
UC Santa Cruz
Journal of Systems Research

Title
[Solution] Prepare your video for streaming with Segue

Permalink
https://escholarship.org/uc/item/8m39f25q

Journal
Journal of Systems Research, 2(1)

Authors
Licciardello, Melissa
Humbel, Lukas
Rohr, Fabian
et al.

Publication Date
2022

DOI
10.5070/SR32158113

Copyright Information
Copyright 2022 by the author(s).This work is made available under the terms of a Creative
Commons Attribution-NonCommercial License, available at
https://creativecommons.org/licenses/by-nc/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8m39f25q
https://escholarship.org/uc/item/8m39f25q#author
https://creativecommons.org/licenses/by-nc/4.0/
https://escholarship.org
http://www.cdlib.org/

Journal of Systems Research (JSys) Volume 2, Issue 1, June 2022

[SOLUTION] PREPARE YOUR VIDEO FOR STREAMING WITH SEGUE

Melissa Licciardello

ETH Zürich

Lukas Humbel

ETH Zürich

Fabian Rohr

ETH Zürich

Maximilian Grüner

ETH Zürich

Ankit Singla

ETH Zürich

Foreword by the Area Chair

Despite the focus of adaptive video streaming being predominantly placed on the bitrate adaptation algorithm, offline encoding

that partitions a video into chunks to prepare for online streaming is also instrumental in the user’s quality of experience

(QoE). Segue dives into the off-the-beaten-path problem and makes a case for offline encoding optimization that accounts

for both the playback context and the adaption algorithm. To materialize the idea, Segue explores different techniques for

segmenting a video into variable lengths and augmenting parts of a video with additional bitrates. In doing so, Segue achieves

encouraging QoE improvements and envisions a new thread of future work that co-designs offline encoding and online adaptation.

- Francis Y. Yan, Microsoft Research

Reviewers

• Francis Y. Yan, Microsoft Research

• Arpit Gupta, UC Santa Barbara

• Srinivas Narayana, Rutgers University

• Xiao Zhu, University of Michigan

Artifacts

The artifacts for this work were independently evaluated by the Artifact Evaluation Board (AEB) led by Eric Eide.

The AEB determined that the artifact is usable by a third party and that it allows reproducing the main results from the paper.

Artifact: https://github.com/melADTR/Segue

Reviews

Anonymized reviews are publicly available.

Reviews: https://openreview.net/forum?id=iUU6Qr3eQd6

Copyright and License

Licensed under Creative Common License CC-BY-NC. Copyright retained by the authors.

https://escholarship.org/uc/jsys/aeb
https://github.com/melADTR/Segue
https://openreview.net/forum?id=iUU6Qr3eQd6
https://creativecommons.org/licenses/by-nc/4.0/

PREPARE YOUR VIDEO FOR STREAMING WITH SEGUE

Melissa Licciardello

ETH Zürich

Lukas Humbel

ETH Zürich

Fabian Rohr

ETH Zürich

Maximilian Grüner

ETH Zürich

Ankit Singla

ETH Zürich

Abstract

We identify new opportunities in video streaming, involv-

ing the joint consideration of offline video chunking and on-

line rate adaptation. Due to a video’s complexity varying

over time, certain parts are more likely to cause performance

impairments during playback with a particular rate adaptation

algorithm. To address such an issue, we propose SEGUE,

which carefully uses variable-length video segments, and aug-

ment specific segments with additional bitrate tracks. The key

novelty of our approach is in making such decisions based

on the video’s time-varying complexity and the expected rate

adaptation behavior over time. We propose and implement

several methods for such adaptation-aware chunking. Our

results show that SEGUE substantially reduces rebuffering

and quality fluctuations, while maintaining video quality de-

livered; SEGUE improves QoE by 9% on average, and by 22%

in low-bandwidth conditions. Finally, we view our problem

framing as a first step in a new thread on algorithmic and

design innovation in video streaming, and leave the reader

with several interesting open questions.

1 Introduction
Video-on-demand adaptive bitrate streaming (ABR) requires

the video provider to partition their video content into seg-

ments of a few seconds worth of playback time, and encode

each segment at multiple quality levels. This allows clients

with time-variable network conditions to adaptively choose

video quality. The video quality decisions are made by a rate

adaptation algorithm, with the goal of improving the client’s

quality of experience (QoE) by delivering the highest quality

video, without pauses and infrequent quality switching.

ABR adaptation algorithms are well-studied, with many

recent high-quality proposals [4, 18, 26, 37]. The problem

framing in this literature is that of using a provider’s given

QoE function to construct an ABR algorithm that will result

in high QoE, as much as possible, when operating online

across a range of network conditions and video content.

However, this framing leaves out the offline, provider-side

phase of ABR: video chunking. We use the term “chunking”

to refer to cutting a video into segments, and determining what

set of bitrates each segment will be encoded in. Most prior

works and deployed streaming platforms use constant-length

segmentation, typically 4-6 seconds, and the same number

of bitrate tracks across each video segment within one video.

While some prior work (§2.2) has explored relaxing these

constraints, we posit that there are new and unexplored oppor-

tunities at the intersection of the offline and online phases of

ABR streaming. Specifically, offline chunking can be tuned

based on the expected playback behavior of a video under a

provider’s online adaptation algorithm.

Video complexity varies over time. Indeed, we observe

that some parts of a video are likelier to suffer from perfor-

mance impairments such as lower quality, rebuffering, and

frequent bitrate track switches during playback. Even two

similarly complex segments of a video may differ in their

vulnerability to performance impairments due to their sur-

rounding context, e.g., a complex segment preceded by many

low-complexity segments differs from one preceded by many

high-complexity ones: These two different scenarios might

highly impact the buffer health of the player and, as a conse-

quence, the rebuffering probability. Finally, using different

rate adaptation algorithms for the same video and network

conditions can also change the same segment’s vulnerability

to impairments.

While prior work has explored time and space variability on

a per segment granularity, to the best of out knowledge there is

no prior work that accounts for playback context dependence

and adaptation algorithm dependence in tuning video chunk-

ing. With SEGUE, we account for these factors in exploring

the tuning of chunking along two axes: (a) segmentation,

i.e., deciding the lengths and boundaries of video segments

that a client can fetch; and (b) augmentation, i.e., adding to

the provider’s current bitrate track design, additional bitrate

tracks for a small fraction of segments, such that more bitrate

options are available to online adaptation for these segments.

SEGUE uses a simulation-based method, exploring and eval-

uating segmentations and augmentations of a video across

a broad set of network traces. In such simulations, the

provider’s ABR adaptation algorithm is used to make de-

cisions, and their QoE function is used rank the candidate

chunkings. We compare SEGUE’s chunking performance to

several heuristics drawn from intuition, revealing how the

inability of the latter to account for context and adaptation

leads to significantly worse performance than our proposal.

While some of these heuristics still improve over constant-

length segmentation and a constant set of bitrate tracks, the

improvements are just smaller than SEGUE’s.

We implement SEGUE atop an unmodified H.264 video

encoding pipeline. Our implementation uses ffmpeg with the

libx264 library. We modify the reference DASH player im-

Journal of Systems Research (JSys) 2022

plementation [31] to support SEGUE, but like past work [18],

use this implementation only to demonstrate the high fidelity

of a simulator that is orders of magnitude faster. We then use

the simulator to extensively evaluate the performance with

SEGUE’s chunkings across a diverse set of videos and network

traces, and four adaptation algorithms from past work.

We show that especially in low-bandwidth conditions,

SEGUE yields large improvements in QoE, 9% on average

across traces and videos (§7.7).

To summarize, we make the following contributions:

• We propose to optimize offline chunking, considering both

the playback context and the adaptation algorithm.

• In this framework, we explore various methods for seg-

mentation of a video into variable-length segments.

• We explore the augmentation of parts of a video with

additional bitrate tracks to help adaptation make finer-

grained decisions and improve QoE.

• We evaluate SEGUE extensively, showing how its improve-

ments depend on video content and adaptation algorithms.

We also comment on the provider-side costs of SEGUE.

Perhaps even more valuable than SEGUE’s optimization meth-

ods and results, are the questions it sets up for future work,

on how we might co-design the offline and online phases on

ABR streaming. For the benefit of future research along this

path, we release SEGUE’s implementation, together with our

high-fidelity simulator [14].

2 Background and related work

2.1 Video streaming 101
Adaptive bitrate video streaming comprises two pieces, video

encoding, which runs offline at the content provider, and

video adaptation, which runs online, typically at the client.

Together, these optimize for improving quality of experience

for clients, while limiting resource usage for the provider.

Encoding: Offline, a video is encoded into multiple tracks,

each of a different bitrate. The bitrate describes compression,

i.e., the bits per second used to encode the content. Different

tracks are described by their average bitrate, with substantial

variation around this average due to variable bitrate encoding;

this allows complex scenes to benefit from a higher than av-

erage bitrate, while reducing bitrate for simple scenes. The

bitrates of different tracks are chosen for different target view-

ing resolutions. If a bitrate targeted at a lower resolution is

delivered to a higher-resolution client viewing screen, the

video can be scaled up, with some “pixelation”. Video may

be encoded such that for the same target resolution, multiple

tracks with different bitrates are available.

Typically, each track is broken into fixed-length segments.

For continuity when playback switches from one track to

another, this segmentation must meet two constraints: (C1)

segment boundaries of different tracks must be aligned in

terms of content; and (C2) each segment starts with a key

frame, i.e., one encoded without reference to previous frames.

Adaptation: Online, an adaptive bitrate adaptation algorithm

decides on which video bitrate-track to use. If the network

provides consistently high bandwidth, the highest-bitrate track

that makes a perceivable difference for a particular screen

size can be used; otherwise, as bandwidth varies over time,

lower-bitrate tracks may be used dynamically. A client-side

buffer is used to absorb some bandwidth variability by storing

video segments for future playback, but large or persistent

bandwidth changes require shifting to a lower-bitrate track;

otherwise, the playback buffer will empty out, and the client

will see a pause or rebuffer.

Client QoE: Quality of experience metrics assess viewer sat-

isfaction with video streaming. The relevant metrics include:

• The sum of bitrates across segments played;

• The sum of pause or rebuffer times;

• The sum of bitrate differences from track switching.

Typically, a weighted sum of these metrics is used as a QoE

function, with the weights drawn from past measurement

work [37]. In line with newer work driven by industry shifts,

instead of just bitrate, we use Netflix’s VMAF score for per-

ceptual quality [13,20], which uses a learning model to assign

a score to a segment’s playback at a certain bitrate in line with

what a human would rate its quality as on a certain screen

size. The raw video has VMAF, Vraw = 100, with different

bitrates leading to VMAF scores from 0 to 100. We use the

VMAF mobile, HDTV, and 4K models.

If Vi is the VMAF of the ith segment at the track used for it,

and Ri is the rebuffering time incurred during the ith segment

being played, then for a video with N segments in all, QoE is

calculated as:

QoE = λ
N

∑
i=0

Vi −β
N

∑
i=0

Ri − γ
N

∑
i=1

|Vi −Vi−1|. (1)

λ, β, and γ are weights reflecting the value of each metric.

Provider resource usage: While client QoE is the determi-

nant for many provider decisions, providers also want to con-

tain infrastructure costs. Encoding video is compute intensive,

and storing the segments for a large number of different tracks

consumes storage at distributed caches. Thus, providers also

attempt to limit the complexity of the encoding pipeline, and

the number of tracks per video.

2.2 Related work
Adaptive bitrate video streaming is a broad research area; we

only discuss the work closest to SEGUE’s ideas.

Industry efforts: Netflix’s per-scene encoding [22] exploits

the relative homogeneity of content comprising one scene

within a video, to refine encoding decisions. The outcome

of this process is still a fixed number of tracks per video. In

2

Journal of Systems Research (JSys) 2022

a subsequent blog [23] Netflix lays out how to merge shots

into streamable segments, using a strategy that is very close

to SEGUE’s Time heuristic, explained in §4.

The innovation is rather in what specific bitrate is being

used at each encoding point. Per-scene encoding, by selecting

appropriate bitrates for each scene on each track, could po-

tentially increase bitrate variations across scene boundaries,

and thus provide more opportunities for SEGUE’s methods.

Absent an available implementation of Netflix’s ideas, we

have not quantified the impact of this yet.

Measurement work on YouTube [19] observed variable-

length segments, with some evidence that during adaptation,

YouTube uses shorter segments in response to bandwidth

fluctuations. Unfortunately, no details are publicly known

on how these are encoded or used. For instance: is each

video coded with multiple equal-length segmentations? If

so, how are the lengths decided, and how many different

lengths are encoded? Alternatively, if segment lengths are

indeed non-uniform like SEGUE, with only some parts of

a video available in shorter segments, how are these parts

chosen? Even if YouTube is pursuing a SEGUE-like method,

that would only underscore the value in an open investigation

of these ideas.

Segmentation: Prior work [9, 35, 38] has explored aligning

scene boundaries and segmentation to improve coding effi-

ciency by grouping homogeneous content together. As noted

above for per-scene encoding, SEGUE’s ideas are orthogonal

to this, and address grouping which scene fragments into seg-

ments will result in beneficial rate adaptation behavior. Other

work has attempted to optimize the (fixed) size of segments

with the goal of improving transport [16] or HTTP protocol

efficiency [15]. SEGUE’s constraints like avoiding “too small”

segments also address some of these problems, but its pri-

mary objectives and methods are very different: producing

a variable-length segmentation that results in desirable rate

adaptation behavior and high QoE.

The closest prior work [30] simply uses video group of

picuters (GOP) as segments. This approach is prone to per-

formance pitfalls, as discussed in §7.5.1. Another prior ef-

fort [34] suggests segmenting the same video multiple times

with different (fixed) segment lengths, to allow the client

greater flexibility during adaptation. SEGUE’s approach nat-

urally inherits this property when it is desirable, without the

expense of multiple redundant segmentations, as discussed

in §3.2. SEGUE also allows more flexibility by not being re-

stricted to a small set of fixed-length segmentations, allowing

natural keyframe boundaries to determine segment length.

Augmentation: The closest prior works [27, 28] pursue the

opposite of SEGUE’s strategy, i.e., removing redundant seg-

ments to reduce storage costs or to improve bandwidth uti-

lization. For instance, in Fig. 2, few segments across different

tracks encode a near-identical perceptual quality; one could

keep only the lower bitrate version, removing the higher bi-

trate ones, without much performance impact.

In contrast, SEGUE’s optimization for improvements in

QoE requires a completely different methodology, where ac-

counting for playback context and rate adaptation algorithm

is useful, as we show later. In §7.5.2 we compare the perfor-

mance of [27, 28] to SEGUE’s approach, and we elaborate

on how we could merge them, in order to both account for

playback context and optimize for bandwidth utilization and

storage.

3 New opportunities in streaming
We draw out SEGUE’s motivating observations using a run-

ning example of a video encoded using H.264 with variable

bitrate encoding. The video is encoded into constant-length

segments of 5 seconds each, across multiple bitrate tracks.

(The details of the encoding are left to §5.) Using two rate

adaptation algorithms, we evaluate the streaming behavior

aggregated across a large set of traces. To avoid the effects of

startup behavior, we show results starting at the 25th segment,

i.e., 125 seconds into playback.

Fig. 1(a) shows the variability of the video bitrate across

segments for 3 tracks. As expected, variations for different

tracks are in close alignment. Segment S37, S35, and S30 are

the most complex, with the encoder using the highest bitrates,

while S29, S33, and S39 are the simplest segments.

We partition our traces into bandwidth buckets, each bucket

containing traces with average-over-time bandwidth in a cer-

tain range: 0.5-1 Mbps, 1-1.5 Mbps, 1.5-2 Mbps, etc. Details

concerning the utilized trace sets can be found in §6.

We then tested the behaviour of two adaptation algorithms,

a rate-based (RB) and a buffer-based (BB) (which are de-

scribed in §5). For both rate adaptation algorithms, we com-

pute the (observed) probability of rebuffering at any point

in playback across traces in each bucket. Fig. 1(b) shows

the probability distributions for three trace buckets (S – slow,

M – medium, F – Fast) for a buffer-based (BB) adaptation

algorithm from past work. Fig. 1(c) shows the corresponding

average seconds of playback available in the client’s buffer.

Playback context dependence: We observe from Fig. 1(a)

and (b), that the probability of rebuffering of segments of

similar complexity (bitrate) differs substantially depending on

their placement in the stream. For instance, particularly for the

lower-bandwidth bucket, even though S30 has lower bitrate

than S37, S30 is substantially likelier to incur rebuffering.

Thus, the playback context of a segment impacts its likelihood

of suffering from performance impairments.

Adaptation algorithm dependence: Fig. 1(d) shows the av-

erage buffer occupancy for a rate-based adaptation algorithm,

showing the stark contrast with BB in Fig. 1(c). Due to an

higher buffer occupancy, we observe that the RB algorithm

is less likely to incur rebuffering events (the graph has been

omitted for readability). Thus, for the same video and network

traces, the same segment’s vulnerability to performance im-

pairments depends on the adaptation algorithm in use. (This

is indeed obvious, our contribution is in accounting for and

3

Journal of Systems Research (JSys) 2022

using this dependence.)

Network trace dependence: While ABR algorithms handle

instantaneous bandwidth fluctuations, SEGUE finds common

patterns among streaming sessions which lead to the determi-

nation of vulnerable parts of the video. These vulnerabilities

depend not only on the expected playback state but also on

the ABR adaptation logic. SEGUE uses a large number traces

to minimize the effect of a single trace’s fluctuation. The

different trace sets are discussed in §6.

3.1 What levers can we tune?
Online rate adaptation must cope with highly unpredictable

network bandwidth changes. However, the other time-varying

determining factor, i.e., video complexity variation and its

interaction with rate adaptation, is more predictable, and can

be accounted for in offline video chunking. We use two levers

to adjust chunking to this end:

• Segmentation: we can adjust the lengths and boundaries

of the video segments a client can later fetch.

• Augmentation: for select segments, we can add bitrate

tracks to provide greater flexibility to online adaptation.

We next describe why these levers are interesting to tune, and

some intuitions on how this might be done.

Segmentation: Fig. 2 shows the instantaneous bitrate per

frame over playback time. The video is encoded using ffmpeg

and H.264, with two-pass encoding. The red dashed lines

show the key frames, with the rest of the frames encoded with

reference to these. The maximum interval between successive

key frames is passed as an argument to the encoder, and is

5 seconds in this instance. As Fig. 2(a) shows, key frames

are not distributed uniformly across time: typically, relatively

static parts of a video will feature larger gaps between suc-

cessive key frames, while in complex, motion rich parts, key

frames will occur more frequently. This property enables

the use of key frames to group parts of the video with simi-

lar characteristics together. Recall constraint C2 from §2.1:

video segments must each start with a key frame. We can thus

collect such sets of adjacent key frames to form segments,

but this will result in segments of non-uniform length. In

contrast, a fixed-segment length setup forces the encoder to

add key frames at fixed intervals corresponding to segment

length, with additional key frames within each segment, as

necessary. By carefully shaping segments of non-uniform

length, we can let the client fetch shorter segments during

parts of a video more vulnerable to streaming impairments,

thus allowing finer-grained rate adaptation decisions. For less

vulnerable parts, longer segments can be used.

Another aspect where variable-length segments help re-

lates to the stability of perceived playback quality. Fig. 2(b)

shows the perceptual quality (VMAF) computed per frame

for a few constant-length segments of an action movie. For

the segments highlighted in pink, there is a huge fluctuation

in VMAF within the segment boundaries, perhaps due to a

Fig. 1: The complexity of video content varies over time, and its in-

teraction with the used rate adaptation algorithm determines which

segments are most vulnerable to playback impairments. Fig. (a)

shows the variability in bitrate for three different resolutions (480p,

360p and 240p). Fig. (b) shows the observed probability of re-

buffering for the segments plotted in Fig. (a) for a buffer-based

algorithm for three different traces buckets (blue line: Slow, orange

line: Medium, green line: Fast). Fig. (c) shows the correspondent

average buffer occupancy. We highlight that higher observed re-

buffering probability correspond to drops into the average buffer

occupancy (red shaded in the picture). Conversely, drops into the

observed rebuffering probability correspond to higher average buffer

occupancy. Fig. (d) plots the average buffer occupancy for the same

segments for a rate-based algorithm for the same traces buckets. The

buffer behaviour varies substantially with respect to a buffer-based

algorithm.

scene change. There can also be value in synchronizing these

change points with segmentation, allowing more informed

adaptation decisions that account for such changes.

Augmentation: Fig. 2(c) shows another aspect of temporal

variability using a video segmented into 5-second segments,

with the average bitrate of each segment plotted across 4

tracks. Due to variable bitrate coding, the per-segment bitrate

within each track varies substantially. In particular, the seg-

ment from 15–20 sec uses a much higher bitrate, so much

so, that its bitrate at any track is comparable to the the rest

of the video’s bitrate at one higher track. This is because the

encoder decides that the scenes of high complexity in this

4

Journal of Systems Research (JSys) 2022

Fig. 2: (a) The violet (solid) line is the bitrate per frame, while the red (dashed) line marks the keyframes. (b) Breaking the video into fixed

length segments produce segments with high internal perceptual quality instability. (c) Average bitrate for a video encoded at 4 resolutions:

due to VBR encoding, the bitrate per segment varies.

Fig. 3: The distribution of QoE per second of playback (normalized

to max. possible QoE) across our test network traces for video A

with BB and RMPC rate adaptation, and video D with BB adaptation.

The box-plot shows the quartiles, with whiskers for 20th and 80th

percentiles.

duration warrant higher bitrate for sufficient video quality.

Unfortunately, even with the freedom of variable bitrate

coding, it is sometimes either hard to achieve sufficient percep-

tual quality for complex segments, or higher-than-necessary

bitrate is “wasted” on simple segments. For this problem,

and the bitrate peaks illustrated in Fig. 2(c), instead of using

the same number of tracks throughout, we could augment the

encoding of segments vulnerable to streaming impairments

with more tracks. These added choices would enable more

fine-grained decisions during adaptation.

3.2 The need of variability
Before delving into SEGUE’s design, we first illustrate the

performance problems with baselines that do not account for

variability in segments length and number of tracks.

We evaluate the QoE with different constant-length seg-

mentations, ranging from 1 to 5 seconds (C1, C2, . . ., C5).

Fig. 3 shows the QoE achieved across a set of test network

traces for video A, using two rate algorithms (BB and RMPC)

and for video D with BB. Comparing A-BB to A-RMPC,

we see that for A-BB, C3 achieves a higher QoE than C5

especially at the lower tail, while C5 is better for A-RMPC.

Similarly, comparing A-BB and D-BB reveals that for the

same BB rate algorithm, C3 achieves better tail performance

than C5 for video A, while for video D, C5 is marginally

superior.

Note that just encoding multiple different constant-length

segmentations and making them available to clients to choose

from adaptively, as suggested in past work [34], can address

some of the above issues, but at huge expenses: if all of C1-

Fig. 4: We can segment vulnerable parts of the video into shorter

segments, and augment them with additional tracks.

C5 were made available, the content provider’s storage and

caching expense would be 5× larger.

In contrast to the above approaches, SEGUE consistently

achieves higher QoE, as shown in Fig. 3, with only modest

(under 10%) overhead in terms of additional bytes encoded.

4 SEGUE design
SEGUE tunes variable segment length and variable numbers

of tracks across a video’s segments to improve streaming qual-

ity. It does so in a manner that accounts for each segment’s

playback context and the rate adaptation algorithm. SEGUE

uses the following inputs:

• A raw video whose encoding SEGUE will modify.

• The bitrate ladder the provider has designed for the video.

This specifies the average bitrates of the different tracks.

• A target QoE function to optimize for.

• The rate adaptation algorithm the provider uses.

Given these inputs, SEGUE segments the video into variable-

length segments, and augments some segments with added

bitrate tracks. Fig. 4 shows a schematic of SEGUE’s outputs.

4.1 Segmentation
Segmentation of a video must produce variable-length seg-

ments that should improve client QoE for the given ABR.

SEGUE must output a segment sequence for every bitrate track

specified in the input bitrate ladder. Further, the segments

must obey the constraints C1 and C2 from §2.1.

Problem formulation: We first describe the problem ignor-

ing the multi-track aspect. In this setting, segmentation in-

volves first running a standard video encoder implementing

the provider’s codec of choice. We run the encoder on three

inputs: the raw uncompressed video, the average bitrate to

encode a track for, and a maximum gap between key frames.

5

Journal of Systems Research (JSys) 2022

The encoder outputs a compressed video track of (roughly)

the input average bitrate. We use this compressed track’s key

frame positions as an input for segmentation.

Each pair of successive key frames contains between them

a video fragment. Our task is to decide which video fragments

to combine together into segments for streaming. As we scan

the video track from left to right and encounter a key frame,

should this key frame demarcate the start of a new segment, or

should we merge the video fragment between this key frame

and the next into our current segment?

For certain simple optimization criteria, e.g., minimize the

number of segments while limiting the maximum segment

length, the problem of finding the optimal segmentation can

be framed elegantly as a dynamic program. However, this is

not the case for the more sophisticated optimization criteria

SEGUE uses to improve QoE, as we discuss below. Thus, we

use brute-force search over a limited horizon, k, of future key

frames: we allow each binary decision for each key frame,

i.e., merge with the previous segment or not. Each of the

2k outcomes is a candidate segment sequence. SEGUE then

uses one of two broad methods for assigning value to each

segmentation, and choosing the best.

Intuitive heuristics: Segments that are too long or too short,

or have too many bytes or too few bytes are undesirable. For

instance, segments with too many bytes will increase the like-

lihood of rebuffering while they are fetched. Similarly, seg-

ments that are too short in their playback time will cause too

many requests to the video server, and incur larger transport

and application-layer protocol overheads. Thus, to prevent

our segmentation from producing such undesirable choices

frequently, we can penalize it for such segments. We frame

three heuristics that penalize deviations from target values,

where the target is defined in terms of:

• Time: Segments that are too long or too short in terms of

their playback time in seconds are penalized.

• Bytes: Segments that have too few or too many bytes are

penalized. The target number of bytes must be set based

on the track and the video.

• Time + Bytes: Segments that are too long or too short are

penalized, but there is an additional penalty if a segment

exceeds a byte threshold.

In each case, we evaluate the 2k segmentations and pick the

one that minimizes the penalty for deviating from its target

in terms of time, bytes, or a combination, as noted above.

Only the first segment of the chosen segmentation is final;

the procedure continues from the first key frame after it, in a

sliding window manner, until all key frames are processed.

To extend to multiple tracks, we run the above process

for the highest-bitrate track. With the segment boundaries

known, we encode all the other tracks by asking the encoder

to impose key frames at the segment boundaries.

Simulation-based assessment: Instead of applying heuris-

tics derived from our intuitions, we can also just evaluate

each of our candidate segmentations for our target QoE func-

tion and ABR adaptation algorithm, across a set of diverse

test traces, and pick the one that performs the best.

Besides the philosophical distinction from the intuitive

heuristics approach, a simulation-based approach requires a

change in methodology. We can no longer start with a single-

track approach and later use the segment boundaries to inform

segmentation of other tracks. Instead, we need all tracks to

be segmented simultaneously in progression, because the

simulation will involve switching between tracks.

To this end, we again have the encoder encode the highest-

bitrate track in the same manner as before. However, instead

of optimizing segmentation using only this track, we also

ask the encoder to encode all the other tracks enforcing all

the key frames to be the same as those in the highest-bitrate

track.1 We thus have all the tracks available simultaneously

to perform segmentation on using a simulation.

For any candidate sequence of segments, S, out of the 2k

options, the simulation, Sim, runs as follows:

1. For a set of network traces, we run the ABR on S.2

2. For each trace, we compute the QoE, considering S’s

segments and all segments fetched preceding S.

3. Across traces, QoE is aggregated based on a desired func-

tion, e.g., the mean or an arbitrary specified percentile.

Across candidate sequences, the one that achieves the highest

aggregated QoE across traces is selected, and its first decision

— merge or not — is used. A merge decision results in the

video fragment being added to the previous segment. If the

decision is to not merge, the previous segment is closed. The

simulation continues over the next k key frames, in the same

sliding window manner as for the heuristics.

The above Sim approach is effective in many settings, but

it can be myopic due to its limited lookahead, ignoring long-

term effects of a segmentation strategy. However, a longer

lookahead, k, is computationally expensive. We thus also

test a WideEye strategy that combines Sim with the preceding

intuitive heuristics: we use a longer lookahead, but we: (a)

filter out candidate sequences using the Time + Bytes heuristic;

and (b) slide the window forward by multiple keyframes, thus

freezing multiple decisions in each step instead of just one

decision.

4.2 Augmentation
Augmentation aims to identify parts of a video vulnerable to

streaming impairments, and add more bitrate tracks for their

segments at appropriate bitrates.

Augmentation treats the video tracks and segmentation as

inputs. The input bitrate ladder comprises a set B of tracks.

1The impact of this imposition of keyframes on encoding efficiency

compared to a standard GOP method is small: for our settings, the VMAF

loss and the bytes overhead are negligible, both changing by under 0.03%.
2Some algorithms, like Robust MPC [37], plan their decisions by looking

ahead at several future segments. If this lookahead goes beyond the segments

in S, our simulation uses the future video fragments for this lookahead.

6

Journal of Systems Research (JSys) 2022

The segment set S can be comprised of segments as today,

equal-length, or be the output of our above segmentation. A

video V can be concisely described as a set of B×S segments

across tracks. We define an augmentation technique, λ, as

a function λ : V → A, with A being the set of new tracks

added, with each element a ∈ A describing the position of

a in the video and the average bitrate of a. We describe

four augmentation functions, λv, λb, λbv and σbv, which use

different heuristics to identify segments to augment.

λv based on VMAF drops: Despite the freedom afforded by

VBR coding, complex scenes can end up with lower bitrate

than needed to maintain perceptual quality. Our λv heuristic

attempts to augment such parts of a video. Consider the ith

video segment on the jth bitrate track, si, j. If the VMAF of si, j

falls below the median VMAF across segments in track j by a

tolerance threshold, then si, j is marked for augmentation. We

add an additional encoding for the ith video segment, using

the average of the bitrates of si, j and si, j+1.

λb based on bitrate peaks: Recall from Fig. 2(c) that seg-

ments corresponding to complex video scenes can be encoded

at much higher bitrate than the average, with large gaps be-

tween the bitrates of successive tracks. This can make stream-

ing these segments difficult, often requiring ABR adaptation

to either switch to a lower track, or increase the risk of re-

buffering.3 By augmenting such segments with additional

bitrates, we can offer greater flexibility in ABR adaptation.

Consider the ith segment on the jth track, si, j. If the bitrate

of si, j is above the average for track j by more than a toler-

ance threshold, si, j is marked for augmentation. We then add

an additional encoding for the ith segment, with the bitrate

corresponding to the average for track j. The VMAF of this

newly added segment will lie between that of si, j−1 and si, j.

λbv using both bitrate and VMAF: Not all segments chosen

by λb are challenging to stream in the same way. For instance,

si, j may have a high bitrate compared to track j’s average,

and would be augmented by λb. However, if the VMAF loss

from downloading si, jjj−−−111 instead of si, j is relatively small then

si, j does not necessarily need augmentation. This is what our

λbv heuristic does: si, j is only augmented if its bitrate is large

relative to track j and there is a substantial difference in the

VMAF of si, j and si, j−1.

σbv, based on simulation: Like for segmentation, we design

an augmentation approach based on simulation. Unfortu-

nately, the search space for augmentation is even larger than

segmentation: each segment in our lookahead horizon can

be augmented between every pair of its successive bitrate

tracks. With just 6 bitrate tracks and a lookahead of 5 seg-

ments, the search space expands to ∼1 billion iterations per

simulation step. We limit this scope substantially by using

the λbv heuristic as the basis: at each simulation step, we

3CAVA [26], which is designed to carefully account for variable bitrate,

also experiences this trade-off, but it is better at navigating it than non-VBR-

optimized algorithms (§8). Our goal is to improve the trade-off itself.

limit augmentation candidates to ones suggested by λbv. Each

parameter configuration of λbv (in terms of the VMAF differ-

ence and bitrate difference thresholds) yields one candidate

augmented segment sequence. We simulate ahead with each

candidate sequence, as well as with the unaugmented (default)

sequence. For each candidate, we quantify its QoE improve-

ment compared to the default normalized by the overhead in

terms of bytes added by that augmentation sequence. We pick

the top scoring candidate, and continue this process from the

next segment.

5 Implementation
We implement both the offline video chunking and online rate

adaptation components to evaluate SEGUE.

5.1 Offline video chunking
SEGUE’s chunking pipeline is implemented in Python3, and

makes use of ffmpeg and libraries for standard codecs. Note

that we are not devising new codecs, compression algorithms,

or video formats; instead it is our explicit goal to stick to

current, widely used codecs, as their implementations are

heavily optimized, with mature provider-side pipelines, and

client-side decoding often offloaded to hardware. Rather,

we use the same codecs in a manner different from that in

ABR video streaming today, as described in §4. Since the

availability of raw video data sets of sufficient length for

interesting ABR adaptation is limited, we instead use 4K

compressed video as a stand in for raw video, and then limit

our work to resolutions 1440p and lower. The bitrate ladders

we adopt throughout are from Bitmovin [1], but arbitrary

other bitrate ladders, including those customized per title [3]

could be used as input. We also follow the guidance in that

reference for encoding, using the recommended maximum

bitrate of a track, i.e., 1.75× its average. Throughout, we use

two-pass encoding, as is typical in the industry [25].

Segmentation: We implement the constant-length segmenta-

tion strategy common today as the baseline. We use ffmpeg-

libx264, which allows us to specify certain key frame loca-

tions precisely, with the encoder potentially inserting addi-

tional key frames as necessary. This enables straightforward

implementation of both the constant-length segmentation, as

well as our segmentation heuristics (§4.1). We use the follow-

ing configuration parameters:

• The constant-length baseline uses 5s segments.

• The lookahead of video fragments for all our segmentation

methods except WideEye is k = 5, such that each iteration

evaluates all 25 segmentations of these fragments.

• For Time, the target segment length is 5s, with a penalty of

20% per second for deviations.

• For Byte, the bytes-per-segment target is the average bytes

in 5s of video; excess bytes incur 20% penalty.

• For Time+Bytes, besides the time penalty, the byte penalty

is also imposed for segments with too many bytes.

7

Journal of Systems Research (JSys) 2022

• For Sim, the QoE of a candidate sequence is aggregated as

the mean QoE across traces.

• WideEye has a lookahead of 10 keyframes instead of 5,

and a decision window of 5 instead of 1. We only simulate

the 32 best candidate sequences as ranked by Time+Bytes.

The penalties thresholds have been tuned to better work

with our encoding settings, while the simulation lookaheads

have been picked to keep reasonable computational time.

Augmentation: Our augmentation strategies are simple to

implement as described in §4.2 using ffmpeg-libx264: regard-

less of the particular augmentation function, we merely need

to encode a specific time range of video at a particular average

bitrate, as a standalone segment. The different augmentation

strategies are configured as follows:

• λv : segments are augmented when their average VMAF

is ≥ 8 points lower than the median for their track (a value

that corresponds to a bump from 720p to 1080p on a 4k

TV [21]).

• λb : segments are augmented when their bitrate is ≥ 10%

above than the average bitrate for their track. This leads to

an aggressive augmentation strategy, intended to provide

an upper bound QoE gain of this general method.

• λbv : We tested λbv for several different configurations.

Segments are augmented when their bitrate is ≥ B% above

the average for their track and the VMAF difference be-

tween their track and the one below exceeds V points,

being V in {5,6,7, . . . ,14} and B in {5%,10%,15%}.

• σbv : We generate 30 candidate sequences by run-

ning λbv with these thresholds — VMAF difference in

{5,6,7, . . . ,14} and bitrate difference in {5%,10%,15%}.

For augmentation, as well as for later evaluation, we need

to compute the perceptual quality score, VMAF, for a video

segment. We use the code made available by Netflix [13, 20].

For computing our augmentation strategies, we use the VMAF

4K model, while for our evaluation, we additionally evaluate

the VMAF HDTV and VMAF Mobile models.

5.2 Online playback and rate adaptation
The approach we explore deliberately steps outside the DASH

standard [31], with constant-length segments and a fixed num-

ber of bitrate tracks per segment. We thus modified the DASH

player to support SEGUE. However, we use this implemen-

tation only to verify the fidelity of an orders-of-magnitude

faster simulator, which we use for extensive experimentation.

The simulator is implemented following the methodology de-

scribed by the Pensieve authors [18]. Appendix D details the

DASH player implementation, demonstrating that it achieves

results near-identical to the simulator.

We simulate both the network and the player state. The

network environment takes as an input a trace of bandwidth

over time, and simulates the download of segments. The link

RTT is set to 80ms in our experiments. The player simula-

tor interacts with the network environment by requesting the

download of a certain video segment from a certain track

(as decided by the adaptation algorithm), and adds the seg-

ment’s playback duration to the playback buffer. Meanwhile,

it also drains the buffer. The maximum playback buffer size

is limited to 60s; if the buffer is full, the player waits be-

fore downloading additional video segments. The number

of seconds of buffered video needed before the player starts

playback is set to 10s, following prior work [26].

The simulator logs rebuffering time and the downloaded

tracks, allowing us to calculate QoE metrics in hindsight.

We evaluate SEGUE on four different ABR algorithms:

Rate-based adaptation (RB) tries to fetch the next segment

at a bitrate matching the estimated network bandwidth. We

adapt the simple, demo implementation of this strategy pro-

vided by Bitmovin [5]. This approach requires no modifica-

tion to use SEGUE’s modified encoding.

Buffer-based adaptation (BB) makes decisions entirely

based on the player buffer state [8]. Briefly, BB uses two

parameters: reservoir, r, and cushion, c. If the buffer size, b,

is smaller than r, the lowest-bitrate track is used. If b ≥ r+ c,

the highest bitrate is used. For b ∈ [r,r+ c], bitrate tracks are

(roughly) linearly matched to the buffer sizes.

BB requires modest changes with SEGUE. Besides chang-

ing r dynamically to adapt to variable bitrate coding as sug-

gested in the original paper [8], we also bound r by a mini-

mum of 8 seconds to account for variable-length segments.

Further, when b ∈ [r,r+ c], we first map b to a bitrate range

based on the unaugmented bitrate tracks available, but if addi-

tional tracks were made available by SEGUE, we further lin-

early match within this range to the appropriate track. These

minor implementation tweaks substantially improve perfor-

mance compared to a naive implementation.

Robust MPC (RMPC) uses control theory [37]. It uses the

bandwidth estimate, current buffer size, and features of up-

coming segments, to plan a sequence of requests based on

the expected reward. It is flexible enough to incorporate

knowledge about varying segment lengths and augmented bi-

trates. We tested two versions of RMPC: (a) RMPC-oblivious,

where, as in [26], we modified the RMPC reward function

to work with the instantaneous segments bitrates (rather than

fixed weights); and (b) RMPC-aware, where we modified

the reward function to account for VMAF score rather than

bitrate. For both versions, to accommodate segments of dif-

ferent length, we weigh each segment’s bitrate gain by its

length.

6 Evaluation methodology

We evaluate our approach across network traces used in past

work on ABR streaming, and test several videos.

Network traces and VMAF: We use a mix of ∼600 traces

across broadband 4G, HSDPA, and 3G networks [4, 29, 32].

The mean throughput of these traces spans from 350 Kbps to

60 Mbps. We divide the evaluation traces into three buckets:

8

Journal of Systems Research (JSys) 2022

ID Duration [mm:ss] FPS Content type

A 3:21 24 3D cinematic

B 3:25 25 Music video

C 6:34 25 Comedy

D 3:51 25 Festival

E 4:42 30 Action movie

F 5:49 30 Cooking tutorial

G 2:33 30 Sports (long-take-shot)

H 2:40 30 Sports (highlights)

I 2:39 24 Underwater

L 3:16 30 Drone footage

M 2:40 30 Video game

Table 1: An overview of our video dataset. Videos C and D lie at the

extremes of highly stable and unstable in terms of perceptual quality

over time within one track.

• SLOW, containing traces with mean throughput

<1.5 Mbps.

• MEDIUM, with mean througput between 1.5 and 4 Mbps.

• FAST, with mean througput >4 Mbps.

Train and test separation: Our simulation-based methods

are data-driven. We use only 20% of the above ∼600 traces

to make segmentation and augmentation decisions.

For robustness, we test not only on the unseen 80% of

traces from the above set, but also on an entirely different

trace distribution from the Puffer project [33]. We sampled

Puffer traces from Dec. 2020 to May 2021, arbitrarily us-

ing data from the 5th of each month. We retain only those

traces that are longer than 2 minutes, corresponding to 64% of

Puffer traces. 3.1% of these traces fit the SLOW class, 5.6%

MEDIUM and 91.3% FAST. Our test set uses an equal num-

ber of Puffer and non-Puffer traces, e.g., half of the SLOW test

set is a random sample of SLOW-class Puffer traces, while the

other half is from the 80%-unseen data from the other trace

distributions mentioned above. Note again that this implies

that none of the test data has been used in decision-making,

and that half of it comes from an entirely different data source.

(Limiting our evaluation to only the Puffer trace dataset only

makes the results more favorable to SEGUE.)

Unless noted otherwise, we evaluate SLOW traces on the

VMAF mobile model, MEDIUM on HDTV, and FAST on

4K.

Videos: We use a set of 11 videos with different content,

downloaded from YouTube, listed in Table 1. These videos

are available in 4K, which we use as “raw” (§5.1), and then

run experiments for 240p, 360p, 480p, 720p, 1080p and

1440p.

QoE function: Unfortunately, with variable-length segments,

we cannot use the QoE function used in past work as is, be-

cause it aggregates QoE metrics across equal-length segments

(§2.1). Instead, we adapt the formulation to sum QoE per unit

time, at a granularity of 1s. This is small enough to capture

any impact from our use of smaller segments.

This implies that we have to adjust the weights λ, β, and γ

Fig. 5: Segment characteristics for different schemes — video A, RB.

Boxes show mean and quartiles, whiskers are 5/95-percentile.

for the QoE components corresponding to VMAF, rebuffering,

and VMAF switches respectively: the original weights used

in past work, are for 4 second segments, and using that same

formulation on 1s intervals would effectively assign 4× the

importance to VMAF. We thus scale λ by 1
4 . Further, as we

compare schemes with different segment lengths, we cannot

ignore the startup phase: doing so would benefit schemes that

fetch longer segments, as they would build up more buffer.

We simply account for the initial phase in the same manner as

any other segment, incurring a rebuffering penalty until the

first segment is downloaded and played.

To use VMAF instead of bitrate as in the Robust MPC

work [37], we also need to adapt the weight for rebuffering.

MPC’s QoE function, drawn from measurement work, pe-

nalizes each second of rebuffering, i.e., β, as equivalent to

losing 4s of full-resolution bitrate. For VMAF, full-resolution

translates to a value of 100. Thus we use β = 100.

We decrease the switching penalty, γ, from 2.5 to 1. With

a 1 sec cadence for QoE evaluation, we measure switching

more often than prior work. This accounts for intra-segment

changes in VMAF, and penalizes any additional switching

caused by our potentially shorter segments. (Using prior

work’s γ = 2.5 setting only improves SEGUE’s results.)

In any case, SEGUE can be run with arbitrary QoE func-

tions.

7 Results
We first describe the improvements from SEGUE for video

A and RB adaptation. This helps draw out intuition in detail.

Later, we evaluate SEGUE across 11 videos, 4 adaptation algo-

rithms, hundreds of network traces, and 3 VMAF models. We

then compare SEGUE’s performance with the closest related

works, and discuss its computational cost.

7.1 SEGUE’s segmentation
Fig. 5 shows the characteristics of the segments produced

by different approaches. Time and Bytes, by design, pro-

duce segments of similar duration and bytes respectively to

Constant. However, by constraining only one factor, they

introduce large variations in the other. Time+Bytes constrains

both, and is thus conservative in its segmentation. Sim, with

no direct constraints, naturally produces segments with the

greatest variability. Consider, e.g., a low-complexity credits

scene, for which Sim may produce a very long segment to pre-

9

https://www.youtube.com/watch?v=aR-KAldshAE
https://www.youtube.com/watch?v=bJtRONVWC08
https://www.youtube.com/watch?v=23yQPhyZ_u8
https://www.youtube.com/watch?v=dQBzxGJ7YQ4
https://www.youtube.com/watch?v=X8_ix2VOP34
https://www.youtube.com/watch?v=5ED8PpH0io8
https://www.youtube.com/watch?v=MUiVzOmaf8Q
https://www.youtube.com/watch?v=39d6dWSdpLY
https://www.youtube.com/watch?v=ALJvavVvve4
https://www.youtube.com/watch?v=HMmQu4zn1KQ
https://www.youtube.com/watch?v=eoGx5GRbSfM

Journal of Systems Research (JSys) 2022

Fig. 6: VMAF fluctuations: video A, RB adaptation, SLOW traces.

Fig. 7: Rebuffer ratio: video A, RB adaptation, SLOW traces.

vent RB from incurring switching penalties in QoE. WideEye

strikes a balance, allowing greater freedom in segmentation

than Time+Bytes, but trimming out Sim’s extreme, myopic

choices. Time and Bytes are the least performant schemes,

with obvious reasons, so we omit further discussion of these.

We measure VMAF fluctuation as the average change in

VMAF per second of playback. We normalize this by the

average VMAF fluctuation experienced by Constant across

our full cross product of videos, traces, and rate adaptation

algorithms. We calculate rebuffer ratio as the sum of seconds

of rebuffering experienced during playback divided by video

duration, and reported in seconds per minute (s/m).

Fig. 6 shows VMAF fluctuations across the SLOW traces.

Sim achieves the most stable streaming, at the cost of higher

rebuffer ratio (by 1 s/m) compared to Constant. Time + Bytes

improves VMAF stability modestly, while simultaneously

improving rebuffer ratio by 0.7 s/m compared to Constant.

Sim’s numerous overly long segments, which help drive

RB away from the frequent track switching it is prone to,

result in an increased risk of rebuffering (Fig. 7). This is

a consequence of its short-term, myopic decision making,

which does not account for future risk of rebuffering.

WideEye strikes the more favorable tradeoff here, not only

improving stability substantially, but also limiting rebuffering

to only 0.1 s/m higher than Constant, compared to Sim’s

1 s/m.

Changes in delivered VMAF are modest, with WideEye

improving over Constant by ∼0.8% for SLOW/MEDIUM

traces.

Fig. 8: σbv improves QoE with only small byte overheads, as

does λbv with appropriate parameters. λbv is shown with V ∈
{5,6,7, . . . ,14} for both B = 15% and B = 10%. (B = 5% is similar

to B = 10%.)

Takeaway: Intuitive heuristics like Time+Bytes conserva-

tively perform segmentation, avoiding risks like overly long

or large segments. On the other hand, a short-term simulation

approach can be overly aggressive, and increase longer-term

rebuffering risk. Merging intuition with a longer-term simu-

lation horizon strikes a favorable tradeoff.

7.2 SEGUE’s augmentation

We next examine QoE improvements for video A with RB, by

comparing Constant to SEGUE with WideEye segmentation

coupled with each of our 4 augmentation heuristics in Fig. 8.

λv (bottom-left, yellow) and λb (top-right, cyan) show ex-

treme points: the former augments too few segments and

results in negligible improvements, while the latter augments

too many segments (incurring more than additional bytes for

encoding) to achieve its substantial QoE gains.

Our simulation-based strategy, σbv, (top-left, large red dot)

achieves both high QoE improvement and low overhead in

terms of bytes, due to its careful choices of which segments

to augment. Mean QoE improvements compared to Constant

are 24.9%, 4.1% and 1.4% for SLOW, MEDIUM, and FAST

traces respectively, at the cost of 5.5% of more bytes encoded.

We also find that for our QoE reward and byte overhead

definitions, λbv achieves similar results as σbv, if λbv’s pa-

rameters are appropriately tuned (specifically, using a bitrate

threshold, B = 10%, and a VMAF threshold, V = 13 or 14).

We find that a small additional amount of bytes encoded

for augmentation improve VMAF stability and reduces re-

buffering, together with modest improvements on the average

VMAF delivered. It is worth noting that augmentation is not

as simple as “augment more bytes for higher QoE”; in fact,

there are several heuristics that incur higher overhead, with

lower QoE benefit, e.g., compare several of the λbv, B = 15%

results in Fig. 8 to σbv.

Takeaway: The simulation approach, by explicitly trading

off QoE improvements with their cost, appreciably improves

QoE at low overhead in terms of additional encoding and

storage. At the same time, a careful tuning of parameters for

a static policy can produce comparable results.

10

Journal of Systems Research (JSys) 2022

Fig. 9: VMAF stability improvements divided by trace set and ABR.

As expected, improvements are more significant for RB, given that

no stability policy is implemented in the ABR.

Takeaway: More augmentation does not always improve

QoE; rather segments to be augmented need careful choice.

7.3 The impact of the adaptation algorithm

Segmentation: Across our experiments, the largest improve-

ments from segmentation come from VMAF stability during

playback, typically with some improvements in rebuffering,

and negligible changes in VMAF. However, the details differ

across rate adaptation algorithms as we discuss next.

Fig. 9 shows the improvement in VMAF stability. For

each adaptation algorithm, we compute the VMAF switch-

ing penalty term of the QoE aggregated across the cross-

product of videos and traces; we then show the mean and

95th-percentile in the table cells. The largest improvements

are seen for RB, followed by BB, and the two versions of R-

MPC. For RMPC-oblivious we even see a deterioration, i.e.,

higher VMAF switching by 4.6% at the 95th-percentile. It is

worth noting that our segmentation simulations always use

the VMAF 4K model to make decisions, while the evaluation

uses different VMAF models for different trace buckets. If

we evaluate using the VMAF 4K model, the result for RMPC-

O is also positive, with 6.7% improvement. Using different

VMAF models during segmentation tuning results in different

weights for rebuffering, VMAF, and VMAF switching (e.g.,

the mobile model is the most permissive for VMAF, weight-

ing rebuffering more), so it is an open question as to how to

optimize robustly against these differences.

For rebuffering, the differences from SEGUE’s segmenta-

tion are smaller, with meaningful differences only at the tail.

This is inherent to rebuffering: it is a corner case, as most

rate adaptation approaches are conservative enough to avoid

it in the typical case. For BB and RB, the number of traces

for which rebuffers occur is cut by 1.3% for both, while for

RMPC-O and -A, 0.2% and 1.3% more traces see rebuffers

with SEGUE’s segmentation compared to Constant.

We dissected the tail rebuffering and switching of SEGUE’s

segmentation with RMPC more deeply. RMPC plans for a

limited lookahead of segments (5 in that paper), and when

SEGUE produces several short segments, the lookahead be-

comes more and more myopic in terms of time, thus causing

poor long-term planning. Thus, RMPC’s implicit assumption

that a certain number of segments comprises a long-enough

future planning horizon is contradicted in SEGUE. Unfor-

Fig. 10: Improvements from adding σbv to WideEye. We average

metrics across traces, and show their distribution across videos.

Boxes show mean and quartiles, whiskers are 5/95-percentile.

tunately, increasing RMPC’s lookahead is computationally

expensive, so if the algorithm is not modified, there are two

solutions: (a) disallowing series of short segments; and (b)

instead of optimizing for the mean in SEGUE’s segmentation,

as we currently do, optimizing for higher percentiles (see

§4.1). That Time+Bytes rebuffers on 1.9% and 2.1% fewer

traces for RMPC-O and RMPC-A shows promise for strategy

(a).

We also briefly illustrate the specificity of SEGUE’s seg-

mentation to different rate algorithms with experiments on

video A: tuning segmentation using WideEye for RB and

then using RMPC-O adaptation online actually degrades QoE

by 7% compared to Constant, while correctly tuning seg-

mentation for RMPC-O improves QoE by 6% compared to

Constant.

Takeaway: A mismatch in what rate algorithm segmentation

is tuned for versus used with can degrade QoE.

Takeaway: Segmentation’s interactions with rate adapta-

tion algorithms that implicitly or explicitly assume constant

length segments require additional effort to either modify

such rate algorithms, or SEGUE’s interaction with them.

Augmentation: Augmentation typically improves all three

QoE metrics, at the cost of a small provider-side compute and

storage overhead. The gains are largest for rebuffering and

switching, with smaller improvements for VMAF.

We compare WideEye with and without σbv augmentation.

For each of our 11 videos, we calculate the changes in the

average metric across traces, i.e., rebuffer ratio (in sec per

min), VMAF stability (in percentage). The results shown

in Fig. 13 are the distribution of these improvements from

adding σbv across the 11 videos. For the SLOW traces, re-

buffering is reduced on average by >3 s/m for all algorithms.

The improvements stem primarily from augmentation en-

abling finer-grained quality decisions especially at low-bitrate

tracks. Even for RMPC, this compensates for the shorter

lookahead. The differences are smaller for FAST traces (as

expected), which are omitted in the plot.

Rebuffering improvements for RB are more limited be-

cause having more choices sometimes enables more aggres-

sive behavior in RB, where the estimated rate has greater

11

Journal of Systems Research (JSys) 2022

chances of more closely matching an available bitrate. For

the same reason, VMAF switches improve more for RB: it

aggressively matches bitrate to rate estimates, and having

more choices makes the fluctuations smaller.

VMAF gains are small in the aggregate, but this is a bit

misleading: in many cases, augmentation improves VMAF

noticeably (e.g., ∼10%) for parts of playback, but these ‘lo-

cal’ gains are suppressed in the aggregate, as VMAF does

not change much for most segments. (Fig. 15 in Appendix

B highlights the locality of these improvements.) It is un-

clear to us how or if QoE functions should reward such local

improvements.

The provider-side costs of σbv augmentation are small

across all 4 rate adaptation algorithm, with roughly 8% over-

head in bytes encoded on average across videos.

Takeaway: Augmentation substantially improves rebuffer-

ing and VMAF stability, especially in low-bandwidth condi-

tions, while incurring modest costs.

7.4 The impact of the video
How much a video’s complexity varies over time greatly af-

fects how much SEGUE benefits it. For instance, video C

shows, on each of its tracks, very little variation in VMAF

and bitrate. This lack of substantial temporal variation leaves

little room for optimization beyond constant-length segments

with fixed tracks. For video C, our segmentation’s improve-

ments in VMAF stability are smaller than on the rest of our

data, and in some cases, there is even a degradation in perfor-

mance (3.1% and 2.4% on average over SLOW traces with

RMPC-A and -O respectively).

The other extreme is video D, with frequent changes across

scenes. (Appendix A Fig. 14 visually contrasts videos C and

D.) For video D, even for FAST traces, WideEye improves

VMAF stability by 12% on average for RB and BB.

For 3 videos in our dataset (video B, video G and video

I), SEGUE’s segmentation hurts the performance for both

versions of RMPC. For video B and video G we have a degra-

dation in terms of delivered VMAF, with average perceptual

quality degradation of 3%. For video B, this degradation also

appears in VMAF stability. (Augmentation partially makes

up for this deterioration.) This is due to the behavior in the

startup phase: for some videos, producing small segments at

the beginning greatly slows down the ramp-up of RMPC to

higher bitrates. Modifying the objective function in RMPC to

account for startup would likely ameliorate this issue.

For Video I, however, SEGUE with RMPC-A substantially

degrades performance, with a perceptual quality loss in FAST

traces of 12% and a loss in VMAF stability of 23%. This

behavior is caused by a quirk of the bandwidth estimation

approach (which we left untouched from prior work [18]),

whereby the RTT is also incorporated to the calculation of

the bandwidth estimate. The impairment occurs when, at the

beginning of a video, there are one or more segments com-

prising as little as a few kilobytes of data, e.g., a few seconds

Fig. 11: Performance improvements of SEGUE’s segmentation strat-

egy WideEye over the delivery of single GOPs, varying the GOP

size.

of a completely black screen or title screen. In this case, the

bandwidth-dependent download time can be smaller than the

RTT. Incorporating the RTT in the bandwidth estimation thus

substantially underestimates bandwidth, and slows down the

ramp up of video quality. A constant-length segmentation

is immune to this bug, while any segmentation that allows

smaller segments is affected by it. Simply separating the RTT

estimate from the download time would eliminate this issue.

Takeaway: SEGUE’s benefits are larger for more complex

video content. This could be used to build a meta-heuristic

to decide whether or not to use SEGUE for a particular video.

7.5 Performance comparison with related

works
We now compare SEGUE against the three closest related

works. First, we compare SEGUE’s WideEye segmentation

strategy to [30], in which videos are segmented and delivered

following GOP boundaries. Then, we compare SEGUE’s σbv

augmentation strategy to CBF [27] and SIVQ [28]. Both

solutions aim to remove redundant segments from the video

representation. While CBF removes segments in order to

be as close as possible to a target quality, SIVQ focuses on

keeping the ones that differs enough in terms of perceptual

quality.

7.5.1 Comparison with GOP delivery

In order to compare SEGUE’s segmentation strategy to [30],

we encoded our full dataset of videos varying the maximum

GOP size from 1s to 5s, with a step of 1s. We then tested

the streaming performance of transmitting each GOP sepa-

rately against SEGUE’s WideEye segmentation strategy across

the cross product of network traces and ABRs. Results are

summarised in Fig. 11.

Improvements in perceptual quality are significant only in

the case of GOP-1, where SEGUE delivers in average 2.2%

better quality.

SEGUE consistently reduces perceptual quality fluctuations.

This is an intrinsic property of SEGUE: by deciding which

GOPs to pack together (or not) depending on the video flow

and ABR behavior, SEGUE is able to successfully stabilize

the video stream compared to a fully fragmented solution.

These improvements are major against a GOP length of 1s,

12

Journal of Systems Research (JSys) 2022

where SEGUE reduces instabilities by 43.4%, and become

smaller, but still significant, when increasing the GOP size.

VMAF instability reduction over the GOP-5 segmentation

(that is, indeed, the GOP size in which SEGUE’s WideEye is

performed) is in average 14.2%.

SEGUE also substantially improves rebuffering ratio.

Shorter segments, in fact, do not necessarily reduce the likeli-

hood of rebuffering events, as they might mislead the ABR

into poor buffer planning and, in general, greedier choices.

Again, by tracking the video flow and ABR choices, SEGUE

is able to reduce substantially the average rebuffering ratio,

by 0.6 s/m in the case of GOP-1, and by around 0.2 s/m in

the case of GOP-5.

Compared to GOP-5, SEGUE segmentation strategy’s im-

provements in the linear QoE model utilised throughout this

work are, in average, 4.2%. In the case of GOP-1, these

improvements increase to 14%.

7.5.2 Comparison with CBF and SIVQ

We compare SEGUE’s augmentation strategy σbv to CBF [27]

and SIVQ [28]. All the approaches are applied to SEGUE’s

WideEye segmentation. We offer to CBF and SIVQ all the

available options, in other words the ones that SEGUE uses as

standard (and non removable) and the augmented ones. We

test CBF under three VMAF thresholds (40, 60, 80). We also

modified the SIVQ algorithm to work with VMAF rather than

PSNR, and we test it for three different thresholds (5, 10, 15).

In Fig. 12 we show the comparison with SEGUE’s σbv ag-

gregated across our cross product of videos, ABRs and traces.

Both SIVQ and CBF substantially reduce rebuffering and

storage compared to SEGUE. This is expected, as both ap-

proaches (CBF more aggressively than SIVQ) almost entirely

remove the 1440p track, and substantially cut down the 1080p

track. This forces all the ABRs to perform safer choices, as

the highest quality options are not available.

The removal of higher quality tracks has the drawback of

reducing the delivered quality, in particular for FAST traces.

This is an expected behaviour of both CBF and SIVQ, as they

optimize for bandwidth and storage savings. The severity

of this reduction depends on the selected threshold, with

SIVQ-5 being the least affected: 0.4% degradation in average,

with 1.5% degradation in FAST traces and 4.3% in the 95-th

percentile of the best traces.

Compared to SIVQ-5, SEGUE improves the VMAF stabil-

ity in FAST traces by 4.8%, an improvement that is coherent

with the one experienced by introducing augmentation. For

SLOW and MEDIUM traces, improvements in stability are

not substantial. In any case, as explained in section §6, despite

our trace set being balanced, 91% of traces in the analyzed

Puffer set are classified as FAST. SEGUE’s σbv improves sub-

stantially in challenging scenarios without affecting the user

experience in the most common setting.

Compared to CBF-40 and SIVQ-15, SEGUE’s improve-

ments in average on FAST traces for the linear QoE formula-

tion utilised in this work are of 45% and 5.3% respectively.

These improvements are still substantial if compared to CBF-

80 (5%), and become small if compared to SIVQ-5 (>1%),

due to the low weight on VMAF instability in our linear QoE

formulation. VMAF instability is indeed the optimisation

metric that SEGUE improves the most.

Last but not the least, SEGUE can be combined with both

CBF and SIVQ. In case of CBF, one could pre-filter both

standard and non standard options for a specific quality setting,

and then run the SEGUE’s optimization. Similarly, for SIVQ

we could just present to SEGUE optimizer the video segments

that are sufficiently different in terms of perceptual quality

performance. However, since adding CBF or SIVQ to SEGUE

would lead to a worse outcome on FAST traces, we did not

include such a combination in our evaluation.

7.6 SEGUE’s computational cost

We benchmarked SEGUE’s computational performance for

video B, as it strikes a good tradeoff between bitrate vari-

ability and keyframes frequency. The benchmark runs on an

AMD Ryzen 9 3900x 12-Core processor and Ubuntu 20.04.3

LTS. Results are presented in Fig. 13 as a fraction of the

total computation time and the video length. SEGUE’s per-

formance highly depends on the ABR algorithm’s efficiency.

SEGUE’s computation time using fast ABR algorithms like

rate or buffer based is comparable to the VMAF computation

time. Using slow ABRs, like both version of R-MPC, takes

considerably more time due to the state space exploration

(a problem that has been tackled by the authors in [37], and

that lead to the formulation of the more lightweight version

Fast-MPC).

Compared to the H.264 encoding time, SEGUE’s segmenta-

tion takes 3.5x more time with the fastest ABR. Nevertheless,

SEGUE’s segmentation times are comparable to the computa-

tional time needed by more recent codecs, like VP9 and AV1,

that take significantly more time compared to H.264 (5x and

10x respectively [2]), while SEGUE’s approach and costs are

independent on the codec of choice.

SEGUE’s current release is not optimized for runtime and

written in Python3 using the multiprocessing module. This

module uses expensive process based parallelism. A reim-

plementation in an unmanaged language with better multi-

threading support (like C++ or Rust) would likely offer at

least an order of magnitude improvement in compute times,

as for example Numba [11] discusses. Also, given the sub-

stantial amount of time that is spent on VMAF calculations,

SEGUE could be extended to either work with computationally

cheaper quality metrics (like PSNR or SSIM), or approaches

like the one in [10] could be used for VMAF rate distortion

curves prediction.

7.7 Summary of results

We evaluated SEGUE across 4 adaptation algorithms, 11

videos, and 3 trace buckets. SEGUE typically maintains aver-

13

Journal of Systems Research (JSys) 2022

Fig. 12: Performance improvements and degradation of SEGUE’s augmentation strategy σbv compared to CBF [27] and SIVQ [28]. Rebuffering

ratio comparison for FAST traces is neglibile, and thus it has been omitted.

Fig. 13: Benchmarking of SEGUE’s performance for video B as a

ratio between the computational time and the video length. SEGUE’s

brute force exploration time is heavily affected by the ABR algorithm

efficiency.

age VMAF, while reducing switching and tail rebuffering, at

the expense of reduced VMAF for a small fraction of chunks.

This is a highly favorable tradeoff for the QoE function.

We calculate QoE improvements as: 100 · QSEGUE−QConstant
Qmax

,

where Qmax is the maximum achievable QoE. Comparing

QSEGUE and QConstant directly would only show larger num-

bers. Across our result matrix, SEGUE’s mean QoE improve-

ment is 8.6%, with 36.5% improvement in the 5th-percentile.

When limited to SLOW traces, these numbers are 22.1% and

111% respectively. For interested readers, a full tabulation of

results is in Appendix C Fig. 17.

For context on SEGUE’s QoE improvements, we can com-

pare them to those for algorithmic improvements in rate adap-

tation. Across our traces, QoE for Constant improves by less

than 2% when using R-MPC instead of BB. (This is in line

with experiments in the recent Puffer work [36], providing

validation for our evaluation.) Our improvements are larger

than what Facebook measured [17] in testing reinforcement

learning adaptation, where under 6% improvements for traces

with sub-500 Kbps bandwidth (as much 3× slower than our

SLOW set) are reported as “substantial” for Facebook.

8 Discussion and Future Work
With SEGUE, we have only begun exploring new opportuni-

ties that arise from accounting for the temporal variations in

video content and their interactions with online adaptation.

Algorithmic work: Much like for rate adaptation, where new

algorithms continue to be devised, we fully expect SEGUE

to set off a new thread on how best to optimize chunking. A

particularly promising opportunity for segmentation lies in

doing chunking online, whereby the client could adaptively re-

quest video in terms of keyframe boundaries, instead of being

restricted to a particular offline chunking scheme. This ap-

proach can adapt chunking to both video content and network

variations, without needing real-time reencoding.

Co-design of encoding and adaptation: While most ABR

work treats video as an uncontrolled input and focuses on

adaptation, we take the opposite perspective, treating rate

adaptation as a given, and exploring how to modify video

chunking. This obviously raises the question of how closely

we could integrate offline encoding and online adaptation.

As our results show, it is non-trivial to tweak algorithms

like RMPC, which bake in today’s typical constant-length

segmentation in their design, to work well with SEGUE. Go-

ing further, how would SEGUE interact with an adaptation

algorithm like CAVA [26], which explicitly tackles variable

bitrate encoding.4 Does either reduce the other’s utility? Or

does CAVA’s non-myopic behavior benefit from SEGUE’s

offline preparation, resulting in even larger benefits?

Likewise, on the encoding side, does video for which bi-

trates are tuned per scene, like Netflix has started doing [22],

reduce the benefit of SEGUE’s augmentation? Does it increase

the benefit of SEGUE’s segmentation? How do the answers to

these questions depend on the adaptation algorithms used?

In the context of co-designing adaptation logic with SEGUE,

the most straightforward next step would be to modify SEGUE

itself to output a set of representations, both in space and time,

and to modify ABR logic to select (online) between these

representations. We plan to investigate this path in future

work.

Deployment considerations: SEGUE requires rethinking

some aspects of video delivery: (1) As different segments

have different numbers of tracks available, any user interface

elements for manually selecting a track (disabling adaptation)

need to hide that difference and make background decisions

accordingly; (2) While we don’t expect the potentially fre-

quent and minor tweaks in a provider’s adaptation algorithm

to have large effects, large changes to adaptation will need

to be compatible with the video library’s chunking, although

this is not very different from today — constant length seg-

mentation is just one (implicit) choice.

4Unfortunately, our requests for CAVA’s code were unsuccessful.

14

Journal of Systems Research (JSys) 2022

9 Conclusion
SEGUE is the first work to investigate offline video chunking

in a manner that accounts for the interactions of online rate

adaptation with the temporal variability in video complexity.

Besides showing promising performance improvements, es-

pecially for challenging settings involving complex videos

or low-bandwidth conditions, it calls for closer integration

of offline and online phases. We discuss several exciting

open questions, and release our code to enable their explo-

ration [14].

References
[1] Choosing the right video bitrate for streaming hls

and dash. https://bitmovin.com/video-bitrate-

streaming-hls-dash/.

[2] 3 things you should know about the av1 codec, 2021.

[3] Anne Aaron, Zhi Li, Megha Manohara, Jan De Cock,

and David Ronca. Per-title encode optimization. https:

//link.medium.com/jEeb6GV0ZW.

[4] Zahaib Akhtar, Yun Seong Nam, Ramesh Govindan,

Sanjay Rao, Jessica Chen, Ethan Katz-Bassett, Bruno

Ribeiro, Jibin Zhan, and Hui Zhang. Oboe: auto-

tuning video abr algorithms to network conditions. In

Proceedings of the 2018 Conference of the ACM Spe-

cial Interest Group on Data Communication, pages

44–58. ACM, 2018. http://doi.acm.org/10.1145/

3230543.3230558.

[5] Ibrahim Ayad, Youngbin Im, Eric Keller, and Sangtae

Ha. A practical evaluation of rate adaptation algorithms

in http-based adaptive streaming. Computer Networks,

133:90–103, 03 2018.

[6] Open Source / Software Freedom Conservancy. Sele-

nium webdriver. https://www.selenium.dev/.

[7] DASH Industry Forum. A reference client implemen-

tation for the playback of MPEG DASH via JavaScript

and compliant browsers. https://github.com/Dash-

Industry-Forum/dash.js.

[8] Te-Yuan Huang, Ramesh Johari, Nick McKeown,

Matthew Trunnell, and Mark Watson. A buffer-based

approach to rate adaptation: Evidence from a large

video streaming service. In Proceedings of the 2014

ACM Conference on SIGCOMM, SIGCOMM ’14, pages

187–198, New York, NY, USA, 2014. ACM. http:

//doi.acm.org/10.1145/2619239.2626296.

[9] Iheanyi Irondi, Qi Wang, and Christos Grecos. Opti-

mized adaptation algorithm for HEVC/H.265 dynamic

adaptive streaming over HTTP using variable segment

duration. In Nasser Kehtarnavaz and Matthias F. Carl-

sohn, editors, Real-Time Image and Video Processing

2016, volume 9897 of Society of Photo-Optical Instru-

mentation Engineers (SPIE) Conference Series, page

98970O, April 2016.

[10] Angeliki V. Katsenou, Mariana Afonso, and David R.

Bull. Study of compression statistics and prediction of

rate-distortion curves for video texture, 2021.

[11] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert.

Numba: A llvm-based python jit compiler. In Proceed-

ings of the Second Workshop on the LLVM Compiler

Infrastructure in HPC, LLVM ’15, New York, NY, USA,

2015. Association for Computing Machinery.

[12] Jean Le Feuvre. Gpac filters. In Proceedings of the

11th ACM Multimedia Systems Conference, MMSys ’20,

page 249–254, New York, NY, USA, 2020. Association

for Computing Machinery.

[13] Zhi Li, Anne Aaron, Ioannis Katsavounidis, Anush

Moorthy, and Megha Manohara. Toward a practical

perceptual video quality metric. The Netflix Tech Blog,

6(2), 2016.

[14] Melissa Licciardello, Lukas Humbel, Fabian Rohr, Max-

imilian Grüner, and Ankit Singla. Segue code repository.

https://github.com/melADTR/Segue, 2022.

[15] Y. Lin, T. Bonald, and S. E. Elayoubi. Impact of chunk

duration on adaptive streaming performance in mobile

networks. In 2016 IEEE Wireless Communications and

Networking Conference, pages 1–6, 2016.

[16] C. Liu, I. Bouazizi, and M. Gabbouj. Segment dura-

tion for rate adaptation of adaptive http streaming. In

2011 IEEE International Conference on Multimedia and

Expo, pages 1–4, 2011.

[17] Hongzi Mao, Shannon Chen, Drew Dimmery, Shaun

Singh, Drew Blaisdell, Yuandong Tian, Mohammad

Alizadeh, and Eytan Bakshy. Real-world video adap-

tation with reinforcement learning. arXiv preprint

arXiv:2008.12858, 2020.

[18] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh.

Neural adaptive video streaming with pensieve. In

Proceedings of the Conference of the ACM Special In-

terest Group on Data Communication, SIGCOMM ’17,

pages 197–210, New York, NY, USA, 2017. ACM.

http://doi.acm.org/10.1145/3098822.3098843.

[19] Abhijit Mondal, Satadal Sengupta, Bachu Rikith Reddy,

M. J.V. Koundinya, Chander Govindarajan, Pradipta

De, Niloy Ganguly, and Sandip Chakraborty. Can-

did with youtube: Adaptive streaming behavior and im-

plications on data consumption. In Proceedings of

the 27th Workshop on Network and Operating Systems

Support for Digital Audio and Video, NOSSDAV’17,

15

https://bitmovin.com/video-bitrate-streaming-hls-dash/
https://bitmovin.com/video-bitrate-streaming-hls-dash/
https://link.medium.com/jEeb6GV0ZW
https://link.medium.com/jEeb6GV0ZW
http://doi.acm.org/10.1145/3230543.3230558
http://doi.acm.org/10.1145/3230543.3230558
https://www.selenium.dev/
https://github.com/Dash-Industry-Forum/dash.js
https://github.com/Dash-Industry-Forum/dash.js
http://doi.acm.org/10.1145/2619239.2626296
http://doi.acm.org/10.1145/2619239.2626296
https://github.com/melADTR/Segue
http://doi.acm.org/10.1145/3098822.3098843

Journal of Systems Research (JSys) 2022

pages 19–24, New York, NY, USA, 2017. ACM.

http://doi.acm.org/10.1145/3083165.3083177.

[20] Vikram Nathan, Vibhaalakshmi Sivaraman, Ravichan-

dra Addanki, Mehrdad Khani, Prateesh Goyal, and Mo-

hammad Alizadeh. End-to-end transport for video qoe

fairness. In Proceedings of the ACM Special Interest

Group on Data Communication, SIGCOMM ’19, pages

408–423, New York, NY, USA, 2019. ACM.

[21] Vikram Nathan, Vibhaalakshmi Sivaraman, Ravichan-

dra Addanki, Mehrdad Khani, Prateesh Goyal, and Mo-

hammad Alizadeh. End-to-end transport for video qoe

fairness. In Proceedings of the ACM Special Interest

Group on Data Communication, SIGCOMM ’19, page

408–423, New York, NY, USA, 2019. Association for

Computing Machinery.

[22] Netflix. Dynamic optimizer - a percep-

tual video encoding optimization framework.

https://netflixtechblog.com/dynamic-

optimizer-a-perceptual-video-encoding-

optimization-framework-e19f1e3a277f, 2018.

[23] Netflix. Optimized shot-based encodes: Now streaming!

https://netflixtechblog.com/optimized-shot-

based-encodes-now-streaming-4b9464204830,

2018.

[24] Ravi Netravali, Anirudh Sivaraman, Somak Das,

Ameesh Goyal, Keith Winstein, James Mickens, and

Hari Balakrishnan. Mahimahi: Accurate record-and-

replay for HTTP. In 2015 USENIX Annual Technical

Conference (USENIX ATC 15), pages 417–429, Santa

Clara, CA, July 2015. USENIX Association.

[25] Jan Ozer. Introduction to abr production and

delivery. http://conferences.infotoday.com/

documents/347/W1_Ozer.pdf, 2019.

[26] Yanyuan Qin, Shuai Hao, K. R. Pattipati, Feng Qian,

Subhabrata Sen, Bing Wang, and Chaoqun Yue. Abr

streaming of vbr-encoded videos: Characterization, chal-

lenges, and solutions. In Proceedings of the 14th Inter-

national Conference on Emerging Networking EXperi-

ments and Technologies, CoNEXT ’18, page 366–378,

New York, NY, USA, 2018. Association for Computing

Machinery.

[27] Yanyuan Qin, Shuai Hao, Krishna R Pattipati, Feng

Qian, Subhabrata Sen, Bing Wang, and Chaoqun

Yue. Quality-aware strategies for optimizing abr video

streaming qoe and reducing data usage. In Proceedings

of the 10th ACM Multimedia Systems Conference, pages

189–200, 2019.

[28] B. Rainer, S. Petscharnig, C. Timmerer, and H. Hell-

wagner. Statistically indifferent quality variation: An

approach for reducing multimedia distribution cost for

adaptive video streaming services. IEEE Transactions

on Multimedia, 19(4):849–860, 2017.

[29] Haakon Riiser, Paul Vigmostad, Carsten Griwodz, and

Pål Halvorsen. Commute path bandwidth traces from

3g networks: analysis and applications. pages 114–118,

February 2013. https://heim.ifi.uio.no/paalh/

publications/files/mmsys2013-dataset.pdf.

[30] Susanna Schwarzmann, Nick Hainke, Thomas Zinner,

Christian Sieber, Werner Robitza, and Alexander Raake.

Comparing fixed and variable segment durations for

adaptive video streaming: A holistic analysis. In Pro-

ceedings of the 11th ACM Multimedia Systems Confer-

ence, MMSys ’20, page 38–53, New York, NY, USA,

2020. Association for Computing Machinery.

[31] Kevin Spiteri, Ramesh Sitaraman, and Daniel Sparacio.

From theory to practice: improving bitrate adaptation in

the dash reference player. pages 123–137, 06 2018.

[32] Ghent University. 4g/lte bandwidth logs. https:

//users.ugent.be/~jvdrhoof/dataset-4g/, 2015-

2016.

[33] Standford University. Puffer player. https://

puffer.stanford.edu/.

[34] Jeroen van der Hooft, Dries Pauwels, Cedric De Boom,

Stefano Petrangeli, Tim Wauters, and Filip De Turck.

Low-latency delivery of news-based video content. In

Proceedings of the 9th ACM Multimedia Systems Con-

ference, MMSys ’18, page 537–540, New York, NY,

USA, 2018. Association for Computing Machinery.

[35] B. J. Villa and P. E. Heegaard. Group based traffic

shaping for adaptive http video streaming by segment

duration control. In 2013 IEEE 27th International

Conference on Advanced Information Networking and

Applications (AINA), pages 830–837, 2013.

[36] Francis Y. Yan, Hudson Ayers, Chenzhi Zhu, Sadjad

Fouladi, James Hong, Keyi Zhang, Philip Levis, and

Keith Winstein. Learning in situ: a randomized ex-

periment in video streaming. In 17th USENIX Sympo-

sium on Networked Systems Design and Implementation

(NSDI 20), pages 495–511, Santa Clara, CA, February

2020. USENIX Association.

[37] Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno

Sinopoli. A control-theoretic approach for dynamic

adaptive video streaming over http. SIGCOMM Comput.

Commun. Rev., 45(4):325–338, August 2015. http:

//doi.acm.org/10.1145/2829988.2787486.

16

http://doi.acm.org/10.1145/3083165.3083177
https://netflixtechblog.com/dynamic-optimizer-a-perceptual-video-encoding-optimization-framework-e19f1e3a277f
https://netflixtechblog.com/dynamic-optimizer-a-perceptual-video-encoding-optimization-framework-e19f1e3a277f
https://netflixtechblog.com/dynamic-optimizer-a-perceptual-video-encoding-optimization-framework-e19f1e3a277f
https://netflixtechblog.com/optimized-shot-based-encodes-now-streaming-4b9464204830
https://netflixtechblog.com/optimized-shot-based-encodes-now-streaming-4b9464204830
http://conferences.infotoday.com/documents/347/W1_Ozer.pdf
http://conferences.infotoday.com/documents/347/W1_Ozer.pdf
https://heim.ifi.uio.no/paalh/publications/files/mmsys2013-dataset.pdf
https://heim.ifi.uio.no/paalh/publications/files/mmsys2013-dataset.pdf
https://users.ugent.be/~jvdrhoof/dataset-4g/
https://users.ugent.be/~jvdrhoof/dataset-4g/
https://puffer.stanford.edu/
https://puffer.stanford.edu/
http://doi.acm.org/10.1145/2829988.2787486
http://doi.acm.org/10.1145/2829988.2787486

Journal of Systems Research (JSys) 2022

[38] Ondrej Zach and Martin Slanina. Content aware seg-

ment length optimization for adaptive streaming over

http. Radioengineering, 27:819–826, 2018.

17

Journal of Systems Research (JSys) 2022

A Appendix: Video internal variability

Fig. 14: VMAF and bitrate comparison between video C and video D for the highest quality track of each. VMAF and bitrate are averaged per

second, and shown for the first 100 seconds of playback. Video C exhibits much greater stability than video D.

B Appendix: Locality of augmentation

Fig. 15: Augmentation yields local VMAF improvements: average VMAF/sec for video E using RMPC, Constant segmentation

18

Journal of Systems Research (JSys) 2022

C Appendix: Full tables of results

Fig. 16: SEGUE’s results with WideEye segmentation and no augmentation, compared to Constant. This is a visual summary across 11 videos,

4 algorithms, and 3 trace sets, totaling to ∼220 days of streaming time. Each row is one combination of (video, algorithm, trace-bucket). Green

colors are improvements, red being deterioration.

19

Journal of Systems Research (JSys) 2022

Fig. 17: SEGUE’s results with WideEye segmentation and σbv augmentation, compared to Constant. This is a visual summary across 11 videos,

4 algorithms, and 3 trace sets, totaling to ∼220 days of streaming time. Each row is one combination of (video, algorithm, trace-bucket). Green

colors are improvements, red being deterioration.

20

Journal of Systems Research (JSys) 2022

D Appendix: Implementation in dash.js

D.1 Using SEGUE in DASH
To confirm that the simulated results are comparable to real

world experiments we run a smaller number of real-time ex-

periments on the DASH JavaScript reference player.

Variable length segments are natively supported by DASH

and therefore dash.js [7] through the use of a SegmentTime-

line block in the MPEG-DASH Media Presentation Descrip-

tion (MPD). The SegmentTimeline is generated alongside

the DASH-compatible media segments using the sigcues fil-

ter from GPAC [12], which uses the pre-segmented SEGUE

chunks and creates the corresponding DASH-playable seg-

ments (dashing). For augmented tracks, unavailable chunks

are replaced by the corresponding chunks of the standard

track during this process, with all the placeholder segments

getting removed once dashing is complete.

Per-segment bitrate information is made available to the

player using an additional JSON file containing detailed infor-

mation about all segments. This file is generated as part of the

preprocessing step and is based on the simulator input data.

During the startup phase of the player, this file is downloaded

from a location specified within the MPD.

The AbrController of dash.js has been adapted to pro-

vide per-segment bitrate information supplied by the addi-

tional file instead of the average bitrates reported in the MPD.

It does so by updating the bitrate (of the next segment) of all

tracks to the corresponding values whenever the bitrate list is

assembled.

The same approach is used to introduce basic augmentation

support: Since tracks cannot be removed or added unless the

player switches DASH-Periods - which was not a viable

option in this case - an unavailable track receives a bitrate

of 1 Tbit/s instead. An augmentation-oblivious ABR should

not choose a track with such high a bitrate under normal

circumstances, while an augmentation-aware ABR can check

for this (constant) value to see whether an augmented track is

available or not.

The additional information contained in the JSON file

can be accessed by an ABR through the AbrController

if needed, which is used by non-myopic schemes like RMPC

to get information about future segments. The three ABRs

RB, BB and RMPC have been implemented in JavaScript

based on their counterparts used in the simulation.

Three modifications to the default behaviour of dash.js

were made for our experiments: First, only our custom ABR

rule is active, instead of the combination of rules used nor-

mally. Second, the start of video playback is intercepted and

triggered only once at least 10 seconds of video are in the

buffer. Finally, the replacing of already downloaded but not

yet played segments (’fast-switching’) has been disabled.

D.2 Experiment setup
The tests run locally on Ubuntu 18.04.5 LTS using Apache

webserver (version 2.4.29) to provide the website and video

Fig. 18: Comparison of resulting QoE between simulation and

dash.js implementation on the same set of 100 traces for video A

and RB. The QoE is normalized by the mean of constant length.

segments. Selenium WebDriver [6] launches Google Chrome

(version 87) in headless mode to load the page and play the

video. This process is run from within a Mahimahi shell [24]

to emulate different network conditions based on network

traces. Metrics from dash.js are output through JavaScript

log messages, which are retrieved and processed to generate

the results.

A set of 100 traces is used to run experiments on video A

in real-time with dash.js, the results of which are then used

to compare the simulation results on the same set of traces to.

All three ABRs were run on three configurations: constant-

length segments without augmentation, the corresponding

ABR-specific WideEye segmentations without augmentation,

and the ABR-specific segmentation with σbv augmentation.

The quality metrics are then aggregated using the VMAF 4K

model.

D.3 Results
Overall, results in the QoE distribution are similar. An ex-

ample of such a comparison is shown in Fig. 18. The figure

shows the CDF of the distribution of the QoE for video A

and RB, evaluated using VMAF 4K. Lines are plotted for

the video without Segue (using constant length segments),

and with Segue (WideEye+σbv), and each of those once for

simulation and execution in DASH.

Similar results are obtained for the ABRs BB and RMPC.

In particular, the improvements in performance in the mean of

WideEye+σbv with respect to constant are of 5.3%, 6.7% and

5.6% in simulation for BB, RB and RMPC, while in DASH

we obtained 5.1%, 7.3% and 5.1%. Improvements have been

calculated following the formula expressed in §7.7.

21

	Introduction
	Background and related work
	Video streaming 101
	Related work

	New opportunities in streaming
	What levers can we tune?
	The need of variability

	Segue design
	Segmentation
	Augmentation

	Implementation
	Offline video chunking
	Online playback and rate adaptation

	Evaluation methodology
	Results
	Segue's segmentation
	Segue's augmentation
	The impact of the adaptation algorithm
	The impact of the video
	Performance comparison with related works
	Comparison with GOP delivery
	Comparison with CBF and SIVQ

	Segue's computational cost
	Summary of results

	Discussion and Future Work
	Conclusion
	Appendix: Video internal variability
	Appendix: Locality of augmentation
	Appendix: Full tables of results
	Appendix: Implementation in dash.js
	Using Segue in DASH
	Experiment setup
	Results

