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Actively Learning Nouns Across Ambiguous Situations 
 

George Kachergis, Chen Yu, and Richard M. Shiffrin  
{gkacherg, chenyu, shiffrin}@indiana.edu 

Department of Psychological & Brain Science / Cognitive Science Program 
Bloomington, IN 47405 USA 

 
Abstract 

Previous research shows that people can use the co-
occurrence of words and objects in ambiguous situations (i.e., 
containing multiple words and objects) to learn word 
meanings during a brief passive training period (Yu & Smith, 
2007). However, learners in the world are not completely 
passive, but can affect how their environment is structured by 
moving their heads, eyes, and even objects. These actions can 
indicate attention to a language teacher, who may then be 
more likely to name the attended objects. Using a novel active 
learning paradigm in which learners choose which four 
objects they would like to see named on each successive trial, 
this study asks whether active learning is superior to passive 
learning in a cross-situational word learning context. Finding 
that learners perform better in active learning, we investigate 
the strategies that were most successful, discuss the 
implications, and model the results. 

Keywords: active learning; statistical learning; cross-
situational learning; temporal contiguity; language acquisition 

Introduction 
Human infants learn words quite quickly despite many 
challenges facing them, including uncertainty and ambiguity 
in the language environment. Recent research has studied 
how learners may acquire word meanings from regularities 
in the co-occurrence of words and referents (e.g., objects). 
Such cross-situational statistical word learning relies on two 
assumptions: 1) that spoken words are often relevant to the 
visible environment, and 2) that learners can to some extent 
remember the co-occurrence of multiple words and objects 
in a scene. Thus, as words and their intended referents are 
observed in different situations over time, learners can 
apprehend the correct word-object mappings. Relying only 
on the regularity of the linguistic environment and basic 
memory and attention processes, this may be an important 
method of learning nouns for infants, and even adult 
travelers. 

In adult cross-situational learning studies (e.g., Yu & 
Smith 2007), participants are asked to learn the meaning of 
alien words by watching a series of training trials. On each 
trial learners see an array of unfamiliar objects (e.g., four 
sculptures) and hear pseudowords (e.g., stigson, bosa). The 
meaning of each pseudoword is ambiguous on a given trial, 
because although each word refers to a single onscreen 
object, the intended referent is not indicated. In a typical 
learning scenario, participants attempt to learn 18 word-
object pairings from 27 trials, with four words and four 
objects given per trial. In this design, each word-referent 
pair is presented six times over the five-minute training 
period. Learning a correct word-object pairing requires 
some form of accumulation of word-object co-occurrences. 

When tested on each word and given four trained objects to 
choose from, participants chose the correct object for half of 
the 18 words, on average (Yu & Smith, 2007).  

However, in the real world even infant learners are not 
passive observers, merely watching the world go by. As 
learners shift their attention, their eyes, head and hands 
move, changing the objects in their view. If caregivers 
notice these attention shifts, they may be more likely to 
name objects that are currently being attended to. Thus, 
learners may in essence be able to increase the likelihood an 
object is named by shifting their attention to include this 
object. This is a form of active learning, a concept studied 
extensively in machine learning (cf. Settles, 2009), in which 
a learner can query an information source for the labels of 
particular data points.  

In this study, we introduce active cross-situational word 
learning, in which learners choose which four objects they 
would like to see named on each successive trial. Thus, 
learners control when to repeat pairs, when to stop 
experiencing pairs they feel they know, and when to attempt 
to learn more pairs. This gives us a glimpse of their 
preferred strategies. For example, participants may choose 
to repeat a single pair from the previous trial, and leverage 
working memory to quickly learn that the repeated word 
refers to the repeated object, while ignoring the other three 
word-object pairs on the trial. Equivalently, a learner may 
prefer to repeat three pairs from the previous trial, and 
quickly learn the novel pairing that was not present. 
Kachergis, Yu, & Shiffrin (2009a) manipulated this sort of 
temporal contiguity in a passive cross-situational study and 
found not only that repeated pairs are learned more easily, 
but so are unrepeated pairs in conditions with some repeats. 
This suggests that simple inference supported by working 
memory is not the only learning mechanism at work.  

In fact, investigating active learning can reveal what 
information and mechanisms a learner has at their disposal, 
and characterizing the observed strategies—and their 
performance—will motivate learning models. For example, 
our recent associative model of cross-situational learning 
assumes that learners have access to both their familiarity 
and their uncertainty about the word-object pairings present 
on a given trial, and that attention competes for uncertain 
stimuli and for already-strong pairings (Kachergis, Yu, & 
Shiffrin, 2012). This model matches adult behavior in 
passive cross-situational experiments investigating mutual 
exclusivity, a bias to find 1-to-1 word-object mappings that 
is present even in 2.5-year-olds (Markman & Wachtel, 
1988). If active learners have access to their knowledge of 
pairing strength and stimulus uncertainty, these cues can be 
combined to produce a few active learning strategies. One 

527



strategy is to choose one object you have never seen before 
(i.e., one with maximal uncertainty), and fill the remaining 
three slots on the trial with familiar objects. Alternatively, 
learners may choose novel combinations of familiar objects 
in order to disambiguate mappings; we have previously 
found such contextual diversity to aid learning (Kachergis, 
Yu, & Shiffrin, 2009b). Detailed analysis of active learning 
strategies can reveal what knowledge is available to learners 
and how they attempt to employ it to learn the correct 
mappings. It may even be that people are worse at actively 
structuring the learning environment than the randomly-
constructed passive trial sequences they normally 
experience in word-learning experiments. 

In the Experiment, participants do two blocks of passive 
cross-situational learning, as well as of two blocks of active 
cross-situational learning in which they choose the objects 
that they see named on each successive trial. Although there 
are many other possible formulations of active cross-
situational learning, we choose this instantiation because it 
most closely matches the passive task, and it somewhat 
matches the real world, where learners can attend to objects 
and likely increase the chance of a teacher labeling those 
objects. 

Experiment 
Participants were asked to learn 18 word-referent pairs 

from a series of individually ambiguous training trials using 
the cross-situational word learning paradigm (Yu & Smith, 
2007). Each training trial was comprised of a display of four 
novel objects and four spoken pseudowords. With no 
indication of which word refers to which object, learners 
have little chance of guessing the four correct word-referent 
mappings from the 16 possible pairings. However, since 
words always appear on trials with their proper referents, 
the correct pairings may be learned over the series of trials.  

The key manipulation of this study is to allow learners in 
active conditions to choose which four objects they want to 
see named on the next trial. In both conditions, 18 word-
referent pairs were experienced over a series of 27 training 
trials. Importantly, the same pair was never allowed to 
appear in neighboring trials in passive conditions. In both 
conditions, each pair could only appear six times during the 
training session. Thus, both the number of exposures per 
pair and the ambiguity on each trial (i.e., number of pairs) 
were matched in active and passive learning conditions. In 
order to compare passive and active learning performance, 
each participant underwent two training and test blocks of 
each. 

Subjects 
Participants were 41 undergraduates at Indiana University 
who received course credit for participating. None had 
participated in other cross-situational experiments. 

Stimuli 
Each training trial consisted of an array of four uncommon 
objects (e.g., sculptures) and four spoken pseudowords. The 
72 pseudowords generated by computer are phonotactically-

probable in English (e.g., “bosa”), and were spoken by a 
monotone, synthetic female voice. These 72 objects and 72 
words were randomly assigned to four sets of 18 word-
object pairings, one set for each training condition.  

Training for each condition consisted of 27 trials. Each 
training trial began with the appearance of four objects, 
which remained visible for the entire trial. After 2s of initial 
silence, the four words were heard in a random order (1s per 
word, with 2s of silence after each) for a total duration of 
14s per trial.  
Procedure 
Participants were told they would see a series of trials with 
four objects and four alien words, but that the order of 
presentation of the words was random. They were also told 
that their knowledge of which words belong with which 
objects would be tested at the end. In the active learning 
conditions, participants were instructed that they would be 
able to choose four objects they wanted to see named next. 
In active learning training blocks, after each trial a display 
of all 18 objects in the to-be-learned set was shown, and 
participants chose four to be named on the next trial. 
Objects that had already been chosen six times were not  

After each training block, participants’ knowledge of 
word-object mappings was assessed using 18-alternative 
forced choice (18AFC) testing: on each test trial a single 
word was played, and the participant was instructed to 
choose the appropriate object from a display of all 18 
trained objects. Each of the 18 words was tested once in a 
random order.  

Every participant did four blocks of training and testing: 
half did two active learning blocks followed by two passive 
learning blocks, and the other half did the reverse. 

Results & Discussion 
A repeated measures ANOVA on accuracy1 by training type 
(active or passive) and training type repetition (1st or 2nd), 
nested by condition order (active-first or passive-first) 
revealed a significant main effect of training type (F(1,39) = 
15.17; p < .001). Test performance after active learning is 
far better than after passive learning (active M = .59; passive 
M = .35), confirming that adults can use knowledge of their 
internal state to structure their environment for better 
learning. Moreover, participants did not improve much on 
their second block of either training type: there was no 
significant effect of repetition (F(1,39) = 2.08; p = .15). 
There was no significant interaction of condition order and 
repetition (F(2,38) = 1.62; p = .20), nor of training type and 
repetition (F<1), but there was a significant interaction of 
training type and condition order (F(2,38) = 4.53; p < .05). 
As shown in Figure 3, doing active learning first improves 
performance in the passive conditions (passive M = .30 if 
passive-first, M = .39 if active-first). This is somewhat 
surprising, as it is easy to imagine that doing passive first 

                                                             
1 Data from one subject were excluded after it was found that 

their average performance in all four blocks was below chance 
(chance in an 18AFC test is .056).  

528



might give learners an idea for better active learning 
strategies, whereas it is difficult to see how practice at active 
learning can improve one’s performance in conditions with 
no command. However, it may be that active learning also 
allows learners to practice different rehearsal strategies, and 
helps them choose better ones even when they cannot 
control the structure of the trials. In any case, individual 
performance after the different types of training was 
significantly correlated (Pearson’s r=.62, t(38)=4.81, 
p<.001). Figure 2 shows that almost every participant 
performed at least as well after active training as passive 
training. 

 

 
Figure 1: Accuracy by type of first condition and training 
type in the Experiment. Active learning resulted in far 
higher test performance than passive learning. Moreover, 
learners who did active learning first performed better in the 
passive learning conditions. Error bars show +/-SE. 
 

 
Figure 2: Comparison of performance after passive vs. 
active learning for each participant. Performance after the 

two types of training is correlated (r=.62), but learners are 
almost universally better after active training. 
 

Given that adults can actively structure their environment 
in order to effectively learn the word meanings, we next 
investigate the strategies effective learners use to 
disambiguate mappings. However, we must first consider 
that there are many strategies, and that not all of them result 
in swift learning. Performance in cross-situational word-
learning is typically highly variable, both within- and 
between-subjects. This is likely because what is learned on a 
given trial depends on what has been learned on all previous 
trials, and both the ambiguity on each trial and the fallibility 
of human memory means that people often learn different 
things. Giving learners an opportunity to structure training 
may yield a more diverse set of learning states, and thus 
may increase variability in performance. Figure 3 shows a 
histogram of learning performance after each block of active 
and passive learning. While accuracy after passive training 
is unimodal and positively skewed, accuracy after passive 
learning looks roughly bimodal, with peaks at .25 and at .95, 
which may reflect strategies of differing utility. In the 
following analysis, we will examine strategy differences 
both by doing a median split on the performance of active 
learners and analyzing the strategies used by each group, 
and by clustering the active training trials and looking at the 
mean performance of each cluster. 
 

   
Figure 3: Histograms of performance after active learning 
(left) and passive learning (right) training blocks 
(2/subject/condition). Accuracy after active learning is 
bimodal, indicating that some strategies are quite successful 
while others are mediocre. 
 

As mentioned earlier, one obvious active learning strategy 
is to choose to repeat some pairs from this trial on the next 
trial. If constructed randomly, a given trial would contain 
only .22 pairs repeated from the previous trial. In our 
passive training conditions, no pairs were allowed to repeat. 
The overall mean number of repeated pairs selected by 
active learners was 1.5—learners are using repetition to 
disambiguate pairs. To distinguish individual strategies 
(e.g., repeating one vs. repeating three), we clustered the 
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trial-by-trial number of repetitions chosen in each active 
learning training block. Using partitioning around medoids 
we found two clusters, estimated by the optimum average 
silhouette width (Kaufman & Rousseeuw, 1990). Cluster 1 
contained 33 of the active training structures, and Cluster 2 
contained the other 47. Figure 4 shows the trial-by-trial 
average number of repeated pairs for each cluster. Although 
people in both clusters initially repeat around one pair per 
trial, learners in Cluster 1 soon began to repeat two or more 
pairs on average, while those in Cluster 2 stayed closer to 
one repeat, until the last few trials2. Overall, Cluster 1 
repeated 1.9 pairs per trial, significantly more than Cluster 
2’s mean of 1.1 repetitions (Welch t(60.7) = 9.09, p<.001). 
From Figure 5, which shows how many pairs were repeated 
trial-by-trial in each cluster, it is clear that learners in 
Cluster 2 often chose to repeat single pairs until the very 
end. Cluster 1 shows a much more varied approach, 
repeating anywhere from one to three pairs. It turns out that 
these strategy clusters—constructed solely from the active 
training data—result in different overall levels of 
performance: Cluster 1’s mean of .71 is significantly higher 
than Cluster 2’s mean of .50 (Welch t(69.8) = 3.00, p<.01). 
Repeating more than one pair seems to be a good strategy—
indeed, the mean number of pairs repeated per trial in active 
training is correlated with learning (Pearson’s r=.30, 
t(78)=2.82, p<.01). Corroborating this clustering result, a 
median (Mdn=.61) split on active learning performance 
identifies a similar grouping: Cluster 1 contained 22 of the 
33 better blocks, whereas Cluster 2 contained 30 of the 47 
worse blocks (χ2=6.05, p=.01). A graph of the active 
learning blocks identified by median split looks much like 
Figure 5, showing that better learners repeat more pairs. 

 
Figure 4: The mean number of word-object pairs repeated 
on consecutive trials by the two clusters of active learners. 
Learners in Cluster 1 repeated more pairs per trial than 
Cluster 2, except at the beginning, when both repeated ~1. 
Error bars show +/-SE. 

                                                             
2 Due to the constraint of each pair appearing only six times—as 

in passive training—there are only a few objects remain to choose 
from, with the final trial being completely determined. 

 
Figure 5: The number of pairs active learners chose to 
repeat on each consecutive trial, accumulated for each of the 
two clusters (red=0, white=27). Learners in Cluster 2 most 
often repeated one—or even zero—pairs, while Cluster 2 
chose anywhere from one to three repeats per trial. 

How is it that repeating more than one pair on each trial 
can further improve learning? Working memory can likely 
be used to segregate repeated and unrepeated pairs on a 
given trial. Thus, choosing one or three objects for repetition 
allows the learner to infer that the single repeated or new 
word goes with the repeated or new object. Repeating two 
pairs also yields information—only 8 associations are 
reasonable using repetition information, instead of 16 on a 
normal trial—but is most useful if a learner already knows 
one of the repeated pairs: then they may learn the unknown 
pair, and practice the known pair. To elucidate what learners 
are doing in active training when repeating multiple pairs, 
we extend a recent associative model of cross-situational 
word learning with a working memory mechanism. 

Model 
The Experiment showed that adults learn many more words 
from active cross-situational training than passive training. 
Our analysis of active learning strategies found that most 
people repeated one or more pairs in consecutive trials, and 
that repeating more pairs helped: many excellent learners 
repeated close to two pairs per trial. To understand how this 
is helpful, we will introduce and then extend an associative 
model of cross-situational word learning proposed by 
Kachergis, Yu, and Shiffrin (2012). 

The model assumes that learners do not equally attend to 
all word-object pairings on a trial (i.e., store all co-
occurrences). Rather, selective attention on a trial is drawn 
to strengthen associations between words and objects that 
have co-occurred previously. This bias for familiar pairings 
competes with a bias to attend to stimuli that have no strong 
associates (e.g., as a novel stimulus). The competing 
familiarity and uncertainty biases allow the model to exhibit 
fast mapping, since a novel word-novel object combination 
will demand more attention, and mutual exclusivity: a novel 
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word will only become weakly associated with an already-
known referent (Kachergis, Yu, & Shiffrin, 2012). For 
example, suppose word w1 and object o1 have appeared 
together and are thus somewhat associated, while w7 and o7 
are novel. Given a trial with both pairs: {w1,o1,w7,o7}, w1-o1 
demands more attention than w7-o1, w1-o7, or w7-o7, since 
w1-o1 is stronger than baseline. However, attention is also 
pulled individually to w7 and to o7, since both of these novel 
stimuli have no strong associates. Uncertainty is measured 
by the entropy of each stimulus’ association strengths. 
Because of the high joint uncertainty of w7 and o7, more 
attention is given to the association w7-o7. Thus, attention is 
mostly divided between w1-o1 and w7-o7, although the other 
pairings will be strengthened a bit. 

Formally, let M be an n word × n object association 
matrix that is incrementally built during training. Cell Mw,o 
will be the strength of association between word w and 
object o. Strengths are subject to forgetting (i.e., general 
decay) but are augmented by viewing the particular stimuli.  
Before the first trial, M is empty. On each training trial t, a 
subset S of m word-object pairings appears. If new words 
and objects are seen, new rows and columns are first added. 
The initial values for these new rows and columns are k, a 
small constant (here, 0.01).  

Association strengths are allowed to decay, and on each 
new trial a fixed amount of associative weight, χ, is 
distributed among the associations between words and 
objects, and added to the strengths. The rule used to 
distribute χ (i.e., attention) balances a bias for attending to 
unknown stimuli with a bias for strengthening already-
strong associations. When a word and referent are repeated, 
extra attention (i.e., χ) is given to this pair—a bias for prior 
knowledge. Pairs of stimuli with no strong associates also 
attract attention, whereas pairings between uncertain objects 
and known words, or vice-versa, draw little attention. To 
capture stimulus uncertainty, we allocate strength using 
entropy (H), a measure of uncertainty that is 0 when the 
outcome of a variable is certain (e.g., a word appears with 
one object, and has never appeared with any other object), 
and maximal (log2n) when all of the n possible object (or 
word) associations are equally likely (e.g., when a stimulus 
has not been observed before, or if a stimulus were to 
appear with every other stimulus equally). In the model, on 
each trial the entropy of each word (and object) is calculated 
from the normalized row (column) vector of associations for 
that word (object), p(Mw,·), as follows: 

 
The update rule for allocating attention and adjusting 

strengths for the stimuli presented on a trial is: 

 
In this equation, α is a parameter governing forgetting, χ 

is the weight being distributed, and λ is a scaling parameter 

governing differential weighting of uncertainty and prior 
knowledge (familiarity). As λ increases, the weight of 
uncertainty (i.e., the exponentiated entropy term, which 
includes both the word’s and object’s association entropies) 
increases relative to familiarity. The denominator 
normalizes the numerator so that exactly χ associative 
weight is distributed among the potential associations on the 
trial. For stimuli not on a trial, only forgetting operates. 
After training, a learner is tested with each word and 
chooses an object from n alternatives in proportion to the 
association strengths of each alternative to that word.  

Using competing biases for familiar pairings and 
uncertain stimuli, this associative model learns on a trial-by-
trial basis by distributing attention in a way that corresponds 
with both our intuitions about word-learning and a number 
of empirical findings. However, although this model does 
exhibit training order effects, it has no working memory 
component that would confer additional benefit for 
successively repeated pairs. Thus, we augment the baseline 
model with a mechanism that segregates words and objects 
repeated from the last trial from unrepeated stimuli, and 
only strengthens associations within these subsets. This 
working memory (WM) model will learn better than the 
baseline model whenever there are repetitions, because of 
the 16 possible associations on the trial, it will not attend to 
the spurious ones between repeated stimuli and unrepeated 
stimuli: 6 in the case of one or three repeated pairs, and 8 in 
the case of two repeated pairs. To estimate whether people 
are attending more to the repeated or unrepeated stimuli, we 
added an attention parameter β to the WM model that 
apportions more weight to associations between repeated 
stimuli as β approaches 1, and more weight to unrepeated 
pairs as β approaches 0. When β=.5, the attention given to 
repeated vs. unrepeated associations is proportional to the 
size of each subset.  

Three parameters (χ, α, and λ) were fit to each active 
training order for the baseline model, and four (χ, α, λ, and 
β) were fit to the WM model. Fitting only to the overall 
mean accuracy of each active training order—two 
conditions per learner—does not capture detail of 
repetition’s effect on accuracy, which may vary in different 
active training sessions. Instead, we fit to the accuracy for 
each subgroup of pairs that were repeated different numbers 
of times (0-5, as each pair was seen 6 times). An ANCOVA 
shows number of repetitions significantly affected accuracy 
(F(1,209) = 8.50, p<.01), discussed in more detail later. 

Results & Discussion 
Overall, both models achieved quite good fits to the data, 
with R2=.901 for the baseline model, and R2=.925 for the 
WM model. The WM model’s BIC was 577.7 and the 
baseline model’s BIC was 565.9, so the WM model is 
preferred, despite the additional parameter. Figure 5 shows 
mean accuracy for humans and both models on the subsets 
of pairs that were repeated on pairs of consecutive trials. 
Accuracy increases from 0 to 3 repetitions, while the few 
people who repeated pairs 4 or 5 times improved less, 
though with great variability.  
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Figure 5. Human and model accuracy on actively-learned 
subsets of items that were repeated 0-5 pairs of trials (not 
necessarily consecutive for all repetitions—except in the 
rare case of 5 repetitions). Error bars are +/-SE. 

Given the large number of repetitions used by active 
learners, it is surprising that the baseline model can 
approach the fit of the WM model without explicit 
awareness of repetitions. This may indicate that individual 
differences (e.g., in learning rate) contribute much of the 
variability. However, the WM better accounts for the data, 
and contains a parameter, β, that should be valuable in our 
pursuit to understand the range of strategies. Do learners 
focus more on repeated (β≈1) pairs, unrepeated pairs (β≈0), 
or do they split attention (β≈.5)? Figure 6 shows the 
trimodal distribution of the estimated β values: many people 
focused almost exclusively on learning the repeated pairs, 
but several attended only to unrepeated pairs, and the 
majority split attention roughly equally. Once again, we see 
individual differences spanning the range of possibilities, 
although the peaks are of interest. However, β values were 
uncorrelated with accuracy (r=.06), and people with modal 
β values showed no different accuracy, on average. Thus, 
the WM model found three attention strategies for repeated 
pairs, but the strategies alone do not predict performance. 

 
Figure 6: Histogram of best-fitting β values, showing a 
trimodal distribution peaked (highest to lowest) at 1—attend 
repeated pair, .5—split attention, and 0—attend unrepeated.  

General Discussion 
Active learning can speed language acquisition if the 

learner can implement an appropriate strategy based on the 

information available to them. In the context of cross-
situational word learning, we have shown that many adults 
can generate strategies that improve their overall learning. 
Indeed, people who did active learning first were better at 
passive learning, suggesting that some strategies carried 
over, which is somewhat puzzling because many of the 
active learning strategies involved trial-to-trial repetitions of 
at least one word-object pair—many more, in the most 
successful active learning blocks. Given that active learners 
were using many repetitions, but with apparently diverse 
strategies and outcomes, we extended a word-learning 
model with a working memory mechanism to attempt to see 
how people were leveraging repetitions. Overall, the model 
accounted for active learning accuracy very well, but 
parameters told of a plurality of strategies: many people 
ignore unrepeated pairs while several only attend to these 
pairs, but the majority fall roughly in the middle, attending 
to both repeated and unrepeated pairs. It may be that this 
focus often shifts during a block, as knowledge develops. 
Future work should also focus on predicting which pairs 
people will choose next, perhaps based on their current 
knowledge state.  

In summary, active noun learners use many repetitions, 
and successfully learn far more than in passive training. 
Infants may also benefit from such repeated labeling, and 
fortunately there is much autocorrelation in scenes (as you 
turn your head or shift your eyes, many objects remain in 
view) and in language (conversations drift over minutes). 
Moreover, we suggest that infants likely influence their 
learning environment in a way that is analogous to the 
active learning paradigm we present here. By choosing to 
look longer at some objects, they may increase the 
likelihood that a caregiver will label one of those objects. 
Active learning is clearly a powerful learning aid, and with 
better understanding it can likely be harnessed in education 
to speed learning in many domains. 
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