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Abstract

Introduction—Non-alcoholic fatty liver disease (NAFLD) has become the most common 

etiology for abnormal aminotransferase levels and chronic liver disease. Its growing prevalence is 

largely linked to the presence of metabolic syndrome, particularly diabetes and insulin resistance. 

It is estimated that 60–80% of the type 2 diabetic population has NAFLD. NAFLD encompasses a 

range of conditions ranging from simple steatosis to nonalcoholic steatohepatitis (NASH). A 

subset of patients with hepatic steatosis progress to NASH, while 15–20% of patients with NASH 

develop cirrhosis. This progression is thought to be multifactorial, and there are currently no FDA-

approved medications for the treatment of NASH.

Areas covered—We review drugs currently in Phase II and III clinical trials for treatment of 

NAFLD and NASH, including their mechanisms of action, relationship to the pathophysiology of 

NASH, and rationale for their development.

Expert opinion—The treatment of NASH is complex and necessitates targeting a number of 

different pathways. Combination therapy, preferably tailored toward the disease stage and severity, 

will be needed to achieve maximum therapeutic effect. With multiple agents currently being 

developed, there may soon be an ability to effectively slow or even reverse the disease process in 

many NAFLD/NASH patients.
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1. Background

Nonalcoholic fatty liver disease (NAFLD) is the most common cause of abnormal 

aminotransferase levels and has overtaken chronic hepatitis C infection to become the most 

common etiology of chronic liver disease and cirrhosis especially in certain ethnic groups in 

the United States [1,2]. Its prevalence has been steadily increasing, particularly in the last 

quarter century, likely reflecting the rising prevalence of obesity, type II diabetes, and insulin 

resistance in the general population [3–5]. It is estimated that NAFLD affects 30% of the 

general population and 60–80% of the type 2 diabetic population [6]. NAFLD includes a 

spectrum of conditions ranging from incidental hepatic steatosis with minimal inflammation 

also termed as nonalcoholic fatty liver (NAFL), which is the non-progressive subtype to 

nonalcoholic steatohepatitis (NASH), which is the progressive subtype of NAFLD. NAFL is 

considered by many experts to be ‘the new component’ of metabolic syndrome, while 

NASH is the advanced form that requires an early intervention. It has generally been thought 

that NAFL will have a benign clinical course [7], while 15–20% of patients with NASH 

progress to cirrhosis. However, recent studies have suggested that it is not only NASH that 

can progress to fibrosis. NAFL may, as well [7,8]. One study showed that there is a 1-stage 

fibrosis progression over 14.3 years for patients with NAFL compared to 7.1 years for 

patients with NASH. Presence of hypertension and low aspartate aminotransferase (AST): 

alanine aminotransferase (ALT) ratio at baseline biopsy were associated with fibrosis 

progression [8].

While several biomarkers and imaging techniques can help distinguish NAFL from NAFLD 

with fibrosis, the distinction between NAFL and NASH can only be definitively made 

through biopsy. Furthermore, NASH is a major risk factor for developing hepatocellular 

carcinoma (HCC) [9]. The pathophysiology of the development of NASH from NAFL is 

complex and not completely understood.

2. Medical need

There are currently no medications approved by the U.S. Food and Drug Administration for 

the treatment of NASH. First-line therapy targets lifestyle modification, particularly through 

diet and exercise. There is currently no universal consensus on the type of diet that NAFLD 

patients should follow. However, it has been recommended to increase the inclusion of 

omega-3 fatty acids and healthful foods such as fruit and vegetables. Reduction of intake of 

saturated fats, carbohydrates, and sweetened drinks (that include fructose) has been also 

suggested in NAFLD patients [10]. The American Association for the Study of Liver 

Diseases (AASLD) recommends weight loss of 3–5% of body weight to improve steatosis 

and up to 10% body weight loss to improve necroinflammation [11]. However, these goals 

might lead to only slight improvement, and it is likely that additional weight loss is required 

to accomplish significant beneficial effects. This extent of this weight loss is very difficult to 

Noureddin et al. Page 2

Expert Opin Emerg Drugs. Author manuscript; available in PMC 2018 April 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



achieve and maintain for many patients, bringing forth an urgent need for the development 

of pharmacologic treatment options.

Long-term outcomes in patients with NAFLD have been reported in several studies [9,12–

15]. These studies have shown that (1) patients with NAFLD have a higher mortality 

compared to matched control populations; (2) cardiovascular disease is the most common 

cause of death; and (3) patients with NASH have higher liver-related mortality. Therefore, 

the prevention and reversal of NASH have become an area of wide interest, as the prevalence 

of NAFLD is increasingly rapidly. Current areas of research to discover new treatments 

include areas that will lead to altering systemic targets related to insulin resistance, 

lipogenesis, steatosis, steatohepatitis, and fibrosis.

3. Existing treatment

The efficacies of vitamin E and pioglitazone were assessed in the landmark PIVEN trial 

which randomized 247 subjects with NASH without diabetes to receive (1) daily dose of 

pioglitazone 30 mg, (2) daily dose of vitamin E 800 IU, or (3) placebo for a total of 96 

weeks [16]. This study’s primary end point was improvement in histological features of 

NASH, specifically the NAFLD activity score (NAS) which includes in the scoring system 

for steatosis lobular inflammation and hepatocellular ballooning without worsening of 

fibrosis. The results of the study showed that while vitamin E yielded a higher rate of 

patients with improvement in the NAS score compared to placebo (43% vs. 19%), there was 

no difference in improvement with pioglitazone compared to placebo. Secondary outcomes 

included reductions in serum ALT and AST levels, decreases in hepatic steatosis and lobular 

inflammation, and resolution of NASH; both vitamin E and pioglitazone achieved 

significance for these secondary outcomes. Despite this trial showing improvement in 

histological features of NASH, the clinical use of vitamin E is limited by lack of knowledge 

about its long-term effects, as well as the need for studies in other patient populations such 

as patients with diabetes and known cirrhosis [17]. The use of pioglitazone is used sparingly, 

as its adverse effects include weight gain even after discontinuation of the drug, 

counteracting patients’ attempts for weight loss.

The bile derivative obeticholic acid (OCA, Intercept Pharmaceuticals, Inc., New York, New 

York), an activator of the farnesoid X nuclear receptor, underwent testing in the Farnesoid X 

Receptor Ligand Obeticholic Acid in NASH Treatment (FLINT) trial [18]. In this 72-week 

multicenter trial, 283 noncirrhotic NASH patients were randomized to receive either OCA 

25 mg daily or placebo for a total of 72 weeks. The primary end point was improvement in 

centrally scored liver histology defined as a decrease in the NAS by at least 2 points without 

worsening of fibrosis from baseline to the end of treatment. Due to a planned interim 

analysis at 24 weeks, which showed a relative −24% change (p = 0.0024) in ALT, treatment 

was discontinued in 64 patients. Fifty (45%) of the 110 OCA patients who were intended to 

have baseline and posttreatment biopsies showed improvement in NAS score; this is in 

comparison to 23 (21%) of the 109 in the placebo group (p = 0.0002). However, the 

resolution of definitive NASH did not differ between the two groups. The OCA treatment 

group showed increases in triglycerides and LDL cholesterol as well as a modest decrease in 

HDL, raising the necessity for long-term monitoring. Furthermore, 23% of the OCA group 
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reported pruritus. Although improvement in the liver histology provides encouraging results, 

long-term effects are unknown, as the improvement of liver enzymes regressed upon 

discontinuation of OCA. This suggests that to obtain the therapeutic benefit of OCA, long-

term administration is necessary. Further evaluation is imperative to determine long-term 

efficacy, safety, and tolerability.

Several small studies have evaluated the use of pentoxifylline on liver histology [19,20]. In 

one study, patients with NASH were given pentoxifylline 1200 mg daily for 1 year and 

found to have statistically significant reduction in steatosis and lobular inflammation 

compared to placebo using NAS [21]. Another trial also demonstrated improvement of 

steatosis and cellular ballooning (p < 0.05). Despite this histological improvement, 

metabolic parameters along with serum transaminases were not improved. Adverse effects 

reported included nausea and vomiting. Further studies are needed to explore its efficacy.

The AASLD guidelines recommend weight loss as first-line therapy. Vitamin E at a daily 

dose of 800 IU/day is first-line therapy for nondiabetic patients with NASH but is not 

recommended for patients with diabetes, NAFLD without liver biopsy, cirrhosis, or 

cryptogenic cirrhosis. Pioglitazone can be used for treatment with biopsy-proven NASH 

with careful consideration that the study population did not include diabetics and that long-

term safety is not established.

4. Current research goals

The currently available agents that were previously described have been shown to have 

unfavorable side effects and unknown long-term outcomes. As attempts for weight loss are 

often insufficient, new pharmacologic treatments are urgently needed. Existing research 

goals include discovering medications that lead to (1) NASH resolution with fewer side 

effects and favorable cardiovascular and metabolic effects; (2) reversal of fibrosis measured 

by reduction of portal pressure measurements, improving histological fibrosis, and/or 

preventing progression and decompensation.

5. Scientific rationale

In this review, we cover therapeutic agents that have shown some benefit in NASH and 

introduce new interventions currently in the clinical trial pipeline. The emphasis of the 

review is to highlight agents currently in the Phase 2/3 stage of clinical development and 

assess the basis of their mechanisms of action and the rationale for their development.

5.1. Pathophysiology of NASH

The pathophysiology that underlies the mechanisms for development of steatosis and 

progression to NASH is not fully defined although a number of theories have been proposed 

[22–24]. This paper is not intended to be an all-encompassing review discussing all the 

pathways involved, but rather to highlight several known pathways that upcoming 

therapeutic agents are targeting.
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It is generally accepted that the development of NAFLD requires a ‘first-hit’ which takes the 

form of hepatic fat accumulation. Hyperinsulinemia and insulin resistance, commonly 

associated with obesity and metabolic syndrome, lead to triglyceride accumulation in the 

liver. This overall process involves an imbalance of (1) lipolysis (hydrolysis of triglycerides 

into free fatty acids and glycerol) within adipose tissue; (2) dietary intake; and (3) de novo 
lipogenesis in the liver, coupled with dysregulation of handling of excess fat from the liver 

[22,23]. Free fatty acids can be used in various ways, including beta-oxidation, packing, and 

exportation from the liver as very-low-density lipoprotein (VLDL), or re-esterification to 

triglycerides and storage as fat droplets. Therefore, overall fat accumulation can arise from 

increased synthesis and import, decreased fat exportation, or a combination of both 

processes [25].

Beyond lipid accumulation, multiple ‘second hits’ are needed to trigger inflammation, 

cellular injury, and eventual fibrosis. Examples of ‘second hits’ include proinflammatory 

cytokines, oxidative stress, iron accumulation, mitochondrial dysfunction, alterations in the 

gut–liver axis, and endotoxins [22,23]. It is thought that an increase in reactive oxygen 

species (ROS) is one of the main culprits in NASH development. Metabolism of fatty acids 

primarily occurs in the liver through mitochondrial beta-oxidation; however, this enzymatic 

process can become overwhelmed with excessive levels of fatty acids. Once the 

mitochondria capacity is exhausted, beta-oxidation is shunted toward smooth endoplasmic 

reticulum and peroxisomes [26,27], which inadvertently creates by-products including ROS 

that cause oxidative stress and activation of proinflammatory pathways [28,29].

The presence of chronic inflammation is closely associated with progression of NAFL to 

NASH. This transition is heavily mediated through the transforming growth factor beta 

(TGF-β) signaling pathway which activates Kupffer cells and influences expression of 

proinflammatory cytokines including tumor necrosis factor-alpha (TNF-α), interleukin-6 

(IL-6), and IL-1β [30]. Serum levels of TNF-α have been found to be elevated in NASH 

patients [31,32] and correlate with histological severity [33]. TNF-α promotes insulin 

resistance [34] creating a vicious cycle of increasing hepatic steatosis. Of note, other 

signaling pathways including those regulated by farnesoid-X receptor (FXR), peroxisome 

proliferator-activated receptors (PPAR), vitamin D receptor (VDR), liver-X-receptor (LXR), 

and retinoid receptors are also being recognized as therapeutic targets for preventing and 

reversing NASH [35].

Activation of immune cells and alterations in the bacterial microbiome have also been 

implicated in the pathogenesis of NASH. Toll-like receptors (TLRs) play a critical role in the 

innate immune system by sensing bacterial and viral components, enabling the host to 

recognize invading pathogens and mount a host response. Stimulation of the TLRs triggers a 

proinflammatory cascade by the immune cell. Activation is appropriate in response to 

exposure to exogenous pathogens; however, in NASH, there is associated bacterial 

overgrowth and increased membrane permeability [36]. This results in exaggerated levels of 

TLR activation in the liver, leading to a continuous state of inflammation causing tissue 

injury [37]. Moreover, bacterial overgrowth results in production of alcohol [38] and 

lipopolysaccharides – both of which upregulate TNF-α production in hepatic Kupffer cells, 

furthering inflammation [39].
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The common final pathway for almost all chronic liver diseases including NASH leads to 

fibrosis, which is characterized by excessive extracellular deposition of collagen [40]. The 

end state of fibrosis known as cirrhosis has known complications related to portal 

hypertension and is a risk factor for HCC. Therefore, both the prevention and reversal of 

fibrosis present themselves as enticing therapeutic interventions. Potential targets include (1) 

reducing activation of hepatic stellate cells through PPAR regulation [41]; (2) inhibition of 

angiotensin which promotes myofibroblast survival [42]; (3) inhibition of interstitial cross-

linking of collagen; and (4) inhibition of other growth factors such as fibroblast growth 

factor (FGF), platelet-derived growth factor (PDGF), connective tissue growth factor 

(CTGF), and TGF β-1 [43,44].

6. Competitive environment

A large number of therapeutic agents are being tested in phase 2/3 clinical trials (see Table 

1). A search for medications under evaluation was performed using the clinicaltrials.gov 

clinical trial registry. In this review, treatments are divided into sections based on their 

targets within the pathophysiology of NASH. These include (1) systemic targets related to 

steatosis, glucose metabolism, and lipogenesis; (2) targets related to immune modulators; (3) 

targets related to oxidative stress; (4) targets related to fibrosis; and (5) targets related to 

apoptosis (Figure 1).

6.1. Targets related to steatosis, glucose metabolism, and lipogenesis

Aramchol (Galmed Pharmaceuticals, Tel Aviv, Israel) works as a fatty acid–bile acid 

conjugate and inhibitor of the stearoyl-coenzyme A desaturase 1 enzyme (SCD1) that is 

involved with modulation of hepatic fatty acid metabolism. By inhibiting SCD1, synthesis of 

fatty acids is reduced while beta-oxidation is increased, resulting in an overall decrease in 

hepatic stores of triglycerides and fatty acid esters [45,46]. In murine models, aramchol 

treatment reduced the amount of liver fat in NAFLD and decreased total liver lipids by about 

30% in 4 weeks (p < 0.03) [47]. A phase 2, randomized, double-blind, placebo-controlled 

trial enrolled 60 patients with biopsy-confirmed NAFLD (six with NASH) who were given 

aramchol 100 or 300 mg daily for 3 months [48]. While the decrease in liver fat was 

significant in the 300-mg/day group compared to placebo (12.57% decrease vs. 6.39% 

increase, p 0.02), the decrease seen in the aramchol 100-mg/day group did not reach 

statistical significance suggesting a dose–response relationship. Due to the short duration of 

the study, repeat biopsy was not warranted which prevented the study from being able to 

assess for change in fibrosis. A phase 2b trial is currently using higher doses of aramchol 

(400 and 600 mg) in patients with biopsy-confirmed NASH to assess changes in liver 

triglyceride concentration as measured by magnetic resonance spectroscopy (MRS) and 

safety and efficacy of the medication. ClinicalTrials.gov identifier: NCT02279524.

BMS-986036 (Bristol-Myers Squibb, New York, New York) acts as an agonist for FGFs, a 

group of proteins produced by the liver that have multiple metabolic functions including 

energy homeostasis, glucose-lipid metabolism, and insulin sensitivity [49]. FGF21 directly 

regulates lipid metabolism by reducing lipid accumulation in the liver and inhibiting the 

lipolysis of white adipose tissue, lessening the levels of circulating free fatty acids [50–52]. 
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FGFs further mitigate ‘multihits’ of the pathogenesis of NASH through reduction of 

oxidative stress, endoplasmic reticulum stress, chronic inflammation, and mitochondrial 

dysfunction [53]. Multiple murine model experiments have shown that administration of 

FGF21 significantly reverses hepatic steatosis while improving hepatic and peripheral 

insulin sensitivity, reducing body weight, and increasing overall energy expenditure [54–56]. 

A phase 2, double-blind, placebo-controlled trial is recruiting patients with biopsy-

confirmed NASH with elevated BMI > 30 to test for changes in hepatic fat fraction as 

measured by MRI and to assess the safety of BMS-986036. ClinicalTrials.gov identifier: 

NCT02413372.

Elafibranor (GFT505, Genfit, Lille, France) is a peroxisome proliferator-activated α/δ 
receptor agonist. PPARα/δ are nuclear receptors that have the potential to improve NASH 

through a multitude of mechanisms including increase of fatty acid oxidation, improvement 

of lipid profiles, and increase in insulin sensitivity, as well as through anti-inflammatory and 

antifibrogenic effects. In a mouse model of NASH, GFT505 significantly reduced serum 

ALT levels, decreased hepatic lipid accumulation, and inhibited proinflammatory (IL-1β, 

TNF-α, and F4/80) and profibrotic (TGF-β, tissue inhibitor of metalloproteinase 2, collagen 

type I, α1, and collagen type I, α2) gene expression [57]. In a phase 2 trial for GFT505, due 

to the unexpected rate of resolution of NASH in patients randomized to placebo who had 

early NASH (NAS score = 3), the study as initially designed did not enable the trial to meet 

the primary end point, reversal of steatohepatitis without worsening of fibrosis [58]. 

However, after correcting for baseline severity of fibrosis, GFT505 120 mg daily met the end 

point. These findings suggest a clinical benefit in patients with more advanced disease. 

GFT505 also showed beneficial effects on metabolic parameters including decreased plasma 

triglycerides, increased HDL, and improved insulin sensitivity. It was found to have a 

favorable safety profile, demonstrating no PPARγ activity to cause water retention or 

cardiac insufficiency. A phase 3 trial to evaluate the effect of elafibranor treatment compared 

to placebo on (1) histological improvement and (2) all-cause mortality and liver-related 

outcomes in patients with NASH and fibrosis has started. ClinicalTrials.gov identifier: 

NCT02704403.

Liraglutide (Novo Nordisk, Bagsværd, Denmark) is a glucagon-like peptide-1 (GLP-1) 

agonist that is widely used in the treatment of type 2 diabetes mellitus to improve glycemic 

control. GLP-1 improves glycemic control through various pathways including increasing 

insulin release and diminishing glucagon secretion [59,60]. In several studies, GLP-1 also 

directly improved hepatic steatosis [61–64]. In murine models, administration of a GLP-1R 

agonist to Lep(ob)/Lep(ob) mice significantly reduced body weight (8.3%), liver mass 

(14.2%), plasma ALT, and triglycerides [65]. The LEAN trial was a phase 2, multicenter, 

double-blind, placebo-controlled, randomized trial investigating the effects of 48-week 

treatment with liraglutide 1.8 mg on liver histology [66]. Posttreatment, follow-up liver 

biopsies showed that nine of 23 liraglutide patients (39%) had resolution of their NASH 

without worsening fibrosis using NAS, while this was seen in only two of 22 (9%) placebo 

patients. Treatment also showed an average 5 kg greater weight loss compared to placebo 

and 0.45% decrease in hemoglobin A1c, although these measures fell slightly short of 

statistical significance.
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Oltipraz is a synthetic dithiolethione that has an antisteatotic effect through inhibition of 

liver X receptor alpha (LXR-α) and disruption of LXR-α-dependent lipogenesis from 

hepatocytes. In a murine model, rats treated with oltipraz were found to have significant 

improvement in histology, as measured by decrease in liver fibrosis area and 

immunohistochemistry expression for alpha smooth muscle actin (α-SMA), an indicator for 

hepatic stellate cell activity [67]. In a phase 2, multi-center, randomized controlled trial, 

oltipraz in doses of 30 mg (n = 22) or 60 mg (n = 24) was given twice daily for a total of 24 

weeks [68]. There were dose-dependent absolute changes in liver fat content as measured by 

MRS: −3.21 ± 11.09% in the placebo group, −7.65 ± 6.98% in the low-dose group, and 

−13.91 ± 10.65% in the high-dose group. BMI and NAS were significantly decreased in the 

oltipraz 60-mg group compared to placebo. However, changes in insulin resistance, liver 

enzymes, and inflammatory cytokines were comparable among the groups.

Sitagliptin (Merck & Co., Inc., Kenilworth, New Jersey) functions as an inhibitor of 

dipeptidyl peptidase (DDP4), the enzyme that breaks down incretins GLP-1 and GIP. Like 

GLP-1 agonists, DDP4 inhibitors have been commonly used for treatment of patients with 

type 2 diabetes; however, its therapeutic value in NASH has been recently studied. In an 

open-label, single-arm, observational pilot study, 15 diabetics with NASH were administered 

1 year of treatment with sitagliptin 100 mg once daily and monitored for changes in liver 

histology, BMI, and laboratory measurements associated with NASH. This study found a 

significant decrease in hepatocyte ballooning (p = 0.014) and NASH scores (p = 0.04), while 

reduction in the steatosis score reached borderline significance (p = 0.054) [69]. 

Furthermore, significant reductions in serum AST and ALT levels and BMI were observed. 

However, a recent randomized, double-blind, placebo-controlled study showed that 

sitagliptin was not more effective than placebo for improving liver fat and liver fibrosis 

measured in patients with NAFLD [70].

6.2. Targets related to the immune modulators

JKB-121 (Jenken Biosciences, Research Triangle Park, North Carolina) is a TLR4 

antagonist currently under investigation as treatment for NASH. TLRs are a group of 

receptors that have a vital role in the activation of the innate immune system through 

recognition of pathogen-associated molecular patterns (PAMPs) [71,72]. Endogenous 

components released from dying cells can activate TLRs initiating a proinflammatory NF-

κβ cascade and production of TNF-α and IL-6 [71–74]. TLRs appear to play a crucial role 

in the pathophysiology of a multitude of liver diseases [37], which potentially explains its 

wide expression on many types of liver cells including hepatocytes [37,75], Kupffer cells 

[37,76], sinusoidal endothelial cells [77], and hepatic stellate cells [78–80]. Serum TLR4 

levels have been shown to be elevated in NASH patients compared to healthy controls and to 

increase with worsening stages of fibrosis [81]. Preliminary data show that in mouse models, 

features of NASH are attenuated in TLR4 and TLR4 coreceptor myeloid differentiation 

factor (MD-2) knockout mice. While methionine choline-deficient diet was associated with 

increased serum ALT levels in genotype controls, this effect was attenuated in TLR4 KO 

mice. Furthermore, markers of inflammation including serum TNF-α and the nicotinamide 

adenine dinucleotide phosphate-oxidase (NADPH oxidase) complex mRNA expression were 

significantly lower in TLR4 KO mice [82]. A phase 2, double-blind, randomized controlled 
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trial is testing the use of JKB-121 in patients with biopsy-proven NASH to assess for safety 

and changes in baseline ALT and percentage fat content of the liver as measured by MRI and 

MRS. ClinicalTrials.gov identifier: NCT02442687.

Lactobacillus and other probiotics are under investigation because the role of altered gut 

microbiota has been linked to development of obesity [83,84] and susceptibility to liver 

injury [85]. The intestinal flora consists of 104 microorganisms that maintain a symbiotic 

relationship with the host. Gut microbiota produce endotoxins, including 

lipopolysaccharides (LPS), lipopetides, unmethylated DNA, and double-stranded RNA, 

which reach the liver and undergo phagocytosis by Kupffer cells [86]. The exposure to these 

endotoxins can incite an inflammatory response, contributing to the progression from simple 

steatosis to NASH. Several studies have shown that treatment with probiotics has the 

potential to improve parameters of liver damage, including a double-blinded trial in 2011 

showing that treatment with a mixture of probiotics (Lactobacillus bulgaricus and 

Streptococcus thermophilus) in 28 patients with biopsy-proven NASH improved serum 

levels of ALT, AST, and GGT compared to placebo [87]. Another study in 2012 investigated 

the effect of probiotics in NASH subjects on improvement in liver histology. Posttreatment 

liver biopsy compared to baseline biopsy exhibited improvement in steatosis and NASH 

activity index along with decreased levels of TNF-α, CRP, AST, and HOMA-IR compared 

to subjects randomized to lifestyle modification only [88]. A recent phase 3 trial enrolled 52 

patients with NASH and randomized them to either 28-week treatment with synbiotics (a 

combination of probiotics and prebiotics) or placebo. Both groups were also advised to 

engage in lifestyle modification with diet and exercise. The study showed significant 

reductions in serum ALT, AST, GGT, C-reactive protein, total NF-κβ, and fibrosis score as 

measured by transient elastography [89] The use of lactobacillus casei shirota is being tested 

in a phase 2 trial assessing for reduction in serum M30 antigen levels and other indicators of 

hepatocellular injury and fibrosis in patients with elevated M30 antigen levels (cutoff: >200–

800 U/L) at screening and hepatic steatosis on ultrasound or histologically confirmed 

NASH.

Solithromycin (Cempra Pharmaceuticals, Chapel Hill, North Carolina) is a ketolide 

antibiotic that has been shown to not only have antibacterial effects, but also 

antiinflammatory and immunoregulatory effects [90]. In one study, use of solithromycin 

exerted inhibitory effects on TNF-α/CXCL8 production and MMP9 activity in monocytic 

cells in mice with cigarette smoke-induced airway inflammation. These findings of reduced 

TNF-α and MMP9 activity in monocytic cells were corroborated in patients with chronic 

obstructive pulmonary disease treated with solithromycin [91]. In a NASH mouse model, 

administration of solithromycin once daily for 4 weeks significantly reduced hepatocyte 

ballooning and NASH score [92]. The mean NASH activity score (NAS) for solithromycin-

treated mice was 3.0 + 0.9 (n = 8) compared to 5.4 + 0.5 (n = 8, p < 0.0001). The use of 

solithromycin is being tested in a phase 2 trial in NASH patients that is evaluating effects on 

hepatic histology using NAS and measuring changes in steatosis, hepatocellular ballooning 

score, and grades of inflammation on liver biopsy. ClinicalTrials.gov identifier: 

NCT02510599.
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Vitamin D has a broad spectrum of actions including immune modulation, cell 

differentiation and proliferation [93], regulation of inflammation [94], and regulation of 

glucose and lipid metabolism [95,96], making it an appealing therapeutic target for NASH. 

Dietary vitamin D2 or sunlight-derived D3 is metabolized to 25-hydroxyvitamin D in the 

liver before it is transported to the kidney where it is hydroxylated to become the 

biologically active form 1a,25-dihydroxyvitamin D. To exert its biological effect, 

1,25(OH)2D binds to vitamin D receptors which are not only found on bone and skeletal 

muscle, but also expressed in the immune system, liver, and endocrine system [97,98]. 

Animal studies reveal that VDR knockout mice spontaneously develop liver fibrosis [99]. A 

murine model showed that with phototherapy, increased 25 (OH)D and 1,25(OH)2D levels 

were able to reduce hepatocyte inflammation, fibrosis, and apoptosis compared to control. 

Insulin resistance improved, serum adiponectin increased, and inflammatory gene expression 

TNF-α and TFG-β were reduced [100]. Epidemiologic evidence suggests that patients with 

low vitamin D levels are most susceptible to development of NASH; one meta-analysis 

found that patients with NASH were 26% more likely to have low levels of vitamin D 

compared to the control subjects [101]. A small, double-blinded, placebo-controlled study 

assigned NASH patients to either 50,000 IU vitamin D or placebo every 2 weeks for 4 

months [102]. There were no significant differences between groups in liver enzymes, 

insulin sensitivity, or grades in hepatic steatosis. However, levels of hsCRP and 

malondialdehyde (MDA), both markers of lipid peroxidation, were decreased in patients 

given vitamin D, suggesting that it may be useful to mitigate inflammation. There is one 

phase 2 trial and one phase 3 trial in the pipeline looking to evaluate whether vitamin D 

supplementation can reduce serum ALT levels or improve NAS scores, respectively. 

ClinicalTrials.gov identifiers: NCT01571063, NCT01623024.

6.3. Targets related to oxidative stress

GS-4997 (Gilead Sciences, Inc., Foster City, California) is a selective small-molecule 

apoptosis signal-regulating kinase (ASK1) inhibitor which works to mitigate the profibrotic 

response to ROS. In response to ROS, ASK1 is upregulated activating the p38 and JNK 

pathways, which induce hepatic stellate cells to increase collagen production. In murine 

models, GS-4997 showed a reduction in hepatic steatosis and fibrosis along with an 

improvement in metabolic measurements associated with development of NASH [103]. 

After C57BL/6 mice were fed a western-style diet to induce NASH, the mice were 

randomized to treatment with control or an ASK1 selective inhibitor. The ASK1 inhibitor 

treatment group showed a significant reduction in body weight and fasting blood glucose 

levels (17% and 13%, respectively). Moreover, reductions were seen in plasma levels of 

AST, ALT, and cholesterol. On histology, there was a 68% reduction in steatosis and 84% 

reduction in fibrillar collagen area, corresponding to reductions in α-SMA and p-P38 

expression. GS-4997 is currently being evaluated in a phase 2 clinical trial recruiting 

patients with biopsy-proven NASH with fibrosis stages F2/F3 to assess the safety, 

tolerability, and efficacy of GS-4997 alone or in combination with simtuzumab, a LOXL2 

antibody targeting collagen cross-linking. ClinicalTrials.gov identifiers: NCT02466516.

Omega-3 is classified as a polyunsaturated fatty acid (PUFA) derived from α-linolenic acid 

[104]. It is an essential fatty acid obtained through diet [105] that is a key component of the 
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cellular membrane and helps determine membrane fluidity. In addition, omega-3 modulates 

the behavior of membrane-bound receptors and enzymes [106]. Omega-3 PUFAs influence 

liver lipid homeostasis through regulation of fat accumulation and elimination via 

downregulation of sterol regulatory element binding protein-1 (SREBP-1) [107,108] and 

nuclear factor-Y (NF-Y) transcription factors [109]. This results in a decrease in expression 

of lipogenic genes, reducing triglyceride storage in the liver. Conversely, it upregulates 

peroxisomal proliferator activated receptor-alpha (PPAR-α), promoting hepatic free fatty 

acid oxidation and degradation [107,110]. The overall effect is a reduction in intrahepatic 

lipids. Furthermore, omega-3 appears to have a protective effect through inhibition of 

proinflammatory cytokines such as TNF-α, IL-1, and IL-6 [111]. In rodents, omega-3 PUFA 

depletion has been shown to contribute to steatosis and insulin resistance, with eventual 

development of NASH [112,113]. Further, murine experimental models have supported the 

hepatoprotective effect of omega-3s, demonstrating reversal of hepatic steatosis in leptin-

deficient obese mice [114]. Omega-3s as a potential treatment for NASH are being explored 

in one phase 2 trial and two phase 3 trials evaluating for changes in histology and 

intrahepatic fat content. To date, there is no human data available on efficacy.

S-adenosylmethionine (SAMe) is the principal biological methyl donor made in all 

mammalian cells. SAMe metabolism predominantly occurs in the liver and is the principal 

methyl donor in a variety of biochemical reactions including transmethylation, 

transsulfuration, and polyamine synthesis [115,116]. The enzyme methionine 

adenosyltransferase (MAT) combines methionine and adenosine triphosphate to produce 

SAMe which donates its methyl group to various hormones, neurotransmitters, nucleic 

acids, proteins, phospholipids, and drugs [116,117]. SAMe plays a role in establishing 

membrane fluidity as measured by the proper ratio of phosphatidyletanolamine (PE) to 

phosphatidylcholine (PC) through the methylation of phospholipids. It is this PE/PC ratio 

that may play a role maintaining cellular membrane integrity [118] and has been implicated 

in the progression from steatosis to NASH [119]. Preclinical data reveal that mice deficient 

in MAT1A or glycine-N-methyltransferase (GNMT), key enzymes in SAMe biosynthesis 

and degradation, respectively, develop NASH and HCC [115]. In addition, reduced SAMe 

levels have been shown to increase proinflammatory responses. In a multicenter trial, 62 

patients with cirrhosis due to alcoholic liver disease were randomized to either SAMe or 

placebo for treatment for up to 2 years [120]. All-cause mortality was not statistically 

reduced; however, when excluding subjects with advanced cirrhosis (Child-Pugh score C), 

the results showed a significant reduction in mortality (29% vs. 12%, p = 0.025). The 

therapeutic benefit of SAMe at three dosage levels (1000, 1500, and 2000 mg) is now being 

tested in patients with NASH in a phase 3 trial to assess for methionine elimination half-life 

and changes in liver enzymes and metabolic parameters. ClinicalTrials.gov identifier: 

NCT01754714.

6.4. Targets for fibrosis

Cenicriviroc (CVC, Tobira Therapeutics, Inc., South San Francisco, California) acts as a 

dual inhibitor of C-C chemokine receptor type 2 (CCR2) and C-C chemokine receptor type 

5 (CCR5) pathways which have key roles in the development of inflammation and fibrosis. 

CCR2 and CCR5 receptors are expressed on Kupffer cells, hepatic stellate cells, monocytes, 
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and macrophages and, when activated, promote recruitment of these cells to the liver, 

inducing inflammation and fibrogenesis. In thioglycollate-induced mouse models, CVC 

reduced macrophage and monocyte migration by 62.1% compared to positive control 

dexamethasone (p < 0.001) [121]. CVC also significantly decreased NAS scores and mean 

Sirius red-positive areas in a mouse NASH model [122]. As CVC has been tested more 

extensively in the treatment of HIV patients, its safety profile has largely been established. It 

is generally well tolerated, with the most common adverse effects reported to be nausea, 

diarrhea, headache, rash, and fatigue. The ongoing Efficacy and Safety Study of Cenicriviroc 

for the Treatment of Nonalcoholic Steatohepatitis (NASH) in Adult Subjects With Liver 

Fibrosis (CENTAUR) trial by Tobira has been granted FDA fast track approval for testing in 

NASH patients with fibrosis (CRN stage 1–3) to evaluate for resolution of NASH with no 

worsening of fibrosis stage.

GR-MD-02 (Galectin Therapeutics, Norcross, Georgia) functions as a galectin-3 antagonist, 

and preclinical results to date are promising. Galectins are a group of proteins with a 

carbohydrate-binding domain capable of binding to terminal galactose residues on 

glycoproteins; they have been implicated in the pathophysiology of NASH and liver fibrosis 

[123,124]. Under normal physiologic conditions, galectin-3 expression is ubiquitous, 

particularly in immune cells, albeit at low levels. However, in states of acute or chronic 

inflammation, it is overexpressed and likely induces the deposition of fibrous tissue 

[124,125]. The critical role of galectins is evidenced by experimentation with Gal-3 null 

mice that are found to be resistant to development of liver fibrosis despite toxin exposure 

[126] and to lung fibrosis even after treatment with bleomycin [127]. In a phase 1, 

randomized, placebo-controlled trial, patients with NASH and advanced (Brunt stage 3) 

fibrosis were randomized to treatment with water or escalated doses of GR-MD-02 (2, 4, and 

8 mg/kg) for a total of four doses [128]. GR-MD-02 was found to be safe and well tolerated 

with no reported serious adverse events. The GR-MD-02 8-mg/kg treatment group had a 

significant reduction in FibroTest Scores, a composite of five individual blood tests that 

collectively correlate with the extent of liver fibrosis. The reduction was most attributed to 

the lowering of α-2 macroglobulin, a major non-immunoglobulin protein in plasma that is 

known to have a role in inhibiting proteases including collagenase [129] FibroScan 

evaluations were performed at baseline, day 38, and day 65 in a subset of patients (five from 

GR-MD-02 group and three from placebo group). No observed change in liver stiffness was 

seen in the three placebo patients; however, three of the five patients treated with GR-MD-02 

showed a 20% reduction in liver stiffness from baseline. The other two GR-MD-02 patients 

had a 50% decrease from baseline. Despite these initial encouraging results, given the small 

sample size, further evaluation is warranted. Galectin Therapeutics is investigating the use of 

GR-MD-02 in patients with NASH and advanced fibrosis in a phase 2 trial that is assessing 

changes in liver fibrosis and liver stiffness. Another phase 2 trial is evaluating the efficacy of 

GR-MD-02 for reducing the hepatic venous pressure gradient (HVPG) as a measure of 

portal pressure in NASH patients with portal hypertension and cirrhosis. ClinicalTrials.gov 

identifier: NCT02421094.

Losartan is an angiotensin receptor blocker (ARB) which disrupts the renin–angiotensin 

system that is thought to be upregulated in the development of chronic liver disease. 

Angiotensin-II (AT-II) induces proliferation of hepatic stellate cells and upregulates the 
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expression of TGF-β, inducing liver fibrogenesis [130]. AT-II receptor activation induces 

TFG-β1 which upregulates the production of matrix proteins. It also prevents matrix 

degradation and stimulates expression of integrins which collectively facilitate matrix 

production [131]. Using a methioninecholine-deficient rat model for NASH, treatment with 

ARB diminished increases in AST and activation of hepatic stellate cells and reduced the 

extent of liver fibrosis by 70% compared to placebo. Expression of type 1 collagen α1 

mRNA was significantly reduced, corresponding to a 51% reduction in TGF-β1 m RNA 

expression 132]. In an observational study, eight patients with NASH and hypertension were 

treated with losartan 50 mg daily for 48 weeks. As expected, systemic blood pressure was 

significantly decreased in all patients. Serum levels of AST, ALT, GGT, TGF-β1, and serum 

ferritin concentration were all significantly reduced. Histological improvement of 

necroinflammation occurred in five patients, reduction in hepatic fibrosis in four, and 

disappearance of iron deposition in two. No adverse effects were observed in the study 

[133]. The phase 3 Anti-Fibrotic Effects of Losartan In Nash Evaluation (FELINE) trial that 

assessed changes in fibrosis score in patients with NASH and fibrosis (Kleiner F1–F3) after 

treatment with losartan compared to placebo has been completed, but results have not yet 

been published.

Simtuzumab (Gilead Sciences, Inc., Foster City, California) is a humanized monoclonal 

antibody directed against LOXL2. LOXL2 is an enzyme that promotes cross-linking of 

collagen fibers and is thought to play a vital role in tumor progression and cancer metastasis. 

Increased cross-linking of interstitial collagen strengthens the tissue, making it more 

resistant to degradation [134]. Preclinical data in experimental animal models have shown 

that LOXL2 inhibition resulted in a marked reduction in activated fibroblasts and prevented 

cross-linking of collagen [61]. Inhibition of fibroblasts will lead to decreased production of 

growth factors and cytokines and decreased TGF-β pathway signaling. In a study of 20 

patients with liver fibrosis from diverse etiologies, either of two doses of simtuzumab (10 or 

30 mg/kg) were infused over 1 h every 2 weeks for a total of three infusions [135]. Of the 

seven patients with aminotransferase elevations prior to treatment, six experienced a 

reduction in aminotransferases after the second infusion. Simtuzumab appeared to be well 

tolerated with the most frequent reported adverse effects being abdominal pain, 

musculoskeletal pain, and headache. A phase 2 trial is comparing event-free survival, safety, 

and the mean change from baseline in hepatic venous pressure gradient in patients with 

compensated cirrhosis secondary to NASH treated with simtuzumab (700 or 400 mg 

administered by intravenous infusion over 30 min every 2 weeks) or placebo. Another phase 

2 trial is evaluating whether simtuzumab (75 or 125 mg, administered by subcutaneous 

injection once weekly) is effective for preventing the histological progression of liver 

fibrosis and the clinical progression to cirrhosis in NASH patients with advanced liver 

fibrosis but not cirrhosis. A third phase 2 trial is assessing the safety and tolerability of 

simtuzumab combined with GS-4997 compared to GS-4997 alone in NASH patients with 

fibrosis stages F2–F3. ClinicalTrials.gov identifier: NCT01672879, NCT01672866, 

NCT02466516.
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6.5. Targets of apoptosis

GS-9450 (Gilead Sciences, Inc., Foster City, California) behaves as a potent caspase 

inhibitor involved in cell apoptosis. Caspase activity triggers the process of apoptosis in 

which a functioning cell transforms to an apoptotic body characterized by cell shrinkage and 

nuclear condensation. Apoptosis is a normal mechanism to maintain cellular homeostasis but 

can become upregulated in disease states, particularly those involving the liver [136]. A 

multitude of liver diseases have been associated with increased caspase activity including 

nonalcoholic and alcoholic steatohepatitis, chronic hepatitis B and C virus infection, and 

cholestatic injury. Preclinical data in mouse models showed that treatment with caspase 

inhibition reduced apoptosis associated with both methioninecholine-deficient and high-fat 

diets. Although treatment did not reduce steatosis, there were reductions in histological 

inflammation, plasma ALT levels, and measurements of oxidative stress [137]. A follow-up, 

phase 2, randomized, double-blinded, placebo-controlled trial sponsored by Gilead sorted 

124 patients with biopsy-proven NASH to once-daily placebo or 1, 5, 10, or 40 mg GS-9450 

for 4 weeks [135]. The trial showed a 47% decrease in ALT for the GS-9450 treatment 

group (p < 0.001 vs. placebo). The percentage of patients with normal ALT levels rose from 

0% to 35% posttreatment. GS-9450 was well tolerated with the most frequent side effect 

reported to be headache. No severe adverse effects were noted.

Emricasan (IDN-6556, Conatus Pharmaceuticals Inc., San Diego, California) also acts as a 

caspase inhibitor. In one study, mice were fed a high-fat diet and subsequently found to have 

a fivefold increase in hepatocyte apoptosis, consistent with a 1.5-fold and 1.3-fold increase 

in caspase-3 and caspase-8 activity, respectively [138]. Treatment with IDN-6556 reduced 

cellular apoptosis and decreased serum AST and ALT levels. Hepatic steatosis measured by 

liver triglycerides content was unchanged. However, both α-SMA, a marker for hepatic 

stellate cell activation and surrogate measurement for fibrosis, and overall fibrosis score 

were reduced, suggesting that IDN-6556 can attenuate hepatocyte apoptosis and could 

potentially be used as an antifibrotic therapy for NASH. Conatus recently sponsored a phase 

2, double-blinded, randomized controlled trial in which 38 patients with NASH and elevated 

transaminases were randomized to either IDN-6556 25 mg or placebo twice daily for 28 

days [139]. Baseline levels of cCK18M/M30, a caspase-cleaved substrate, were found to be 

high in patients with NASH. Treatment with IDN-6556 was associated with a 30% reduction 

compared to placebo. Although ALT was also significantly reduced in the treatment group, 

no changes were seen in weight, cholesterol, HDL, LDL, or triglycerides. IDN-6556 was 

generally well tolerated throughout the study, although one patient was reported to have 

cellulitis and another acute GI bleed. Neither event was deemed by the investigator to be 

attributed to treatment. Given these results, Conatus has proceeded with another phase 2 trial 

evaluating treatment with emricasan (5 or 50 mg, given twice daily compared to placebo) in 

NASH patients with liver fibrosis (but not cirrhosis). Outcome measures include fibrosis 

improvement by at least one stage without worsening of steatohepatitis; steatohepatitis 

resolution based on liver biopsy; and improvement in NAS and ALT.
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7. Potential development issues

It is inadequate for drugs that target NASH to be effective solely for histological 

improvement. They should also contribute to improvement in the metabolic profile in 

NAFLD/NASH patients. It will be important for the drugs to yield improved lipid panels, 

decreased insulin resistance, and possibly weight loss. The duration of treatments that will 

be required is not definitively known. However, there is convincing evidence that treatments 

will be used for extended periods of time in those who fail to lose weight. Therefore, drugs 

with the fewest and least problematic adverse effects will have a substantial advantage. One 

concern related to long-term treatment assessment is that the current primary outcome in 

NASH trials requires liver biopsy, the repetition of which is problematic in long-term 

studies. New noninvasive imaging techniques have been shown to be accurate for assessment 

of steatosis and fibrosis, including magnetic resonance imaging-estimated proton density fat 

fraction (MRI-PDFF) [140] and magnetic resonance elastography (MRE) [140,141]. 

However, the inflammation component of NASH is still lacking biomarkers, and new 

reliable markers are urgently needed.

8. Conclusion

The prevalence of NAFLD is rising rapidly and is expected to continue increasing with the 

growing epidemic of metabolic syndrome. There is a large unmet need for therapeutic agents 

to prevent and reverse NASH, as currently there are no FDA-approved medications for this 

condition. As the pathogenesis of NASH has been shown to be complex and multifactorial, 

there are a myriad of treatments in the phase 2/3 clinical trial pipeline including agents 

directed at addressing steatosis and lipogenesis, immune modulation, oxidative stress, 

apoptosis, and fibrosis. Future research should be directed toward finding agents that can 

improve liver histology, have favorable cardiovascular and metabolic effects, and 

demonstrate long-term safety.

9. Expert opinion

The treatment of NASH has been shown to be complex and to necessitate targeting multiple 

pathways. The drugs investigated to date have been shown to yield far less than 50% 

improvement in histological outcome. In addition, noninvasive biomarkers to differentiate 

NAFL from NASH are not yet available, and the long-term follow-up can be challenging if 

repeating liver biopsy is required. New techniques such as MRI-PDFF and MR elastography 

have been shown to be very precise in quantifying liver fat and fibrosis, and we believe that 

they should be considered for long-term follow-up in both clinical practice and clinical trial 

[140,141].

To date, although some medications have shown efficacy, the long-term effects are unknown. 

Indeed, treatment duration has not been defined, and no consensus has been reached for 

treatment end point ‘stopping rules’. We believe that NASH treatment will require using 

multiple drugs to achieve maximum therapeutic effect. However, combination therapy will 

need to be tailored toward the disease stage and severity. For patients with NASH and stage I 

fibrosis, treatment will be different than for those with stage III/IV fibrosis. In the first 
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population, a combination of drugs that target steatosis and oxidative stress and/or an 

immune modulator might be the best approach. In the second population, a combination of 

antifibrotic agents [142] and an immune modulator and/or agents that target oxidative stress 

might be the optimal treatment.

Furthermore, there is emerging evidence in our field that NASH patients might have 

different underlying pathological pathways that are unique to each group of NASH patients. 

This suggests that NASH patients can be classified by phenotypes, and rather than using 

combination therapy to achieve optimal effect, a therapy targeted to the underlying 

pathological process might be the treatment of choice. This approach of personalized 

medicine awaits more evidence. Finally, risk factors associated with NAFLD and NASH 

should be considered and modified. For instance, NAFLD/NASH have been associated with 

dyslipidemia. Given the fact that the mortality of NAFLD/NASH patients may be linked to 

cardiovascular disease and that statins may improve NAFLD/NASH, they might be 

considered as part of the treatment regimen [143–146].

Further studies and research will guide us to the best approach in patients with NAFLD/

NASH. It will be essential in the next few years to determine which agents are most effective 

and have the fewest adverse effects. We also believe that the concept of combination therapy 

to reach maximum resolution of the histological findings needs to be explored further. 

Meanwhile, we need to establish: (1) long-term strategies to monitor the disease (such as 

using MRI techniques or new accurate noninvasive biomarkers) and (2) stopping points in 

NASH treatment (such as resolution of steatosis on high-quality imaging such as MRIs). We 

expect that new medications will be approved in the next few years followed by accepted 

strategies to target disease cure such as combination therapy and/or personalized medicine. 

In summary, this is an exciting era of NAFLD/NASH treatment progress. With multiple 

agents currently being developed, there may soon be an ability to effectively slow or even 

reverse the disease process in many NAFLD/NASH patients.
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Figure 1. Promising target strategies in NASH treatment
Treatment strategies in NASH can be divided based on their targets within the 

pathophysiology of NASH. These include: (1) systemic targets related to steatosis, glucose 

metabolism and lipogenesis; (2) targets related to immune modulators; (3) targets related to 

oxidative stress; (4) targets related to apoptosis; and (5) targets related to fibrosis

Abbreviations: NASH: non-alcoholic steatohepatitis, GLP1: glucagon-like peptide-1, 

DDP4: dipeptidyl peptidase-4, SCD1: stearoyl-coenzyme A desaturase 1 enzyme, FGF: 

fibroblast growth factor, LXR- α: liver-X-receptor- α, FXR: farnesoid-X receptor, PPAR- α/

δ: peroxisome proliferator-activated α/δ, ROS: reactive oxidative species, ASK1: signal-

regulating kinase-1, IL1-B: interleukin-1B, IL18: interlukin-18, TLRs: Toll-like receptors, 

Vit D: Vitamin D, CCR2/5: C-C chemokine receptor type 2 AND 5, LOX2: lysyl oxidase-

like 2.
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