐺𝐶 = 0.980 for AITL (see Supplementary Figure S1). Last, we computed the proportion of test-

statistics that passed a p-value threshold of .05 and .01 in our simulations. The AIT had 3687 

statistics passing a p-value of .05 and 1687 at a threshold of .01, whereas AITL had 464 and 96 

at the same p-value thresholds. The results for AITL are as expected under a true null. The 

results from our simulations show that not accounting for local ancestry can result in inflated 

test-statistics and can potentially lead to false positive findings. 

 

Real Data 

Coriell Gene Expression Results 

We first applied our method to the Coriell gene expression dataset(Simon-Sanchez et al., 

2007). The Coriell cohort is composed of 94 African-American individuals and the gene 
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expression values of ~8800 genes in lymphoblastoid cell lines (LCLs). Since African Americans 

derive their genomes from African and European ancestral backgrounds, we tested for 

interaction between a given SNP and the proportion of European ancestry, 𝜃𝐸𝑈𝑅. Each SNP by 

𝜃𝐸𝑈𝑅 term was tested once for association with the expression of the gene closest to the SNP. We 

observed well-calibrated statistics with a 𝜆𝐺𝐶 equal to 1.04 (see Supplementary Figure S2). In the 

LCLs, we found that interaction of rs7585465 with 𝜃𝐸𝑈𝑅 was associated with ERBB4 expression 

(AITL 𝑝 = 2.95×10−8, marginal 𝑝 = 0.404) at a genome-wide significant threshold (𝑝 ≤

5×10−8). rs7585465 has a ‘C’ allele frequency of 0.218 in the Corriell data and appears to be 

differentiated between CEU and YRI with allele frequencies of 0.619 and 0.097 in the respective 

populations. 

Given that the gene expression values come from LCLs (all cultured according to the 

same standards), the SNPs may be interacting with epigenetic alterations due to environmental 

exposures that have persisted since transformation into LCLs. This scenario is unlikely, and we 

believe that signals are driven by multi-way epistatic interactions. In our simulations, we showed 

that using 𝜃 as a proxy for a single highly differentiated SNP is underpowered compared to 

testing all pairs of potentially interacting SNPs directly. However, there are many SNPs that are 

highly differentiated across the genome with which 𝜃 will be correlated. It is therefore possible 

that 𝜃 is capturing the interaction between the aggregate of many differentiated trans-SNPs (i.e. 

global genetic background) and the candidate SNP. This is consistent with a recently reported 

finding, conducted in human iPS cell lines, that genetic background accounts for much of the 

transcriptional variation(Martin et al., 2014; Rouhani et al., 2014).  

Although we believe the ERBB4 result to be representative of multi-way epistasis, we 

performed a standard pairwise interaction test (see Methods) to check for interaction between 
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rs7585465 and other SNPs genome-wide. Interestingly, we found that the standard interaction 

test (see Methods) showed substantial departure from the null with a 𝜆𝐺𝐶 equal to 1.8 (see 

Supplementary Figure S3). Since the interaction of rs7585465 by 𝜃 was significant, the pairwise 

interaction test-statistics of rs7585465 by any SNP j can be inflated if j is correlated with 𝜃. We 

found that including the original significant SNP by 𝜃 term in the null (see Methods) brought the 

𝜆𝐺𝐶 down to 1.05, and controlled for such scenarios in this dataset (See Supplementary Figure 

S3). As we had previously anticipated, identifying the exact interactions driving the SNP by 𝜃 

interaction proved to be difficult. We found one borderline significant SNP (rs4839709, 𝑝 =

3.08×10−7) but no interactions that passed genome-wide significance. These results are 

consistent with what we have observed in simulations, in which even though a standard pairwise 

interaction test is underpowered to detect interactions, AITL is able to identify the main locus 

involved in a multi-way interaction. 

 

GALA II Case-Control 

To determine if our method is biased in large structured GWAS data, we applied AITL to 

case-control data from a study of asthmatic Latino individuals called the Genes-environments 

and Admixture in Latino Americans (GALA II)(Borrell et al., 2013). The dataset includes 1158 

Mexicans and 1605 Puerto Ricans, which were analyzed separately. Case status was assigned to 

individuals if they were between the ages of 8 and 40 years with a physician-diagnosed mild to 

moderate-to-severe asthma. Additionally, they had to have experienced 2 or more asthma related 

symptoms in the previous 2 years at the time of recruitment(Torgerson et al., 2012). In the 

Mexicans and Puerto Ricans there were 548 and 797 cases, respectively. In our analysis, we also 

included BMI, age, and sex as additional covariates. We observed well-calibrated statistics with 
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a 𝜆𝐺𝐶 equal to 1.00 and 0.98 in the Mexicans and Puerto Ricans, respectively (see Supplementary 

Figure S5). In contrast to the molecular phenotype data, searches for interactions in these 

phenotypes did not yield any findings passing genome-wide significance. This is consistent with 

previous disease studies that have failed to find many replicable interactions in disease 

studies(Aschard et al., 2012). In the data here, the lack of any findings may be due to the 

relatively small sample size or because the effects of the interactions are extremely small (if they 

exist for covariates correlated with 𝜃𝐸𝑈𝑅).  

 

GALA II Methylation Results 

We searched for interactions in methylation data derived from a study of GALA II 

asthmatic Latino individuals(Borrell et al., 2013). The methylation data is composed of 141 

Mexicans and 184 Puerto Ricans. As the phenotype, we used DNA methylation measurements 

on ~300,000 markers from peripheral blood. As we had done with gene expression, we tested for 

interaction between a given SNP and 𝜃𝐸𝑈𝑅 using AITL. All SNPs within a 1 MB window 

centered around the methylation probe were tested. We used the European component of 

ancestry because it is the component shared most between Mexicans and Puerto Ricans (see 

Table 1). We observed well-calibrated test-statistics with 𝜆𝐺𝐶 equal to 1.06 in the Mexicans and 

0.96 in the Puerto Ricans (see Supplementary Figure S6). We tested 128,794,325 methylation-

SNP pairs, which result in a Bonferroni corrected p-value cutoff of 3.88×10−10. However, this 

cutoff is extremely conservative given the tests are not independent. We therefore report all 

results that are significant at 5×10−8 in either set as an initial filter. We found 5 interactions in 

the Mexicans and 3 in the Puerto Ricans that are significant at this threshold (see Table 2).  
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Table 1. Distribution of Ancestry in Coriell and GALA II. 
Dataset θEUR θAFR θNAM 

Coriell μ=0.212, 
σ=0.021 

μ=0.788, 
σ=0.021 

NA 

GALA II 
MX 

μ=0.396, 
σ=0.149 

μ=0.043, 
σ=0.025 

μ=0.561, 
σ=0.159 

GALA II 
PR 

μ=0.641, 
σ=0.094 

μ=0.246, 
σ=0.101 

μ=0.113 
σ=0.024 

Mean and variance of the global ancestry distributions for each dataset. 
 
 
 
 

Table 2. GALA II DNA Methylation Analysis Results. 
GALA II 

Population 
Probe 
Gene 

Probe ID rsid Distance 
of SNP to 

Probe 

Marginal 
p-value 

AITL 
p-value 

AITL 
Replication 

p-value 
MX CNFN cg14327995 rs16975986 280795 2.49E-09 5.69E-09 9.27E-03 
MX C11orf95 cg16678159 rs7106153 249768 2.58E-01 2.52E-08 9.39E-02 
MX NA cg05697734 rs1560919 13711 1.14E-01 2.21E-08 8.18E-03 
MX TNK2 cg01792640 rs67217828 278866 4.49E-01 6.38E-09 1.43E-02 
MX HDAC4 cg06533788 rs925736 9548 4.51E-01 3.09E-09 2.80E-02 
PR NA cg07436864* rs8117083 31813 7.46E-02 1.34E-09 5.34E-03 
PR NA cg16803083* rs4312379 63847 3.69E-01 2.29E-08 2.31E-04 
PR SERPINA6 cg10025865 rs17091085 247796 6.83E-01 2.97E-08 8.05E-03 

P-values for AITL applied to the methylation data in the GALA II Latinos. MX and PR denote 
Mexicans and Puerto Ricans respectively in the GALA II population columns. The probe gene 
column shows the gene that the methylation probe lies in. The marginal column is the p-value for 
standard linear regression of methylation on genotype while controlling for population structure. 
* indicates results that replicated between the Mexicans and Puerto Ricans. 
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Unlike the Coriell individuals, who are 2-way admixed, the GALA II Latinos are 3-way 

admixed and derive their ancestries from European, African, and Native American ancestral 

groups. Consequently, to confirm that incomplete modeling or better tagging on one of the non-

European ancestries was not driving the results, we retested all significant interactions including 

a second component of ancestry for AITL. In the case of the Mexicans, we included African and 

European ancestry, and in the case of the Puerto Ricans, we included European and Native 

American ancestry. Even after adjusting for the second ancestry the interactions between SNP 

and 𝜃𝐸𝑈𝑅 remained highly significant (see Supplementary Table 1).  

As we did for the gene expression data, we attempted to identify pairwise interactions 

involved in the methylation data results. For each genome-wide significant result, we performed 

a standard pairwise interaction test of all SNPs with the original SNP found to be significant with 

AITL. We were unable to identify any significant interactions after applying genomic control to 

the results. For all tests, we included the significant SNP by 𝜃 term (see Methods) in the null. For 

this dataset, unlike the gene expression data, we observed substantial remaining departure from 

the null (see Supplementary Table S2) even after including the original significant SNP by 𝜃 

term, suggesting there may be other factors that need to be accounted for when testing for 

interactions in admixed populations. The results from our pairwise scan are what we would 

anticipate, given that in simulations only AITL (not the standard pairwise interaction test) was 

able to identify the main locus involved in the multi-way interaction. 

We then performed a replication study of the significant Puerto Rican associations in the 

Mexican cohort and vice versa. To account for the fact that we are replicating eight total results 

across both populations, we used a Bonferroni corrected p-value threshold equal to . 05/8 =

6.25×10−3. The interaction of rs4312379 and rs4312379 with ancestry in the Puerto Ricans 
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replicated in the Mexicans. Furthermore, there was a highly significant enrichment of low p-

values in the replication study among the discovery results (permutation 𝑝 < 1×10−4). 

Furthermore, 5 out of the 6 non-replicating results have a p-value less than 0.05 (binomial test  

𝑝 < 1.8×10−6). The results of the permutation and binomial test suggests that the interactions 

that did not replicate are likely to do so with bigger sample sizes. It is important to note that 

replicated interactions and the enrichment for low p-values do not necessarily indicate that the 

same genetic or environmental covariates are interacting with the genetic locus in both 

populations. The covariates correlated with 𝜃𝐸𝑈𝑅 in one population are not necessarily those 

correlated with 𝜃𝐸𝑈𝑅 in the other population. There may be correlations which exist in both 

populations but  𝜃𝐸𝑈𝑅  serves as a proxy for all such correlated covariates and therefore should 

not be necessarily viewed as a proxy for any specific one. Overall, our results from the GALA II 

(methylation) cohort suggest there are both genetic and environmental variables contributing to 

epistasis that have yet to be discovered in admixed individuals.  

 

Discussion 

For many disease architectures, interactions are believed to be a major component of 

missing heritability(Eichler et al., 2010). Finding new interactions has proven to be difficult for 

logistical, statistical, biological, and computational reasons. In this study, we have demonstrated 

that in admixed populations, testing for 𝐺×𝜃 interactions can be leveraged to overcome some of 

the difficulties typically encountered when searching for interactions. The computational cost is 

minimal and has the same order as running a standard GWAS.  

One drawback of our method is that it does not identify which covariate is interacting 

with a genetic locus. Nevertheless, the approach can show whether an interaction effect exists in 
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a given dataset and if it does exist, our method ensures that an underlying genetic or 

environmental covariate(s) is correlated with ancestry. Additionally, in the case where there is no 

marginal effect, our approach identifies new loci and shows that the genetic locus influences the 

phenotype and exerts its effects through interactions, which has important implications for the 

genetic architecture of the phenotype. The relative contribution of additive and non-additive 

genetic effects to variability in molecular phenotypes and disease risk is an important area of 

investigation, and our approach provides a direct test for detecting non-additive 

contributions(Powell et al., 2013).  

Environmental covariates are often not consistently measured across cohorts whereas 

genetic ancestry is nearly perfectly replicable. Testing for the presence of interaction using a 

nearly perfectly reproducible covariate may enhance our understanding of the genetic basis of 

disease and other traits. Our method also provides the additional benefit of not being confounded 

by interactions between unaccounted-for covariates(Keller, 2014). 

Association testing for interaction effects involving continuous environmental exposures 

in the context of mixed-models remains an open problem. For binary environmental exposures, it 

has been shown that mixed-models control for population structure nominally better than 

including genetic ancestry (or principal components) as a covariate(Sul et al., 2016). Because it 

is unclear how mixed-models perform with continuous environmental exposures, especially 

those correlated with ancestry, in our analyses we took the standard approach of filtering related 

individuals and including ancestry as a covariate.  

It has been shown that 2-step analyses may be more powerful for detecting interactions 

when exposures are binary (Hsu et al., 2012; Kooperberg & LeBlanc, 2008; Murcray, Lewinger, 

& Gauderman, 2009). However, these studies have primarily been done in a single homogeneous 
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population, and the correct null distribution for the interaction effect must assume that the 2nd 

stage procedure is independent of the marginal effect test-statistic. In real data, using a 2-step 

approach in conjunction with AITL to test for interactions may be problematic because the 

interaction effect size will not necessarily be independent of the marginal effect size, as the allele 

frequency at any SNP will be a function of ancestry in an admixed population. Additionally, only 

1 of the interaction results that we report here had a marginal effect (p< 0.05) and thus would 

have been missed by a 2-step approach. Thus, our approach can serve to complement or extend 

the frequently used 2-step procedure for detecting interaction effects. 

Results from our multi-way epistasis simulation analyses and empirical data in cell lines 

suggest that genetic ancestry is a good proxy for genetic background, since all highly 

differentiated SNPs across the genome will be correlated with genetic ancestry. Our simulations 

also demonstrated that genetic ancestry can be a good proxy for an environmental covariate 

depending on the correlation between the two. However, it may be the case that there are 

multiple environmental factors interacting with a genetic locus, all of which are correlated with θ 

in differing degrees and effect sizes. Such a situation would mirror what we saw in our multi-

way 𝐺×𝐺 simulations where a single interaction may not be detectable by using a traditional 

𝐺×𝐸 test, but because θ aggregates the effects of all interacting covariates, AITL would be able 

to detect it. There are also other contexts in which modeling SNP by θ may be useful, such as 

using variance components. For example, SNP by θ interaction terms can be used in a mixed-

model framework to test for interaction effects because genetic ancestry is correlated with many 

genetic markers and environmental covariates(Yang, Yang, et al., 2010).  

For some traits, there may be systematic differences between ancestral populations in the 

genetic effects on the trait. In admixed individuals with these ancestral populations, the effect of 
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genetic variation on phenotype will be reflected in the correlation between phenotype and θ, 

thereby affecting epistatic and 𝐺×𝐸 interactions. It will be interesting to see how much of the 

phenotype-ancestry correlations are due to epistatic and 𝐺×𝐸 interactions. 

In our analysis of real data, we discovered gene by θ interactions associated with genes 

that have known interactions. In the GALA II Mexicans, the interaction of rs925736 with 

ancestry was associated with the methylation of HDAC4, a known histone deaceytlase (HDAC).  

In concert with DNA methylases, HDACs function to regulate gene expression by altering 

chromatin state(Z. D. Smith & Meissner, 2013). In Europeans, HDACs have been shown to be 

associated with lung function through direct genetic effects and through environmental 

interactions(Artigas et al., 2011; Liao, Lin, & Christiani, 2013). For the GALA II Puerto Ricans, 

rs17091085 showed an interaction associated with the methylation state of SERPINA6. Of note, 

interaction between birth weight and SERPINA6 has been previously associated with 

Hypothalamic-Pituitary-Adrenal axis function(L. N. Anderson et al., 2014). Further 

investigations of our interaction findings are thus warranted.  

In the GALA II (methylation) dataset, two of the eight significant associations replicated 

and, in general, the results had an enrichment of low p-values in the replication dataset. 

However, we note that if the interactions detected by AITL are multi-way epistasis it is more 

likely that the results will replicate. This is because most SNPs differentiated in the Mexicans 

will still be differentiated in the Puerto Ricans, and thus still be correlated with θ. If the 

interactions detected by AITL are 𝐺×𝐸 interactions, then the interactions are less likely to 

replicate because the same environmental covariate(s) will need to be correlated with ancestry in 

both groups. 
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 Another caveat is that the Mexicans and Puerto Ricans, though independent, are part of 

the same study and occasionally technical artifacts, such as issues with genotyping or measuring 

methylation, can affect downstream analyses of both populations. For our analyses, we have 

taken careful quality-control steps to ensure that this is not the case and there is no apparent 

inflation of test-statistics as demonstrated by our values for genomic control. Future research of 

interactions using AITL should keep such caveats in mind.  

We investigated in detail the potential of single SNP-SNP interactions driving the results 

that were found both in the gene expression and methylation datasets. As demonstrated by the 

wide range of 𝜆𝐺𝐶 values, we observed that non-linear effects can cause substantial departure 

from the null when testing for pairwise SNP-SNP interactions. This is especially true when 

testing for interaction between SNPs s and j, where s has a significant interaction with 𝜃 and j is 

correlated with covariates that are also correlated with 𝜃. As we saw in the gene expression data, 

including the significant SNP by θ term can properly control for such situations, but its use in 

standard pairwise interaction tests warrants further investigation. 

Our analysis revealed the existence of interactions but does not provide a direct way to 

determine the covariate that is interacting with a SNP. Further methodological work is required 

to uncover the exact environmental exposures or genetic loci with which SNPs are interacting. 

The existence of gene by θ interactions in GALA II underscores why modeling interactions 

should be considered for future association studies and for heritability estimation in admixed 

populations. 
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2. Partitioning Phenotype-Ancestry Correlations 

 

Background 

The prevalence of some common complex diseases differs between populations. For 

example, hypertension prevalence in men ranges from 3.4% in parts of rural North India to 

50.1% in Japan(Kearney et al., 2005). Whether these differences are a consequence of genetic or 

environmental factors is an important question, potentially providing crucial insights into 

underlying disease mechanisms. Under the simplifying assumption that environmental exposures 

are constant, genetic risk factors would be responsible for the differences between populations. 

However, as studies have shown, both genetic and environmental factors contribute to 

disease(Lichtenstein et al., 2000; Willett, 2002). Understanding their relative contribution has 

important implications for global health and precision medicine. 

Studies of admixed populations provide a unique opportunity to deepen our knowledge 

about the relative contributions of genetic and environmental risk factors to differences in 

disease prevalence between populations. The genomes of admixed individuals are derived from 

multiple ancestral populations. For example, African Americans have ancestry from European 

and African populations while Hispanic Latinos have ancestry from Europeans, Africans, and 

Native Americans. Recent advances in technology have allowed us to infer the ancestry of an 

individual’s genome with extremely high accuracy and resolution(Alexander et al., 2009; Baran, 

Pasaniuc, Sankararaman, Torgerson, Gignoux, Eng, Rodríguez-Cintrón, Chapela, Ford, Avila, 

Rodriguez-Santana, Burchard, & Halperin, 2012; Maples, Gravel, & Kenny, 2013; Price et al., 

2006; Pritchard, Stephens, & Donnelly, 2000). As a result, admixed populations provide an 

opportunity to analyze the influence of population differences in genetic variation on phenotype, 
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but confined to a more consistent environment. Specifically, data from admixed populations in a 

fixed geographical locale provides genetic variation derived from continental populations, but 

with environmental differences limited to relatively small variation. In admixed populations, the 

extent to which genetic variation drives phenotypic differences between ancestral populations 

will induce a correlation between phenotype and the proportion of genetic ancestry from a given 

ancestral group (𝜃). As an example, consider African Americans who have ancestry from 

African and European ancestors. If a single nucleotide polymorphism (SNP) increases disease 

risk and occurs at an 80% frequency in Africans and a 20% frequency in Europeans, then 

African Americans with higher proportions of African ancestry will be at higher risk and will 

have a higher disease prevalence than those with lower proportions of African ancestry. This will 

result in a correlation between 𝜃 and disease status. However, 𝜃 has also been shown to be 

correlated with various environmental covariates. In the context of breast cancer, 𝜃 has been 

shown to be correlated with education, alcohol intake, and daily caloric intake(Fejerman et al., 

2008; Ziv et al., 2006). Other environmental and biomedical covariates, such as socio-economic 

status and lung function, have also been shown to be correlated with 𝜃(Burchard, Ziv, Coyle, & 

Gomez, 2003; Cheng et al., 2012; Choudhry et al., 2006; Florez et al., 2011; Kumar et al., 2010; 

2013; Price et al., 2008; Reiner et al., 2007; Sanchez et al., 2010; Shaffer et al., 2007). Thus, it is 

unclear how much of a given phenotype-ancestry correlation is actually driven by the genetic 

component.  

In this work, we present a novel statistical method to partition phenotype-ancestry 

correlations (2PAC) into genetic and environmental components. We show analytically and via 

extensive simulations that our approach provides unbiased estimates of the genetic and 

environmental contributions to the correlation between ancestry and phenotype. We further show 
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that existing methods for estimating heritability in admixed populations are biased when ancestry 

is correlated with phenotype and our approach corrects this bias. We apply our method to 

admixed populations and phenotypes in the BioMe Biobank at the Icahn School of Medicine at 

Mount Sinai to investigate the relationship between genetic ancestry and disease risk. We 

analyzed self-reported African American (AA; n=3,705) and Hispanic/Latino (HL; n=5,104) 

participants in BioMe using phenotype data from electronic health records (EHRs) linked to 

genotype data. EHR data is comprised of over 14,000 medical billing codes (ICD-9), which 

classify diseases, injuries, and health encounters. Analyzing the full medical phenome, we found 

18, 3 known and 15 novel, significant correlations between ancestry and ICD-9 based 

phenotypes including asthma (p<3.0x10-3; HL), hypertension (p<1.0x10-4; HL), cardiac 

dysrhythmias (p<0.02; HL), and anemia (p<1.0x10-4; AA). For each of these associations we 

estimate the contribution of genetic and environmental factors to the phenotype-ancestry 

correlation and show that the contributions vary between phenotypes. We discuss the 

implications of these findings for medical research and clinical practice. 

 

Materials and Method 

We begin with an example to demonstrate the intuition behind 2PAC. For simplicity 

sake, we consider a 2-way admixed population, such as African Americans, with ancestral 

populations 𝑃1 and 𝑃2, and 𝜃 the proportion of ancestry from 𝑃1. Suppose that there is a disease-

causing SNP that occurs at 80% frequency in 𝑃1 and 5% frequency in 𝑃2. Then individuals with 

higher values of 𝜃 will have a higher disease prevalence than those with lower values of 𝜃. This 

is because individuals with higher values of 𝜃 are more likely to have the disease causing SNP 

from 𝑃1 and as a result the disease. This will result in a correlation between disease status and 𝜃 
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as well as disease risk and 𝜃. Now consider the case where the disease is also influenced by an 

environmental factor such as diet. If diet is correlated with 𝜃 this will also induce a correlation 

between disease status and 𝜃. 

 In summary, the genetic portion of the correlation will be a function of the genetic 

effects and the differences in genetics between the ancestral populations. The environmental 

portion will be a function of the correlation between environmental and 𝜃. To estimate the 

genetic component of the correlation, we need to be able to estimate accurately, in aggregate, the 

genetic effects and the differences between allele frequencies (i.e. the level of differentiation) 

between the ancestral populations. For the environmental component of the correlation, we need 

to be able to estimate the effect of environment, correlated with 𝜃, on the disease without also 

capturing the genetic effect simultaneously. We describe our approach to partitioning phenotype-

ancestry correlations (2PAC) in detail below. 

 

Correlation as a Function of Genetics and Environment 

Consider an admixed individual i who derives his or her genome from k ancestral 

populations. We denote individual i’s global ancestry proportion as 𝜃𝑖 =

〈𝜃𝑖1, 𝜃𝑖2, … , 𝜃𝑖𝑘〉, where ∑ 𝜃𝑖𝑗
𝑘
𝑗=1 = 1 and the genotype at a SNP s as 𝑔𝑖𝑠 ∈ {0, 1, 2}. We model 

the phenotype of individual i as: 

𝑦𝑖 = ∑ 𝛽𝑠𝑔𝑖𝑠
𝑠

+ 𝛽𝜃𝜃𝑖𝑗 + 𝜀𝑖  

where 𝜀𝑖~𝒩(0, 𝜎𝜀
2), 𝛽𝑠 is the effect size at SNP s, 𝛽𝜃 is the effect size of environmental factors 

correlated with the j-th component of global ancestry.  
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Let 𝒚 be the vector of all individuals’ phenotypes, 𝜽𝒋be the vector of the corresponding j-

th component of global ancestry, and 𝒈𝒔 be the vector of corresponding genotypes at SNP s. 

Then by definition  

𝑐𝑜𝑟(𝒚, 𝜽𝑗) =  
𝑐𝑜𝑣(𝒚, 𝜽𝑗)

𝜎𝑦𝜎𝜃𝑗

 

We begin by considering the case where there is no genetic effect, i.e. 𝛽𝑠 = 0 ∀𝑠. If the effects at 

all SNPs are equal to zero, it then follows that 

𝑐𝑜𝑣(𝒚, 𝜽𝑗) = 𝑐𝑜𝑣(𝛽𝜃𝜽𝑗 + 𝜺, 𝜽𝑗) = 𝛽𝜃𝑐𝑜𝑣(𝜽𝑗, 𝜽𝑗) + 𝑐𝑜𝑣(𝜺, 𝜽𝑗) = 𝛽𝜃𝜎𝜃𝑗
2  

𝜎𝑦
2 = 𝑣𝑎𝑟(𝛽𝜃𝜽𝑗 + 𝜺) = 𝑣𝑎𝑟(𝛽𝜃𝜽𝑗) + 𝑣𝑎𝑟(𝜺) = 𝛽𝜃

2𝜎𝜃𝑗
2 + 𝜎𝜀

2 

⟹  𝑐𝑜𝑟(𝒚, 𝜽𝑗) =
𝛽𝜃𝜎𝜃𝑗

2

𝜎𝜃𝑗√𝛽𝜃
2𝜎𝜃𝑗

2 + 𝜎𝜀
2

=
𝛽𝜃

2𝜎𝜃𝑗
2

𝛽𝜃
2𝜎𝜃𝑗

2 + 𝜎𝜀
2 

We now consider the case where there are genetic effects at all or some of the SNPs. This then 

implies that  

𝜎𝑦
2 = 𝑣𝑎𝑟 (∑ 𝛽𝑠𝒈𝑠

𝑠

) + 𝑣𝑎𝑟(𝛽𝜃𝜽𝑗) + 𝑣𝑎𝑟(𝜺) + 2𝑐𝑜𝑣 (∑ 𝛽𝑠𝒈𝑠
𝑠

, 𝛽𝜃𝜽𝑗)

+ 2𝑐𝑜𝑣 ∑(𝛽𝑠𝒈𝑠, 𝛽𝑡𝒈𝑡)
𝑠≠𝑡

= ∑ 𝛽𝑠
2𝜎𝑔𝑠

2

𝑠

+ 𝛽𝜃
2𝜎𝜃𝑗

2 + 𝜎𝜀
2 + 2𝛽𝜃 ∑ 𝛽𝑠𝑐𝑜𝑣(𝒈𝑠, 𝜽𝑗)

𝑠

+ 2𝑐𝑜𝑣 ∑(𝛽𝑠𝒈𝑠, 𝛽𝑡𝒈𝑡)
𝑠≠𝑡

 

We note that if effect sizes are independent, then 2𝛽𝜃 ∑ 𝛽𝑠𝑐𝑜𝑣(𝒈𝑠, 𝜽𝑗)𝑠 +

2𝑐𝑜𝑣 ∑ (𝛽𝑠𝒈𝑠, 𝛽𝑡𝒈𝑡)𝑠≠𝑡  is equal to zero in expectation and we are left with the standard 

assumptions of a linear mixed model. 

𝑐𝑜𝑣(𝒚, 𝜽𝑗) =  𝑐𝑜𝑣 (∑ 𝛽𝑠𝒈𝑠, 𝜽𝑗
𝑠

) + 𝑐𝑜𝑣(𝛽𝜃𝜽𝑗, 𝜽𝑗) + 𝑐𝑜𝑣(𝜺, 𝜽𝑗) = ∑ 𝛽𝑠𝑐𝑜𝑣(𝒈𝑠, 𝜽𝑗)
𝑠

+ 𝛽𝜃𝜎𝜃𝑗
2  
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Note that at a SNP s  

𝑐𝑜𝑣(𝒈𝑠, 𝜽𝑗) = 𝐸[𝒈𝑠𝜽𝑗] − 𝐸[𝒈𝑠]𝐸[𝜽𝑗] 

𝐸[𝒈𝑠𝜽𝑗] = ∫ ∑ 𝑃(𝑔𝑠, 𝜃𝑗)𝑔𝑠𝜃𝑗

2

𝑔𝑠=0

1

𝜃𝑗=0

𝑑𝜃𝑗 = ∫ ∑ 𝑃(𝑔𝑠|𝜃𝑗)𝑃(𝜃𝑗)𝑔𝑠𝜃𝑗

2

𝑔𝑠=0

1

𝜃𝑗=0

𝑑𝜃𝑗 

where 𝑃(𝑔𝑠|𝜃𝑗) = ( 2
𝑔𝑠

) 𝑝𝑔𝑠(1 − 𝑝)(2−𝑔𝑠) and 𝑝 is the allele frequency at s.  

⟹ 𝑐𝑜𝑣(𝒈𝑠, 𝜽𝑗) = ( ∫ ∑ 𝑃(𝑔𝑠|𝜃𝑗)𝑃(𝜃𝑗)𝑔𝑠𝜃𝑗

2

𝑔𝑠=0

1

𝜃𝑗=0

𝑑𝜃𝑗) − 𝜇𝑔𝑠𝜇𝜃𝑗 

This provides a closed form expression for the correlation between phenotype and genetic 

ancestry that is partitioned between genetic effects and environmental effects. 

𝜌𝑦𝜃 = 𝑐𝑜𝑟(𝒚, 𝜽𝑗) =  𝑐𝑜𝑟𝑔𝑒𝑛𝑒𝑡𝑖𝑐𝑠 + 𝑐𝑜𝑟𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 = 𝜌𝑔𝜃 + 𝜌𝑒𝜃 =
∑ 𝛽𝑠𝑐𝑜𝑣(𝒈𝑠, 𝜽𝑗)𝑠

𝜎𝑦𝜎𝜃𝑗

+
𝛽𝜃𝜎𝜃𝑗

2

𝜎𝑦𝜎𝜃𝑗

=
∑ 𝛽𝑠 [(∫ ∑ 𝑃(𝑔𝑠|𝜃𝑗)𝑃(𝜃𝑗)𝑔𝑠𝜃𝑗

2
𝑔𝑠=0

1
𝜃𝑗=0 𝑑𝜃𝑗) − 𝜇𝑔𝑠𝜇𝜃𝑗]𝑠 + 𝛽𝜃𝜎𝜃𝑗

2

𝜎𝜃𝑗√∑ 𝛽𝑠
2𝜎𝑔𝑠

2
𝑠 + 𝛽𝜃

2𝜎𝜃𝑗
2 + 𝜎𝜀

2 + 2𝛽𝜃 ∑ 𝛽𝑠𝑐𝑜𝑣(𝒈𝑠, 𝜽𝑗)𝑠 + 2𝑐𝑜𝑣 ∑ (𝛽𝑠𝒈𝑠, 𝛽𝑡𝒈𝑡)𝑠≠𝑡

 

 

Estimating Effect Sizes using Linear Mixed Models 

Assuming independence of SNPs, we could estimate the genetic effect at each SNP using 

linear regression and use the marginal effect size estimates for the SNPs to estimate the total 

contribution to trait variance. However, due to linkage disequilibrium (LD), we use a linear 

mixed model (LMM) framework to estimate the effects of all SNPs jointly. Assuming that our 

data consists of 𝑛 individuals and 𝑚 SNPs, we first estimate a kinship matrix, 𝑲 = 𝒁𝒁𝑇/𝑚, 

where 𝒁 is a 𝑛×𝑚 matrix of genotypes normalized to have mean 0 and variance 1 for each SNP. 

Using restricted maximum likelihood we find the parameters, 𝜎𝑔
2 and 𝜎𝜀

2, that maximize the 
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model 𝒚 ~ 𝒩(0, 𝑲𝜎𝑔
2 + 𝑰𝜎𝜀

2)(Yang, Benyamin, et al. , 2010). The solution to the fixed effects 

are given by �̂�𝑓𝑖𝑥𝑒𝑑 = (𝑿𝑇𝑽−1𝑿)(𝑿𝑇𝑽−1𝒚), where 𝑿 is a 𝑛×𝑐 matrix of fixed covariates and 

𝑽 = 𝑲�̂�𝑔
2 + 𝑰𝜎𝜀

2. The best linear unbiased predictor (BLUP) of SNP effect sizes is given by 

�̂�𝐵𝐿𝑈𝑃 = �̂�𝑔
2

𝑚
𝒁𝑇𝑽−1(𝒚 − 𝑿�̂�𝑓𝑖𝑥𝑒𝑑). Since the genotypes are normalized to have mean 0 and 

variance 1, the effect sizes are given on the same scale. By dividing through by the vector of the 

observed genotype standard deviations, 𝑺�̂�𝑔, we can get an estimate of the effect sizes on the 

observed scale:  

�̂�𝐵𝐿𝑈𝑃,𝑂𝐵𝑆 =
�̂�𝐵𝐿𝑈𝑃

𝑺�̂�𝑔
 

BLUP SNP effect estimates are shrunk towards zero and therefore we need to multiply it 

by 1
𝑠ℎ𝑟𝑖𝑛𝑘̂  to obtain our final effect size estimates. We describe how to estimate 𝑠ℎ𝑟𝑖𝑛𝑘̂  in the 

following section. 

 

Estimating the Shrink  

In order to fit all SNPs jointly, the LMM framework shrinks the SNP effect sizes towards 

0 relative to the marginal effect sizes.  Consider the case of independent SNPs, where the 

marginal effect sizes provide unbiased estimates of the SNP effect sizes. The shrink applied to 

the BLUP SNP effects is, in this case, proportional to the estimated narrow sense heritability, 

ℎ̂2 = �̂�𝑔
2

�̂�𝑔
2+�̂�𝜀

2, and is given by ( ℎ̂2

ℎ̂2+𝑚
𝑛

) (Vilhjálmsson et al., 2015). LMM assumes that 𝜎𝑔
2 = ∑ 𝛽𝑠

2
𝑠  , 

given that the genotypes are scaled and centered, and thus �̂�𝑔
2 is an estimate of the sum of the 

squared true effect sizes. We propose the ratio, 
∑ �̂�𝑠,𝐵𝐿𝑈𝑃

2
𝑠

�̂�𝑔
2 , to estimate the shrink. We show the 



 99 

intuition for why it works below, and provide simulations to show that it works in practice as 

well in the presence of LD (see Results). 

For simplicity, assume that we have independent SNPs, 𝜷~𝒩 (0, 𝜎𝑔
2

𝑚
), and that the 

phenotype is given by 𝒚 = 𝒁𝜷 + 𝜺, where 𝒁 is the matrix of normalized genotypes. We can 

estimate the marginal effect at a SNP s by �̂�𝑠,𝑂𝐿𝑆 = (𝒁𝑠
𝑇𝒁𝒔)−1(𝒁𝑠

𝑇𝒚). The marginal estimates are 

unbiased estimates because SNPs are independent. The mean and variance of the estimate is then 

given by 

 

 

𝐸[�̂� 𝑠,𝑂𝐿𝑆] = 𝐸 [
1
𝑛

𝒁𝑠
𝑇𝒁𝑠𝛽𝑠] = 𝛽𝑠 

𝑣𝑎𝑟(�̂� 𝑠,𝑂𝐿𝑆) = 𝐸 [
1
𝑛

𝒁𝑠
𝑇𝒁𝑠𝛽𝑠 +

1
𝑛

∑ 𝒁𝑠
𝑇𝒁𝑗𝛽𝑗

𝑗≠𝑠

+
1
𝑛

𝒁𝑠
𝑇 𝜺 − 𝐸[𝛽𝑠]] 

= 𝐸 [
1
𝑛

∑ 𝒁𝑠
𝑇𝒁𝑗𝛽𝑗

𝑗≠𝑠

+
1
𝑛

𝒁𝑠
𝑇 𝜺]

2

= 𝐸 [
1

𝑛2 ∑(𝒁𝑠
𝑇𝒁𝑗𝛽𝑗)(𝒁𝑠

𝑇𝒁𝑗𝛽𝑗)
𝑇

𝑗≤𝑠

] + 𝐸 [
1

𝑛2 (𝒁𝑠
𝑇 𝜺)(𝒁𝑠

𝑇 𝜺)𝑇]

= 𝐸 [
1

𝑛2 (𝒁𝑠
𝑇 (∑ 𝛽𝑗

2𝒁𝑗𝒁𝑗
𝑇

𝑗≤𝑠

) 𝑿𝑠)] + 𝐸 [
1

𝑛2 (𝒁𝑠
𝑇 𝜺𝜺𝑇𝒁𝑠)]

= 𝐸 [
1

𝑛2 (𝒁𝑠
𝑇((𝑚 − 1)𝑰𝑚)𝒁𝑠𝐸[𝛽𝑠

2])] +  𝐸 [
1

𝑛2 (𝒁𝑠
𝑇 (1 − ℎ2)𝑰𝑛𝒁𝑠)]

= 𝐸 [
1

𝑛2 (𝑛(𝑚 − 1)𝑰𝑚𝐸[𝛽𝑠
2])] + 𝐸 [

1
𝑛2 (𝑚(1 − ℎ2)𝑰𝑛)] =

ℎ2 − ℎ2

𝑚 + 1 − ℎ2

𝑛

=
1 − ℎ2

𝑚
𝑛

≈
1
𝑛
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Since �̂� 𝑠,𝑂𝐿𝑆 given 𝜷 is normally distributed with the mean and variance we derived above, we 

can derive the posterior distribution of 𝜷 given the estimate �̂� 𝑠,𝑂𝐿𝑆 by using a normal-normal 

conjugate prior update. We have the prior 𝜷~𝒩 (0, 𝜎𝑔
2

𝑚
) = 𝒩(𝜇0, 𝜎0

2) and the likelihood 

( �̂�𝑠,𝑂𝐿𝑆|𝜷)~𝒩 (𝜷,
1−ℎ2

𝑚
𝑛

) which gives us the following posterior mean and variance 

𝐸[�̂�𝑠,𝐵𝐿𝑈𝑃] = 𝐸[𝜷𝑠|�̂�𝑠,𝑂𝐿𝑆] = �̂�𝑠,𝑂𝐿𝑆 (𝑠ℎ𝑟𝑖𝑛𝑘) 

𝑣𝑎𝑟(�̂�𝑠,𝐵𝐿𝑈𝑃) = 𝑣𝑎𝑟(𝜷𝑠|�̂�𝑠,𝑂𝐿𝑆) =
1
𝑛

(𝑠ℎ𝑟𝑖𝑛𝑘) 

where 𝑠ℎ𝑟𝑖𝑛𝑘 = ( ℎ̂2

ℎ̂2+𝑚
𝑛

). We then have 

𝜎𝑔
2 = ∑ 𝛽𝑠

2

𝑠

≈ 𝜎𝑔
2 = ∑ (

1
𝑠ℎ𝑟𝑖𝑛𝑘̂ ∗ �̂�𝑠,𝐵𝐿𝑈𝑃)

2

𝑠

= (
1

𝑠ℎ𝑟𝑖𝑛𝑘̂ )
2

∑ �̂�𝑠,𝐵𝐿𝑈𝑃
2

𝑠

 

⇒ (𝑠ℎ𝑟𝑖𝑛𝑘̂ )
2

=
∑ �̂�𝑠,𝐵𝐿𝑈𝑃

2
𝑠

𝜎𝑔
2  

Plugging in the variance of the BLUP betas shows us why this ratio is approximately the shrink. 

(𝑠ℎ𝑟𝑖𝑛𝑘̂ )
2

=
∑ �̂�𝑠,𝐵𝐿𝑈𝑃

2
𝑠

𝜎𝑔
2 =

𝑣𝑎𝑟(�̂�𝐵𝐿𝑈𝑃)
𝜎𝑔

2 =
𝑚
𝑛 (𝑠ℎ𝑟𝑖𝑛𝑘̂ )

𝜎𝑔
2  

⇒
∑ �̂�𝑠,𝐵𝐿𝑈𝑃

2
𝑠

𝜎𝑔
2 = 𝑠ℎ𝑟𝑖𝑛𝑘̂  

 

Simulation Framework 

For all of our non-real data simulations, we simulated 500 2-way admixed individuals 

and 750 SNPs. Global ancestry for ancestral population 1 (𝜃1) was drawn from a truncated 

normal distribution with 𝜇 = 0.7 and 𝜎 = 0.2. The boundaries of the truncated distribution were 
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set at a 0 and 1. For each individual i and every SNP s, we assigned the local ancestry or the 

number of alleles derived from population 1 (𝛾𝑎𝑖𝑠) for each haplotype by performing two 

binomial trials with the probability of success equal to 𝜃𝑖1. We then drew ancestry specific allele 

frequencies following the Balding-Nichols model by assuming a 𝐹𝑆𝑇 = 0.2 and drawing two 

ancestral frequencies, p1s and p2s, from the following beta distribution. 

 

𝑝1𝑠, 𝑝2𝑠 ~𝐵𝑒𝑡𝑎 (
𝑝𝑠(1 − 𝐹𝑆𝑇)

𝐹𝑆𝑇
,
(1 − 𝑝𝑠)(1 − 𝐹𝑆𝑇)

𝐹𝑆𝑇
) 

 

where 𝑝𝑠 is the underlying MAF in the entire population and is drawn from a uniform 

distribution with bounds 0.01 and 0.5. Genotypes were drawn using a binomial trial for each 

local ancestry haplotype with the probability of success equal to p1s or p2s for values of 𝛾𝑎𝑖𝑠 =

0 or 1, respectively. 

 For both non-real and real data simulations, we drew effect sizes in 3 ways to generate 

phenotypes that were correlated with ancestry in various degrees as a function of genetics and 

environment. In the first approach (“low”) SNP effect sizes were drawn from a normal 

distribution with 𝜇 = 0 and 𝜎 = 0.2. Next, we used a probabilistic approach (“mid”) that ties the 

direction of the effect size to the ancestral minor allele frequency. For a SNP s, we performed a 

binomial trial where the odds of success is 𝑝1𝑠
𝑝2𝑠

. If the trial was a success, the effect size is positive 

and otherwise the effect size is negative. Last, we used a deterministic approach (“high”) where 

if 𝑝1𝑠 > 𝑝2𝑠 then the effect size is positive and otherwise negative. These scenarios induce low, 

mid, and high correlations between phenotype and ancestry, respectively. In the scenario that 

there was an environmental effect for covariates correlated with ancestry, we used 𝛽𝜃 = 25. To 
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set the heritability of our simulated phenotypes at a specified level, we added a noise term, 𝜀, 

drawn from a normal distribution with 𝜇 = 0 and 𝜎𝜀 = √𝜎𝑔𝑠
2 ( 1

ℎ2 − 1). This way ℎ2 = 𝜎𝑔
2

𝜎𝑔
2+𝜎𝜀

2 

where 𝜎𝑔
2 =  𝑣𝑎𝑟(∑ 𝛽𝑠𝒈𝒔𝑠 ).  

 

Filtering for Related Individuals 

All analyses in real data were filtered for related. To filter for related individuals, we 

estimated kinship coefficients between all pairs of individuals using REAP. We defined two 

individuals as related if they had a kinship coefficient greater than 0.025. For a pair of related 

individuals, we removed the one with a greater number of other individuals to whom he or she 

was related. In the case of a tie, we removed one of the pair at random.  

 

BioMe Data 

 We analyzed data from the BioMe biobank in Mount Sinai Medical Center in 

New York City. The BioMe Biobank at Mt. Sinai is composed of >32,000 multi-ethnic patients 

with phenotype data from electronic health records (EHRs) linked to genotype data from the 

Illumina OmniExpress platform. After filtering for genotypes with a minor allele frequency ≥

 0.05 and a genotyping rate ≥ 0.01, we had about 610,000 SNPs left in our analysis. The 

individuals analyzed here were admixed patients consisting of 3,705 African Americans and 

5,104 Hispanic/Latinos. Global ancestry inference was done using ADMIXTURE(Alexander et 

al., 2009). The health records contained information about the ICD9 billing codes that 

individuals had, measurements on various continuous traits (i.e. white blood cell count, 

creatinine, cholesterol), and information on age, sex, and body mass index (BMI). For 

continuous phenotypes, we limited our analyses to those that had at least 1000 samples with 
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measurements for a given trait, which resulted in 48 phenotypes for African Americans and 49 

for Hispanic/Latinos. For binary phenotypes, we restricted our analyses to ICD9 codes that had 

at least 20 individuals with a given ICD9 code. We treated each ICD9 code as a case/control 

phenotypes where individuals with the ICD9 code were assigned a case status and they were 

assigned a control status otherwise. We also ignored ICD9 codes that had to do with injury 

caused by an external event. In total we looked at 1182 ICD9 code based phenotypes for African 

Americans and 1458 for Hispanic/Latinos.  

 

 

BioMe Permutations 

We explain the general framework here for our permutation approach. For simplicity, we 

leave out extra covariates, but we note that covariates may be included when testing the 

association between phenotype and ancestry. Let 𝒀 be an 𝑛×𝑝 matrix of phenotypes for n 

individuals and p phenotypes. Then we can test the association between  𝒀𝑝, for 𝑝 ∈  {1. . . 𝑃} and 

𝜽𝑗 by using linear regression for continuous phenotypes and logistic regression for binary 

phenotypes. However, if correlations exist within 𝒀 between different phenotypes, then we must 

preserve these correlations when we permute the data to generate our empirical null distribution. 

For each permutation u, we generate 𝒀𝒖 by permuting the rows of 𝒀 and then perform the 

regression  𝒀𝑢,𝑝~ �̂�𝑢,𝑝,𝜃𝑗𝜽𝑗 ∀𝑝. We then include the maximum Wald test statistic 

(
�̂�𝑢,𝑝,𝜃𝑗

𝑆𝐸(�̂�𝑢,𝑝,𝜃𝑗)
)

2

∀𝑝 in our empirical null distribution. We repeat this process 10,000 times to 

generate a null distribution composed of 10,000 chi-squared test statistics. We then compare the 

original observed test statistic (
�̂�𝑝,𝜃𝑗

𝑆𝐸(�̂�𝑝,𝜃𝑗)
)

2

 to the null distribution and compute the p-value as  
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𝑟+1
𝑞+1

, where r is the number of permutation test statistics that are greater than or equal to the 

original statistics, and q is the number of permutations. 

 

Results 

Simulated Data 

To determine how 2PAC behaves under the simple scenario of independent SNPs, we 

performed 1000 simulations for the “low”, “mid”, and “high” scenarios that we describe in 

Simulation Framework. For each scenario we simulated phenotypes for ℎ2 values of 0.35 and 

0.65. Furthermore, for every scenario and heritability combination we also tested 2PAC when 

there is and is not an environmental effect, for covariates correlated with ancestry, by setting 𝛽𝜃 

equal to 25 and 0, respectively. We show the results for ℎ2 = 0.65 for brevity, but the 

conclusions we drew from the results when ℎ2 = 0.35 were the same.  

We first wanted to see if we could obtain unbiased estimates for the genetic component 

of the correlation of phenotype and ancestry (𝜌𝑔𝜃). As shown in Table 1, we were able to obtain 

accurate and unbiased estimates of 𝜌𝑔𝜃 in the case of independent SNPs regardless of whether 

there was an environmental effect or not.  
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Table 1. Mean Estimates of 𝜌𝑔𝜃 for ℎ2 = 0.65 with and without an environmental effect 

 𝛽𝜃 = 25 𝛽𝜃 = 0 

Truth (SE) 2PAC (SE) Truth (SE) 2PAC (SE) 

Low -0.006 (0.004) -0.010 (0.008) 0.003 (0.006) -0.0004 (.011) 

Mid 0.448 (0.001) 0.446 (0.010) 0.669 (0.001) 0.663 (0.006) 

High 0.572 (0.004) 0.567 (0.004) 0.756 (0.001) 0.759 (0.006) 

 

 

In these simulations, we also saw that 𝛽𝜃 was overestimated as a function of the correlation 

between phenotype and genetic ancestry (𝜌𝑦𝜃), whether it be with linear mixed models or with 

ordinary least squares. As shown in Table 2, by obtaining an unbiased estimate of 𝜌𝑔𝜃 we can 

recover an unbiased estimate of 𝛽𝜃 by rewriting the equation for 𝜌𝑦𝜃 as 

𝛽𝜃 = (
𝜌𝑦𝜃 − 𝜌𝑔𝜃

𝜎𝜃𝑗
2 ) 𝜎𝑦𝜎𝜃𝑗 

 

Table 2. Mean Estimates of 𝛽𝜃 for ℎ2 = 0.65 with and without an environmental effect  

 𝛽𝜃 = 25 𝛽𝜃 = 0 

LMM (SE) 2PAC (SE) LMM (SE) 2PAC (SE) 

Low 25.0 (0.106) 25.2 (0.201) 0.073 (0.107) 0.115 (.210) 

Mid 46.5 (0.150) 23.7 (0.275) 21.4 (0.146) -1.07 (0.259) 

High 67.9 (0.177) 25.3 (0.386) 42.8 (0.165) -0.286 (0.379) 
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Furthermore when 𝜌𝑦𝜃 > 0, there is a downward bias in heritability when estimating ℎ2 

using a LMM approach such as GCTA(Yang, Yang, et al., 2010). In a standard LMM 

framework, it is generally assumed that 𝛽𝑠~𝒩(𝜇 = 0, 𝜎2). Recall that  

𝜎𝑔
2 = ∑ 𝛽𝑠

2𝜎𝑔𝑠
2

𝑠

+ 2𝑐𝑜𝑣 ∑(𝛽𝑠𝒈𝒔, 𝛽𝑡𝒈𝒕)
𝑠≠𝑡

 

 

but if 𝛽𝑠~𝒩(𝜇 = 0, 𝜎2) then 𝐸[2𝑐𝑜𝑣 ∑ (𝛽𝑠𝒈𝒔, 𝛽𝑡𝒈𝒕)𝑠≠𝑡 ] = 0 and thus 𝜎𝑔
2 = ∑ 𝛽𝑠

2𝜎𝑔𝑠
2

𝑠 , which is 

exactly what is modeled by LMM. However, when there is selection on a trait in a population, or 

𝜌𝑦𝜃 > 0, then it is unlikely that 𝐸[2𝑐𝑜𝑣 ∑ (𝛽𝑠𝒈𝒔, 𝛽𝑡𝒈𝒕)𝑠≠𝑡 ] = 0 because causal loci will have 

correlated effect sizes(Edge & Rosenberg, 2015). This is analogous to what happens in the “mid” 

and “high” scenarios. We see that in the scenarios that induce 𝜌𝑦𝜃 > 0, a standard LMM fails to 

account for the covariance between the effects of different genetic loci. As a result, the estimates 

of 𝜎𝑔
2 and ℎ2 are downwardly biased. It is also straightforward to see that because we can obtain 

unbiased estimates of 𝛽𝜃 and  𝜌𝑔𝜃, we can also recover unbiased estimates of heritability by 

rewriting 𝜎𝑦
2 

𝜎𝑔
2 = 𝜎𝑦

2 − 𝛽𝜃
2𝜎𝜃𝑗

2 − 𝜎𝜀
2 − 2𝛽𝜃 ∑ 𝛽𝑠𝑐𝑜𝑣(𝒈𝒔, 𝜽𝒋)

𝑠

= 𝜎𝑦
2 − 𝛽𝜃

2𝜎𝜃𝑗
2 − 𝜎𝜀

2 − 2𝛽𝜃𝜌𝑔𝜃𝜎𝜃𝜎𝑦 

We show how the bias in heritability estimates increase as the correlation between ancestry and 

phenotype increase in Figure 1. 
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Figure 1. Corected heritability estimates after using 2PAC to correct the estimate of 𝜎𝑔

2. The 
average phenotype-ancestry correlation due to genetics, 𝜌𝑔𝜃, was -0.006 for “low”, 0.448 for 
“mid”, and 0.572 for “high”.  
 
 
Simulations using Real Data 

We also wanted to determine how 2PAC behaves when there is LD between SNPs. We 

simulated phenotypes as described in Simulation Framework but for genotypes we used 

chromosomes 1-3 from the African Americans in BioMe. As we did with simulated genotypes, 

we performed 200 simulations under the “low”, “mid”, and “high” scenarios at a heritability of 

0.35. Again, we tested 2PAC when there is an environmental effect, for covariates correlated 

with ancestry, by setting 𝛽𝜃 equal to 225. We chose these values of 𝛽𝜃 to allow the 

environmental effect to account for at least 10% of the heritability on average during the 

simulations.  

Admixture will induce long range LD between SNPs due to allele frequency differences 

in the mixing populations(X. Zhu, Tang, & Risch, 2008). We account for ancestry induced LD 

(ALD) by adjusting the genotypes for ancestry using the linear regression 𝒈𝑠~𝛽𝑠,𝜃𝜽𝐴𝐹𝑅. We 

used the residuals of this regression to generate the kinship matrix 𝑲𝑟𝑒𝑠 and the residualized 
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genotype matrix 𝒁𝑟𝑒𝑠 (scaled and centered after taking the residuals). We used these matrices to 

compute the BLUPs for estimating the shrink. Not adjusting for ALD results in overestimating 

the shrink by a very large margin as shown in Table 3.  

 

Table 3. Mean and Median Estimates of the shrink for ℎ2 = 0.35 using Regular BLUP betas 

 𝛽𝜃 = 225 𝛽𝜃 = 0 

True (SE) Estimated (SE) True (SE) Estimated (SE) 

Low  Mean = 1.89 
(0.668) 

Median = 0.342 
n=176 

Mean = 120.8 
(1.65) 

Median = 116.5 

Mean = 1.17 
(0.559) 

Median = 0.687 
n=183 

Mean = 123.2 
(1.59) 

Median = 13.2 

Mid Mean = 23.3 
(1.41) 

Median = 17.5 
n=169 

Mean = 159.6 
(3.58) 

Median = 148.8 

Mean = 18.9 
(0.146) 

Median = 16.0 
n=155 

Mean = 153.6 
(3.39) 

Median = 144.9 

High Mean = 93.3 
(20.3) 

Median = 62.3 
n=177 

Mean = 615.9 
(156) 

Median = 529 

Mean = 116.3 
(16.0) 

Median = 72.1 
n=175 

Mean = 961.8 
(135) 

Median = 587.5 

 

Using the residualized genotypes, we could recover accurate estimates of the shrink, 

although they were not unbiased. We note that GCTA did not converge when estimating 𝜎𝑔
2 for 

all simulations. In Table 4 we provide the mean and median estimates of the shrink. We define 

here the true shrink as 
𝜌𝑔𝜃

�̂�𝑔𝜃,𝑠ℎ𝑟𝑢𝑛𝑘
, where 𝜌𝑔𝜃,𝑠ℎ𝑟𝑢𝑛𝑘 is computed using the regular non-

residualized BLUP betas. We include the median shrink over the simulations because there were 

outliers which influenced the mean. In general, the median values are generally closer to each 

other than the mean values. However, even with the outliers, the mean true and estimated values 

are very close after factoring in standard error in the case when there is a correlation between 

phenotype and ancestry (i.e. “mid” and “high”). In the case of the “low”  scenario, although the 
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estimated shrink is very large compared to the truth, it makes very little difference in the 

estimation of 𝜌𝑔𝜃 because 𝜌𝑔𝜃,𝑠ℎ𝑟𝑢𝑛𝑘 is already very small number (see Table 5). 

 

Table 4. Mean and Median Estimates of the shrink for ℎ2 = 0.35 using Residualized BLUP 

betas 

 𝛽𝜃 = 225 𝛽𝜃 = 0 

True (SE) Estimated (SE) True (SE) Estimated (SE) 

Low  Mean = 1.89 
(0.668) 

Median = 0.342 
n=176 

Mean = 13.3 
(0.179) 

Median = 12.8 

Mean = 1.17 
(0.559) 

Median = 0.687 
n=183 

Mean = 13.6 
(0.174) 

Median = 13.2 

Mid Mean = 23.3 
(1.41) 

Median = 17.5 
n=169 

Mean = 17.5 
(0.391) 

Median = 16.3 

Mean = 18.9 
(0.146) 

Median = 16.0 
n=155 

Mean = 16.8 
(0.370) 

Median = 15.98 

High Mean = 93.3 
(20.3) 

Median = 62.3 
n=177 

Mean = 67.4 
(17.1) 

Median = 57.9 

Mean = 116.3 
(16.0) 

Median = 72.1 
n=175 

Mean = 105.1 
(14.8) 

Median = 64.3 

 

As shown in Table 5, we were able to get unbiased estimates of 𝜌𝑔𝜃 when there was LD 

between SNPs using our approach to estimate the shrink (see Estimating the Shrink). This was 

both in the case when there was an effect of environment and when there was not. This also 

implies that we would be able to recover unbiased estimates of 𝛽𝜃, 𝜎𝑔
2, and ℎ2. 

 

  



 110 

Table 5. Mean Estimates of 𝜌𝑔𝜃 

 𝛽𝜃 = 225 𝛽𝜃 = 0 

True (SE) Estimated (SE) True (SE) Estimated (SE) 

Low  0.003 (0.004) 0.011 (0.013) 0.002 (0.005) 0.011 (0.021) 

Mid -0.207 (0.002) -0.206 (0.009) -0.311 (0.004) -0.327 (0.015) 

High -0.461 (0.001) -0.442 (0.013) -0.561 (0.005) -0.561 (0.016) 

 

 

Analysis of BioME ICD9 Codes 

 Since we were unsure where we would find correlations between the human phenome 

and genetic ancestry, we used the biobank, BioMe. Using a biobank allowed us to analyze a large 

number of human phenotypes for significant associations with genetic ancestry. We performed 

our analyses on both continuous and ICD9 code based binary phenotypes for a cohort of African 

American and Hispanic/Latinos (see BioMe Data). We started by inferring proportions of 

European, African, and Native American ancestry (𝜃𝐸𝑈𝑅, 𝜃𝐴𝐹𝑅, and 𝜃𝑁𝐴𝑀) for all individuals. 

For each phenotype, p, we the performed regression 𝒚𝑝~ �̂�𝑝,𝜃𝑗𝜽𝑗 + �̂�𝑝,𝐵𝑀𝐼𝑩𝑴𝑰 + �̂�𝑝,𝐴𝐺𝐸𝑨𝑮𝑬 +

�̂�𝑝,𝑆𝐸𝑋𝑺𝑬𝑿, ∀𝑗 ∈ {𝐸𝑈𝑅, 𝐴𝐹𝑅, 𝑁𝐴𝑀}, using linear regression for continuous traits and logistic 

regression for binary traits. Since biobank phenotypes may be correlated due to billing practices, 

we used permutations to create a null distribution of test statistics to assess the significance of 

�̂�𝑝,𝜃𝑗 (see BioMe Permutations).  In summary, we found 4 significant phenotype-ancestry 

correlations in the African American data and 18 in the Hispanic/Latino data (Tables 6 and 7). 

With the significant associations, we also applied 2PAC to partition the phenotype-ancestry 

correlation into estimates of the genetic and environmental components (𝜌𝑔𝜃, 𝜌𝜀𝜃 ). We used 
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GCTA to compute the estimate 𝜎𝑔
2 and compute the BLUP betas. However, due to sample sizes 

we were unable to partition the correlations with any meaningful resolution due to large standard 

errors, which were obtained via jackknifing by leaving one individual out and re-computing the 

𝜌𝑔𝜃 n times. Instead, we tested for evidence that the correlation between phenotype and ancestry 

is driven by genetics using the chi-squared (df = 1) Wald test (
�̂�𝑔𝜃

𝑆𝐸(�̂�𝑔𝜃)
)

2
. We found that in 

Hispanic/Latinos, essential hypertension (ICD9=401.9) had evidence for a genetically driven 

phenotype-ancestry correlation with a p-value of 0.014. Essential hypertension is defined as high 

blood pressure without any known secondary causes such as renovascular disease or renal 

failure. Essential hypertension also accounts for about 95% of all hypertension cases and is 

thought to have both genetic and environmental factors which cause it(Carretero & Oparil, 

2000). 

 

Table 6. Phenotype-Ancestry Correlations for BioMe African Americans 

Phenotype (ICD9) Ancestry Partial 

Correlation 

Neutrophil Count African -0.161 (p=1e-4) 

Neutrophil % African -0.119 (p=0.011) 

White Blood Cell # African -0.142 (p=1e-4) 

Anemia (285.9) African 0.098 (p=2e-4) 
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Table 7. Phenotype-Ancestry Correlations for BioMe Hispanic/Latinos 

Phenotype (ICD9) Ancestry Partial Correlation 

Hematocrit African -0.076 (p=0.005) 

Hemoglobin African -0.099 (p=1e-4) 

Lymphocyte % African 0.135 (p=1e-4) 

Mean Hemoglobin (HGB) African -0.113 (p=1e-4) 

Mean HGB Conc. African -0.147 (p=1e-4) 

Mean Corpuscular Volume African -0.085 (p=4e-4) 

Neutrophil % African -0.135 (p=1e-4) 

RBC Distribution Width African 0.102 (p=1e-4) 

Triglycerides  African -0.097 (p=4e-4) 

Iron deficiency anemia (280.9) African 0.069 (p=0.002) 

Cardiac dysrhythmias (427.89) African 0.063 (p=0.017) 

Reaction to tuberculin skin test 

(795.51) 

African 

0.060 (p=0.033) 

Anemia (285.9) African 0.065 (p=0.008) 

Uterine leiomyoma (218.9) African 0.063 (p=0.014) 

Hypertension (401.9) African 0.065 (p=1e-4) 

Asthma (493.9) Native American -0.071 (p=0.003) 

Tobacco use disorder (305.1) Native American -0.092 (p=2e-4) 

Hypertensive Renal Disease 

(403.91) 

European 

-0.062 (p=0.015) 
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Discussion 

 In previous studies, it has been unclear whether correlations between phenotype and 

genetic ancestry are due to effects from genetic or environmental risk factors, or a combination 

of both. In this study, we have developed a method, 2PAC, which partitions the correlation into 

genetic and environmental components. Being able to determine whether the correlation is 

driven by genetics or environment provides potential insight into underlying mechanisms for 

differences in prevalence for some complex traits. This is especially important in the context of 

precision medicine because it deepens our understanding of disease etiologies and proposes 

hypotheses on therapeutic strategies. Diseases that have a correlation with genetic ancestry 

driven mostly by the genetic component are likely to be targeted differently from those that have 

a correlation driven predominantly by environmental factors.  

 In this work, we used the LMM framework as implemented by GCTA and rely on its 

theoretical assumptions (Yang, Lee, Goddard, & Visscher, 2013). Others have shown that the 

model assumptions in LMM are critical, and deviations from these assumptions can affect 

convergence or stability of the method(Gamazon & Park, 2016; Speed, Cai, Johnson, Nejentsev, 

& Balding, 2017). If appropriate, 2PAC can be used together with any other LMM framework, 

such as LDAK(Speed, Hemani, Johnson, & Balding, 2012), as long as the BLUP betas and the 

shrink can be estimated accurately. Intuitively, using a LMM framework that is less sensitive to 

confounders, such as the LD structure between causal variants, would increase 2PAC’s accuracy 

as well, although it remains to be shown. We have shown here that performing heritability 

estimates in admixed populations can, in certain scenarios, result in biased results that can be 

addressed using our approach. We have also shown that ALD has undesirable effects when 

estimating the BLUP betas and the shrink applied to them. It will be interesting to see if there is a 
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way to directly account for potential heritability biases in admixed populations directly in the 

LMM framework, and if addressing LD issues in the theoretical framework can address long 

range LD induced by ancestry.  

 There are future extensions to 2PAC that will be interesting to implement in the future. 

One way 2PAC may be extended is to apply the method to identify regions of the genome that 

account for the largest proportion of 𝜌𝑔𝜃. Identifying such regions of the genome may provide 

identify loci responsible for observed population level differences in phenotype. 2PAC may also 

be extended to interrogate phenotype-ancestry correlations for non-admixed populations, such as 

Europeans. It is unclear though whether population structure in Europeans will provide as much 

information as the genetic ancestry of admixed populations. This is because the amount of 

genetic differentiation in admixed populations is much higher than that of just Europeans. Our 

approach to estimate the shrink is also fundamentally interesting. It could be incorporated into all 

GCTA like analyses, of any population, to learn about the genetic architecture of disease because 

it indirectly estimates the percentage of causal variants in the genome for that phenotype. 

 In our analysis of phenotypes from BioMe, we were able to identify multiple significant 

correlations between phenotype and genetic ancestry in both African Americans and 

Hispanic/Latinos. We also found evidence that the correlation between essential hypertension 

and Native American ancestry is driven partially be genetics. The data analyzed here are from 

genotyping chips and the estimates we provide of 𝜌𝑔𝜃 are, as a result, estimates of the 

contribution of genotyped SNPs to 𝜌𝑔𝜃. There may be rare variation or untyped genetic variation 

that also contributes to the correlations we examined, and should be investigated in the future. As 

more hospitals collect genetic data and more precise records of their patients, we will be able to 

learn more about the causes of various diseases and phenotypes. The BioMe data we analyzed 
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was mostly composed of case/control data based on ICD9 codes, which contain a wealth of 

information, but do not provide a refined picture of disease biology. In the future, 2PAC together 

with deep phenotyping could paint a more detailed picture of what is driving the genetic 

component of phenotype-disease correlations, and help us to understand at a deeper level 

underlying disease mechanisms (Delude, 2015; Robinson, 2012). 
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Conclusion 
 
  World-historical events such as the slave trade, colonization of the Americas, and mass 

migrations have resulted in the emergence of populations with complex patterns of population 

admixture.  Individuals are now able to travel around the world with unprecedented ease thanks 

in part to advances in manufacturing, worldwide infrastructure, and the general increase in 

individuals’ economic power. As a result, the emergence of new patterns of admixture is certain 

to occur and there is a need to address the gap in our understanding of how genetic variation 

influences trait variation, including disease risk, in human populations. This includes 

understanding whether the genetic architectures of complex traits are similar across populations, 

determining whether the contributions of genetic and environmental components differ between 

populations, and testing whether the results of genome studies that have been obtained for 

Europeans are generalizable to other populations. Without aiming for a more comprehensive 

account of human genetic variation, we risk falling short of the goal of precision medicine and 

providing the promise of genomic medicine (e.g., improved healthcare) to all(Bustamante et al., 

2011).  

 In this work, our primary aim was to develop methods that improve the genomic analysis 

of diverse populations, specifically admixed populations. We presented methods that improve 

upon existing methods for calling IBD (PIGS) and using reference panels for summary statistics 

based approaches (Adapt-mix). Calling IBD has a multitude of uses including detecting cryptic 

relatedness, inferring demographic history, and association mapping. With PIGS we provided a 

computationally efficient way to leverage existing IBD calls; our method finds many more IBD 

segments than other approaches. The method contributes to facilitating future IBD based disease 

association studies. Furthermore, PIGS may provide new inroads into identifying small segments 
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of IBD and therefore add to our understanding of human demographic history. With Adapt-mix 

we aimed at addressing the growing importance of summary statistics based methods for 

genomic studies of admixed populations and of populations without available reference panels. 

Due to computational and privacy issues, summary statistics will be used more widely in the 

future(Schork et al., 2013). Adapt-mix enables the accurate use of summary statistic based 

methods as genetic data from new populations are collected and high quality reference panels are 

not readily available. Adapt-mix may enable improved summary statistic based analyses of 

admixed populations (that have sub-optimal reference panels), and allow researchers to analyze 

populations that have not been previously studied in depth.  

 In addition to improving upon existing methodology, we developed two methods (AITL 

and 2PAC) that evaluate the extent to which genetic variation, environment, and their 

interactions, contribute to various traits. With AITL we leveraged the fact that environmental and 

medical covariates are associated with genetic ancestry to detect gene-environment and multiway 

gene-gene interactions. Interactions have been difficult to detect for logistical, statistical, 

biological, and computational reasons. However, they are believed to be responsible for a 

significant portion of missing heritability for several phenotypes. The relative contribution of 

additive and non-additive genetic effects to variability in molecular phenotypes and disease risk 

is an important area of investigation, and AITL provides a way to find such contributions(Powell 

et al., 2013). With 2PAC, we introduced a way to partition the relative contributions of genetic 

and environmental components to the correlation between ancestry and phenotype. Gaining 

insight into whether genetic component or environment drives differences in population 

phenotypic distributions has direct implications for precision medicine. Treatment of a disease 

should differ if the disease is caused primarily by genetic variation as opposed to an 
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environmental factor and vice versa. We also proposed ways that 2PAC might be extended to 

identify regions of the genome that contribute substantially to the correlation between ancestry 

and phenotype. This extension could be used to find potential drug targets in the future.  

 It will be interesting to witness how genomics shapes the future landscape of healthcare 

and quality of life. More and more, there is a great push to “personalize” not just medicine but 

general lifestyle (i.e., exercise, beauty) based on an individual’s genetic profile. The success of 

these efforts will hinge on a broad understanding of genetic variation and its impact on the full 

spectrum of human phenotypic variability.  
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