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Abstract: Neurological effects of COVID-19 and long-COVID-19, as well as neuroinvasion by
SARS-CoV-2, still pose several questions and are of both clinical and scientific relevance. We
described the cellular and molecular effects of the human brain microvascular endothelial cells
(HBMECs) in vitro exposure by SARS-CoV-2 to understand the underlying mechanisms of viral
transmigration through the blood–brain barrier. Despite the low to non-productive viral replication,
SARS-CoV-2-exposed cultures displayed increased immunoreactivity for cleaved caspase-3, an indica-
tor of apoptotic cell death, tight junction protein expression, and immunolocalization. Transcriptomic
profiling of SARS-CoV-2-challenged cultures revealed endothelial activation via NF-κB non-canonical
pathway, including RELB overexpression and mitochondrial dysfunction. Additionally, SARS-CoV-2
led to altered secretion of key angiogenic factors and to significant changes in mitochondrial dy-
namics, with increased mitofusin-2 expression and increased mitochondrial networks. Endothelial
activation and remodeling can further contribute to neuroinflammatory processes and lead to further
BBB permeability in COVID-19.

Keywords: COVID-19; blood–brain barrier; mitochondrial dynamics; NF-κB signaling pathway;
endothelial activation

1. Introduction

Coronavirus disease 2019 (COVID-19), caused by infection with severe acute respira-
tory syndrome-related coronavirus 2 (SARS-CoV-2), remains a major health threat globally.
The USA continues to lead the world with a total of 102 million COVID-19 cases and
1.1 million deaths by the end of January 2023 [1]. Even though vaccines, which mostly pre-
vent serious illness and death, have been widely available in the U.S. and many countries,
only 59% of the overall population is fully vaccinated. This is below the estimated 85–90%
threshold assumed to be needed to stop the spread of SARS-CoV-2 and make the virus
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endemic. Globally, COVID-19 cases continue rising, and new variants and subvariants (e.g.,
omicron BA.1, BA.2 [BA.2.12, BA.2.12.1]) were recently identified in different countries,
spreading globally [2].

SARS-CoV-2 is a member of the family of β-coronaviruses, similar to two other highly
pathogenic coronaviruses, severe acute respiratory syndrome coronavirus (SARS-CoV) and
Middle East respiratory syndrome coronavirus (MERS-CoV). Initial SARS-CoV-2 infection
investigated cases led to the isolation of the virus in human respiratory epithelial cells [3,4]
and its genome sequencing deposited (GISAID accession IDs: EPI_ISL_402119, 402120 and
402121). SARS-CoV-2 is an enveloped, positive-sense, and single-stranded RNA virus. Its
genome encodes non-structural proteins (such as 3-chymotrypsin-like protease, papain-like
protease, helicase, and RNA-dependent RNA polymerase; all key enzymes in the viral life
cycle), structural proteins (spike [S] protein, membrane [M] protein, envelope [E] protein,
and nucleocapsid [N] protein), and accessory proteins.

It is now known that SARS-CoV-2 interacts with and infects human cells through the
ligation of the S1 subunit of the S protein with host cell receptors, especially the angiotensin-
2 converting enzyme (ACE2) that serves as an entry receptor to the virus, representing its
main route of entry into the host cell [5]. Pulmonary, cardiac, and intestinal epithelia and
endothelial cells express high levels of ACE-2 [3]. Upon S1-ACE2 interaction, a transmem-
brane serine protease 2 (TMPRSS2) is required for priming the S protein and viral entry into
the cell [4,6,7]. Along with ACE2 and TMPRSS2, several other proteins have been suggested
to participate in SARS-CoV-2 entry into human cells, such as ADAM metallopeptidase
domain 17 (ADAM17) [8,9], dipeptidyl peptidase 4 (DPP4) [10,11], angiotensin II receptor
type 2 (AGTR2) [12,13], basigin (BSG, also called extracellular matrix metalloproteinase
inducer [EMMPRIN] or cluster of differentiation 147 [CD147]) [14,15], aminopeptidase N
(ANPEP) [16], and cathepsin B/L [5,17].

Among the most commonly observed symptoms in COVID-19 patients, alterations
of neural functions are frequently detected, from mild cases with loss of taste and smell,
dizziness, and headaches, to more extreme cases with the occurrence of acute cerebrovas-
cular disease, including episodes of vascular encephalic accidents, loss of consciousness,
ataxia, and epilepsy [18]. The Central Nervous System (CNS)-related symptoms are also
prominent for so-called chronic or long COVID. The CNS is a well-documented target of
β-coronavirus infections, such as SARS-CoV-2, and to date, several studies detected SARS-
CoV-2 in the brain and the cerebrospinal fluid of COVID-19 patients [19–22]. Distinct routes
of SARS-CoV-2 entry into the brain have been proposed, such as the olfactory nerve [23–25],
the choroid plexus, and the blood–brain barrier (BBB) [26]. The BBB represents a physi-
ological interphase between systemic blood circulation and the brain parenchyma. The
BBB is primarily formed by endothelial cells that are surrounded by astrocytes, neurons,
pericytes, and microglia cells that, by coordinating functions with endothelial cells, form
the structural elements of the BBB known as the neuro-vascular unit [27]. However, the
contribution of the BBB may be particularly important due to the presence of the virus in
the bloodstream allowing the passage of viral particles through the wall of brain capillaries
to brain parenchyma. While the mechanisms of SARS-CoV-2 neuroinvasion are not fully
understood, it has been suggested that infection of BBB capillary-composing cells could be
critical to triggering CNS impairment [28,29]. Among the NVU-forming cells, endothelial
cells are especially important for ensuring BBB function, and several studies have recently
described EC as key players in SARS-CoV-2-induced pathogenesis [30–32].

Several reports have correlated the infection outcome with vascular dysfunction,
establishing vascular inflammation and cytokine storms promoted by immune responses
as critical factors contributing to the worsening of the clinical condition and even death.
Endothelial dysfunction may have important consequences, which include ischemia, altered
angiogenesis and coagulation, inflammation, and tissue edema. Therefore, COVID-19-
related endothelitis could explain the systemic microcirculatory dysfunction observed
in patients, including a chronic form of this disease. It was previously demonstrated
that the treatment of human brain microvascular endothelial cells with recombinant S1
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protein resulted in the endothelial permeability and altered the levels of pro-inflammatory
cytokines [33]. However, little is known about the involvement of brain microvasculature
in brain infection by SARS-CoV-2, which may result in endothelial activation and hyper-
inflammatory responses. Even less is known if damages to the BBB could be propagated
to neural tissue and, therefore, be the triggering mechanism of neural abnormalities that
promote neurological symptoms observed in COVID-19 patients.

In the present work, we describe the cellular and molecular effects of HBMEC exposed
to SARS-CoV-2 in order to gain insight into possible routes by which the virus affects
the BBB and invades the brain parenchyma. HBMECs susceptibility to infection was
compared to that of gold-standard African monkey kidney epithelial Vero cells, including
viral production and activation of caspase-3. Further characterization of SARS-CoV-2
effects on HBMECs was performed by two unbiased analyses of gene expression and
angiogenic factor secretion. Transcriptomic analyses revealed activation of noncanonical
NF-κB signaling pathway and changes in mitochondrial quality control, with increased
mitochondrial networks and mitofusin-2 expression in SARS-CoV-2-challenged cultures.
Our data demonstrate that exposure to SARS-CoV-2 leads to brain endothelium activation,
thus contributing to promoting increased neuroinflammation in Neuro-COVID-19.

2. Methods
2.1. Cell Culture

Human brain endothelial cells (HBMECs) were a gift from Prof. Dennis Grab (Depart-
ment of Pathology, Johns Hopkins School of Medicine). Cells were immortalized using an
SV40-LT plasmid [34] and were maintained in 199 medium with 10% fetal bovine serum
(FBS) and 1% antibiotics (penicillin/streptomycin, ThermoFisher, Carlsbad, CA, USA) up
to passage 38. Vero E6 cells (African green monkey kidney epithelial cells) were used as the
gold standard for viral isolation and propagation and were used in a few experiments as a
positive control for efficient SARS-CoV-2 infection. Vero E6 cells culture medium consisted
of Dulbecco’s Modified Eagle Medium (DMEM, ThermoFisher, Carlsbad, CA, USA) formu-
lated with D-glucose (4.5 g/L, Sigma-Aldrich, St. Louis, MO, USA), L-Glutamine (3.9 mM,
Sigma-Aldrich, St. Louis, MO, USA) supplemented with 100× penicillin-streptomycin
solution (to final 100 U/mL and 100 µg/mL, respectively, ThermoFisher, Carlsbad, CA,
USA), and inactivated FBS (USDA-qualified region FBS) at 10%. Both cell and viral cultures
were incubated at 37◦C and 5% CO2 atmosphere.

2.2. SARS-CoV-2 Isolate

All the procedures associated with the viral isolation and further infection assays were
performed in a biosafety level-3 laboratory in accordance with the WHO guidelines [35].
The SARS-CoV-2 isolate used in this study was previously obtained from a nasopharyngeal
swab sample collected from a COVID-19 patient diagnosed at Fiocruz COVID-19 regional
reference center for WHO, in March 2020, in Brazil, as part of the Brazilian Ministry
of Health surveillance system. The clinical sample was recovered from a patient that
developed a mild disease and fully recovered. Viral isolation was performed in Vero E6
cells, as previously described [36]. In addition, the isolate was characterized by transmission
electron microscopy [37]. The viral titer of the isolate was increased by an additional passage
in Vero E6 cells to obtain a working stock. The 50% Tissue Culture Infectious Dose (TCID50)
titer of the viral working stock was determined by limiting dilution and infection of Vero E6
cells. Genetic characterization of the isolate was performed by whole-genome sequencing,
and its genome is available in the Global initiative on sharing all influenza data (GISAID)
under the accession numbers EPI_ISL ID 427294 (https://www.epicov.org/ accessed on
10 August 2020), confirming its classification as the original Wuhan strain (Pango lineage
B.1.1.33). All procedures involving patient samples were approved by the Committee
of Ethics in Human Research of the Oswaldo Cruz Institute (registration number CAAE
68118417.6.0000.5248).

https://www.epicov.org/
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2.3. SARS-CoV-2 Challenge

Cells were previously cultured to obtain confluent monolayers for the moment of infec-
tion. After that, cells were washed once with PBS and further incubated with SARS-CoV-2
inoculums diluted in non-supplemented DMEM or medium 199, corresponding to in-
dicated multiplicities of infection (MOI) for one hour. After that, inoculums were re-
moved from cells and replaced by their appropriate supplemented medium with N-tosyl-
L-phenylalanine chloromethyl ketone (TPCK)-treated trypsin (Sigma-Aldrich, St. Louis,
MO, USA) at 1 µg/mL.

2.4. Viral Quantification

We evaluated the SARS-CoV-2 replication of infected cell cultures over time by mea-
suring the number of viral RNA copies in their culture media over time. Viral RNA was
extracted from 140 µL of cell-free culture media via QIAamp Viral RNA mini kit (Qiagen,
Hilden, Germany) according to the manufacturer’s instructions. Reverse transcription and
SARS-CoV-2 gene amplification were performed in one-step reactions with a quantitative
real-time PCR kit developed by Biomanguinhos Institute (Fiocruz, Rio de Janeiro, Brazil) in
an ABI 7500 thermocycler (Applied Biosystems, Carlsbad, CA, USA). As a quantification
standard, we used a SARS-CoV-2 plasmid control containing the reference sequence of the
viral envelope (E) gene with a known number of copies (IDT, Newark, NJ, USA). Therefore,
a concentration curve was prepared by performing serial dilutions of the plasmid.

2.5. RNA Libraries and Sequencing (RNA-Seq)

For RNA-Seq analysis, three independent replicates were prepared for each treatment
group, Mock, MOI 0.01-, and MOI 0.1-exposed HBMEC cultures, after 6 and 24 h. Total
RNA was isolated via the miRNeasy micro kit (Qiagen, Hilden, Germany) according to the
manufacturer’s instructions. The RNA was quantified by O.D. measurement before being
assessed for quality by chip-based capillary electrophoresis using Agilent 2100 Bioanalyzer
RNA 6000 Pico assays (Agilent Technologies, St Clara, CA, USA; Part # 5067-1513).

Libraries were prepared from 150 nanograms (ng) of DNA-free total RNA using the
Universal Plus mRNA-Seq Library Prep Kit (NuGEN Technologies, Inc., San Francisco,
CA, USA; Part # 0508-96). The quality and size distribution of the amplified libraries
was determined by chip-based capillary electrophoresis on Agilent 2100 Bioanalyzer High
Sensitivity DNA assays (Agilent Technologies; Part # 5067-4626). Libraries were quantified
using the Takara Library Quantification Kit (Shiga, Japan; Part # 638324). The libraries were
pooled at equimolar concentrations and diluted prior to loading onto a P3 flow cell (Illumina,
San Diego, CA, USA; Part # 20027800) with the P3 300 Cycle reagent kit (Illumina, San Diego,
CA; Part # 20038732) on the NextSeq2000 instrument (Illumina, San Diego, CA, USA).

2.6. RNA-Seq Data Analysis

Reads: R1 and R2 were trimmed 12 nucleotides (nt) to remove low-quality sequences.
Bases with a quality score of less than Q20 were trimmed off the right end of each R1 and
R2. Illumina adapter sequences were trimmed from the 3′-end of both R1 and R2 reads.
Read pairs, in which the mate in the pair was less than 30 nt after trimming, were discarded.
These quality-filtered reads were then used for alignment.

Sequence alignment was performed using HISAT2 [38] version 2.0.5 with the
following settings:

hisat2
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tions were read in 7500 StepOne Plus from the Oswaldo Cruz Institute. Primer sequences 
for Drp1, Fis1, ZO-1, claudin-5, HIF-1α, Mfn2, MFF, and TOMM20 are provided in Table 
S1. For the E gene and Spike1 RT-qPCR, we used the protocols described in [45] and [46], 
respectively. For the remaining genes, 100 ng of total RNA was used for Taqman reactions 
using primer probes from ThermoFisher (Carlsbad, CA, USA): Hs00242739_m1 (LTB); 
Hs00174128_m1 (TNF); Hs00232399_m1 (RELB); Hs00357891_s1 (JUNB); Hs00759776_s1 
(FOSL1); Hs00765730_m1 (NFKB1); Hs00174103_m1 (CXCL8); Hs00601975_m1 (CXCL2); 
Hs00236937_m1 (CXCL1); Hs00173615_m1 (PTX3); Hs00174961_m1 (EDN1); 
Hs00299953_m1 (SERPINE2); and Hs01028889_g1 (NFKB2). GAPDH (Hs02786624_g1) 
was used for sample normalization. Gene expression variations were assessed by the 2ΔΔCt 
method, with Ct as the cycle number at the threshold. Desired PCR result specificity was 
determined based on melting curve evaluation. 
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R2. Illumina adapter sequences were trimmed from the 3′-end of both R1 and R2 reads. 
Read pairs, in which the mate in the pair was less than 30 nt after trimming, were dis-
carded. These quality-filtered reads were then used for alignment. 

Sequence alignment was performed using HISAT2 [38] version 2.0.5 with the follow-
ing settings: 

hisat2 --end-to-end -N 1 -L 20 -i S,1,0.5 -D 25 -R 5 --pen-noncansplice 12 --mp 6,3 --sp 
3,0 --time --reorder --known-splicesite-infile [SPLICESITES] --novel-splicesite-outfile 
splicesites.novel.txt --novel-splicesite-infile splicesites.novel.txt -q –x [hsa38 HISAT2  
INDEX] -1 [FASTQ1] -2 [FASTQ2] -S [SAMOUT]. The read summarization program fea-
tureCounts [39] version 1.5.1 was used for exon- and gene-level counting. An Ensembl 
human version 83 GTF file (downloaded from Ensembl Biomart on 22 January 2016) was 
used for the determination of exon boundaries and the exon–gene relationship during 
counting. The summarization level used for exon and gene counting was the feature and 
the meta-feature, respectively. The feature-Counts is available in the Subread package at 
http://subread.sourceforge.net, accessed on 20 November 2021 [39]. 

To determine differential gene expression and due to the low coefficient of biological 
variation, paired comparisons were performed between the untreated control (UC) and 
MOIs 0.01- and 0.1-treated HBMEC cells at the 6 and 24 h timepoints, using an additive 
linear model with the untreated group as the blocking factor. Differential gene expression 
analysis was performed using the EdgeR R package [40]).  

The top differentially expressed genes have consistent UC vs. MOI 0.1 changes for 
the three replicates at 5% FDR, and an absolute log2 fold change of 0.6 was considered a 
cut-off to generate the DEG list. Computed z-scores of significant genes are represented 
in the heatmap. Heatmap was plotted using the ComplexHeatmap R package [41]. 

2.7. Downstream RNA-Seq Analysis 
We used a list of genes differentially expressed between MOI 0.1 SARS-CoV-2-ex-

posed and untreated HBMEC cells. The pathway enrichment and interaction networks 
analysis were performed using clusterProfiler and gprofiler2 R packages [42,43]. Overlap-
ping gene sets from reactome pathway terms were visualized as a chord plot using the 
GOplot R [44]. 
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tem (ThermoFisher, Carlsbad, CA, USA), and 0.5 μL of cDNA was used per RT-qPCR 
reaction with Power SYBR Green (ThermoFisher, Carlsbad, CA, USA) master mix. Reac-
tions were read in 7500 StepOne Plus from the Oswaldo Cruz Institute. Primer sequences 
for Drp1, Fis1, ZO-1, claudin-5, HIF-1α, Mfn2, MFF, and TOMM20 are provided in Table 
S1. For the E gene and Spike1 RT-qPCR, we used the protocols described in [45] and [46], 
respectively. For the remaining genes, 100 ng of total RNA was used for Taqman reactions 
using primer probes from ThermoFisher (Carlsbad, CA, USA): Hs00242739_m1 (LTB); 
Hs00174128_m1 (TNF); Hs00232399_m1 (RELB); Hs00357891_s1 (JUNB); Hs00759776_s1 
(FOSL1); Hs00765730_m1 (NFKB1); Hs00174103_m1 (CXCL8); Hs00601975_m1 (CXCL2); 
Hs00236937_m1 (CXCL1); Hs00173615_m1 (PTX3); Hs00174961_m1 (EDN1); 
Hs00299953_m1 (SERPINE2); and Hs01028889_g1 (NFKB2). GAPDH (Hs02786624_g1) 
was used for sample normalization. Gene expression variations were assessed by the 2ΔΔCt 
method, with Ct as the cycle number at the threshold. Desired PCR result specificity was 
determined based on melting curve evaluation. 
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R2. Illumina adapter sequences were trimmed from the 3′-end of both R1 and R2 reads. 
Read pairs, in which the mate in the pair was less than 30 nt after trimming, were dis-
carded. These quality-filtered reads were then used for alignment. 

Sequence alignment was performed using HISAT2 [38] version 2.0.5 with the follow-
ing settings: 

hisat2 --end-to-end -N 1 -L 20 -i S,1,0.5 -D 25 -R 5 --pen-noncansplice 12 --mp 6,3 --sp 
3,0 --time --reorder --known-splicesite-infile [SPLICESITES] --novel-splicesite-outfile 
splicesites.novel.txt --novel-splicesite-infile splicesites.novel.txt -q –x [hsa38 HISAT2  
INDEX] -1 [FASTQ1] -2 [FASTQ2] -S [SAMOUT]. The read summarization program fea-
tureCounts [39] version 1.5.1 was used for exon- and gene-level counting. An Ensembl 
human version 83 GTF file (downloaded from Ensembl Biomart on 22 January 2016) was 
used for the determination of exon boundaries and the exon–gene relationship during 
counting. The summarization level used for exon and gene counting was the feature and 
the meta-feature, respectively. The feature-Counts is available in the Subread package at 
http://subread.sourceforge.net, accessed on 20 November 2021 [39]. 

To determine differential gene expression and due to the low coefficient of biological 
variation, paired comparisons were performed between the untreated control (UC) and 
MOIs 0.01- and 0.1-treated HBMEC cells at the 6 and 24 h timepoints, using an additive 
linear model with the untreated group as the blocking factor. Differential gene expression 
analysis was performed using the EdgeR R package [40]).  

The top differentially expressed genes have consistent UC vs. MOI 0.1 changes for 
the three replicates at 5% FDR, and an absolute log2 fold change of 0.6 was considered a 
cut-off to generate the DEG list. Computed z-scores of significant genes are represented 
in the heatmap. Heatmap was plotted using the ComplexHeatmap R package [41]. 
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We used a list of genes differentially expressed between MOI 0.1 SARS-CoV-2-ex-

posed and untreated HBMEC cells. The pathway enrichment and interaction networks 
analysis were performed using clusterProfiler and gprofiler2 R packages [42,43]. Overlap-
ping gene sets from reactome pathway terms were visualized as a chord plot using the 
GOplot R [44]. 
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microgram of total RNA was reversely transcribed into cDNA via the SuperScript III sys-
tem (ThermoFisher, Carlsbad, CA, USA), and 0.5 μL of cDNA was used per RT-qPCR 
reaction with Power SYBR Green (ThermoFisher, Carlsbad, CA, USA) master mix. Reac-
tions were read in 7500 StepOne Plus from the Oswaldo Cruz Institute. Primer sequences 
for Drp1, Fis1, ZO-1, claudin-5, HIF-1α, Mfn2, MFF, and TOMM20 are provided in Table 
S1. For the E gene and Spike1 RT-qPCR, we used the protocols described in [45] and [46], 
respectively. For the remaining genes, 100 ng of total RNA was used for Taqman reactions 
using primer probes from ThermoFisher (Carlsbad, CA, USA): Hs00242739_m1 (LTB); 
Hs00174128_m1 (TNF); Hs00232399_m1 (RELB); Hs00357891_s1 (JUNB); Hs00759776_s1 
(FOSL1); Hs00765730_m1 (NFKB1); Hs00174103_m1 (CXCL8); Hs00601975_m1 (CXCL2); 
Hs00236937_m1 (CXCL1); Hs00173615_m1 (PTX3); Hs00174961_m1 (EDN1); 
Hs00299953_m1 (SERPINE2); and Hs01028889_g1 (NFKB2). GAPDH (Hs02786624_g1) 
was used for sample normalization. Gene expression variations were assessed by the 2ΔΔCt 
method, with Ct as the cycle number at the threshold. Desired PCR result specificity was 
determined based on melting curve evaluation. 
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R2. Illumina adapter sequences were trimmed from the 3′-end of both R1 and R2 reads. 
Read pairs, in which the mate in the pair was less than 30 nt after trimming, were dis-
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human version 83 GTF file (downloaded from Ensembl Biomart on 22 January 2016) was 
used for the determination of exon boundaries and the exon–gene relationship during 
counting. The summarization level used for exon and gene counting was the feature and 
the meta-feature, respectively. The feature-Counts is available in the Subread package at 
http://subread.sourceforge.net, accessed on 20 November 2021 [39]. 

To determine differential gene expression and due to the low coefficient of biological 
variation, paired comparisons were performed between the untreated control (UC) and 
MOIs 0.01- and 0.1-treated HBMEC cells at the 6 and 24 h timepoints, using an additive 
linear model with the untreated group as the blocking factor. Differential gene expression 
analysis was performed using the EdgeR R package [40]).  

The top differentially expressed genes have consistent UC vs. MOI 0.1 changes for 
the three replicates at 5% FDR, and an absolute log2 fold change of 0.6 was considered a 
cut-off to generate the DEG list. Computed z-scores of significant genes are represented 
in the heatmap. Heatmap was plotted using the ComplexHeatmap R package [41]. 
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tem (ThermoFisher, Carlsbad, CA, USA), and 0.5 μL of cDNA was used per RT-qPCR 
reaction with Power SYBR Green (ThermoFisher, Carlsbad, CA, USA) master mix. Reac-
tions were read in 7500 StepOne Plus from the Oswaldo Cruz Institute. Primer sequences 
for Drp1, Fis1, ZO-1, claudin-5, HIF-1α, Mfn2, MFF, and TOMM20 are provided in Table 
S1. For the E gene and Spike1 RT-qPCR, we used the protocols described in [45] and [46], 
respectively. For the remaining genes, 100 ng of total RNA was used for Taqman reactions 
using primer probes from ThermoFisher (Carlsbad, CA, USA): Hs00242739_m1 (LTB); 
Hs00174128_m1 (TNF); Hs00232399_m1 (RELB); Hs00357891_s1 (JUNB); Hs00759776_s1 
(FOSL1); Hs00765730_m1 (NFKB1); Hs00174103_m1 (CXCL8); Hs00601975_m1 (CXCL2); 
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was used for sample normalization. Gene expression variations were assessed by the 2ΔΔCt 
method, with Ct as the cycle number at the threshold. Desired PCR result specificity was 
determined based on melting curve evaluation. 
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R2. Illumina adapter sequences were trimmed from the 3′-end of both R1 and R2 reads. 
Read pairs, in which the mate in the pair was less than 30 nt after trimming, were dis-
carded. These quality-filtered reads were then used for alignment. 

Sequence alignment was performed using HISAT2 [38] version 2.0.5 with the follow-
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human version 83 GTF file (downloaded from Ensembl Biomart on 22 January 2016) was 
used for the determination of exon boundaries and the exon–gene relationship during 
counting. The summarization level used for exon and gene counting was the feature and 
the meta-feature, respectively. The feature-Counts is available in the Subread package at 
http://subread.sourceforge.net, accessed on 20 November 2021 [39]. 
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variation, paired comparisons were performed between the untreated control (UC) and 
MOIs 0.01- and 0.1-treated HBMEC cells at the 6 and 24 h timepoints, using an additive 
linear model with the untreated group as the blocking factor. Differential gene expression 
analysis was performed using the EdgeR R package [40]).  

The top differentially expressed genes have consistent UC vs. MOI 0.1 changes for 
the three replicates at 5% FDR, and an absolute log2 fold change of 0.6 was considered a 
cut-off to generate the DEG list. Computed z-scores of significant genes are represented 
in the heatmap. Heatmap was plotted using the ComplexHeatmap R package [41]. 
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reaction with Power SYBR Green (ThermoFisher, Carlsbad, CA, USA) master mix. Reac-
tions were read in 7500 StepOne Plus from the Oswaldo Cruz Institute. Primer sequences 
for Drp1, Fis1, ZO-1, claudin-5, HIF-1α, Mfn2, MFF, and TOMM20 are provided in Table 
S1. For the E gene and Spike1 RT-qPCR, we used the protocols described in [45] and [46], 
respectively. For the remaining genes, 100 ng of total RNA was used for Taqman reactions 
using primer probes from ThermoFisher (Carlsbad, CA, USA): Hs00242739_m1 (LTB); 
Hs00174128_m1 (TNF); Hs00232399_m1 (RELB); Hs00357891_s1 (JUNB); Hs00759776_s1 
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determined based on melting curve evaluation. 
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R2. Illumina adapter sequences were trimmed from the 3′-end of both R1 and R2 reads. 
Read pairs, in which the mate in the pair was less than 30 nt after trimming, were dis-
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Sequence alignment was performed using HISAT2 [38] version 2.0.5 with the follow-
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variation, paired comparisons were performed between the untreated control (UC) and 
MOIs 0.01- and 0.1-treated HBMEC cells at the 6 and 24 h timepoints, using an additive 
linear model with the untreated group as the blocking factor. Differential gene expression 
analysis was performed using the EdgeR R package [40]).  

The top differentially expressed genes have consistent UC vs. MOI 0.1 changes for 
the three replicates at 5% FDR, and an absolute log2 fold change of 0.6 was considered a 
cut-off to generate the DEG list. Computed z-scores of significant genes are represented 
in the heatmap. Heatmap was plotted using the ComplexHeatmap R package [41]. 
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tions were read in 7500 StepOne Plus from the Oswaldo Cruz Institute. Primer sequences 
for Drp1, Fis1, ZO-1, claudin-5, HIF-1α, Mfn2, MFF, and TOMM20 are provided in Table 
S1. For the E gene and Spike1 RT-qPCR, we used the protocols described in [45] and [46], 
respectively. For the remaining genes, 100 ng of total RNA was used for Taqman reactions 
using primer probes from ThermoFisher (Carlsbad, CA, USA): Hs00242739_m1 (LTB); 
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was used for sample normalization. Gene expression variations were assessed by the 2ΔΔCt 
method, with Ct as the cycle number at the threshold. Desired PCR result specificity was 
determined based on melting curve evaluation. 
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using primer probes from ThermoFisher (Carlsbad, CA, USA): Hs00242739_m1 (LTB); 
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the meta-feature, respectively. The feature-Counts is available in the Subread package at
http://subread.sourceforge.net, accessed on 20 November 2021 [39].

To determine differential gene expression and due to the low coefficient of biological
variation, paired comparisons were performed between the untreated control (UC) and
MOIs 0.01- and 0.1-treated HBMEC cells at the 6 and 24 h timepoints, using an additive
linear model with the untreated group as the blocking factor. Differential gene expression
analysis was performed using the EdgeR R package [40]).

The top differentially expressed genes have consistent UC vs. MOI 0.1 changes for the
three replicates at 5% FDR, and an absolute log2 fold change of 0.6 was considered a cut-off
to generate the DEG list. Computed z-scores of significant genes are represented in the
heatmap. Heatmap was plotted using the ComplexHeatmap R package [41].

2.7. Downstream RNA-Seq Analysis

We used a list of genes differentially expressed between MOI 0.1 SARS-CoV-2-exposed
and untreated HBMEC cells. The pathway enrichment and interaction networks analysis
were performed using clusterProfiler and gprofiler2 R packages [42,43]. Overlapping gene
sets from reactome pathway terms were visualized as a chord plot using the GOplot R [44].

2.8. RT-qPCR

Cells were grown in 60 mm2 dishes, and total RNA was extracted with Trizol reagent
(ThermoFisher, Carlsbad, CA, USA), according to the manufacturer’s instructions. One
microgram of total RNA was reversely transcribed into cDNA via the SuperScript III system
(ThermoFisher, Carlsbad, CA, USA), and 0.5 µL of cDNA was used per RT-qPCR reaction
with Power SYBR Green (ThermoFisher, Carlsbad, CA, USA) master mix. Reactions were
read in 7500 StepOne Plus from the Oswaldo Cruz Institute. Primer sequences for Drp1, Fis1,
ZO-1, claudin-5, HIF-1α, Mfn2, MFF, and TOMM20 are provided in Table S1. For the E gene
and Spike1 RT-qPCR, we used the protocols described in [45] and [46], respectively. For the
remaining genes, 100 ng of total RNA was used for Taqman reactions using primer probes
from ThermoFisher (Carlsbad, CA, USA): Hs00242739_m1 (LTB); Hs00174128_m1 (TNF);
Hs00232399_m1 (RELB); Hs00357891_s1 (JUNB); Hs00759776_s1 (FOSL1); Hs00765730_m1
(NFKB1); Hs00174103_m1 (CXCL8); Hs00601975_m1 (CXCL2); Hs00236937_m1 (CXCL1);
Hs00173615_m1 (PTX3); Hs00174961_m1 (EDN1); Hs00299953_m1 (SERPINE2); and
Hs01028889_g1 (NFKB2). GAPDH (Hs02786624_g1) was used for sample normalization.
Gene expression variations were assessed by the 2∆∆Ct method, with Ct as the cycle num-
ber at the threshold. Desired PCR result specificity was determined based on melting
curve evaluation.

2.9. Western Blotting

HBMECs were cultivated in 60 mm2 dishes and, at desired times, were washed with
PBS and lysed in the presence of 1× Laemmli Buffer (0.0625M Tris, 0.07M SDS, 10% glycerol,
5% β-mercaptoethanol, and bromophenol blue). Protein concentration was measured
with BCA Protein Assay Kit according to the manufacturer’s instructions (Thermo Fisher
Scientific, Carlsbad, CA, USA). Then, 30 µg of protein were loaded onto 4–20% gradient
acrylamide gels (Bio-Rad Laboratories, Hercules, CA, USA). Membranes were blocked with
bovine serum album (BSA) 5% in TBS-0.05% Tween20 and incubated overnight at 4 ◦C
with the primary antibodies at 1:1000 dilution in TBST (Table S2). The next day, blots were
washed with TBS-0.05% Tween20, incubated for 1 h at room temperature with secondary
antibodies (Lincoln, NE, USA), and analyzed using the Licor CLX imaging system and the
Image Studio 4.0 software (LI-COR, NE, USA).

2.10. Immunofluorescence

Cells were grown on 13-mm round glass coverslips and fixed at desired times with
4% paraformaldehyde in PBS for 10 min at 20 ◦C, permeabilized with 0.5% Triton x-100
(Sigma–Aldrich, St. Louis, MO, USA), blocked with 3% bovine serum albumin (BSA,
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Sigma-Aldrich, St. Louis, MO, USA), and incubated overnight with primary antibodies
at 4 ◦C. Cells were washed with PBS and incubated with fluorescently labeled secondary
antibodies for 1 h at 37 ◦C. For nuclear visualization, cells were incubated with DAPI
(4′,6-diamidino-2-phenylindole) and mounted in a solution of glycerol and DABCO (1,4-
diazabicyclo [2.2.2]octane, Sigma-Aldrich, St. Louis, MO, USA) in PBS. The list of primary
and secondary antibodies used in this study is detailed in Table S2.

2.11. Quantitative Analysis of Mitochondrial Network Morphology

Mitochondrial network morphology was analyzed using the Mitochondrial Network
Analysis Tool (MiNA) for the Fiji distribution of ImageJ [47]. Images were cropped into indi-
vidual cells. To enhance contrast and sharped mitochondrial images, several pre-processing
tools were applied to each image prior to MiNA analysis. First, an unsharp mask (sigma = 3)
was used to sharpen images by subtracting a blurred version of the image (i.e., unsharp
mask) from the image. The unsharp mask is created by Gaussian blurring the original
image and multiplying the blurred image by the mask weight (0.8). Second, a median filter
(radius = 1) was applied to each image. The median filter functions by replacing each pixel
with the neighborhood median, where the neighborhood size is determined by the radius.
Following pre-processing, images underwent thresholding using the Otsu thresholding to
produce a binary image [48]. The mitochondrial footprint is calculated as the total number of
mitochondria-signal positive pixels from the binarized image. A morphological skeleton
is then produced from the binarized image using the Skeletonize 2D/3D plug-in [49,50].
This method employs iterative thinning to create a skeleton of mitochondrial structures,
one pixel wide. Length measurements of the mitochondrial structures are then measured
using the Analyze Skeleton plug-in, resulting in two additional parameters: mean branch
length and mean summed branch length. Mitochondrial form branching networks, in which
branches intersect at a node. The mean branch length is calculated as the mean length of
mitochondrial structure between two nodes. Mean summed branch length is calculated
by determining the sum of branch lengths within an independent network structure and
dividing by the total number of independent networks within a cell.

2.12. Angiogenesis-Related Protein Secretome

For the generation of HBMEC Conditioned Medium (CM), cells were plated on 6-well
plates and, after infection, were maintained in a total volume of 1 mL per well. Conditioned
culture media were collected at 24 h post-infection (hpi) and centrifuged for 5 min at
10,000 rpm at 4 ◦C and stored at −80 ◦C until use. Secretion of angiogenesis-related
protein levels was detected using a Proteome Profiler™ Human Angiogenesis Antibody
Array kit (R&D Systems) according to the manufacturer’s instructions. Membranes were
incubated with pools of two independent experiments as follows: Membrane 1: Mock
culture, experiment #1 + Mock culture, experiment #2; Membrane 2: MOI 0.01 experiment
#1 + MOI 0.01 experiment #2; Membrane 3: MOI 0.1 experiment #1 + MOI 0.1 experiment
#2). Spots were developed with chemoluminescence, and X-ray films were exposed for
1, 5, 10, and 15 min to detect differentially expressed proteins. Densitometric analysis
was performed with UN-SCAN-IT gel analysis software version 7.1, and relative intensity
values for each spot of the 1-min exposed film were analyzed via GraphPad Prism software
version 9.0.1.

2.13. Transmission Electron Microscopy

Cells were grown on 35 mm Petri dishes and infected or treated as described above. At
the desired time, cultures were washed in PBS, fixed with 2.5% glutaraldehyde diluted in
0.1 M cacodylate buffer with 3.5% sucrose and CaCl2 for 1 h at 20 ◦C, followed by washes in
cacodylate buffer and post-fixation with 1% osmium tetroxide with potassium ferricyanide
for one hour at 4 ◦C in the dark. Cells were dehydrated in a crescent acetone gradient and
embedded in Epon resin at 60 ◦C for 72 h. Ultrathin sections were obtained with Leica
ultramicrotome and collected in 300-mesh copper grids, stained with uranyl acetate and
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lead citrate, and visualized at Hitachi Transmission Electron Microscope at Centro Nacional
de Bioimagem (CENABIO-UFRJ).

2.14. Statistical Analyses

For RT-qPCR and western blotting, a minimum of 5 independent cell culture prepa-
rations were used and analyzed with Two-Way ANOVA with Bonferroni post-test in
GraphPad Prism Software v 9.3.1. Morphometrical analysis of ZO-1 immunostaining was
performed with ImageJ software for fluorescence intensity and Tight Junction Organization
Rate (TiJOR) using the TiJOR macro for ImageJ, which is an index of localization of tight
junction proteins in the membrane–membrane contact region of adjacent cells as described
by [51].

3. Results
3.1. Characterization of HBMEC Challenge by SARS-CoV-2

In order to characterize the profile of host cell infectivity by SARS-CoV-2, HBMEC
and Vero E6 cells were challenged with viral particles in the presence or not of serine
endoprotease TPCK trypsin (1µg/mL), which was shown to increase infectivity in Calu-3
cells, a permissive cell line for the efficient replication of SARS-CoV-2 [52]. Cultures were
exposed to different multiplicities of infection (MOIs) of 0.01, 0.1, 1, and 2, and supernatants
were collected after 6, 24, 48, and 72 h and analyzed by RT-qPCR for quantification of viral
E gene (Figure 1A). We found that HBMECs showed no increase in viral replication or
release in the supernatant over time, whereas Vero E6 cells had a time-dependent release
of SARS-CoV-2 in the supernatant, as expected (Figure 1A). TPCK trypsin treatment did
not affect the cell infectivity rates; however, for consistency, all subsequent assays were
performed in the presence of TPCK. In the same context, HBMECs challenged with different
MOIs did not show any increase in the expression of SARS-CoV-2 Spike1 and E genes after
6 and 24 h (Figure 1B). We showed recently that HBMEC cells express, to some extent,
several SARS-CoV-2 receptors at both RNA and protein levels [8]. Therefore, we evaluated
the possible effect of SARS-CoV-2 exposure on the expression of ACE2 and TMPRSS2 in
HBMECs and found that exposure to MOI 0.1 induced a 40% decrease in ACE2 mRNA
expression (p < 0.05), which did not result in ACE2 protein level alterations (Figure 1C).
However, TMPRSS2 showed a 1.77-fold increase in protein levels in MOI 0.1-infected
cultures at 24 hpi (p = 0.0782). Despite the apparent non-productive infection of HBMEC,
a challenge with SARS-CoV-2 for 24 h was able to increase immunoreactivity to cleaved
caspase-3, an executioner of apoptosis (Figure 1D). MOIs 0.01 and 0.1 resulted in 2.27
and 4.1% of caspase-3-positive cells, respectively, whereas non-infected dishes showed a
physiological rate of 0.7% of stained cells. The apoptotic stimulus was also observed in
Vero E6 cells 24 h after the challenge with MOI 0.1 (Figure 1D). Positive control with 0.5 and
2.0 µg Staurosporine for 2 h led to 1.9 and 9% of caspase-3 positive HBMECs, respectively
(not shown).

3.2. SARS-CoV-2 Affects Tight Junction Genes Expression in BBB-Forming Cells

The barrier property of BMECs is mostly conferred by the expression and function of
tight junction proteins, such as ZO-1 and claudin-5 [53]. HBMEC and Vero E6 cells were
infected as described above and analyzed at 6 and 24 hpi. ZO-1 immunoreactivity was
drastically altered in infected Vero cultures (Figure 2A) and showed discontinuous staining
in cell-cell contacts, as compared to uninfected controls. SARS-CoV-2 viral particles were
clearly detected in Vero cells, as revealed by Spike1 immunoreactivity. Conversely, infected
HBMEC cultures did not present significant differences in the distribution of ZO-1 along cell
membranes at 24 hpi (Figure 2A). To better evaluate ZO-1 organization in TJ, we performed
densitometric (ZO-1 fluorescence intensity) and tight junction organization rate (TiJOR) [51]
analyses in SARS-CoV-2-exposed HBMECs. We observed that ZO-1 presented a significant
1.29-fold increase in TiJOR index with exposure to MOI 0.1 at 6 hpi, concomitantly with a
1.3-fold increase in fluorescence signal, and such effects were lost after 24 h. In parallel, MOI
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0.01 affected the ZO-1 fluorescence signal in HBMECs after 24 h of exposure by 1.19-fold
(Figure 2B). ZO-1 and claudin-5 mRNA expression remained unaltered in HBMECs after 6
and 24 h of the SARS-CoV-2 challenge (Figure 2C), but their protein levels were significantly
increased by 2.0- and 1.17-fold by the MOI 0.1 at 24 h, respectively (Figure 2D).
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Figure 1. Characterization of infectivity profile of HBMECs and Vero cells by SARS-CoV-2. (A) Cells
were exposed to different MOIs of SARS-CoV-2 (variant D614G) and viral production, and release to
supernatant was analyzed by RT-qPCR for Envelope (E) gene from 0 to 72 h post-infection (hpi). As
compared to Vero cells, HBMECs showed a non-productive infection. (B) At desired time points (6
and 24 hpi), total RNA from HBMEC cultures and expression of Spike1 and E genes were analyzed by
RT-qPCR. HBMECs exposed to MOI 0.1 showed an increase in the expression of these two transcripts
at 24 hpi (p > 0.05). (C) Evaluation of SARS-CoV-2 receptors expression in HBMECs after SARS-CoV-2
challenge. ACE2 mRNA had a significant decrease at 24 hpi with the MOI 0.1, which did not
translate to protein levels (right panel). TMPRSS2 had a slight increase in protein content at 24 hpi.
(D) Exposure to SARS-CoV-2 increased immunoreactivity for cleaved caspase-3 in Vero cells and
HBMECs at 24 hpi. *: p < 0.05; ****: p < 0.0001, Two-Way ANOVA with Bonferroni post-test of at least
five independent experiments.
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Figure 2. Effects of SARS-CoV-2 on tight junctional proteins in Vero and HBMECs. (A): Cells
were stained for tight junction adaptor protein ZO-1 (red) and SARS-CoV-2 Spike1 (in green).
ZO-1 was affected in infected cultures at 24 hpi, as shown in higher magnification in the insets.
(B): Morphometrical analyses of ZO-1 fluorescence intensity and TiJOR in HBMECs (B) showed
increased ZO-1 signal and TiJOR index 6 h after exposure to the MOI 0.01. Levels of mRNA encoding
for ZO-1 and claudin-5 TJ genes remained unaffected by SARS-CoV-2 challenge (C), but a significant
increase 6 h after exposure to MOI 0.1 was observed at the protein level (D). *: p < 0.05 one-way
ANOVA with Bonferroni post-test (in (D)) or two-way ANOVA with Bonferroni post-test (in (B,C));
***: p < 0.001; ****: p < 0.0001, Two-Way ANOVA with Bonferroni post-test. Each symbol in (C,D) cor-
responds to independent cultures, and in (B) corresponds to microscopic field from four independent
cultures. Representative blots in (D) from 3–4 independent experiments.

3.3. Exposure to SARS-CoV-2 Promotes Endothelial Activation and Hyper-Inflammatory Response
In Vitro

We performed RNA-Seq analyses 6 and 24 h after exposing HBMECs to SARS-CoV-2
to determine their transcriptional profiles. At 6 h, biological replicas had high variability
across experiments, as determined by the square root of the common dispersion and
visualized by principal component analysis (not shown). Exposure to both MOIs 0.01 and
0.1 led to minimal effect on HBMEC’s transcriptome, with few significantly differentially
expressed genes (DEGs) and no pathways enrichment found (Supplementary Material).
However, at 24 h, we observed a significant impact on host cell transcriptome: exposure
to SARS-CoV-2 MOI 0.1 led to the up-regulation of 23 and down-regulation of four genes.
The volcano plot and heatmap in Figure 3A,B, respectively, depict the transcriptomic
profile of HBMECs exposed to the MOI 0.1 at 24 hpi. Data obtained from RNA-Seq was
consistent with endothelial activation, with high expression levels of cytokines (IL-6, IL-8,
TNF) and chemokine (CXCL1, -2, -8, and CCL20) encoding genes (Figure 3). Accordingly,
functional enrichment analysis revealed that the main genes found related to “Cytokine
signaling in the immune system”, “TNF signaling”, and “TNFR1-induced NFkappaB
signaling pathway”, among other Reactome terms (Figure 3C). In fact, TNF was the most
up-regulated gene, with a 104-fold increase, followed by TNF-c (Lymphotoxin beta, LTB),
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with a 32.8-fold change (Figure 3, Table 1). Interestingly, LTB is a known inducer of
the noncanonical NFκB inflammatory pathway [54] and was found to be up-regulated
both at 6 and 24 h in SARS-CoV-2-exposed HBMEC by RT-qPCR (Figure 3E). Although
our RNA-Seq data revealed an increase in NFκB2 (p100/p52) and NFκBIA (IκBα), we
performed RT-qPCRs with additional biological samples for NF-κB1 (p105/p50) and NF-
κB2 and observed that due to biological variability such genes remained unaltered in
challenged cultures (Figure 3D). However, RELB, the main activator of the noncanonical
NF-κB signaling pathway [54], was shown to be up-regulated by confirmatory RT-qPCR at
24 h (Figure 4). We also further confirmed by RT-qPCR the up-regulation of inflammation-
related genes, including LTB, TNF, IL-6, CXCL1, CXCL2, and CXCL8 (Figure 3E). Pentraxin3
(PTX3) is a glycoprotein involved in the innate immune response and has a relevant role
in FGF2-dependent angiogenesis [55]. We found PTX3 to be 19.6-fold-increased in SARS-
CoV-2-exposed HBMECs (Figures 3A and 4). Apart from the inflammatory transcriptomic
response, KEGG pathways related to ribosomal structure/function and mitochondrial
biology were found to be altered by SARS-CoV-2-exposed HBMECs at 24 h (Figure 3D).

Table 1. Differentially expressed genes after 24 h of HBMEC exposure to MOI 0.1.

Gene Name Symbol Fold-Change (Log) p Value FDR

Uncategorized gene RP11-298I3.3 −2.19 0.00001795234598 0.04214061886

ankyrin repeat domain 36C ANKRD36C −1.42 0.000000005528613831 0.00002495701339

upstream transcription factor
family member 3 USF3 −0.76 0.00002036226065 0.04595918861

SMG1 nonsense mediated
mRNA decay associated

PI3K related kinase
SMG1 −0.75 0.000002651386726 0.007779698933

nuclear factor kappa B
subunit 2 NFKB2 0.64 0.00002117775188 0.04602945153

E74 like ETS transcription
factor 3 ELF3 0.82 0.00001027948854 0.02601045479

ephrin A1 EFNA1 0.82 0.0000001766175517 0.0006096837885

Epstein–Barr-virus-induced 3 EBI3 0.87 0.000005771957935 0.01612959902

intercellular adhesion
molecule 1 ICAM1 0.97 0 0.0000005593411357

complement C3 C3 1.01 0.000000004506547278 0.00002203851837

NFKB inhibitor alpha NFKBIA 1.05 0 0.00000008288304584

C-C motif chemokine ligand 2 CCL2 1.14 0.000000002315586268 0.00001235344223

baculoviral IAP repeat
containing 3 BIRC3 1.27 0.00000002052506134 0.00007528079373

zinc finger CCCH-type
containing 12A ZC3H12A 1.29 0 0.0000003145723235

RELB proto-oncogene,
NF-kB subunit RELB 1.30 0 0.00000008288304584

Uncharacterized protein AC010646.3 1.31 0.0000103901062 0.02601045479

interleukin 6 IL6 1.36 0 0.00000002581261588

TNF alpha induced protein 3 TNFAIP3 1.38 0.00000001761165902 0.00006890150651

TNF alpha induced protein 2 TNFAIP2 1.42 0.000001921435199 0.005934605433

C-X-C motif chemokine
ligand 2 CXCL2 1.79 0 0
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Table 1. Cont.

Gene Name Symbol Fold-Change (Log) p Value FDR

TNF superfamily member 18 TNFSF18 1.95 0.0000106374977 0.02601045479

C-X-C motif chemokine
ligand 1 CXCL1 2.24 0 0

C-X-C motif chemokine
ligand 3 CXCL3 2.32 0.0000000001312489102 0.0000007702211048

C-C motif chemokine ligand 20 CCL20 3.50 0.000000007991169552 0.00003349669957

pentraxin 3 PTX3 4.30 0 0

lymphotoxin beta LTB 5.04 0 0
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Figure 3. Transcriptomic profiling of SARS-CoV-2 challenge on HBMECs. Cells were exposed to
MOIs 0.01 and 0.1 and analyzed by RNA-Seq. (A) Volcano plot depicting the overall profile of
differentially expressed genes in cultures after 24 h exposure to the MOI 0.1, with up-regulated genes
shown in purple and down-regulated—in green. (B) Heatmap diagram depicting expression levels of
the most significantly altered genes by MOI 0.1 (3 right columns), as compared to uninfected controls
(3 left columns). (C) Cnetplot visualization of functional enrichment results with up-regulated genes,
depicting the functional correlation of genes with the most significant GO terms. (D) Enrichment
functional analysis of GO terms most affected by SARS-CoV-2 challenge in HBMECs indicates
inflammatory endothelial activation, as well as mitochondrial dysfunction and ribosomal-related
gene expression. (E) RT-qPCR validation of most significantly altered genes detected in the RNA-Seq
indicates activation of non-canonical NF-κB pathway, with massive increase in TNF-α, lymphotoxin
B (LTB, or TNF-C), and downstream target genes, such as IL-6, CXCL1, -2, and -8. NFKB1 (p105/p50)
and NFKB2 (p100/p52), as well as JUNB, showed no significant alteration in SARS-CoV-2-exposed
cultures. *: p < 0.05; **: p < 0.01; ****: p < 0.0001, two-way ANOVA with Bonferroni post-test of at
least 5 independent experiments. MOI: multiplicity of infection; GO: gene ontology.
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phiregulin, with at least 5000 pixels each. SARS-CoV-2-exposed cultures (MOI 0.1) had 
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Figure 4. Production of angiogenic-related molecules is modulated by SARS-CoV-2 in HBMECs.
(A) Conditioned medium from Mock and SARS-CoV-2-exposed HBMEC cultures (both with MOI
0.01 and 0.1) were analyzed via Proteome Profiler Human Angiogenic Antibody Array and detected
by chemoluminescence, each protein detected in duplicated spots. (B) Densitometric analysis of
membranes in (A) revealed the analytes with the strongest signal and which were affected by the
SARS-CoV-2 challenge. Spots labelled 1-15 in (A) correspond to the analytes depicted in (B). (C)
RT-qPCR analysis of angiogenesis-related genes in HBMECs revealed that PTX3 and HIF-1α were
increased following SARS-CoV-2 exposure. *: p < 0.05; **: p < 0.01, two-way ANOVA with Bonferroni
post-test of at least five independent experiments.

3.4. Angiogenic Profiling of SARS-CoV-2-Exposed HBMEC Cells

Dysfunctional angiogenesis is a common phenomenon observed in neuroinflammatory
states and can be a result of BBB damage [56]. We analyzed the profile of angiogenesis-
related secreted proteins by HBMECs during the challenge with SARS-CoV-2 and ob-
served that out of 55 spotted targets, 15 had the most significantly detectable signals
(Figure 3A,B, Table 2). The highest signals were observed for uPA, serpin-E1 (PAI-1), IL-8,
thrombospondin-1, VEGF, TIMP-1, endothelin-1 (ET-1), PTX3, angiogenin, and amphireg-
ulin, with at least 5000 pixels each. SARS-CoV-2-exposed cultures (MOI 0.1) had the most
pronounced increase in the secretion of PTX-3 and TIMP-1 as compared to Mock-treated
cultures, with 113 and 112% levels, respectively. Accordingly, PTX-3 was also one of the
most up-regulated genes as determined by RNA-Seq (Figure 3). We further assessed the
expression levels of PTX3 by RT-qPCR and found it to be increased in HBMEC cultures
after 6 and 24 h exposure with the MOI 0.1, whereas VEGF and ET-1 showed no significant
changes at the transcriptional level (Figure 4C). Insulin-like growth factor binding protein-3
(IGFBP-3), a member of the IGFBP family, was shown to be 166 and 125% more abundant
in the HBMEC-conditioned media in MOI 0.01 and 0.1-treated dishes, respectively. Inter-
estingly, monocyte chemoattractant protein 1 (MCP-1) had a selective increase in secreted
levels in HBMEC cultures exposed to MOI 0.01, shifting from 4549 pixels in Mock-treated
cultures to 7624 pixels in MOI 0.01-exposed cultures, which corresponds to a 1.67-fold
increase; whereas MOI 0.1-exposed cultures showed a 4759-pixel signal for MCP-1. We
performed scratch-wound healing migration assays in infected HBMECs; however, no
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effect in cellular migration was noticed in challenged cultures compared to Mock-treated
cultures (not shown). Interestingly, hypoxia-inducible factor-1 alpha (HIF-1α) was also
increased by SARS-CoV-2 challenge at both MOIs at 24 hpi (Figure 4C).

Table 2. Differentially secreted angiogenic proteins in SARS-CoV-2-exposed HBMECs.

Analyte Name (Alternate
Nomenclature)

Gene ID
Foreground Pixel Intensity (Fold Change Relative to Mock)

Mock MOI 0.01 MOI 0.1

Activin-A 3624 55.5 32.5 (0.6) 88.5 (1.63)

ADAMTS-1 9510 25.5 12.5 (0.52) 45.5 (1.88)

Angiogenin (ANG) 283 6427 7818 (1.21) 6553 (1.01)

Angiopoietin-1 (Ang-1) 284 147 86 (0.59) 155 (1.07)

Angiopoietin-2 (Ang-2) 285 39.5 12 (0.32) 79.5 (2.08)

Angiostatin/ Plasminigen 5340 144.5 10 (0.07) 74 (0.52)

Amphiregulin (AR) 374 5797 6744 (1.16) 5064.5 (0.87)

Artemin 9048 144.5 143 (0.99) 64 (0.46)

Coagulation Factor III (TF) 2152 818 887 (1.08) 622 (0.76)

CXCL16 58,191 3387.5 3976.5 (1.17) 2521.5 (0.74)

DPPIV (CD26) 1803 72.5 1.5 (0.03) 203 (2.83)

EGF 1950 16.5 18 (1.15) 40.5 (2.60)

EG-VEGF (PK1) 84,432 188.5 164 (0.88) 257 (1.38)

Endoglin (CD105) 2022 17.5 17.5 (1.05) 74.5 (4.40)

Endostatin/ Collagen XVIII 80,781 3827 4747.5 (1.24) 3931.5 (1.02)

Endothelin-1 (ET-1) 1906 9087.5 9213 (1.01) 9007.5 (0.99)

FGF acidic (FGF-1) 2246 475 69.5 (0.15) 472.5 (1)

FGF basic (FGF2) 2247 16.5 5 (0.36) 4.5 (0.42)

FGF-4 2249 0.5 −1 36.5 (78.0)

FGF-7 (KGF) 2252 77.5 15.5 (0.21) 180 (2.34)

GDNF 2668 101 82 (0.82) 105 (1.06)

GM-CSF 1437 419.5 275 (0.65) 241.5 (0.58)

HB-EGF 1839 71 32.5 (0.47) 134 (1.92)

HGF 3082 10.5 11 (1.14) 25.5 (2.66)

IGFBP-1 3484 4841.5 4901 (1.01) 4684.5 (0.96)

IGFBP-2 3485 118 22.5 (0.19) 154.5 (1.33)

IGFBP-3 3486 3203 5335.5 (1.66) 3991 (1.24)

IL-1β (IL-1F2) 3553 512 470.5 (0.92) 695.5 (1.36).

IL-8 (CXCL8) 3576 10,875.5 10,484.5 (0.96) 10,744 (0.98)

LAP (TGF B1) 7040 292.5 219.5 (0.75) 102 (0.35)

Leptin 3952 1 44 (45.0) 43.5 (46.0)

MCP-1 (CCL2) 6347 4549 7624 (1.67) 4759 (1.04)

MIP-1A (CCL3) 6348 123 103 (0.84) 149 (1.23)

MMP-8 4317 418 510.5 (1.22) 841.5 (2.01)

MMP-9 4318 298.5 106.5 (0.36) 206 (0.69)

NRG1-B1 (HRG1-β1) 3084 256 107.5 (0.42) 320 (1.25)
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Table 2. Cont.

Analyte Name (Alternate
Nomenclature)

Gene ID
Foreground Pixel Intensity (Fold Change Relative to Mock)

Mock MOI 0.01 MOI 0.1

Pentraxin-3 (TSG-14) 5806 7509.5 7263.5 (0.96) 8523 (1.13)

PD-ECGF 1890 441 310 (0.70) 600 (1.36)

PDGF-AA 5154 1411.5 2129.5 (1.50) 1736.5 (1.23)

PDGF-AB/ PDGF-BB 5155 923.5 878 (0.95) 1161 (1.25)

Persephin 5623 565.5 375.5 (0.66) 490.5 (0.87)

Platelet Factor 4 (CXCL4) 5196 261.5 150.5 (0.58) 283.5 (1.09)

PIGF 5228 50.5 14 (0.29) 90 (1.83)

Prolactin 5617 7 49 (7.14) 57 (8.5)

Serpin B5 (Maspin) 5268 604 578 (0.95) 694 (1.15)

Serpin-E1 (PAI-1) 5054 10,979.5 10,955.5 (0.99) 11,590.5 (1.05)

Serpin-F1 (PEDF) 5176 422.5 327.5 (0.77) 476 (1.13)

TIMP-1 7076 9548 9156 (0.95) 10,696 (1.12)

TIMP-4 7079 446.5 292.5 (0.65) 656.5 (1.47)

Thrombospondin-1 (TSP-1) 7057 9842 9012 (0.91) 9727.5 (0.98)

Thrombospondin-2 (TSP-2) 7058 688 929 (1.35) 837 (1.22)

uPA 5328 12,865 13,396.5 (1.04) 14,065 (1.09)

Vasohibin 22,846 253 172 (0.68) 268 (1.06)

VEGF 7422 9700.5 9954 (10.2) 10,559.5 (1.08)

VEGF-C 7424 0.5 0 37 (79.0)

Analytes in bold had at least 3000 pixels and were considered as valid signals, as shown in Figure 4.

3.5. Mitochondrial Plasticity Is Affected by Exposure to SARS-CoV-2

Because mitochondria play a role in cellular homeostasis and pathology, we sought
to investigate the effects of the SARS-CoV-2 challenge on mitochondrial plasticity in HB-
MECs. Cells were immunostained for mitochondrial import receptor subunit TOMM20
(Figure 5A). Our first observation was that MOIs 0.01 and 0.1 induced a denser mito-
chondrial network profile when compared to the Mock-treated condition (Figure 5A–C).
Mitochondrial Network Analysis (MiNA) [47] revealed that mitochondrial footprint (Fig-
ure 5C), which measures the mitochondria signal in a 2-dimensional image of a cell, was
found to be significantly increased in HBMECs challenged with the MOI 0.1 at 6 h and with
both MOIs at 24 h. We next measured the mean mitochondrial branch length mean, which is
the average length of mitochondrial structures that are either independent or connected to
networks (Figure 5C). We observed a slight, yet significant, increase in cells exposed to MOI
0.01 at 6 h and with MOI 0.1 at 24 h, with a 7 and 3% increase, respectively. Furthermore,
MiNA revealed that SARS-CoV-2 induced an overall increase in mitochondrial networks,
with a significant increase in summed branch length mean values at 6 (34 and 33% increase
for MOIs 0.01 and 0.1, respectively) and 24 hpi (38 and 45% increase for MOIs 0.01 and
0.1, respectively). Mitochondrial morphological analyses were further assessed by TEM
(Figure 5B), and we found that challenged HBMECs displayed larger, swollen mitochondria
with reduced cristae and, to some extent, associated with multivesicular bodies. Moreover,
MOI 0.1-treated cultures displayed 356 mitochondria/mm2, while Mock-infected cultures
had 266 mitochondria/mm2 (p < 0.05), which corresponded to a 33% increase (Figure 5D).
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used to determine mitochondrial networks by confocal microscopy and MiNA analysis 
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Figure 5. SARS-CoV-2-induced mitochondrial remodeling in HBMECs. Mitochondrial networks
were detected by TOMM20 immunostaining (A) and TEM (B). MiNA analysis of TOMM20 revealed
that exposure to SARS-CoV-2 induced an increase in mitochondrial footprint, branch length mean,
and summed branch length (C). Mitochondrial density was calculated by TEM images (D), which
also revealed increased fusion and association with multivesicular bodies (B). (E): RT-qPCR (upper
panel) and western blotting (lower panel) analyses revealed that although fission-related genes (Fis1
and Drp1) were up-regulated in MOI 0.01-exposed cultures, only Mfn2 protein levels were increased
in MOI 0.1-exposed cultures. TOMM20 protein levels also remained unaltered. *: p < 0.05; **: p < 0.01;
****: p < 0.0001, two-way ANOVA with Bonferroni post-test. Each symbol in graphs represents one
cell (C), one mitochondrion (D), or one independent experiment (E). Bottom right panels depict blots
from (E). Scale bars: 50 µm for (A) and 500 nm for (B).

Since changes in mitochondrial networks could be influenced by abnormal fission or
fusion events [57], we evaluated the expression of markers of such processes. TOMM20,
used to determine mitochondrial networks by confocal microscopy and MiNA analysis
(Figure 5A,C), had a four-fold increase in its mRNA level (p > 0.05) in MOI 0.01-exposed
cells. However, no changes were detected in TOMM20 protein levels by western blotting
(Figure 5E). We then assessed the expression of mitochondrial fission-related genes. Fis1
and Drp1 mRNA were significantly increased by 4-fold and 3-fold, respectively, at 24 hpi in
HBMECs exposed to the MOI 0.01, which did not translate to changes in Fis1 and Drp1
protein content (Figure 5E). Drp1 phosphorylation at serine 616 (Drpi1S616) residue, which is
responsible for directing mitochondrial fission [58], was not altered in SARS-CoV-2-exposed
cultures. Mitochondrial Fission Factor (MFF) showed a 0.84-fold reduction induced by MOI
0.1 at 24 hpi, which also did not reflect in altered protein expression. However, Mitofusin-2
(Mfn2) mRNA levels showed a 4-fold increase by MOI 0.01 at 24 h (p = 0.02), while Mfn2
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protein levels were increased by 1.5-fold in MOI 0.1-exposed cultures as compared to
Mock-treated (Figure 5E).

4. Discussion

Neurological consequences of COVID-19 still pose a relevant puzzle to the medical
and scientific community. Since its first cases, CNS invasion has been described [59,60], but
the routes and mechanisms by which SARS-CoV-2 gains entry to brain parenchyma remain
elusive [61]. In the present study, we aimed to deepen previous observations of our group
that exposure to SARS-CoV-2 proteins led to HBMEC cellular responses, such as tight
junction protein remodeling [8]. Despite our previous observation that primary HBMECs
express several receptors for the virus [8], we found little to no indication of productive
viral replication in the supernatants of HBMECs, which is in accordance with previous
reports that described that several endothelial cell types are not permissive for SARS-CoV-
2 productive infection [62,63]. Krasemann et al. [64] observed infection of iPS-derived
HBMECs but only at MOIs 10 and 100, which are unlikely to have pathological significance.

Exposure to SARS-CoV-2 did not affect the expression of ACE2 and TMPRSS2, and,
despite the apparent lack of productive infection, exposure to SARS-CoV-2 increased
cleaved caspase-3 immunoreactivity, an indicator of apoptotic cell death. This effect was
observed both in HBMECs and Vero epithelial cells and is consistent with what was
described in the literature [65]. In fact, HBMECs have been shown to undergo cell death in
response to viral infections, including Dengue [66] and Zika [67,68] viruses, followed or
not by changes in BBB permeability. These results suggest that the interaction of host cells
with viral surface proteins may be sufficient to trigger programmed cell death cascades
even in the absence of a productive infection.

Tight junction proteins have a crucial role in maintaining BBB integrity and its selective
paracellular permeability [53]. In our study, SARS-CoV-2-infected Vero E6 cells showed
marked disorganization of paracellular tight junctions, as shown by ZO-1 immunostaining.
Previous studies described that treatment of HBMECs in 2D or 3D cultures with the S1
subunit Spike1 protein led to mislocalization of ZO-1, concomitantly with cytokine secre-
tion [33,69]. Not only ZO-1 [70] but also β-catenin, cadherin-5ccludingcludin junctional
proteins have recently been shown to be affected by SARS-CoV-2 proteins in HUVECs [71].
ZO-1 possesses a PDZ domain, which is responsible for binding and interacting with
other proteins [72,73]. Interestingly, ACE2 possesses a PDZ-binding domain [74,75], and
it has been suggested that epitopes of viral proteins, such as 1–60: M1Lys60 and 241–300:
Ala240-Glu300 could directly bind to ZO-1 and VCAM-1 PDZ domains, thus suggesting a
possible alternative route of CNS entry. We found ZO-1 and claudin-5 protein levels to be
increased after 24 h of SARS-CoV-2 exposure in HBMECs, and this increase is consistent
with what our group recently demonstrated with S1 treatment [8]. Whether ZO-1 increase
can be directly related to BBB permeability may vary among experimental models and
infectious agents. We have described that the Honduras isolate of Zika virus selectively
up-regulated ZO-1 expression in vitro, while BBB permeability was increased in vivo [67].
In fact, proper BBB functioning relies on the combined expression, phosphorylation, and/or
localization of ZO-1, -2, and -3, claudin-5, occludins, and tricellulin [76,77]. Direct infection
with higher MOIs of SARS-CoV-2 or treatment with plasma from COVID-19 patients failed
to induce significant increases in permeability in BMECs in vitro [78]. Conversely, using
the K18 mouse model and hamster infection, Zhang et al. [79] showed that SARS-CoV-2
effectively infects and replicates in HBMECs, but leads to no change in BBB permeability
and TJ proteins. Interestingly, a massive inoculation of iPS-derived HBMECs (MOIs 10 and
100) showed active viral replication, whereas MOIs 0.1 and 1 described infectivity near
0.6% cells, which is similar to what we observed herein [64].

Following the initial characterization of the cellular effects of HBMECs after the
SARS-CoV-2 challenge, we sought to characterize the transcriptomic landscape of BBB-
forming cells after such treatment. Previous data from our group have demonstrated
that primary HBMECs exposed to the S1 subunit of SARS-CoV-2 Spike1 protein led to
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alterations in tight junction gene/protein expression [8]. Therefore, our aim was to deepen
the knowledge of what molecular pathways are affected by SARS-CoV-2 proteins. We
performed RNA-Seq analyses of HBMECs after 6 and 24 h challenges with SARS-CoV-2
MOIs 0.1 and 0.01. Due to the low change in the overall host cell transcriptome with most
of the experimental conditions used in this study, we focused our subsequent analyses
of the MOI 0.1 treatment at 24 hpi. The majority of the significantly up-regulated genes
corresponded to known endothelial activation pathways, including CXCL1, -2, -3, CCL20,
PTX3, ICAM1, and TNF. Combined upregulation of LTB, TNF, and RELB by SARS-CoV-2
provided evidence that activation of the non-canonical NF-κB pathway activation may be
taking place. NF-κB is a family of transcription factors that can be activated by several
ligands and activates the expression of proinflammatory cytokines and chemokines [80].
Interestingly, the main protease of SARS-CoV-2 (Mpr◦) cleaves a member of the NF-κB
family, NEMO, which, in turn, leads to HBMEC cell death in vitro and in vivo [81]. RELB
can form heterodimers with p50/p105, p52/p100, and p65 [54,82] but can also bind to sir-
tuin1 to direct epigenetic silencing of inflammatory gene expression [83,84]. In fact, among
KEGG pathways enriched in our datasets, we found ribosomal structure and function as
possible candidates for epigenetic regulation induced by SARS-CoV-2. These observations
suggest that host epigenetic factors may be key for the outcome of COVID-19 and/or long
COVID-19. Indeed, the promoters of the genes involved in inflammation, including NF-κB,
can be demethylated, thereby resulting in an increased expression of interferons (IFNs), pos-
sibly leading to a “cytokine storm” [85]. The expression of IL-6, another important player
in the so-called cytokine storm occurring in the most severe COVID-19 patients, was also
significantly increased in infected HBMEC, and it is known to be modulated by its promoter
methylation. It was also observed that oxidative stress induced by viral infections, including
SARS-CoV-2 infection, can inhibit the maintenance of DNA methyltransferase-1 (DNMT1),
thereby aggravating the DNA methylation defects [86–88]. Our preliminary results (not
shown) indicate that HBMEC exposure to SARS-CoV-2 results in a decrease in DNA methy-
lation, supporting a recent study of genome-wide DNA methylation analysis in peripheral
blood of COVID-19-infected individuals, which identified marked epigenetic signatures,
such as hypermethylation of IFN-related genes and hypomethylation of inflammatory
genes [89]. Such observations further suggest the involvement of epigenetic regulatory
mechanisms in COVID-19 [90]. MCP-1, a pro-inflammatory chemokine well-known to be
increased in COVID-19 patients [91–95], was also found to be increased in SARS-CoV-2-
exposed HBMEC conditioned media, as detected by mini-proteome assays. Accordingly,
recent findings from our group show that both delta and D614G Spike1 proteins are capable
of inducing MCP-1 release from HBMECs (Stangis and Toborek et al., unpublished data).
MCP-1 plays a key role in leukocyte migration to the brain parenchyma [96] and can be
used as a biomarker of HIV-1-induced neuroinflammation/neuropathogenesis [97,98].

As stated above, PTX3 was one of the main hits found in the transcriptomic analyses.
Pentraxins are a superfamily of multifunctional proteins with conserved phylogeny [99],
divided into two groups based on their primary structure: short and long pentraxin, where
c-reactive protein and PTX are examples of short and long pentraxins, respectively. PTX3 is
expressed in several neural cell types [100–104] and in endothelial cells and can be upregu-
lated by inflammatory stress, such as cytokine stimulation [105]. We performed profiling
of angiogenesis-related panels in the supernatants of SARS-CoV-2-challenged HBMEC
and confirmed that PTX3 was increased by this treatment. PTX3 is known to be produced
in high amounts by blood vessels in vascular inflammatory conditions [106] and inhibits
FGF2-dependent angiogenesis [55,107]. Pathological vascularization and angiogenesis
have been described as a unique comorbidity associated with SARS-CoV-2 infection in
the pulmonary endothelium [108], including microvascular distortion and increased intus-
susceptive angiogenesis [109,110]. Moreover, VEGF, as well as other angiogenic-related
analytes, were found to be increased in COVID-19 patients (including PTX3), which cor-
related with disease severity [111]. Accordingly, VEGF levels were 8% increased in the
supernatants of SARS-CoV-2-exposed HBMECs, even though vegf transcripts remained
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unaltered. It is well-known that inflammation, especially IL-6-dependent, can stimulate
defective angiogenesis [112], and our data further contributes to the notion that following
SARS-CoV-2 infection, there is an intense brain endothelial activation, which leads to defec-
tive angiogenic signaling and possibly endothelial permeability. Additionally, we found
HIF-1α to be greatly increased after 24 h of treatment. HIF-1α is a major angiogenesis
inductor and is known to be up-regulated by distinct viral infections (reviewed by [113]).
HIF-1α is activated and translocated to the nucleus upon hypoxic conditions [114], and
it has been shown that COVID-19 patients present massive hypoxia due to vasoconstric-
tion and coagulopathy [115]. Interestingly, ACE2 expression is decreased in pulmonary
smooth muscle cells upon HIF-1α accumulation [116], whereas hypoxia leads to a biphasic
modulation of both ACE2 and TMPRSS2 expression on brain microvascular endothelial
cells (hCMEC/D3), with an initial increase at 6 h and a decrease at 48 h of hypoxic stimulus
cells [117]. These observations are in accordance with our present data, that ACE2 is
decreased while HIF-1α is increased at 24 hpi. Although VEGF is one of the most described
downstream targets of HIF-1α activation, apoptotic cell death, and IFN-stimulated gene
expression are additional targets of HIF-1α activation [113], which can also be dependent
on NF-κB signaling pathway [118]. Our data indicate that HIF-1α up-regulation can be
a part of a SARS-CoV-2-induced endothelial activation, along with cytokine/chemokine
stimulation and NF-κB non-canonical activation.

Our final series of experiments focused on mitochondrial morphology and dynamics
in HBMECs following SARS-CoV-2 exposure. It is well known that mitochondria are gate-
keepers of BBB endothelium physiology and correspond to higher cytoplasmic volume as
compared to non-cerebrovascular endothelial cells [119,120]. Moreover, mitochondrial func-
tion is important for BBB maintenance and integrity [121]. It was described that SARS-CoV
encodes a protein named open reading frame-9b (ORF-9b), which localizes to mitochondria,
increases Drp1-mediated mitochondrial elongation, and activates innate cellular response
via MAVS signalosome [122]. We first employed a morphological/morphometrical ap-
proach to determine the mitochondrial contents and cellular distribution. Herein we
demonstrated that direct exposure to SARS-CoV-2 led to a remodeling of mitochondrial
networks. By using the MiNA plugin, we verified that challenged HBMECs had increased
mitochondrial footprint as an estimation of the overall TOMM20 pixel signal. Recent
reports have also shown an effect of SARS-CoV-2 and COVID-19 on mitochondrial biology:
monocytes isolated from COVID-19 patients display reduced mitochondrial membrane
potential, and SARS-CoV-2 viral load was positively correlated with the generation of
ROS [123]. Importantly, endothelial cells exposed to SARS-CoV-2 Spike1 protein showed
decreased tubular and increased fragmented mitochondrial networks in vitro, which was
accompanied by a decrease in oxygen consumption rate and increased extracellular acidifi-
cation rate [124]. Confirming observation was recently described by Domizio et al. [125], in
which pulmonary endothelial cells in a lung-on-a-chip infection model displayed increased
mitochondrial networks. Similarly, we demonstrated that mitochondrial networks were
increased, as determined by summed branch length analyses, which indicates that SARS-
CoV-2-exposed HBMECs had longer mitochondrial ramifications. Changes in endothelial
mito-morphology are well described in several models of inflammatory diseases and/or
aging [126–128] and are correlated with abnormalities in the mitochondrial quality control
system, which in turn, can lead to increased ROS production. Mitochondrial quality control
encompasses biogenesis, fission, fusion, and mitophagy processes, which are essential
for its biology and function. We analyzed mitochondrial fusion and fission markers af-
ter exposing HBMECs to different concentrations of SARS-CoV-2. Our results showed
a significant increase in the fission and fusion-related gene expression Fis1, Drp1, and
Mfn2 and a trend to increase MFF when cells were exposed to MOI 0.01. Interestingly,
this effect is opposite when cells are exposed to MOI 0.1, showing a significant decrease
in the MFF mRNA levels as well as a trend to decrease Fis1, Drp1, and Mfn2, possibly
as a compensatory mechanism. However, Mfn2 was the only mitochondrial plasticity
marker, which showed a significant increase in protein levels in HBMECs exposed to MOI
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0.1, which could explain the increased values in morphometric MiNA data that revealed
increased branch length means. Confirming our results, several studies had shown the
relationship between endothelial cell dysfunction and mitochondria fusion and fission
balance in response to cellular damage [128–131]. Moreover, we found mitochondria
associated to some extent with multivesicular bodies, which has also been described as
another pathway for mitochondrial quality control [132,133]. Interestingly, several reports
have linked NF-κB-mediated inflammation with mitochondrial responses [134–137], which
could indicate that, in fact, mitochondrial remodeling observed in infected HBMECs could
be due to (or lead to) SARS-CoV-2-induced inflammatory response.

5. Conclusions

Despite no active replication or signs of productive infection, exposure to SARS-CoV-2
leads brain microvascular endothelial cells to a proinflammatory activation, possibly me-
diated by NF-κB non-canonical pathway activation. These events would result in mi-
tochondrial and tight junction remodeling and endothelial apoptosis. Taken together,
our data point to a relevant role of circulating SARS-CoV-2 viral particles or proteins
on BBB-forming endothelial cells, which could contribute to a neuroinflammatory state.
These events reflect important aspects of clinical observations of neurological and cerebral
vascular manifestations of COVID-19.
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