
UNIVERSITY OF CALIFORNIA

Los Angeles

Power, Performance and Scalability for Big Data Query Languages:

The Machine Learning Challenge.

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Jin Wang

2020

c© Copyright by

Jin Wang

2020

ABSTRACT OF THE DISSERTATION

Power, Performance and Scalability for Big Data Query Languages:

The Machine Learning Challenge.

by

Jin Wang

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2020

Professor Carlo Zaniolo, Chair

In the Big Data era, there is a resurgence of interest in using Datalog to express data analysis

applications that require recursive computations. However, the use of non-monotonic aggre-

gates in recursion raises difficult semantic issues. Recent theoretical advances like monotonic

aggregation and Pre-Mapability (PreM) provide the formal semantics for the usage of ag-

gregates in recursive Datalog rules enabling the expression of a wide spectrum of advanced

analytical tasks, such as graph analysis, data mining, machine learning and stream process-

ing. In this dissertation, we explore opportunities and issues created by these advances,

including the expressiveness of Datalog in advanced applications and their optimization to

achieve superior performance and scalability.

Firstly, we find that Datalog serves as an efficient query language that simplifies the

writing of machine learning applications and provides a unified environment for their devel-

opment and deployment on multiple platforms. Following this route, we propose a declarative

machine learning framework of tested effectiveness on top of Apache Spark. We present an

in-depth theoretical analysis that shows how key ML algorithms can be expressed and effi-

ii

ciently implemented by recursive Datalog programs that use aggregates in recursion, whereby

achieving both formal and efficient operational semantics. We also present the compilation

and optimization techniques we developed to support the complex recursive queries required

by ML applications in distributed share-nothing architectures. Next we share some theoret-

ical results to show that programs computing any aggregates on sets of facts of predictable

cardinality are equivalent to stratified programs where the pre-computation of cardinality of

the set is followed by a stratum where recursive rules only use monotonic constructs. Finally,

we investigate how to improve the parallelism of semi-naive evaluation of recursive Datalog

programs on shared-memory multi-core machines, and discuss the prototype system we have

developed and the high performance levels it delivers.

iii

The dissertation of Jin Wang is approved.

Ying Nian Wu

Guoqing Harry Xu

Junghoo Cho

Carlo Zaniolo, Committee Chair

University of California, Los Angeles

2020

iv

To my mother and father

v

TABLE OF CONTENTS

1 Introduction . 1

2 Background . 5

2.1 Datalog . 5

2.2 Terminology for Recursive Queries . 7

2.3 The PreM Property . 8

3 Declarative Machine Learning Framework 11

3.1 Introduction . 11

3.2 Basics of Machine Learning . 14

3.3 Datalog for Machine Learning . 15

3.3.1 Expressing ML Applications . 15

3.3.2 Supporting Mini-batch Gradient Descent 19

3.3.3 Termination Condition . 21

3.4 Query Evaluation . 22

3.4.1 The BigDatalog System . 23

3.4.2 Supporting Complex Recursions . 24

3.4.3 Execution . 29

3.5 Performance Optimization . 30

3.5.1 Eliminating Unnecessary Evaluation 31

3.5.2 Join Optimization with Replica . 32

3.5.3 Scheduling Optimization . 34

vi

3.6 Usability . 35

3.6.1 Equivalent SQL Queries . 36

3.6.2 ML Library with DataFrame APIs 37

3.7 Graphics User Interface . 39

3.7.1 System Architecture . 39

3.7.2 Interaction with the GUI . 42

3.8 Experiments . 43

3.8.1 Experimental Setup . 43

3.8.2 End-to-end Performance . 46

3.8.3 Results for Mini-batch GD . 48

3.8.4 Scalability . 49

3.8.5 Results on Dense Datasets . 50

3.9 Related Work . 51

3.9.1 Datalog for Machine Learning . 51

3.9.2 Recursive Query Processing . 52

3.9.3 Large-scale Machine Learning . 53

3.9.4 Machine Learning and Big Data Systems 53

3.10 Conclusion of Chapter . 54

4 Semantics of Completed Aggregates in Recursion 55

4.1 Introduction . 55

4.2 Set Aggregation Semantics . 57

4.2.1 Basic Definition of Continuous Count 58

4.2.2 Extension to Sum and Average . 59

vii

4.2.3 Group By Aggregates . 61

4.3 The Pre-Countable Cardinality Property . 62

4.3.1 Background . 63

4.3.2 Semantics provided by PCC . 64

4.3.3 Examples . 64

4.4 Formal Semantics of Machine Learning Applications 67

4.5 Conclusion of Chapter . 67

5 Optimizing Parallel Recursive Datalog Evaluation on Multi-core Machines 69

5.1 Introduction . 69

5.2 Preliminary . 71

5.2.1 Parallel Evaluation of Datalog Programs 71

5.2.2 Overall Framework . 73

5.3 Dynamic Coordination Strategy . 75

5.3.1 Parallel Execution Mechanism . 75

5.3.2 The DWS Approach . 79

5.3.3 Theoretical Analysis . 83

5.4 Evaluation . 85

5.4.1 Experiment Setup . 85

5.4.2 End-to-end Query Time Comparison 90

5.4.3 Micro-Benchmarking Results . 91

5.4.4 Scalability . 92

5.5 Related Work . 93

5.5.1 Datalog Language and Evaluation . 93

viii

5.5.2 Datalog Systems and Applications . 94

5.5.3 Parallel Query Evaluation . 95

5.6 Conclusion of Chapter . 95

6 Conclusion and Future Work . 96

References . 98

ix

LIST OF FIGURES

3.1 Snippet Scala Code: BGD for Linear Regression 20

3.2 Dependency between Tables in Query 4. 24

3.3 Logical Plan of Query 4 . 25

3.4 Physical Plan of Query 4 . 27

3.5 Intra- vs. Inter-Iteration RDDs . 29

3.6 Optimized Physical Plan . 32

3.7 Example of DataFrame API: Logistic Regression 38

3.8 Implementation with MLlib . 40

3.9 The Overall Architecture of RaSQL . 41

3.10 RaSQL System User Interface . 42

3.11 Performance Comparison: Training with Batch Gradient Descent 46

3.12 Performance Comparison: Training with Mini-batch Gradient Descent 47

3.13 Scalability: Varying Data Size . 49

3.14 Performance Comparison on Dense Dataset . 50

5.1 Query Performance of SSSP on LiveJournal Dataset 70

5.2 DCDatalog: The Overall Architecture . 74

5.3 Execution Time under Different Coordination Strategies 76

5.4 Effect of Different Coordination Strategies . 91

5.5 Scalability: Datalog on Multicore Machines . 92

x

LIST OF TABLES

3.1 Settings for ML Algorithms. For SVM, we append an extra 1/-1 for each instance

to save the bias parameter; µ is a hyper-parameter which controls the weight of

regularization term. Meanwhile, we use a sign function to deal with the derivative

near 0 of L1 regularization in Lasso regression. 17

3.2 Non-Linear Recursion Optimization . 31

3.3 Effect of Replica . 34

3.4 Effect of Scheduling Optimization . 35

3.5 Statistics of Datasets . 43

5.1 Graph and Network Datasets . 85

5.2 Comparison with State-of-the-art Systems (seconds): OOM means out of mem-

ory; NS means the system does not support the corresponding query; TO means

timeout . 89

xi

ACKNOWLEDGMENTS

First and foremost, I would like to express my deep gratitude to my advisor Professor Carlo

Zaniolo for his support and guidance in the whole process of my PhD studies in UCLA. As

a respected scholar, Professor Zaniolo’s diligence, enthusiasm, and immense knowledge sets

a very good example for me. I deeply appreciate him for providing me the opportunity to

study as a PhD student in UCLA and giving me freedom to try different research topics.

His patience, caring and trust makes the past five years a wonderful time for me. I also want

to extend my sincere thanks to my committee members Professor Junghoo Cho, Guoqing

Harry Xu and Ying Nian Wu for their help and support throughout my studies.

In addition, I am extremely grateful to my frequent collaborators Mingda Li, Chunbin

Lin and Jiacheng Wu, who offer tremendous help to my projects towards the dissertation.

Besides, I would like to thank other collaborators who provide me wonderful suggestions and

generous assistance, including but not limited to Ariyam Das, Jiaqi Gu, Youfu Li, Zhongyuan

Wang and Guorui Xiao. I also want to thank all my friends and fellow students at UCLA,

especially those in the ScAi lab, for their friendship and encouragement during my life as a

PhD student in the past five years.

Last but not least, I am grateful to my parents Shisheng Wang and Guiping Zhang

for their unconditional love. Their encouragement and understanding always help me walk

through the ups and downs since the beginning of my undergraduate study. Without their

constant support, I cannot finish the long and difficult journey as a student from bachelor,

master to PhD.

xii

VITA

2007.8-2011.6 B.E. Computer Science

University of Science and Technology Beijing

Beijing, China

2012.8-2015.6 M.E. Computer Science

Tsinghua University

Beijing, China

2015.9-2020.7 Ph.D. Computer Science

University of California, Los Angeles

Los Angeles, CA

PUBLICATIONS

Jin Wang, Chunbin Lin, Mingda Li, Carlo Zaniolo. Boosting Approximate Dictionary-

based Entity Extraction with Synonyms. Information Sciences, Vol. 530, pages: 1-21, 2020.

Jin Wang, Guorui Xiao, Jiaqi Gu, Jiacheng Wu, Carlo Zaniolo. RASQL: A Powerful

Language and its System for Big Data Applications. ACM International Conference on

Management of Data (SIGMOD) 2020, pages: 2673-2676.

Jin Wang, Chunbin Lin. Fast Error-tolerant Location-aware Query Autocompletion. IEEE

International Conference on Data Engineering (ICDE) 2020, pages: 1998-2001.

xiii

Jin Wang, Chunbin Lin, Carlo Zaniolo. MF-Join: Efficient Fuzzy String Similarity Join

with Multi-level Filtering. IEEE International Conference on Data Engineering (ICDE)

2019, pages: 386-397.

Jin Wang, Chunbin Lin, Mingda Li, Carlo Zaniolo. An Efficient Sliding Window Approach

for Approximate Entity Extraction with Synonyms. International Conference on Extending

Database Technology (EDBT) 2019, pages: 109-120.

Jiaheng Lu, Chunbin Lin, Jin Wang, Chen Li. Synergy of Database Techniques and Ma-

chine Learning Models for String Similarity Search and Join. ACM International Conference

on Information and Knowledge Management (CIKM) 2019, pages: 2975-2976. (Tutorial)

Ariyam Das, Jin Wang, Sahil M. Gandhi, Jae Lee, Wei Wang, Carlo Zaniolo. Learn

Smart with Less: Building Better Online Decision Trees with Fewer Training Examples.

International Joint Conference on Artificial Intelligence (IJCAI) 2019, pages: 2209-2215.

Ariyam Das, Youfu Li, Jin Wang, Mingda Li, Carlo Zaniolo. BigData Applications from

Graph Analytics to Machine Learning by Aggregates in Recursion. International Conference

on Logic Programming (ICLP) 2019, pages: 273-279.

Jin Wang, Zhongyuan Wang, Dawei Zhang, Jun Yan. Combining Knowledge with Deep

Convolutional Neural Network for Short Text Classification. International Joint Conference

on Artificial Intelligence (IJCAI) 2017, pages: 2915-2921.

Jiaqi Gu, Jin Wang, Carlo Zaniolo. Ranking Support for Matched Patterns over Complex

Event Streams: the CEP-R System. IEEE International Conference on Data Engineering

(ICDE) 2016, pages: 1354-1357.

xiv

CHAPTER 1

Introduction

In the era of Big Data, it is becoming more and more important to support analytical queries

over ever-increasing volumes of data. There has been a large body of studies in developing

efficient and scalable systems to support large-scale analytical queries, such as Microsoft

Scope [ZBW12], Apache Hive [TSJ10], Hyracks [BCG11], Facebook Presto [STS19], Apache

Spark [ZCD12] and Apache Flink [CEF17]. The success in developing such systems has laid

a good foundation for scaling up analytical queries due to their natural in-memory support

for iterative applications.

The growing body of research on scalable data analytics has brought a renaissance of

interest in Datalog because of its ability to specify declarative data-intensive applications that

execute efficiently over different systems and architectures. This provides new opportunities

to realize the goal of combining the rigor and power of logic in expressing queries and

reasoning with the performance and scalability by which relational databases manage their

data. To this end, major technical challenges must be met under the following two aspects:

(i) how to express the wide spectrum of analytical applications with sufficient expressive

power, and (ii) how to improve scalability and performance at the system level.

In particular, it is essential to improve the ability of Datalog to express advanced analyti-

cal applications. To this end, a common trend is to enable the usage of aggregates satisfying

particular conditions in recursions. Earlier approaches [MPR90, GGZ91, GGZ95] had pri-

marily focused on providing a formal semantics that could accommodate the non-monotonic

nature of the aggregates. However, these approaches have several constraints, including strict

1

prerequisites and limitations in real-life application scenarios. On the other hand, the idea of

using monotonic aggregate proposed in [MSZ13], proved quite effective at expressing a rich

set of graph and data mining algorithms [CDI18, ZYI18]. The formal semantic of such queries

relies on the fact that programs satisfying the Pre-Mappability (PreM) property [ZYD17]

can be transformed into equivalent aggregate-stratified programs. They enable the concise

expression and efficient support of much more powerful algorithms than those expressible by

programs that are stratified w.r.t. negation and aggregates. Actually, PreM of constraints

provides a simple criterion that (i) the system optimizer can utilize to push constraints into

recursion; and (ii) the user can write Datalog programs with extrema in recursion, with

the guarantee that they have indeed a formal fixpoint semantics. Unfortunately, while the

notion of PreM [ZYD17] works well for simple recursive queries that only use min and max

aggregates, they are insufficient to deal with the classical ML applications which, along with

extrema, also make extensive usage of other aggregates, such as sum, count and average.

As mentioned above, the second aspect of the problem and a critical factor in the suc-

cess of a declarative query language, consist in the ability of its compiler/optimizer to turn

queries into efficient and scalable executions. Recently many efforts have been made to

develop parallel Datalog systems in both shared-memory and shared-nothing environments,

including SociaLite [SPS13], Myria [WBH15], BigDatalog [SYI16], DeALS-MC [YSZ17] and

RecStep [FZZ19] and others discussed later, that have produced promising results in many

real world applications. As reported in recent studies [SYI16, FZZ19], the Datalog engines

can outperform most special-purpose graph systems by an obvious margin. Nevertheless,

existing Datalog engines can only handle queries with simple recursions. In real world ap-

plications such as machine learning and data mining, the queries often involve complicated

recursions, i.e. mutual recursion and non-linear recursions. The heuristic solutions proposed

in [SYI16] for these complex cases are limited to special cases and they can neither be ap-

plied to generalized queries nor reliably guarantee good performance. This situation calls

for devising semi-naive fixpoint optimization techniques that go well beyond those tackled

2

in previous studies.

Contribution Based on the recent theoretical advances discussed above [MSZ13, ZYD17,

ZYI18], we present a series of studies, ranging from theoretical analysis to practical applica-

tions, to take advantage of the recursive queries expressed with Datalog . The contributions

of this dissertation are summarized as following:

Firstly, as machine learning (ML) becomes the core of data analysis tasks, we aim at

supporting efficient ML applications with Datalog . We argue that declarative abstractions

based on Datalog naturally fit for machine learning and propose a purely declarative ML

framework with a Datalog query interface. We show that the use of aggregates in recursive

Datalog programs entails a concise expression of ML applications, while providing a strictly

declarative formal semantics. This is obtained by introducing simple conditions under which

the semantics of recursive programs is guaranteed to be equivalent to that of aggregate-

stratified ones. We further provide specialized compilation and planning techniques for

semi-naive fixpoint computation in the presence of aggregates, and optimizations to accom-

modate for complicated recursions on distributed data platforms. To test and demonstrate

these research advances, we have developed our system on top of Apache Spark. Extensive

evaluations on large-scale real datasets illustrate that our approach can achieve promising

performance gain while offering both increased generality and programming ease for ML

applications.

Secondly, we propose the Pre-Computable Cardinality (PCC) property, to provide the

formal semantics of using a complete set of aggregates, i.e. min, max, count, sum, average,

in recursion. Previously the PreM property [ZYD17] had provided formal semantics for

applications with min and max extremas in recursions. We find that in a recursive Datalog

program, the evaluation of a broader scope of aggregates in recursion can be realized by

monotonic constructs once the cardinality of relations on which the aggregates are evaluated

can be pre-computed at a lower stratum in the recursion. As a result, while the formal

semantics of stratified programs is preserved, its computation is achieved by a single-stratum

3

semi-naive fixpoint computation delivering great performance and scalability. This property

can be used to provide formal semantics for Datalog programs in many advanced analytical

applications, such as machine learning and data mining.

Thirdly, we developed a prototype system to boost the performance of in-memory parallel

evaluation of Datalog programs on shared-memory multi-core machines. We devised an

adaptive coordination strategy to improve the parallelism of semi-naive evaluation process

of Datalog programs. Experimental results show that our work can significantly outperform

other coordination strategies.

Outline The rest of the dissertation is organized as following: Chapter 2 provides some

necessary background of Datalog and its evaluation. Chapter 3 proposes the declarative

framework for machine learning with Datalog and SQL query interface. Chapter 4 introduces

the Pre-Computable Cardinality (PCC) property that provides formal semantics of queries

for machien learning and other applications. Chapter 5 described the new coordination

techniques we devised for Datalog evaluation on multicore machine. Finally Chapter 6

concludes the whole dissertation and discusses future work.

4

CHAPTER 2

Background

2.1 Datalog

A Datalog program P consists of a finite set of rules operating on sets of facts described by

database-like schemas. A rule r has the form h ← r1, r2, ..., rn, where h is the head of rule,

r1, r2, ..., rn is the body and the comma separating atoms in the body is logical conjunction

(AND). The rule head h and each ri are atoms having form p(t1, t2, ..., tk), where p is the

predicate and t1, t2, ..., tk are terms which can be variables or constants. On occasions, We use

the terms predicate, table and relation interchangeably. A rule defines a logical implication:

if all predicates in the body are true, then so is the head h. There are two kinds of relations:

(i) the base relations are defined by tables in the EDB (extensional database) and (ii) the

derived relations are defined by the heads of rules and form the IDB (intentional database).

Query 1 - Transitive Closure (TC)

r1,1 : tc(X, Y) ← arc(X, Y)

r1,2 : tc(X, Y) ← tc(X,Z), arc(Z, Y)

Datalog concepts and terminology are illustrated by the Transitive Closure program in

Query 1 which derives the IDB relation tc from the EDB table arc representing the edges

of a graph. Since the predicate tc is contained in both the head and the body of rule r1,2,

tc is a recursive predicate and r1,2 is a recursive rule. The recursive predicate tc is also the

head predicate for r1,1 which is non-recursive and therefore provides the base rule in the

fixpoint definition and computation of the recursive predicate. In fact the process of query

5

evaluation first initializes tc using r1,1, and then uses r1,2 to recursively produce new tc facts

from the conjunction of tc facts generated in previous iterations and the arc relation. Since

at most one recursive goal is included in the body of any rule, Query 1 represents a case of

linear recursion; the term non-linear recursion denotes instead the case where some rules

contain multiple recursive goals. A Datalog program is called a positive program if there is

no negation or aggregate in it.

The state-of-the-art method for evaluating a Datalog program is the semi-naive (SN)

evaluation [AHV95]. SN performs the differential fixpoint computation of Datalog programs

in a bottom-up manner. It starts with the application of the base rule and then iteratively

applies recursive delta rules until a fixpoint is reached, as it will be formally defined next. The

core idea of the SN optimization is that, instead of using the original rules, the evaluation

can use delta rules that are based on the facts which were generated in the previous iteration

step.

Algorithm 1: Semi-naive Evaluation of Query 1

begin1

δtc = arc(X, Y);2

tc = δtc;3

do4

δtc′ = ΠX,Y (δ tc(X,Z) ./ arc(Z, Y))− tc;5

tc = tc ∪ δtc′;6

δtc = δtc′7

while δtc 6= ∅ ;8

return tc;9

end10

For example, consider how the Transitive Closure program of Query 1 is evaluated by

Algorithm 1. The evaluation starts with the exit rule r1,1 (line: 2) and then iterates with

the recursive rule r1,2 (line: 4-8). We use tc and tc′ to denote the set of facts in the recursive

6

relation tc at the beginning and end of the current iteration, respectively. Then the set of

facts generated in the current iteration could be calculated as δtc = tc′−tc (line: 5). And the

contents of tc and tc′ are updated for the next iteration of evaluation (line: 6-7). During the

evaluation of r1,2 in the next iteration, instead of using the whole relation tc(X,Z), it just

joins δtc(X,Z) with arc(Z, Y). In this example, the fixpoint is reached when δtc = ∅ (line: 8).

SN has been widely applied in evaluating recursive Datalog programs. Simple SN extensions

for recursive queries with aggregates have been proposed for the single-node [SYZ15], multi-

core [YSZ17] and distributed [SYI16] environments.

2.2 Terminology for Recursive Queries

To describe the recursive queries expressed by Datalog, we introduce some necessary termi-

nologies from [AHV95] and [ZCF97].

Monotonicity The monotonicity property for the rules defining a recursive predicate en-

sures that the fixpoint procedure previously described produces a unique result that is the

least fixpoint of the mapping defined by the rules. Rules that do not use negation or aggre-

gates are monotonic in the lattice of set-containment: these rules can be implemented using

union, select, projection, Cartesian product, natural join, i.e., the monotonic constructs of

relational algebra. However, rules using negation are non-monotonic and can be used in re-

cursive queries only when the resulting program has a s Rules using aggregates are equivalent

to monotonic rules is some special cases, such as those discussed later in Chapter 4 where

the aggregates are applied to relations that are completely known or can be computed prior

to the processing of the recursive rules.

Stratified Program Given a Datalog program P , its dependency graph GP can be con-

structed as following: Every rule is a vertex, and an edge 〈ri, rj〉 appears in the graph when-

ever the head of ri appears in the body of rj. If non-monotonic constructs are applied before

ri, the node corresponding to it in Gp is a negated node. With the help of its dependency

7

graph, the stratification of a Datalog program can be formally stated as Definition 1.

Definition 1 By applying topological sorting over GP , its node can be partitioned into n

strata S1, ..., Sn with larger i in a lower stratum. The program P is stratified if: ∀ edges

〈ri, rj〉 ∈ GP , if ri ∈ Sy and rj ∈ Sx (i) y ≥ x if ri corresponds to a non-negated node; (ii)

y < x if ri corresponds to a negated one.

Fixpoint Semantics The operational semantics of a Datalog program P , is based on the

least-fixpoint semantics of Horn Clauses. More specifically, it can be computed by iterating

over the Immediate Consequence Operator (ICO) defined by the rules of the program. The

ICO of program P is denoted as TP (I), where I is any Herbrand interpretation of P . If

P is a positive program, TP (I) would be a monotonic continuous mapping in the lattice of

set-containment that the interpretation I belongs to. Then we have the well-known property

of least fixpoint [ZCF97]: A unique minimal solution of the equation I = TP (I) always exists

and it is known as the least-fixpoint of TP denoted as lfp(TP). lfp(TP) defines the formal

semantics of P . Finally, the fixpoint semantics can be formally defined as Definition 2.

Definition 2 For an ICO T , the operational semantics of a program can be described with

T ↑ω(∅) as following: ω is the first infinite ordinal; T ↑0(∅) = ∅ and T ↑n+1(∅) = T (T ↑n(∅)).

Then T ↑ω(∅) denotes the union of T ↑n(∅) for every n. Then a recursive program whose

iteration converges to the final value in a finite number of steps reaches its fixpoint at the

first integer n+ 1 where T ↑n+1(∅) = T ↑n(∅).

2.3 The PreM Property

To address the problems raised above, the Pre-Mappability(PreM) property [ZYD17] pro-

vides formal semantics for pushing extrema aggregates, i.e. max and min, into recursion

while preserving the semantics of the original stratified program. As shown in Definition 3,

8

its definition is based on viewing a Datalog program as function T (R) where T is a relational

algebra expression, and R is the vector of relations used in the expression.

Definition 3 (PreM) Given a function T (R1, . . . Rk) defined by relational algebra and a

constraint γ, γ is said to be Pre-Mappable to T if the following property holds:

γ(T (R1, . . . , Rk)) = γ(T (γ(R1), . . . , γ(Rk))).

For instance, if T denotes the union operator, and γ denotes the min or max constraint, we

can pre-map (i.e., push) γ to the relations taking part in the union. The PreM property

that has proven so useful in parallel and distributed data processing of extrema, is also

critical in resolving the non-monotonic conundrum created by their presence in recursion.

In fact, if extrema in recursive programs satisfies the PreM property, those programs

would produce the same results with their equivalent versions of aggregate-stratified ones,

from which they have been obtained by “pushing” the min and max aggregates into recursion.

Thus the SN fixpoint of the program simply provides a more efficient realization of the

aggregate-stratified semantics.

Query 2 - All Pair Shortest Path

r2,1 : spath(X, Y,D) ← arc(X, Y,D).

r2,2 : spath(X, Y,min〈D〉) ← spath(X,Z,D1), arc(Z, Y,D2),

D = D1 +D2.

For example, Query 2 expresses the All Pair Shortest Path computation which identifies

the shortest paths between all pairs of nodes in the graph. In rule r2,1, arc denotes all edges in

a graph while D is the distance between nodes X and Y . The rule r2,2 takes arcs originating

in Z and appends them to previously produced paths terminating at Z, where the length of

the new arc is D = D1+D2. In this process, it is safe to pre-map the min aggregate to D as it

would filter out the tuples in spath that resulted in non-minimal values of D. Consequently,

the performance of the query would also be much more efficient than the stratified version

9

that only applies the min aggregate after the recursive iterations. More details regarding

the ability of PreM to optimize graph queries are provided in [GWM19, DLW19], where

efficient techniques for testing the validity of PreM for the applications at hand were also

discussed. Regarding techniques for proving PreM, the interested readers can find more

details in [ZYD17, DZ19]. However, the PreM property only applies to constraints with

min and max aggregates. This is not the case for sum, count, average and other aggregates.

To resolve such issues, we need to propose new approaches to deal with them in unstratified

programs.

10

CHAPTER 3

Declarative Machine Learning Framework

3.1 Introduction

The past decades have witnessed a booming demand for large scale data analysis in diverse

application domains, such as online advertisement, news recommendation, driverless cars,

and voice-controlled devices. As machine learning (ML) has achieved widespread success for

many data-driven analytical tasks, demand for scaling ML algorithms to ever larger datasets

became inevitable. Recently, researchers from both academia and industry have devoted

great efforts to building powerful distributed data processing platforms, such as Hadoop

and Apache Spark, which utilize and extend the Map-Reduce computation model. The

availability of such platforms provides a great opportunity for scaling up ML applications

due to their natural in-memory support of advanced big-data applications. Many scalable ML

libraries based on different high-level programming languages have been provided by these

platforms. A number of remarkable projects underscore the significant progress of systems

and applications in this area, including MLlib [MBY16], Mahout [mah] and MADlib [HRS12]

etc. Although these systems and libraries ease the burden of implementing ML applications,

they still impose strict requirements on developers. Specifically, it often takes considerable

efforts to develop new or customize existing ML algorithms, since developers must manage

details of the distributed implementations of ML algorithms over the underlying platforms,

without having full control on how and when the data is accessed.

To make better use of the computing resources and simplify the development and de-

11

ployment, for a declarative ML framework is needed where programming can be decoupled

from the underlying algorithmic and system concerns. In other words, a framework is needed

that allows users to focus on the data flow instead of low level interfaces. We believe that

Datalog is a particularly attractive choice for expressing ML algorithms because of its natu-

ral support for reasoning and recursion simplifies ML applications. Recently, a renaissance

of interest has focused on Datalog because of its succinct and declarative expression of a

wide spectrum of data-intensive applications, including knowledge reasoning [BSG18], data

center management [ZAC19] and social network [SPS13] etc. A common trend in the new

generation of Datalog applications is the usage of aggregates in recursion, since they enable

the concise expression and efficient support of much more powerful programs than those

expressible by ones that are stratified w.r.t. negation and aggregates. Recent theoretical

advances [MSZ13, ZYD17, ZYI18] allow us to provide formal declarative semantics to the

powerful recursive queries that use aggregates in recursion. These findings have outlined the

promising blueprints of a declarative ML framework using Datalog.

In this paper, we propose a declarative framework for efficiently expressing a broad

range of ML applications. Unlike the previous studies that rely on user defined functions

(UDF) [FKR12] and those employ a hybrid imperative and declarative framework [LGG17,

JLY19, LCC17], our framework is a purely declarative programs which only uses the ba-

sic logic-based constructs of Datalog. The success of a framework critically depends on

the ability of the underlying engine to turn declarative queries and programs into efficient

and scalable executions. To this end, we implement our ML framework on top of BigDat-

alog [SYI16], which is a shared-nothing Datalog engine on top of Apache Spark, to take

advantage of its power in dealing with iterative computation on massive datasets. Com-

pared with simpler recursive applications, ML applications require recursions involving more

complex structures, e.g. mutual and non-linear recursion, and multiple aggregates. This

calls for optimized semi-naive fixpoint computation techniques not tackled in previous stud-

ies. To address these issues, we propose a series of compilation and planning techniques to

12

support these powerful Datalog programs. Moreover, we further provide a number of novel

optimizations to improve the overall performance for such ML workloads. Note that our pro-

posed techniques are platform-independent: they can also be applied to other shared-nothing

Datalog platforms beyond BigDatalog.

The effectiveness of Datalog in expressing ML applications is due to the great expressive

power achieved by allowing the use of aggregates satisfying particular conditions in recur-

sions. This basic idea was first proposed in [MSZ13, ZYD17], and proved quite effective at

expressing a rich set of graph and data mining algorithms [CDI18, ZYI18]. The formal se-

mantics of such queries lies in the fact that programs satisfying the Pre-Mappability (PreM)

property [ZYD17] can be transformed into equivalent aggregate-stratified programs. Unfor-

tunately, while the notions in [ZYD17] work well for the min and max constraints used in

simple recursive queries, they proved insufficient to deal with the classical ML applications

which, along with extrema, also make extensive usage of other aggregates, such as sum,

count and average. In this paper, we find that ML applications tend to apply aggregates

over sets of relations whose cardinality could be pre-computed ahead of time, whereby the

computation of all kinds of aggregates becomes monotonic. Following this route, we provide

a formal semantics for ML applications expressed in Datalog from the aspect of fixpoint

computation.

As a result of these advances, this paper makes the following contributions:

• We devise a declarative ML framework with Datalog query interface. We implement

our system on top of Apache Spark and, to enhance its usability, we provide DataFrame

APIs that are similar to, and actually more general than, those of Apache MLlib.

• We propose a series of compilation and planning techniques to enable the efficient

expression and execution of ML applications (Section 3.4). We further develop sev-

eral optimizations for the recursive plans of ML workloads, including those for the

distributed evaluation, join operation and job scheduling (Section 3.5).

13

• We evaluate our framework on several popular benchmarks. Experimental results show

that our framework outperforms, by an obvious margin, existing ML libraries on Spark,

and other special-purpose ML systems as well.

The rest of the paper is organized as following: Section 3.2 reviews the basics about

machine learning. Section 3.3 discusses the way to express ML applications with Datalog

and its advantages. Section 3.4 presents the system implementation and proposes necessary

techniques to support complicated Datalog programs for ML applications. Section 3.5 further

presents several optimizations from planning to execution. Section 3.6 makes discussions

about the usability issues and Section 3.7 provides a graphic user interface. Section 3.8

reports the experimental results. Section 3.9 surveys the related work. Finally Section 3.10

concludes the whole chapter.

3.2 Basics of Machine Learning

Generally speaking, the ML problem can be formalized as following: Given a training set

D with n instances, each instance consists of a d-dimensional feature vector Xi (i ∈ [1, n])

with the jth dimension as xij and a numeric target yi. For the regression problems, we have

yi ∈ R; while for classification problems, we have yi ∈ {−1, 1}. The process of deciding

the model can be formalized as an optimization problem using the given D. We are given

a function f(θ;X) that makes prediction with a given model θ on the unseen data. The

objective is to find a set of parameters θ∗ that minimizes the loss function L on f , i.e.

θ∗ = argminθL(f(θ;X), Y). This can be achieved with the family of first-order-gradient

optimization methods, namely gradient descent (GD).

There are different ways to compute the gradient depending on the portion of training

instances that is used to update the model at each iteration, namely batch gradient descent

(BGD), stochastic gradient descent (SGD) and mini-batch gradient descent (MGD). As is

shown in the practice of Google’s SQML project [SV17], BGD is widely adopted in modern

14

ML on relational engines. In this paper, we start our discussion from BGD, which computes

the gradients by performing a complete pass on the training data at each iteration. BGD

starts from an initial model θ0 and iterates with Equation (3.1) by the increasing number of

iterations k until convergence is reached.

θk+1 = θk − (
∑

(X,y)∈D

∇L(f(θk;X), y) + Ω(θk)) (3.1)

where L is the loss function, ∇ is the function to compute gradient based on L and Ω is the

regularization.

3.3 Datalog for Machine Learning

In this section, we express ML applications with Datalog and provide the formal semantics.

We first describe how to write Datalog queries for ML applications in Section 3.3.1. Then

we further cover the issues of supporting generalized gradient descent and identifying stop

condition in Section 3.3.2 and Section 3.3.3, respectively.

3.3.1 Expressing ML Applications

We will next discuss how to express ML applications with Datalog. As data sparsity is

ubiquitous in ML applications, many training sets are represented in the verticalized format

to save space, such as those in the famous LIBSVM benchmark [lib]. For each training in-

stance X = 〈Id, Y, x1, · · · , xd〉, the verticalization process would produce at most d instances

〈Id, Y, k, xi〉 (k ∈ [1, d]) as dimensions with value 0 will be omitted. When writing the Dat-

alog programs, we use a verticalized view vtrain(Id, C, V, Y) to denote the training set, where

Id denotes the id of a training instance; Y denotes the label; C and V denote the dimension

and the value along that dimension, respectively.

With such a verticalized relation, we can now write the Datalog query to describe the

training process with BGD using three recursive relations:

15

• model represents the trained model in verticalized form, where each tuple contains the

following three fields: J is the iteration counter; C is a dimension in the model; and P

is the value of parameter in that dimension.

• gradient represents the results of gradient computed at each iteration. G is the gradient

value of the Cth dimension in the Jth iteration.

• predict represents the intermediate prediction results with the model in the current

iteration for each training instance. For each tuple, J is the iteration counter; YP is the

predicted y value for the training instance with id Id.

Among these steps, the gradient computation and prediction with current model can be

easily represented with aggregates in recursion. Therefore, the iterative training process can

be expressed with a recursive Datalog program Query 3.

Query 3 - Batch Gradient Descent (BGD)

r3,1 : model(0, C, 0.01) ← vtrain(, C, ,).

r3,2 : model(J1, C,NP) ← model(J,C, P),

gradient(J,C,G),

NP = P − lr ∗ (G/n + Ω(P)),

J1 = J + 1.

r3,3 : gradient(J,C, sum〈G0〉) ← vtrain(Id, C, V, Y),

predict(J, Id, Y P),

G0 = g(Y P, Y, V).

r3,4 : predict(J, Id, sum〈Y 0〉) ← vtrain(Id, C, V,),

model(J,C, P),

Y0 = f(V, P).

Firstly, the model is initialized according to some predefined mechanisms in r3,1 (Here

we use all 0.01 as example). Then the function f is used to make prediction on all training

instances according to the model obtained in the previous iteration in r3,4. Next the gradient

is computed by the function g (derived according to the loss function L) using the predicted

16

T
ab

le
3.

1:
S
et

ti
n
gs

fo
r

M
L

A
lg

or
it

h
m

s.
F

or
S
V

M
,

w
e

ap
p

en
d

an
ex

tr
a

1/
-1

fo
r

ea
ch

in
st

an
ce

to
sa

ve
th

e
b
ia

s
p
ar

am
et

er
;

µ
is

a
h
y
p

er
-p

ar
am

et
er

w
h
ic

h
co

n
tr

ol
s

th
e

w
ei

gh
t

of
re

gu
la

ri
za

ti
on

te
rm

.
M

ea
n
w

h
il
e,

w
e

u
se

a
si

gn
fu

n
ct

io
n

to
d
ea

l
w

it
h

th
e

d
er

iv
at

iv
e

n
ea

r
0

of
L

1
re

gu
la

ri
za

ti
on

in
L

as
so

re
gr

es
si

on
.

A
lg

or
it

h
m

P
re

d
ic

t
F

u
n
ct

io
n
f

L
os

s
F

u
n
ct

io
n
L

G
ra

d
ie

n
t
g

=
5
P
L

R
eg

u
la

ri
ze

r
Ω

L
in

ea
r

R
eg

re
ss

io
n

Y
P

=
V
∗
P

(Y
P
−
Y

)2
2
∗

(Y
P
−
Y

)
∗
V

N
/A

L
og

is
ti

c
R

eg
re

ss
io

n
Y
P

=
1

1
+

e−
V
∗P

 −
lo

g
(Y
P

),
Y

=
1

−
lo

g
(1
−
Y
P

),
Y

=
0

(Y
P
−
Y

)
∗
V

N
/A

S
V

M
Y
P

=
V
∗
P

m
ax

(0
,1
−
Y
∗
Y
P

)

 −
Y
∗
V
,

if
Y
∗
Y
P
<

1

0,
ot

h
er

w
is

e
N

/A

L
2

R
eg

u
la

ri
ze

d
S
V

M
Y
P

=
V
∗
P

m
ax

(0
,1
−
Y
∗
Y
P

)

 −
Y
∗
V
,

if
Y
∗
Y
P
<

1

0,
ot

h
er

w
is

e
µ
∗
P

L
as

so
R

eg
re

ss
io

n
Y
P

=
V
∗
P

(Y
P
−
Y

)2
2
∗

(Y
P
−
Y

)
∗
V

µ
∗

sg
n
(P

)

R
id

ge
R

eg
re

ss
io

n
Y
P

=
V
∗
P

(Y
P
−
Y

)2
2
∗

(Y
P
−
Y

)
∗
V

µ
∗
P

17

results in r3,3. Finally, in r3,2 the model is updated w.r.t the gradients (and optional regu-

larization Ω). Here lr denotes the learning rate and n is the number of training instances.

And the training process moves on to the next iteration (Increase J by 1).

The advantage of Query 3 lies in its generality: by varying the set of functions (f , g,

Ω), it can support a wide spectrum of ML algorithms 1, whereby an incomplete list of ML

applications that can be expressed by Query 2 is shown in Table 3.1. Besides, the Mini-batch

Gradient Descent (MGD) can also be expressed with Datalog queries with minor changes on

Query 3.

The output of Query 3 is the trained model. Other necessary steps in machine learning,

i.e. validation and test, can be easily implemented in a similar way. Take the evaluation

on a test set as example: this can be accomplished by joining a verticalized test set vtest

with the table model using a process that is similar to Query 3. Furthermore, Query 3 can

be easily extended to memorize the evaluation result of each training instance in a table,

which can be used to calculate other metrics such as AUC, precision, recall and accuracy.

To support validation sets, a verticalized vvalidate table can be created to compute the loss

after updating the model with r2,2 in each iteration.

We further show a concrete example of training the Linear Regression model with Batch

Gradient Descent as Query 4. We will use this as the running example to demonstrate our

proposed techniques in the following sections.

1In this paper, we limit our discussion to the linear models and leave the issue of deep learning models
as future work.

18

Query 4 - BGD for Linear Regression

r4,1 : model(0, C, 0.01) ← vtrain(, C, ,).

r4,2 : model(J1, C,NP) ← model(J,C, P),

gradient(J,C,G),

NP = P − lr ∗G/n,

J1 = J + 1.

r4,3 : gradient(J,C, sum〈Id,G0〉) ← vtrain(Id, C, V, Y),

predict(J, Id, Y P),

G0 = 2 ∗ (Y P − Y) ∗ V.

r4,4 : predict(J, Id, sum〈C, Y 0〉) ← vtrain(Id, C, V,),

model(J,C, P),

Y0 = V ∗ P.

To demonstrate the benefits of ML applications written in Datalog , we will compare

them with Scala programs that perform direct manipulations on RDDs. Figure 3.1 shows a

fragment of a Scala program that expresses the very process of Query 4 by manipulating and

directly transforming the RDDs. We can observe from this process that compared with such

a Scala program, the Datalog program shown in Query 4 is more succinct and simpler to

define since it does not require the programmer to: (i) know the details of query evaluation;

(ii) specify the physical plan of dataflow and make lower-level optimizations.

3.3.2 Supporting Mini-batch Gradient Descent

Previously we discussed how BGD can be expressed with Datalog. Here, we further show

how to support Mini-batch Gradient Descent (MGD). A major challenge is due to the fact

that MGD requires the training data to be randomly shuffled before every iteration, and

this can be expensive in a distributed environment. To tackle this issue, we adopt the trade-

off proposed in [FKR12]: instead of making random shuffles before each iteration step, the

dataset is optimally shuffled once at the beginning. Then the training data is split into

19

1 var data = sc.parallelize(input, numParts)

2 .map(d => (d.label, d.feature))

3 var weights = Vectors.dense(initW.toArray)

4 var n = weights.size

5 var converged = false

6 var i = 1

7 while (!converged && i <= numIterations) {

8 val bcWeights = data.context.broadcast(weights)

9 val seqOp = (grad, (label, feature)) => {

10 var diff = dot(feature, bcWeights.value) - label

11 grad += dot(diff, feature)

12 grad

13 }

14 val combOp = (c1, c2) => {c1 += c2}

15 val gradientSum = data.treeAggregate(DenseVector.zeros(n))(seqOp, combOp)

16 weights += dot(stepSize, gradientSum / data.size)

17 prevWeights = currWeights

18 currWeights = Some(weights)

19 converged = isConverged(prevWeights.get, currWeights.get, tol=1e-6)

20 i += 1

21 }

22 weights

Figure 3.1: Snippet Scala Code: BGD for Linear Regression

20

batches and MGD can be expressed in a way that is similar to BGD.

As described above, we need to randomly shuffle the training data before the query

begins. Actually, most parts of MGD are the same as in Query 2; the only difference comes

from the way in which the predict relation is computed and used to calculate the gradient in

the current iteration. To optimize decisions, here we need the hyper-parameters of (i) batch

size bs and (ii) cardinality of training set n. The total number of batches in the training

set can be calculated as n/bs. We can recognize the batch of training instances that will

involve in each iteration in the following way: Suppose at iteration J , it uses the Bth batch

instead of the whole dataset for training. Then given the Id of a training instance, we can

identify the batch it belongs to as Id % n / bs. For the J th iteration, only training instances

belonging to the Bth batch, where B = J % (n / bs), should be involved when calculating the

table predict. Therefore, the computation of Mini-batch Gradient Descent can be realized

by replacing r3,4 with the following rule:

r3,4′ : pred(J, Id, sum〈Y 0〉) ← vtrain(ID,C, V,),

model(J,C, P),

Y0 = f(V, P),

Id%(n/bs) == J%(n/bs).

3.3.3 Termination Condition

Finally, we discuss about the termination condition of Query 4. In recursive Datalog pro-

grams, evaluation terminates when the Datalog program reaches a fixpoint, producing a

unique minimal model. However, this model could be infinite, in which case the fixpoint

computation would never terminate, as it is fact in our examples where the temporal ar-

gument J ranges over an infinite time domain. As J denotes the number of iterations,

increasing J by 1 means training for a new iteration. In this case, the delta relation of model

relation will always be non-empty.

To address this issue, we add conditions that terminate the iterative computation when

21

at least one of the following conditions is satisfied:

• The number of iteration reaches a predefined maximum number maxJ .

• The difference between the training losses of two adjacent iterations is smaller than a

predefined value ε.

Popular ML libraries, such as MLlib, enable users to specify hyper-parameters to control

termination and limit the number of iteration in a similar manner. In our programs, we can

limit the number of iterations by specifying maxJ and adding the condition J ≥ maxJ to

r4,2 in Query 4, which now becomes:

r4,2′ : model(J1, C,NP) ← model(J,C, P), grad(J,C,G),

NP = P − lr ∗G/n,

lesser(MaxJ, J + 1, J1).

Although the IF-THEN-ELSE construct is a built-in in many Datalog systems could be used

to express lesser, that would not be satisfactory, since the semantics of IF-THEN-ELSE

is defined using negation. This would take as back to the depths of the non-monotonic

conundrum from which we have just managed to emerge. Therefore we use the lesser

predicate defined as follows in these rules:

lesser(MJ, I, I) ← I < MJ.

lesser(MJ, I,MJ) ← I ≥MJ.

Similar revisions of our rules will also allow us to terminate the SN computation when

the difference between training losses in two successive iterations becomes smaller than a

predefined value ε.

3.4 Query Evaluation

In this section, we introduce the query evaluation and optimization techniques that enabled

their superior performance. In this paper, we focus on providing a detailed description

22

of their implementation on BigDatalog along with the extensive experiments that prove

their effectiveness. However, it is clear the techniques and their promising performance

can be generalized to different shared-nothing Datalog systems. We first briefly introduce

the BigDatalog system which our framework is built on (Section 3.4.1). Then we introduce

the new techniques to deal with complex recursions (Section 3.4.2) and query execution

(Section 3.4.3).

3.4.1 The BigDatalog System

BigDatalog [SYI16] is a Datalog language implementation on Apache Spark. It supports

relational algebra, aggregation and recursion, as well as a host of declarative optimizations.

BigDatalog uses and extends Spark SQL operators, and also introduces several operators

implemented in the Catalyst framework so that its planning features can be used on the

recursive plans of Datalog programs.

The input processed by the BigDatalog compiler includes the DDL to specify the database

schema and the query for expressing ML applications. The compiler analyzes the input query

and creates a logical plan from it. To resolve recursions, the compiler recognizes recursive

tables and switches from the task of building the operator tree for non-recursive queries to

the specialized task required by recursive queries. After recognizing the recursive references,

the compiler produces the Predicate Connection Graph (PCG) [AOT03] to identify the

dependency of relations within the program.

The logical plan maps the PCG to a tree containing standard relational operators and

recursion operators. Such recursion operators are used in the logical and physical plan

to process the recursive query. The plan actually consists of the following two parts: (i)

The base plan specifies the base case of the recursion; and (ii) The recursive plan defines

behaviors within each iteration. In this process, the aggregates and group-by columns are

automatically identified for each sub-query.

23

The physical plan is generated by analyzing the logical plan with the Spark SQL analyzer

and applying rules defined in the optimizer. The BigDatalog operators use Spark SQL row

type much in the same way in which Spark SQL uses the standard relational operators. In

order to support recursion, our system introduces specialized recursion and shuffle operators

into the physical plan. The proper settings for shuffle operators is identified by calling on

Catalyst optimizer of Spark SQL. Finally, the query plan is executed by the Spark engine

using the RDDs and transformation operators such as distinct, union and subtract.

Figure 3.2: Dependency between Tables in Query 4.

3.4.2 Supporting Complex Recursions

3.4.2.1 Challenges

Compared with simpler applications now supported by BigDatalog, ML applications require

much more complex recursive queries than those discussed in [ZYI18, SYI16]. This is illus-

trated by the dependency graph between the four relations of Query 4 shown in Figure 3.2.

We can see that the plan involves two kinds of complex recursions:

• Mutual recursion occurs when multiple recursive relations rely on each other to com-

pute the result. For example, in rules r4,2 through r4,4, the recursive relations model,

gradient and predict rely on each other and thus create a cycle which denotes a mutual

24

model

vtrain

vtrain model

gradient

predict

MRO

MRO

[J,C,P]

[J,C,G]

[J,Id,YP]

[J,C]

[Id]

[C]

model MRO

Recursive Plan:

Base Plan:

[J,C,P]

vtrain

Base

Plan

Recursive

Plan

Figure 3.3: Logical Plan of Query 4

recursion in Figure 3.2.

• Non-linear recursion means that there are more than one recursive relation in the body

of a rule. For example, rule r4,2 involves two recursive relations model and gradient.

By analyzing the PCG, the compiler recognize These two kinds of recursion and marks the

rules with special tags. These tags identify the particular recursion types and the different

techniques used to process them, which are described next.

3.4.2.2 New Recursion Operator

To support mutual recursion, we define a special recursion operator named Mutual Recur-

sion Operator (MRO), which provides a major extension to the basic recursion operator of

BigDatalog that cannot be used for mutual recursion since it only allows one recursive rela-

tion in the recursive plan. MRO instead allows mutual references among multiple recursive

relations by including them in the recursive plan in a cascading manner. For each set of

mutually recursive relations, only one MRO has the base plan, since the base case for other

25

MROs is provided by the operator that precedes them in the plan.

Example 1 The logical plan for Query 3 is shown in Figure 3.3. The root of the plan is an

MRO with both base and recursive plan. The left child is the base plan with only the vtrain

relation representing rule r4,1, which provides the base case of the mutual recursion. The

right child is the recursive plan representing rules r4,2 through r4,4. Each MRO represents a

rule within the mutual recursion. We can see that all MROs belonging to the recursive plan

have a NULL base plan (omitted in Figure 3.3).

The corresponding physical plan is shown in Figure 3.4. It consists of operators translated

from the logical plan along with the shuffle operators and their partitioning information. For

example, in the recursive plan, when the join between recursive relations model and gradient

is computed, both operands must be shuffled according to their join keys J and C. The

recursive plan in Figure 3.4 also shows that this join operation is followed by two more joins,

each of which requires two shuffle operations. Therefore, a total of six shuffle operations is

performed at each iteration.

3.4.2.3 Distributed Semi-naive Evaluation

To evaluate the program in a distributed environment, the physical plan assigns each MRO

to the master node where it executes and becomes responsible for driving the distributed

query evaluation. The most important step is the scheduling of shuffle operators that are

injected between successive steps of the physical plan presiding to the distributed evaluation.

The shuffle operators are used to re-partition the dataset in all cases where the output

produced by an operator is different from that of the operator using it as input according to

the execution plan. Then the BigDatalog engine utilizes fixpoint computation to drive the

iterative evaluation process using the distributed version of semi-naive (DSN) evaluation.

The execution of DSN in the MapReduce framework requires the recursive relations

and base relations within one stage to be co-partitioned on a given key K. After that,

26

model

vtrain

vtrain model

gradient

predict

MRO

MRO

[J,C,P]

[J,C,G]

[J,Id,YP]

[J,C]

[Id]

[C]

model MRO

Recursive Plan:

Base Plan:

[J,C,P]

vtrain

Base

Plan

Recursive

Plan

Shuffle Shuffle
[J,C] [J,C]

Shuffle Shuffle
[Id] [Id]

Shuffle Shuffle
[C] [C]

Figure 3.4: Physical Plan of Query 4

the execution goes through Map and Reduce stages. Results of the current iteration are

generated in the Map stage, while the new delta and the relations needed in the next iteration

are generated in the Reduce stage. Algorithm 2 describes the process in more details.

However, since programs for ML applications include non-linear and mutual recursion,

we must revised the evaluation approach described above. For mutual recursion, the solution

is relatively easy: One recursive relation is regarded as the driver for DSN, e.g. the model

relation in Figure 3.4, while the others are evaluated by the MROs in the recursive plan.

These extensions do not impact the techniques currently used for linear recursion.

A more complex solution is required for non-linear recursion. In fact, let X and Y denote

two recursive relations that are involved in a non-linear recursion since they appear as goals

27

Algorithm 2: DSN Evaluation (B, K)

Input: B: The Base Relation, K: The partition key

Output: R: All results in the recursive table

begin1

// δR, δR′: Recursive relation (Delta)2

Map Stage(δR, B)3

foreach partition pair of (δR,B) do4

emit Π(δR ./δR.K=B.K B)5

Reduce Stage(δR′, R)6

foreach partition pair of (δR′, R) do7

D ← δR′ −R8

R← δR′ ∪R9

emit D10

δR← Results of Base Case, R← ∅11

repeat12

i ← i + 113

MapOutput ← MapStage(δR, B)14

δR′ ← ShuffleExchange(MapOutput, key = K)15

δR ← ReduceStage(δR′, R)16

until δR == ∅ ;17

return R;18

end19

in the body of the same rule. Then, the SN evaluation should be performed by enumerating

the combination of delta relations as shown in Equation (3.2):

δ(X ./ Y ./ B) = (δX ./ Y ./ B) ∪

(X ./ δY ./ B) ∪ (δX ./ δY ./ B)
(3.2)

where B is a base relation that is optional in this process.

28

Therefore, unlike the case of linear recursion, we need to keep the whole recursive relations

rather than just deltas in order to support non-linear recursion in DSN. During the evaluation,

the steps described in line 7 to 11 of Algorithm 2 should be replaced with the operations

defined Equation (3.2) in order to support non-linear recursion. Similar observations also

apply when computing aggregates in recursion.

Example 2 For the example at hand, we can see that non-linear recursion appears in rule

r4,2 of Query 4 where the model relation in the head is obtained by joining model and gradient

on the keys J and C. Then the delta relation of r4,2 should be computed as the union of

model ./ δgradient, δmodel ./ gradient and δmodel ./ δgradient. Therefore, as shown in

Figure 3.4, it keeps the whole relation instead of only the delta in our physical plans.

3.4.3 Execution

Iterations

i th

iteration

copy

Input from i - 1th iteration

Output of i th iteration

join

join (update)

operatio
n operation

Intra-iter

RDD

Inter-iter

RDD

Figure 3.5: Intra- vs. Inter-Iteration RDDs

To avoid data redundancy in the process of SN evaluation, BigDatalog [SYI16] adopted the

SetRDD mechanism for executing recursive queries in Spark. SetRDD stores distinct rows

of data into a HashSet data structure to optimize the execution of set operators in the DSN.

Thus, SetRDD is made mutable under the union operation, which saves system memory

by not copying redundant data from up-stream RDDs. However, this optimization may

not work when dealing with non-linear recursion: According to the mechanism of SetRDD,

29

when a recursive relation is referenced in one rule, its corresponding RDD would be modified

by the set union and set difference operations. However, in case of non-linear recursion, a

recursive relation can be referenced more than once within each iteration. Then if the

recursive relation has been modified by one rule, when it is evaluated by another rule in the

same iteration, its RDD is no longer the same as it was before the first evaluation, whereby

the execution results would be incorrect.

To address this issue, we propose a smart strategy to divide the RDDs into Intra-Iteration

and Inter-Iteration ones. Thus, for non-linear recursion, we are able to identify when the

RDDs will be re-used in the same iteration. If so, we classify it as Intra-Iteration RDD and

treat it as immutable, i.e. we generate a new RDD by copying data from the up-stream one.

But when an RDD will only be used in the next iteration, we classify it as an Inter-Iteration

RDD and process it as SetRDD to save memory.

Example 3 Figure 3.5 shows the series of RDDs generated in the execution step of Query 4.

Here the green rectangles denote Intra-Iteration RDDs while the blue dashed ones denote

Inter-Iteration ones. We are aware that in the ith iteration, model is updated by rule r4,2,

which would be used in the i+ 1th iteration. Meanwhile, this table is also used in rule r4,4

that updates predict. Therefore, the RDD of model generated by r4,2 should be Inter-Iteration

while that used in r4,4 should be Intra-Iteration.

3.5 Performance Optimization

In this section, we present several techniques that have proven to be quite effective in opti-

mizing the performance of our framework. To measure the effectiveness of each technique,

we use the Datalog programs to train Linear Regression (Linear), Logistic Regression (Lo-

gistic) and SVM with BGD on a synthetic dataset. The data generator used here is the one

proposed in a previous experimental study for ML applications [TK18]. We use the option

of sparse data with density 1.67× 10−6. The total size of training set is 40 GB. The training

30

process of BGD is conducted over 100 iterations.

3.5.1 Eliminating Unnecessary Evaluation

Table 3.2: Non-Linear Recursion Optimization

Time (s) Linear Logistic SVM

w/ elimination 7196.4 7582.9 6814.6

w/o elimination 10358.1 11319.5 10166.7

For programs with non-linear recursions, we need to enumerate the combinations of delta

relations as shown in Equation (3.2) when performing semi-naive evaluations. As a result,

the DSN could be significantly more expensive than that with only linear recursions. An

example can be observed in Query 4 where the non-linear recursion is used in r4,2 when

updating the model with the gradient computed in current iteration. The evaluation would

require using the whole recursive relations model and gradient in the physical plan as shown

in Figure 3.4.

As our investigation progressed from formal semantics to operational semantics, we find

that while the textbook techniques for SN optimization of non-linear queries remain valid,

they can be further optimized for specific ML queries. Take again Query 4 as our example:

When adopting Equation (3.2) to evaluate the query, we need to count for the items model ./

δgradient, δmodel ./ gradient and δmodel ./ δgradient and thus need to include the full

relations model and gradient. However, note that the join key between model and gradient is

〈J,Col〉. In the ith iteration, since tuples in model are from the J − 1th iteration while those

in δgradient are from the J th iteration, model ./ δgradient = ∅ holds due to mismatched

values of J . Similarly, δmodel ./ gradient = ∅ also holds. Therefore, we only need to

evaluate the item δmodel ./ δgradient. As a result, the items model and gradient can be

replaced with δmodel and δgradient in the physical plan, which significantly reduces the

computational overhead and the network transmission caused by shuffle operations. Since

31

this optimization is based on the execution process of gradient descent, it can be applied

for training all linear models with BGD and MGD. Figure 3.6 shows the physical plan after

applying optimizations: the full relations model and gradient are replaced with delta ones.

The effect of eliminating unnecessary evaluations are shown in Table 3.2. The results

show that this optimization for the SN evaluation of non-linear recursive programs for ML

is quite substantial, and this is hardly a surprise given that the full relations are replaced by

the delta ones at every iteration of the SN computation.

3.5.2 Join Optimization with Replica

δmodel

vtrain

vtrain δmodel

δgradient

δpredict

MRO

MRO

[J,C,P]

[J,C,G]

[J,Id,YP]

[C]

[Id]

[C]

model MRO

Recursive Plan:

Base Plan:

[J,C,P]

vtrain

Base

Plan

Recursive

Plan

Shuffle
[C]

Shuffle
[Id]

Figure 3.6: Optimized Physical Plan

For programs with linear recursion, it is often better to use broadcast join between

the delta recursive relation and the base relation in the physical plan by loading the base

32

relation into a lookup table and shared by all workers via broadcasting. Since the overhead of

broadcasting can be amortized over the recursion, this approach is rather effective for graph

queries where the base table is usually much smaller than the intermediate results [SYI16].

However, the characteristics of ML workloads are totally different from those of graph queries:

the size of intermediate results that participates in the computation and requires to be kept

in memory is independent from the number of iterations and is relatively small: the size

of predict is 2n where n is the size of training data; the size of gradient and model is both

2d, where d is the dimension of a training instance 2. In contrast, the base relation, i.e.

the training set, tends to be very large. What’s more, the size of base relation always

exceeds the maximum memory of a single worker, which would make the broadcast join

not applicable. As a result, the broadcast joins that proved so effective on graph queries

will encounter serious problem on ML workloads. Consequently, there would be multiple

shuffle operations per iteration on the base relation, which brought significant overhead for

the overall performance. Recall that shuffle operations on the base relation happens when

the base relation is joined with recursive ones on different keys. For example, in r4,3 vtrain

needs to be joined with predict on the key Id; and in r4,4 the join key between vtrain and

model becomes C. Here the vtrain relation would be shuffled twice.

To address this issue, our framework instead adopts a smart-replica optimization ap-

proach that makes careful trade-offs between memory usage and join performance. We find

that the shuffle operations can be avoided by making replicas of the base relation partitioned

by different keys on the same worker. Specifically, in above example we just make two dif-

ferent replicas of the vtrain relation on all workers: one is partitioned by the key Id and

the other is partitioned by C 3. Then the former will be used in r4,3 while the latter will be

used in r4,4. The green dotted items in Figure 3.6 are relations where the shuffle operations

2The total size of intermediate results would be nJ for predict and dJ for gradient and model. Results
from older iterations would be dumped into disk for the sake of crash recovery.

3The distribution of replicas partitioned by different keys might be different on the same worker

33

can be avoided by making replicas of vtrain. As we can see, two shuffle operations could be

saved compared with the original physical plan in Figure 3.4.

We also want to point out that the space overhead brought by replicas is tolerable. The

essence of broadcast join is to trade the memory for join performance. Since the whole base

relation is transmitted, the memory overhead on each worker would be the size of the base

relation. Meanwhile, the memory overhead of our replica mechanism is the size of base table

divided by the number of workers on average. It has similar benefit in accelerating join

processing as broadcast join does while avoiding its shortcoming of memory consumption.

Furthermore, the decision of making replicas can be made automatically: The fact that the

base relation needs to participate in join operations on different keys can be recognized in

the process of formalizing the logical plan. Thus the usage of replicas will be decided before

actual physical plan is generated. Note that the Spark APIs cannot make such optimizations

since the program is directly expressed in terms of physical operations.

Table 3.3: Effect of Replica

Time (s) Linear Logistic SVM

w/ replica 7196.4 7582.9 6814.6

w/o replica 22664.9 26312.3 20660.0

The effects of applying the replica mechanism are shown in Table 3.3. We can see

that with the help of replica mechanism, it achieves a performance gain of 3X to 3.4X.

This underscores the considerable amount of shuffle operations that are removed from all

iterations because of our carefully designed replica mechanism.

3.5.3 Scheduling Optimization

As illustrated in [WS88], recursive queries that can be compiled into decomposable plans

could potentially benefit from a well-chosen partition strategy. In such cases, the produced

RDDs preserve the original partition of input recursive table. Then the executor on the

34

same partition can continue to work without global synchronization. Consequently, the

shuffle operations could be saved. The correctness of this property can be guaranteed by the

replica mechanism on base relations even if the join key will change for the next operator.

The blue dashed items in Figure 3.6 are the shuffle operations that can be saved by the

scheduling optimizations. For rule r4,2, the shuffle operation can be removed since delta of

the recursive relation model can be acquired locally for each worker. Similarly, in rule r4,4,

the recursive relation model comes from r4,2, which has already been partitioned by the same

key C. Therefore, the shuffle operation on model can also be removed.

Table 3.4: Effect of Scheduling Optimization

Time (s) Linear Logistic SVM

w/ optimization 7196.4 7582.9 6814.6

w/o optimization 7961.0 8339.2 7719.7

Table 3.4 shows the effect of scheduling optimizations. The overall performance is im-

proved over the un-optimized approach by approximately 1.2X. Actually the elimination

of shuffle operations in r4,4 can be done automatically once the replica mechanism is ap-

plied. Therefore, the performance gain brought by scheduling optimization is not so obvious

compared with the other two optimizations described above.

3.6 Usability

n this section, we discuss the usability issues of our proposed framework. We first introduce

how to express the ML applications with SQL queries that are equivalent to the Datalog ones

in Section 3.6.1. Next we propose a library of the Datalog queries for ML with DataFrame

APIs in Section 3.6.2.

35

3.6.1 Equivalent SQL Queries

SQL has delivered great benefits in relational DBMS and big data platforms due to its declar-

ative nature and portability. We show here that SQL can support many ML applications by

providing SQL queries that have equivalent semantics to the Datalog ones introduced above.

This represent an important extension to the RaSQL language and its system [GWM19]

which supported aggregates in recursion by introducing a simple extension in the syntax

of the SQL:2003 SQL standards. Specifically, RaSQL supports basic aggregates, i.e. min,

max, sum, count, in recursion by minimal extensions of the Common Table Expressions

(CTE) used by current SQL standard. The basic syntax of RaSQL is shown below.

WITH [recursive] VIEW1 (v1_column1, v1_column2, ...)

AS (SQL-expression11) UNION (SQL-expression12) ...,

[recursive] VIEW2 (v2_column1, v2_column2, ...)

AS (SQL-expression21) UNION (SQL-expression22) ...

SELECT ... FROM VIEW1 | VIEW2 | ...

WITH RECURSIVE construct of RaSQL

The CTE starts with the keyword “WITH RECURSIVE”, which is followed by definitions

of the recursive view. The view content is defined by a union of sub-queries, which define the

base table and recursive table. This is similar to the base and recursive relations of Datalog.

Here a table is the base table if its FROM clause definition does not refer to any recursive

CTE; otherwise it is a recursive table. The RaSQL query that is equivalent with Query 4

is shown in Query 5.

Such RaSQL queries for ML applications can be compiled into Spark SQL operators

and recursive operators in a similar way to that discussed in Section 3.4. Moreover, such

RaSQL queries can be encapsulated into a library called by DataFrame operations as MLlib

did.

36

Query 5 - RaSQL: BGD for Linear Regression

Base tables: vtrain(Id: int, C: int, V: double, Y: double)

WITH recursive model (J, C, P) AS

(SELECT 0, vtrain.C, 0.01 FROM vtrain)

UNION

((SELECT 1+m.J, m.C, m.P+2.0/n*LR*g.G

FROM model AS m, gradient AS g

WHERE m.C = g.C and m.J = g.J),

recursive gradient(J, C, sum() AS G) AS

(SELECT p.J, t.C, (t.Y - p.YP)*t.V

FROM vtrain AS t, predict AS p

WHERE p.Id = t.Id),

recursive predict(J, Id, sum() AS YP) AS

(SELECT m.J, t.Id, m.P*t.V

FROM vtrain AS t, model AS m

WHERE t.C = m.C)),

SELECT * FROM model

3.6.2 ML Library with DataFrame APIs

To improve usability and attract a wide participation by data scientists, we further encap-

sulate the Datalog queries for ML algorithms in a more elegant and succinct library using

DataFrame APIs. Currently such a library can support all queries introduced in Section 3.3.1.

With the help of such a library, users can express the whole process of machine learning using

the Datalog queries introduced above where the hyper-parameters and data source can be

specified in a similar way as MLlib does. Next we illustrate the basic usage of our API with

a running example in Figure 3.7.

The example in Figure 3.7 expresses the process of training a Logistic Regression classifier

37

1 val session = DatalogMLlibSession.builder()

2 .appName(”LR”) .master(”local[∗]”)

3 .getOrCreate()

4 // Import data.

5 var Vschema =

6 StructType(List(StructField(”Id”, IntegerType, true),

7 StructField(”C”, IntegerType, true),

8 StructField(”V”, DoubleType, true),

9 StructField(”Y”, IntegerType, true)))

10 var df = spark.read.format(”csv”)

11 .option(”header”, ” false”).schema(Vschema)

12 . load(”dataDTrain”)

13 // Training on the input relation df .

14 import edu.ucla.cs .wis.bigdatalog.spark.DatalogMLlib.

15 {DL LogisticRegression, DL LogisticRregressionTransformer}

16 val lr = new DL LogisticRegression().setMaxIter(10)

17 val lrModel = lr. fit (df , session)

18 // Testing with pre−trained model.

19 var test = spark.read.format(”csv”)

20 .option(”header”, ” false”).schema(Vschema)

21 . load(”dataDTest”)

22 val lrPredict = new DL LogisticRregressionTransformer()

23 val prediction = lrPredict.transform(lrModel, test , session)

Figure 3.7: Example of DataFrame API: Logistic Regression

on the training data dataDTrain, and making prediction on the test data, dataDTest. The

two datasets are stored in a verticalized view with Vschema (Id, C, V, Y) as introduced in

Section 3.3.1. To make use of the Datalog programs for machine learning, we first construct a

working environment, i.e. DatalogMLlibSession for our library of machine learning algorithm

(line: 1 to 3). Then, we load the training data to a Dataframe df. After importing the

required training and predicting functions for Logistic Regression (line: 14 to 15), we could

38

build executable objects for training lr (line 16) and predicting lrPredict (line: 22). The lr

object wraps all the logical rules and required relations (e.g. parameters with default value

0) of the Datalog implementation for Logistic Regression. When initializing lr, users can

exploit the built-in functions to set the hyper-parameters, including maximum number of

iterations, the method used for parameter initialization, and many others. After fitting the

model to df, the lrPredict object could make predictions on the testing instances with the

pre-trained model, lrModel. In both the fitting and predicting processes, the information of

Datalog execution runtime can be obtained by using session as an input argument, which is

same as the practice of MLlib.

For the sake of comparison, we also show how Apache Spark MLlib will be used to

implement the above example. The snippet code is shown in Figure 3.8. The pipeline of

functionalities is very similar to that of our APIs; this will make it much easier using the

DataFrame APIs in our library for those who are already familiar with MLlib. Although there

are minor differences in the aspects of data formatting and usage of some public functions,

e.g. transform and assembler, the expression of MLlib and our library are very similar and

both user-friendly.

3.7 Graphics User Interface

In this section, we propose a graphics user interface for the RaSQL system, which can

also ease the expression of ML applications. We first introduce the system architecture in

Section 3.7.1. Then we show how to make interaction with the system via the graphics user

interface in Section 3.7.2.

3.7.1 System Architecture

The overall architecture of RaSQL system is shown in Figure 3.9. It is built on top of

Apache Spark (denoted by red dashed rectangle) and consists of three components:

39

1 val session = SparkSession.builder().appName(”LR”)

2 .master(”local [∗] ”).getOrCreate()

3 // Import data.

4 var schema = StructType(List(StructField(”X1”, IntegerType, true), StructField(”X2”, IntegerType,

true),

5 StructField(”X3”, DoubleType, true),

6 StructField(”label”, IntegerType, true)))

7 var df = spark.read.format(”csv”).option(”header”, ”false”).schema(schema).load(”dataSTrain”)

8 // Training on the input relation df .

9 import org.apache.spark.ml.Pipeline

10 import org.apache.spark.ml. classification .LogisticRegression

11 import org.apache.spark.ml.feature.VectorAssembler

12 val assembler = new VectorAssembler()

13 .setInputCols(Array(”X1”, ”X2”, ”X3”))

14 .setOutputCol(”features”)

15 val lr = new LogisticRegression() .setMaxIter(10)

16 val pipeline = new Pipeline().setStages(Array(assembler, lr))

17 val lrModel = pipeline. fit (df)

18 // Testing with pre−trained model.

19 var test = spark.read.format(”csv”).option(”header”, ”false”).schema(schema).load(”dataSTest”)

20 val prediction = lrModel.transform(lrModel, test)

Figure 3.8: Implementation with MLlib

Web-based User Interface We provide a carefully designed user interface that allows

users to interact with the RaSQL system. Users can type-in the RaSQL queries as well

as experience other advanced features without much effort. After the query is submitted to

the RaSQL engine and gets executed, the query results would be returned and displayed

on the user interface. More details will be described later in Section 3.7.2.

Query Compilation and Planning The RaSQL engine is implemented on top of Spark

SQL, which supports the latest ANSI-SQL standard and provides a comprehensive set of

functions that perform the parsing, analyzing and planning of SQL queries. However, cur-

40

Figure 3.9: The Overall Architecture of RaSQL

rently the Spark SQL compiler cannot support recursive queries. To address this issue, we

propose novel compilation and query planning techniques, The RaSQL queries will first be

compiled into a Recursive Clique driven by a new Recursive Operator which consists of a

base plan and a recursive plan by leveraging the techniques from Datalog researches [AOT03].

Then it will further be translated into recursive logical and physical plans, which consists

both relational operator supported by Spark SQL and recursive operators proposed by us.

We introduce a new fixpoint operator in order to evaluate the recursive plan and identify the

termination condition for the recursion.

Execution Engine The query plan is then submitted to the execution engine, which is ex-

ecuted by the Apache Spark engine using RDDs and transformation operators. To efficiently

support the execution of recursive RaSQL queries, we modify the core of Spark to support

the fixpoint operator plan and propose a new data structure setRDD. We also propose sev-

eral techniques to improve the performance, such as stage combination and partition-aware

41

Figure 3.10: RaSQL System User Interface

scheduling, which are explained in [GWM19].

3.7.2 Interaction with the GUI

To interact with the system, it uses RaSQL web interface and the screen shots are shown in

Figure 3.10. This user interface consists of four main components: (i) Query input box (top

left); (ii) Result display panel (bottom left); (iii) Configuration dashboard (bottom right);

(iv) Query Plan display (top right). For novice users, we provide some predefined examples

which can be loaded by simply clicking the name of queries in the bottom right drop-down

list. Advanced users are welcome to come up with queries by typing into the input box.

The result display panel demonstrates the query results. The top right panel visualizes

the recursive clique plan of the query, which can be generated by clicking the “Analyze”

button after input the query. It demonstrates how the recursive RaSQL query is analyzed.

42

Details of operators can be found by clicking the corresponding icons. It would help users to

better understand the compilation and planning techniques of RaSQL. The configuration

dashboard provides several options for user to setup in order to execute the queries. For

example, users need to specify the data source from either local file or HDFS on the cloud

and set the arguments (if any). Next, users can directly interact with the system and test its

capabilities: Users can write the RaSQL freely by themselves on different kinds of datasets,

including both graph data and training data for ML models. Users can also observe the

generated recursive clique and query plans to get an experience of how the recursive queries

can be handled by the RaSQL engine.

3.8 Experiments

3.8.1 Experimental Setup

Table 3.5: Statistics of Datasets

Name Cardinality # Features Size (GB)

URL 2,396,130 3,231,961 2.1

KDD10 19,264,097 29,890,095 4.8

KDD12 149,639,105 54,686,452 21.1

Webspam 350,000 16,609,143 23.3

3.8.1.1 Workloads and Datasets

We evaluate the performance of our framework on the task of training linear models via

gradient descent optimizers. As is stated before, we mainly focus on BGD. But we also

report the results of MGD using the method described in Section 3.3.2. Specifically, we

use Linear Regression, Logistic Regressionand SVM as benchmark models in this

paper.

43

The datasets used in the experiments are summarized in Table 3.5. Here cardinality

means the number of training instances while “# Features” means the number of dimension

each training instance has. We conduct experiments on 4 public datasets provided by LIB-

SVM [lib], a popular benchmark for evaluating linear models: URL [MSS09] is a dataset for

identifying malicious URLs. KDD10 comes from Carnegie Learning and DataShop that is

used in KDD Cup 2010. KDD12 [JZC16] is a CTR prediction task from KDD Cup 2012.

Webspam [WCP06] is a dataset of email spams. Currently we are focusing on training linear

models to learn from sparse datasets, which occur frequently in real-life applications. All

above selected datasets are from real world scenarios. We also show some results on dense

dataset later in Section 3.8.5. Note that the cardinality of such datasets are sufficient to

evaluate the systems considering the memory of all available nodes. The memory needs to

hold not only the dataset but also the intermediate results and system runtime, which also

the case for all the baseline systems mentioned in the following.

3.8.1.2 Baselines and Metrics

As BigDatalog is implemented on top of Apache Spark, we mainly compare it against two

Spark based competitors: MLlib 2.3.0 and SystemML 1.2.0, where MLlib [MBY16] is the

official Spark package for machine learning 4. As MLlib comes with an implementation

with MGD, we implement BGD by setting the batch size as the cardinality of training set.

SystemML [BDE16] is a state-of-the-art ML system on top of Spark using a declarative R-

like language 5. We implement the training process with BGD and MGD using its script

language following the official documentation. We are also aware that there are several

special-purposed machine learning systems, including TensorFlow, PyTorch, MXNet and

Petuum. Due to the space limitation, we just select PyTorch 6 as the representative for

4https://spark.apache.org/mllib/

5https://systemml.apache.org/

6https://pytorch.org/

44

comparison. Other studies published on Datalog for machine learning [MVP18] and [LCC17]

do not provide a good basis for comparison. This is because simple query interfaces rather

than end-to-end systems are provided in [MVP18] and [LCC17], and no publicly available

implementation is available for [BBC12b].

Note that the main purpose of this work is not to claim that the implementation of our

proposed framework is fundamentally more efficient than other special purposed ML systems,

or to argue that Datalog is more suitable than the math-like syntax interfaces have provided

in other ML platforms. Instead, we aim at demonstrating that it is possible to optimize a

general recursive query engine to achieve the competitive or even better performance than

special-purpose ML systems in a family of ML applications.

We use execution time as the evaluation metric in the experiments. Since BGD uses

all training instances in one iteration, the results regarding accuracy/loss are the same for

all systems. Therefore, we only report the end-to-end query execution time for models

trained with BGD. For MGD we report the results of training loss vs. training time as

it was done in many previous studies of ML systems. To ensure fairness, we allocate the

same number of workers/servers and sufficient memory to guarantee the performance for

different platforms. We ensure that algorithms on different platforms are equivalent in terms

of workload and convergence by configuring the implementation on all systems with exact

the same parameters.

In the experiments, the original LIBSVM data format can be supported by our approach

and also by MLlib and PyTorch. For SystemML, we converted our data format into their

supported binary format following the instructions in SystemML’s official documentation,

and we did not include this preprocessing time into the total query time.

45

 10
2

 10
3

 10
4

 10
5

 10
6

 10
7

url kdd10 kdd12 webspam url kdd10 kdd12 webspam url kdd10 kdd12 webspam

Linear Logistic SVM

1
1

6
6

2
3

3
8

4
3

2
2

6

4
5

8
2

1
3

0
0

2
3

3
5

4
5

8
2

6

4
2

9
5

1
2

0
4

2
0

4
6

3
8

6
9

6

3
8

9
5

1
2

9
3 4

6
8

9

2
6

1
0

1
5

1
3

8
9

4

1
3

5
4 4

8
3

8

2
0

4
9

1
0

1
3

1
4

7

1
4

1
9 4

3
9

0

1
6

0
6

2
0

1
1

5
1

9

1
4

5
8

1
1

3
5

1

O
O

M

O
O

M

1
6

1
1

8
5

1
2

O
O

M

O
O

M

1
6

7
3 6

3
5

3

O
O

M

O
O

M

1
1

1
7 3

8
8

9

O
O

M

O
O

M

1
1

9
4 4

2
3

5

O
O

M

O
O

M

1
3

3
1 4

0
2

3

O
O

M

O
O

M

T
im

e
 (

s
)

Datalog MLlib SystemML PyTorch

Figure 3.11: Performance Comparison: Training with Batch Gradient Descent

3.8.1.3 Environment

The experiments of all the four systems are conducted on a cluster with 16 node: one node

acts as the master and other 15 nodes as workers. For the distributed computing, since

our Datalog framework, SystemML and MLlib are all based on Apache Spark, they use the

bulk synchronous parallel architecture. Meanwhile, PyTorch runs under the parameter server

architecture. All nodes are connected with 1Gbit network. Each node runs Ubuntu 14.04

LTS and has an Intel i7-4770 CPU (3.40GHz, 4 core/8 thread), 32GB memory and a 1

TB 7200 RPM hard drive. Each worker node is allocated 30 GB RAM and 8 CPU cores

(120 total cores) for execution. BigDatalog is built on top of Spark 2.0 and Hadoop 2.2. All

systems are activated with in-memory computation by default. Since hype-parameter tuning

is outside the scope of this paper, the hyper-parameter settings are the same for all systems:

the learning rate is 10−2 and the number of iterations for BGD is 100.

3.8.2 End-to-end Performance

To begin with, we report the end-to-end execution time of the three models trained with

BGD. The results are shown in Figure 3.11, where our approach is denoted as Datalog . Note

that some results of SystemML and PyTorch are denoted by the word “OOM” in red, since

they run out of memory under those settings. We can make the following observations:

46

0 1000 2000 3000 4000 5000 6000
Time (s)

0.40

0.42

0.44

0.46

0.48

0.50

Tr
ai
n
Lo
ss

PyTorch
Datalog
SystemML
MLlib

(a) Linear Regression

0 1000 2000 3000 4000 5000 6000
Time (s)

0.35

0.38

0.41

0.44

0.47

0.50

Tr
ai

n
Lo

ss

PyTorch
Datalog
SystemML
MLlib

(b) Logistic Regression

0 1000 2000 3000 4000 5000 6000
Time (s)

0.35

0.38

0.41

0.44

0.47

0.50

Tr
ai

n
Lo

ss

PyTorch
Datalog
SystemML
MLlib

(c) SVM

Figure 3.12: Performance Comparison: Training with Mini-batch Gradient Descent

Firstly, Datalog consistently outperforms the other two Spark based systems MLlib and

SystemML for all three models. SystemML has the worst performance as its optimizations

focus on physical-level computation within one iteration rather than the whole iterative

training process. Such results make sense since the strong point of SystemML lies in directly

computing the ML models by matrix operations. MLlib outperforms SystemML because

it adopts a tree aggregate mechanism to accelerate the gradient computation in distributed

environment; however Datalog is approximately 2X to 4X faster than MLlib. Our preliminary

investigations suggest that performance gains of our approach over MLlib come from higher-

level logical optimizations, which were particularly successful in reducing shuffle operations.

Secondly, the performance of Datalog is comparable with that of PyTorch, one of the

most popular special-purposed ML systems. On some datasets, such as KDD10 dataset,

Datalog even outperforms PyTorch by up to 2 times. This must be credited to our system’s

success in optimizing each computation step from planning to execution to fully harness the

potential of Spark engine. We also see that PyTorch requires much more memory: it runs

out of memory on the large datasets KDD12 and Webspam. A possible reason for that

is that PyTorch needs additional memory to make a replica of gradients and parameters for

each thread rather than each node. For large sparse dataset, PyTorch will run out of memory

when broadcasting after an iteration.

Lastly, the advantage of Datalog over other competitors is more obvious on larger datasets.

47

On the smallest dataset URL, the performance is comparable for all four systems. When it

scales up to KDD10, MLlib and SystemML are approximately 2X and 5X slower than Data-

log , respectively. For example, on the KDD10 dataset, the total execution time for Linear

Regressionon PyTorch, MLlib, and SystemML is 3889, 4689, 11351 seconds, respectively.

While Datalog only takes 2338 seconds. Finally for KDD12, SystemML runs out of memory

and Datalog outperforms MLlib by 5X. The possible reason for which SystemML runs out of

memory could be that it conducts the ML application in the way in which matrix operations

are optimized. Thus, even for sparse datasets, SystemML requires large volumes of memory

to keep the intermediate results.

3.8.3 Results for Mini-batch GD

Next, we report the experimental results on training the three ML models with the MGD

optimizer. We set the batch size as 8,192 empirically. Due to space limitations, we only

report the results on KDD10 dataset. On the other datasets without memory issues, the

results have similar trends. For experiments with MGD, we do not fix the number of iter-

ations. Instead, the training process will terminate when convergence is reached (when the

difference of training losses between two adjacent iterations is smaller than 10−3 or reaches

the maximum 25,000 iterations).

As we can see from Figure 3.12, PyTorch has the best performance under most settings.

This is not surprising since specialized ML systems have implemented several optimizations

and improvements designed specifically for training with MGD. As it has been widely shown

in previous studies, BGD is more suitable for ML systems based on relational engines, e.g.

Spark and relational DBMS. Note that the main contribution claimed in this paper is to

propose a purely declarative ML framework by taking advantage of the characteristics of

Datalog, rather than implementing an ML system that provides richer and more efficient ML

functions than other systems. Consequently, the main purpose of evaluation is to show that

with the aggregates-in-recursion mechanism supported by sound optimization techniques, the

48

0

0.5

1.0

1.5

2.0

2.5

3.0

10 20 30 40

T
im

e
 (

1
0

4
 s

)

Data Size (GB)

Datalog
MLlib

SystemML
PyTorch

(a) Linear Regression

0

0.5

1.0

1.5

2.0

2.5

3.0

10 20 30 40

T
im

e
 (

1
0

4
 s

)

Data Size (GB)

Datalog
MLlib

SystemML
PyTorch

(b) Logistic Regression

0

0.5

1.0

1.5

2.0

2.5

3.0

10 20 30 40

T
im

e
 (

1
0

4
 s

)

Data Size (GB)

Datalog
MLlib

SystemML
PyTorch

(c) SVM

Figure 3.13: Scalability: Varying Data Size

ML workloads can be expressed by Datalog and its implementation can outperform other

Spark based systems. Remarkably, our implementation of MGD with trade-off did show

very promising results in the quality of training. The training loss that Datalog achieves at

convergence for Linear Regression, Logistic Regressionand SVM is 0.418, 0.372 and

0.376, respectively; while that of PyTorch is 0.407, 0.363 and 0.365, respectively.

Moreover, we can see that Datalog converges faster than the other two Spark-based com-

petitors while achieving similar training loss as PyTorch. For example, for the SVM model,

Datalog requires only about 5,000 iterations to converge with 530 ms per iteration. Mean-

while, the results for SystemML is about 6,000 iterations with 1,048 ms per each iteration.

Finally, MLlib had not reached converge after 20,000 seconds, which is beyond the x-axis of

Figure 3.12.

3.8.4 Scalability

In a final set of experiments, we test the performance of BGD on different systems when

scaling up the size of the training data. For that we used the synthetic datasets proposed

in the previous study [TK18]. We vary the size of the dataset from 10GB to 40GB. Other

detailed settings of the synthetic data are the same as that discussed in Section 3.5. Using

the charts shown in Figure 3.13, we discover that Datalog achieves nearly linear scalability

49

for all three ML algorithms trained with BGD. This demonstrates the great potential of

applying our approach to the workloads generated by larger training datasets.

Furthermore, we can also observe that Datalog consistently outperforms MLlib and Sys-

temML for increasing cardinalities of the training sets. For example, for the Linear Regression

model, Datalog outperforms MLlib by 2X to 6X and outperforms SystemML by up to one

order of magnitude. Note that when the size of the dataset exceeds 20GB, PyTorch and

SystemML run out of memory. Thus many data points are missing for these systems in

the figures. This further demonstrates the advantage of our framework over other Spark-

based ML systems. Moreover, our Datalog also achieves comparable performance with the

special-purposed ML system PyTorch in scalability.

3.8.5 Results on Dense Datasets

0

2000

 4000

6000

8000

Linear Logistic SVM

Application

5
9

1
4

6
0

6
7

5
7

0
4

5
4

5
8

5
8

7
8

6
0

5
1

4
4

9
4

4
2

0
8

3
9

9
1

T
im

e
 (

s
)

Datalog
MLlib
SystemML

Figure 3.14: Performance Comparison on Dense Dataset

To include the whole spectrum of datasets and make a comprehensive evaluation, we also

conduct experiments on a dense synthetic dataset. We continue using the synthetic datasets

proposed in [TK18] but set the density as 0.5. We set the cardinality of dataset as 30 GB

to make sure that all systems will not run out of memory 7. There is no doubt that PyTorch

7Note that in previous experiments with sparse dataset, SystemML will run out of memory as it needs to

50

has much better performance than Datalog , MLlib and SystemML on dense data since it is

optimized for supporting deep learning models, which involve many computations between

dense matrices. In general, PyTorch could outperform Spark based system by an order of

magnitude on such dense datasets. Therefore, here we only show the results of comparing

with the other two Spark based systems SystemML and MLlib.

The results are shown in Figure 3.14. We can see that Datalog still achieves comparable

performance with SystemML and MLlib. Although our proposed framework is designed for

applications with sparse vectors, it still has reasonable performance on dense ones. It demon-

strates the potential ability to extend the proposed techniques in Datalog to applications with

dense training data.

3.9 Related Work

3.9.1 Datalog for Machine Learning

There has been some previous efforts in expressing ML applications with Datalog. Borkar

et al. [BBC12a] came up with the proposal of a declarative workflow system, which also

supports ML functionalities. Bu et al. [BBC12b] developed a Datalog query interface for it.

MLog [LCC17] provided a set of imperative Datalog-style ML library over the TensorFlow

system. LogiQL [MVP18] proposes to express ML applications with Datalog and script-like

constructs. These studies focusing on using Datalog as part of the query interface. The work

describe in this paper addresses the whole spectrum of advances needed to support effectively

ML applications in Datalog and declarative query languages such as SQL.These include (i)

formal declarative semantics for the query language, (ii) efficient system implementations

with very effective optimization on parallel platforms, and (iii) considerable usability and

interoperability in a data frame environment.

convert the dataset into its own data format, which would be much larger than the original sparse dataset
as it might add some information to complement the omitted zero-dimensions

51

3.9.2 Recursive Query Processing

There is a long stream of research work about recursive query processing in the database

community, seeking to provide formal declarative semantics for the usage of aggregates in

recursion. Past research work tried to reach this goal by providing formal semantics for

recursive Datalog programs with unstratified aggregates[GGZ91, MPR90, FGG02]. In par-

ticular, Ross et al. [RS92] used semantics based on specialized lattices to express the four

aggregates, while Ganguly et al. [GGZ95] sought to optimize programs with extrema. More

recently, Mazuran et al. [MSZ13] showed that continuous count and sum, are monotonic,

and thus can be used freely in recursion. Monotonic aggregates have been implemented in

the datalog system named DeALS [SYZ15] and scaled up to distributed systems [SYI16] and

multi-core machines [YSZ17]. Recently, [ZYD17] introduced the Pre-mappability(PreM)

property under which programs using min and max in recursion are equivalent to those

aggregate-stratified programs. The extension of SQL with extrema in recursion [GWM19] is

also realized based on PreM and has proved quite effective on graph applications. There is

also new opportunities for reducing staleness and communication costs in distributed data

processing [DZ19].

Past work also has recognized that Datalog is well-suited for large-scale analytical queries

due to its amenability to data parallelism and the great expressive power of its recursive

queries. In fact, Generalized Pivoting [SL91] and Parallel Semi-naive [SKH12] techniques

enable parallel evaluation of Datalog programs. OverLog [LCH05] and NDlog [LCG06]

proved effective at providing declarative networking. Systems that use Datalog to support

data analytics in distributed environments include: SociaLite [SGL13], LogicBlox [ACG15],

Myria [WBH15] and GraphRex [ZAC19]. However, the challenges of ML applications where

not tackled by these systems. Therefore, they cannot support the queries expressed in this

paper.

52

3.9.3 Large-scale Machine Learning

Supporting large-scale machine learning applications has become a hot topic in the database

community. Several research works aim at optimizing the performance of linear algebra,

which provides a common formal representation language for machine learning algorithms [TK18,

EBH16, CKN17, ELB17]. Many previous studies focus on in-database machine learning. The

basic idea is to formalize ML operators as optimization primitives and devise an engine on top

of relational DBMS to solve the ML problem using them [FKR12, SOC16]. SimSQL [CVP13]

employs a hybrid imperative and declarative framework to express linear models [LGG17],

Bayesian learning [GLP17] as well as deep neural networks [JLY19]. While most previous

solutions require many additional primitives, our framework is a purely declarative one that

can be realized using basic constructs of Datalog or a simple relaxation of current SQL

standards.

To take advantage of distributed data platforms, many ML frameworks were developed

over Apache Spark as extensions. MLBase [KTD13] proposes a declarative ML framework

by providing APIs of high level programming languages. Anderson et al. [ASS17] inte-

grates Spark with MPI to improve the performance of graph and ML applications. Key-

stoneML [SVK17] and Helix [XMM18] provide more effective pipelines for ML workload.

ML4all [KQT17] optimizes computation of gradient descent algorithms. PS2 [ZAC19] inte-

grates the parameter server with Apache Spark. Our work shows that the advanced func-

tionalities provided by such works can be expressed efficiently via Datalog supported by

generalizing the existing query optimization and data parallelism techniques.

3.9.4 Machine Learning and Big Data Systems

Apache Spark [ZCD12] has been one of the most popular distributed data processing plat-

forms which provides APIs for relational queries, graph analytics, data streaming and ma-

chine learning. DryadLINQ [YIF08], REX [MIG12] and Naiad [MMI13] provide effec-

53

tive interfaces to support large-scale workloads with iterations. Distributed graph sys-

tems provide vertex-centric APIs for graph analytics workloads. Typical examples include

Graphlab [LGK12], Pregel [MAB10] and GraphX [GXD14].

Recently many ML systems have emerged to efficiently support different kinds of ML

algorithms in distributed environment. The parameter server architecture [LAP14] opens

up a new pathway to distributed model training. Examples adopting parameter servers

include PyTorch [SDC19], TensorFlow [ABC16], Petuum [XHD15] and MXNet [CLL15].

SystemML [BDE16] is a declarative ML framework with plan optimizations on top of Apache

Spark. Ray [MNW18] provides a unified interface that supports multiple tasks and settings.

3.10 Conclusion of Chapter

This paper has presented a powerful, declarative ML framework on top of Apache Spark

based on Datalog. Thanks to the great expressive power of Datalog, users can write queries

to express a series of ML algorithms trained by gradient descent optimizers without involving

new constructs. The power of allowing aggregates in recursive Datalog programs is illustrated

by the fact that it can be used for both expressing ad-hoc queries, and for producing a

library of ML functions, i.e., a task for which procedural languages are normally required.

We formally demonstrated that the training process expressed with Datalog programs has

formal semantics by showing the Pre-Countable Cardinality property. Then, we proposed

several planning and optimization techniques to efficiently support the evaluation of Datalog

programs with complex recursions, which are essential to support ML applications. We also

provided an equivalent SQL-based implementation with a very succinct syntax based on

current SQL standard. Experiments on large-scale real world benchmarks demonstrated the

superiority of our proposed framework over existing ML systems.

54

CHAPTER 4

Semantics of Completed Aggregates in Recursion

4.1 Introduction

The increasing requirements of Big Data applications have brought new challenges to Dat-

alog researchers. Many efforts have been paid to combine the expressive power of recursive

Prolog programs with the performance and scalability of relational DBMSs. Typical exam-

ples include the first commercial Datalog system LogicBox [ACG15] and the introduction

of recursive queries stratified w.r.t. negation and aggregates into SQL-2003 standards. Re-

cently there is a boosting demand for complicated analytical queries in many applications,

such as graph search, machine learning and data mining. Such applications call for higher

level of expressive power, scalability and performance, which brings new challenges for cur-

rent DBMS and Datalog systems. While relational DBMSes gained great benefits from their

success with descriptive analytics which can be supported via simple extensions of SQL-2

aggregates [CD97], they encountered major challenges for predictive analytics applications

on Big Data. As is pointed out in [SAD10], MapReduce success is largely due to its ability

of using relational DBMS data parallelism on new applications, e.g. Page Rank. Indeed,

it has become a common view that SQL, the query language for relational DBMS, cannot

be easily extended to such new application scenarios. As a result, researchers from both

academic and industry fields focus on developing new special-purposed system to support

these applications [YBT17]. For example, more than a dozen of graph database systems

have been developed for this important application domain that is problematic for relational

DBMSes.

55

Considering the many factors that led to this non-optimal situation, we observe that

unresolved research issues played the most significant role in it. For instance, researchers

have been aware of the fact that many algorithms can be expressed quite naturally in Datalog

once aggregates and non-monotonic constructs are allowed to be used in recursions. There

have been a long stream of research works towards this direction [MPR90, GGZ91, GGZ95,

FGG02]. However, these early proposals suffer from many limitations, and non-monotonic

reasoning research was still evolving discouraged premature commitments to a particular

solution. Recent theoretical advances have witnessed major progress on the stable-model

semantics. This is due to its great power and generality that extends beyond the original

focus of Datalog to cover disjunctive programs and answer-set semantics. Unfortunately,

its semantics require computational complexity levels that are unsuitable for the Big Data

applications that have become the computer science cynosure. To address such issues, there

is an overwhelming need for approaches with non-monotonic semantics that enables efficient

implementations for a very wide range of applications.

An essential step towards the solution is to support the use of aggregates in recursion

to express more advanced applications. Previous works have shown various ways in which

aggregates can be used in recursive logic programs while retaining formal semantics. Thus,

using aggregates that are monotonic in the lattice of set containment was discussed in [RS92].

Among the aggregates, using min and max in recursive programs that are equivalent to

stratified programs was discussed in [ZYD17] and the PreM property was proposed. In

this paper, we explore a third important situation where programs using non-monotonic

aggregates nevertheless define monotonic mappings because those aggregates are applied to

sets of known cardinality. In fact, the computation of an aggregate such as sum is performed

in two phases. In the initial phase, we progressively add to the current continuous sum

each item in the set. In the final phase, we detect the end of the input and return the

last value produced in the initial phase. The desirability of clearly distinguishing between

the two phases is well-recognized when dealing with continuous queries on data streams: in

56

fact, aggregates returning only the results from initial phase computation are non-blocking,

whereas those returning results produced in the second phase are blocking. Likewise, the

need to provide users with continuous aggregates that only compute in their initial phase was

recognized in SQL:2003 with the introduction of OLAP Functions that support continuous

aggregates. It is also very important to draw a clear distinction between the continuous

and final version of the aggregate produced in the two phases when using the min recursion.

Indeed, the continuous initial aggregates are monotonic,whereas the final ones are non-

monotonic and they cannot be used as such in recursion. However,when the cardinality of

the set is known, the the final phase computation can be recast in monotonic terms, whereby

the whole aggregate becomes monotonic and can be used to express concisely and efficiently

powerful recursive queries. We will use a series of running examples covering many typical

application scenarios to illustrate it in this chapter later.

The rest of this chapter is organized as following: We introduce the formal definition of

the set aggregation semantics in Section 4.2. We propose the PCC property and show how

it provides the formal semantics for a full set of aggregates in Section 4.3. We demonstrate

the formal semantics of queries for ML applications in Section 4.4. Finally, this chapter is

concluded in Section 4.5.

4.2 Set Aggregation Semantics

In this section, we introduce the basic semantics of set aggregations, which serves as a

foundation to illustrate the PCC property. We first present the basic definition of continuous

count in Section 4.2.1 and then generalize it to sum and average aggregates in Section 4.2.2.

Finally, we extend the discussion to group by aggregates in Section 4.2.3.

57

4.2.1 Basic Definition of Continuous Count

First we focus on the four basic aggregates, i.e.count, min, maxand avg and define their

formal declarative logic-base semantics and discuss effective operational approaches to realize

them.

Suppose γ denotes a set of distinct atoms; p(X) denotes continuous count aggregate on

γ which returns the set of positive integers that do not exceeds the cardinality of the set. γ

and p(X) can thus be computed using the Horn clauses in Definition 4.

Definition 4 (Defining continuous count) The continuous count aggregate can be de-

fined with the relation ccp generated with the following rules:

r1 ccp(C, [X]) ← p(X), C = 1.

r2 ccp(C1, [X|S]) ← p(X), ccp(C,L), C1 = C + 1, new(X,L).

r3 new(X, [Y |L]) ← X <> Y, new(X,L).

r4 new(X, []).

Thus the goal ?ccp(X) will progressively return integers up the actual cardinality of

the above set γ. The name monotonic count is also used for continuous count, since it is

defined using by Horn clauses that always generate monotonic mappings in the lattice of

set-containment.

In terms of implementation, the above formal definition of monotonic count is quite

inefficient since it constructs all possible permutations of the X values, while only one of

such permutations needs to be considered. Thus, actual realizations of continuous count in

systems visit each atom in some efficient way—typically in the sequential order in which the

atoms are stored.

The traditional final count used in SQL-2, i.e. the cardinality of set S, can be derived as

the maximum of continuous count ccp. But rather than using the approach which defines

58

one aggregate using another, we can define it by the rules in Definition 4 and the following

final rule:

r5 final count(C) ← ccp(C,), C1 = C + 1,¬ccp(C1,).

Unlike continuous count, the final count is defined using negation, which makes it non-

monotonic. It is also observed that if our definition is applied to a set S of infinite cardinality,

it returns no result. Indeed, the set of natural numbers has no max, and contains no integer

C without a successor C1. Therefore in the following discussion, we will only consider

aggregates computed on sets of finite cardinality. But as in the case of continuous count, its

implementation will be expedited by considering only one of the possible permutations of the

values in S. Then, since the system visits atoms in a particular order, the occurrence of the

completion condition expressed by rule r5 can be implemented by any test that determines

whether it is the last atom in the set. For instance, if the p(X) facts are stored in a file, then

the stop condition is recognized by detecting that the next datum is the end-of-file (EoF)

mark. This is just one way in which the stop condition is detected in systems. For instance,

if the relation is indexed using a B+ tree, then the stop condition is detected by the fact

we have completed the visiting of index block which has a null pointer to the next block.

Moreover, if the stop condition is computed by a join or other relational algebra expressions,

the stop condition is implied by the completion of the computation. Thus while the stop

condition used in the computation of aggregates can be given a formal logic-based definition,

its operational realization can be quite different according to the settings of different systems.

4.2.2 Extension to Sum and Average

The definition of other aggregates such as sum or average will use the template established

for count consisting of an initial phase where their continuous version is computed, and then

of a second phase where the final result is returned. Moreover, the final count can be used as

the completion test that brings about the final phase in the computation of these aggregates.

59

Definition 5 (continuous and final sum) The continuous count aggregate can be defined

with the relation csc generated with the following rules:

r6 csc(S,C, [X]) ← p(X), S = X,C = 1.

r7 csc(S1, C1, [X|S]) ← p(X), csc(S,C, L), S1 = S +X,C1 = C + 1,¬new(X,L).

r8 final sum(S) ← csc(S,C,), C1 = C + 1,¬csc(C1,).

For example, the sum of X values s.t. p(X) ∈ S can be defined as Definition 5. Here

rules r6 and r7 compute both the continuous sum and the continuous count as the first and

the second arguments of csc. The value of final sum is actually that of the continuous sum

when the continuous count value reaches the cardinality of S, i.e. a value that is equal to

the final count. r8 expresses this completion condition using the predicate new defined in

Definition 4 for the computation of final count.

Thus, the sum aggregates is basically defined by a monotonic computation, except for a

final rule that call on a non-monotonic final-count predicate. However, in many situations

final count is known before we enter the recursive computation of csc. For instance, this

is true when S represents the atoms of a fixed-length vector. Moreover, in many situation

where the cardinality of S is not known, it can be actually computed using the program in

Definition 4 to produce final count(C) in a lower stratum. Then rules r6 and r7 will still

be used to compute cscm. But instead of r8, the value of final sum will be computed with

the rule r9:

r9 final sum(S) ← csc(S,C,), final count(C).

Therefore, the final sum aggregate can be implemented by a stratified program where the

lower stratum perform the non-monotonic computation of final count, and the next stratum

derives sum by a monotonic computation using rules r6, r7 and r9 without negation. Thus, in

our definition of sum we have combined the computation of sum and count into one stratified

programs, where rules r1 and r2 occupy a lower stratum; r3 containing negation is at higher

stratum; and rules r4, r5 and r6 are in a still higher stratum. Only r3 that determines the

actual count is non-monotonic.

60

In every program, recursive or not, when we compute sum on a set whose cardinality is

known, r3 is no longer needed and the computation of our aggregate becomes yet another

monotonic predicated defined using Horn clauses. Similar observations also hold true for

other aggregates such as average, and extrema aggregates. In fact, the average aggregate

can be computed by replacing rule r8 with:

final avg(Avg) ← csp(S,C,), Avg = S/C, final count(C).

For max, we can instead write rules in Definition 4 where we use the predicate larger

to return the larger of two values M and X (they cannot be equal since we are using set

semantics).

Example 4 (Defining the max on a set where final count is known.)

ccs(S,C, [X]) ← p(X),M = X,C = 1.

cmp(S1,M1, [X|S]) ← p(X), cmp(M,C,L), larger(M,X,M1), notin(X,L).

larger(X, Y,X) ← X > Y.

larger(X, Y, Y) ← X ≤ Y.

final max(M) ← cmp(M,C,), final count(C).

Dual definition holds for min, where instead of smaller we will use a predicate that

returns the smaller of two values.

4.2.3 Group By Aggregates

The logical definition of aggregates specified with a group-by clause can be derived as an

extension of above situations. Take the following rule for instance:

ra qs(X, sum〈Y 〉) ← pair(X, Y).

The joint computation of sum and count can be performed as Example 5.

61

Example 5 (Defining continuous sum and final sum in the presence of group-by)

rb gbsc(X,S,C, []) ← pair(X, Y), S = 0, C = 0.

rc gbsc(X,S1, C1, [[X, Y]|L]) ← pair(X, Y), gbsc(X,S,C, L), S1=S + Y,C1 = C + 1,

new([X, Y], L).

rd gbsc(X,S,C1, [[X, Y]|L]) ← pair(X1, Y), gbsc(X,S,C, L), X<>X1, C1=C + 1,

new([X1, Y]), L).

re final sum(S) ← gbsc(S,C,), C1=C + 1,¬gbsc(C1, ,).

Thus, the computation starts with ra to set the value of S (sum) and C (count) to zero.

Then, after checking that the pair [X, Y] is in fact new, in rc it increases the values of both

S and C for the group-by values matching X, but in rd we only increase the C value for the

others. Thus at the end of the fixpoint computation, for each X we will have the sum S of

the Y values associated with it. The C values will be the same for every group-by X and

equal to the cardinality of the set containing the pair(X, Y) facts.

The last rule re returns the final value of continuous sum when the continuous count has

reached its final value. This is the only rule using negation. If we can replace it by the pre-

computed cardinality, the whole computation of final sum becomes monotonic. Thus, as in

the case where we had no group-by the Pre-Countable Cardinality of the sets involved assures

that aggregates can be freely used in recursive definition. Furthermore, this conclusion also

holds for count, avg, min and max, which can be reasoned in a similar way.

4.3 The Pre-Countable Cardinality Property

In this section, we formally introduce the Pre-Countable Cardinality Property. We first show

the necessary background in Section 4.3.1. Next we illustrate the semantics provided by it

in Section 4.3.2. Finally we use several examples to explain the usage of the property in

Section 4.3.3.

62

4.3.1 Background

The semantic issues caused by the use of count, sum, and average aggregates in recursive

computations require solutions that are different from those used for extrema due to their

non-monotonic nature. For instance, the computation of average consists of two phases: in

the first phase, monotonic rules are used to compute a pair 〈num, total〉 by increasing the

num by 1 (as in continuous count) and adding the new value (as in continuous sum). This

monotonic phase completes when all elements in the set have been processed. In the second

phase, the maximum value of num and the value of total associated with it are extracted.

The ratio of the latter over the former is returned as the answer. This phase becomes

non-monotonic due to the max aggregate used to obtain the maximum value of num.

The solution to this problem is based on the observation that set aggregates can be used in

recursion when the cardinality of the involved relations can be pre-computed before entering

the recursive computation, and simply passed to the fixpoint computation that follows.

In above example, if the cardinality of a relation was pre-computed, then we can simply

select that value and the total value associated with it to get the answer, thus eliminating

the max aggregate which is the only non-monotonic construct involved in the computation.

Then the average aggregate expressed using monotonic constructs can be used freely in

recursion. Moreover, to compute the sum we can still compute the pair 〈num, total〉 in order

to achieve monotonicity, but then only return the value of total as the result. Remarkably,

this Pre-Countable Cardinality (PCC) condition occurs in many programs of great practical

significance of Datalog. We will now formally provide the PCC idea in Definition 6.

Definition 6 (PCC) Let R be a recursive relation in Datalog, and δRi denotes delta values

of R obtained at each iteration i during the SN fixpoint computation. Then R satisfies the

PCC condition when: (i) The cardinality of δRi is non-zero and is the same for each i; (ii)

The cardinality of δRi can be determined before the SN fixpoint computation begins.

63

4.3.2 Semantics provided by PCC

As previously described, the non-monotonic aggregate sum can be computed by incrementally

computing the pair 〈num, total〉 and returning the total value associated with the num

value that is equal to the cardinality pre-computable before the recursive computation. In this

way, the computation process will involve only monotonic constructs, since the incremental

computation of continuous count and sum is monotonic. In other words, the program with

sum aggregates in recursion is equivalent to stratified programs where the cardinality is

pre-computable at a lower stratum, which precedes the SN computation of the equivalent

program that only use monotonic constructs 1 Observing that similar properties also hold

for other aggregates, we can summarize our finding in Theorem 1.

Theorem 1 If the PCC property is satisfied by a recursive Datalog program P that uses

sum, avg and count in recursion, then there exists an equivalent aggregate-stratified program

of P , which defines its formal semantics.

4.3.3 Examples

Next we provide two examples to show how PCC can be used in real world applications.

Example 6 (The Markov Chain algorithm)

next(0, C, sum〈In〉) ← mov(C,C,), In = InitPop.

next(J1, T o, sum〈In〉) ← next(J,C, Pop),mov(C, To, Perc),

In = Pop×Perc, J1=J+1), J1 ≤ 1000,

JL = J − 1, next(JL,C, PopL), PopL− Pop > 0.

finalstep(max〈J〉) ← next(J, ,).

fpop(C,Pop) ← finalstep(J), next(J,C, Pop).

1If this program contains min and max, a third stratum is needed on top of these two to defined its formal
stratified semantics.

64

Example 6 shows a Datalog program to express the procedure of calculating the Markov

Chain algorithm. Assume that the base relation is mov(C, To, Perc), which respectively

describe the names of cities of interest and the fraction of population that will move from C

to To in the course of a year. For each city, there is also a non-zero arc from the city back to

the same city showing people that will not move away. Therefore, the sum of Perc for arcs

leaving the city (i.e., a node) is always equal to one. Thus, assuming that initially every city

has a population InitPop, we need to find how the population evolves over the years.

In this example, the last two rules specify post-conditions that must applied at the end of

fixpoint computation. Nevertheless, it is quite straightforward for the compiler to integrate

them into the semi-naive fixpoint computation to achieve a significant optimization. In fact,

during the semi-naive fixpoint computation, the delta relation can be automatically identified

at the end of each iteration. Moreover, the latest delta atoms are identified by the largest

value of J, which is also the max value of the index, i.e. the values returned by re upon

termination. Thus re and rf can be implemented by simply returning the latest delta atoms

upon termination. Now, since only atoms for the maximum value of J are needed, all facts

with other J values can be dropped to achieve a much more efficient usage of memory.

In this program, it is obvious that PCC holds for the sum aggregates. Therefore, we

have a formal semantics defined by a stratified program consisting of (i) a bottom stratum

where count is defined; (ii) a middle stratum of Horn clauses, i.e., monotonic rules; and

(iii) a top stratum used to post-select the final results of interest. Finally, this formal

semantics are realized via a very efficient operational semantics that only requires the semi-

naive computation in the middle stratum, inasmuch as the completion of join in (i) replaces

the completion of the final count, and the extraction of the final results in (iii) is realized by

the selection of the final delta in the semi-naive fixpoint.

Example 7 (Clustering a lá Lloyd)

ra center(0, Cno,Dim, V al) ← init(Cno,Dim, V al).

65

rb dist(J, Pno, Cno, sum〈SqDis〉) ← point(Pno,Dim, V al), center(J,Cno,Dim,CV al),

SqDis = (V al − Cval) ∗ (V al − Cval).

rc mindist(J, Pno, min〈DCno〉) ← dist(J, Pno, Cno,DSm), encd(DSm,Cno,DCno).

rd center(J1, Cno,Dim, avg〈V al〉) ← mindist(J, Pno,DmCno), decd(DmCno, , Cno),

points(Pno,Dim, V al), J1 = J + 1.

Example 7 demonstrates the Lloyd’s Algorithm for K-means Clustering. The base rela-

tion is a large set of D-dimensional points. Each point is described by a unique Pno and

the coordinate value Val in each dimension denoted by Dim. We also have a small set of

centroids. Then to generate the initial assignment center(0, Cno, Dim, Val), we used the

relation init that implements one of the many techniques described in the previous studies.

At each step J , the algorithm finds the closest center for each point. Then a new set can be

generated by averaging their coordinates.

We then show how this example satisfies the PCC property. If we let |P |, |C| and

|D| denote the cardinalities of set of points, centers, and dimensions, respectively. We

have that, for each rule, the aggregate computation involves a number of elements that is

independent of J , since rb specifies a computation taking place over |P | × |C| × |D|; rc

specifies a computation is over |P | × |C| elements; while the computation of rd takes place

over |P |× |D| elements. These are counts that can be easily determined before the recursive

computation and remain the same for every value of J . These explicit values could be passed

to the recursive rules for computing the monotonic aggregates used in these rules. A much

simpler and efficient solution consists in letting the system detect executions of the body

operators at each step J , which has already been implemented as part of the optimized

semi-naive fixpoint computation.

66

4.4 Formal Semantics of Machine Learning Applications

We find that ML applications tend to apply aggregates over sets of relations whose cardinality

can be pre-computed ahead of time, where the computation of all kinds of aggregates becomes

monotonic. Following this route, we can also provide a formal semantics for a wider spectrum

of applications expressed in Datalog from the aspect of fixpoint computation. In this section,

we thus show that the semi-naive fixpoint computation of Query 3 of Section 3.3 indeed

realizes the formal semantics defined above. In fact, the first J in Query 2 coincides with

the successive steps of the semi-naive fixpoint, and the cardinality of arguments of the

sum aggregate remains the same at each step, and can in fact be pre-computed before the

recursive computation starts. Here the value n is the cardinality of training set, i.e. vtrain.

In the process of recursive computation, a step of the semi-naive computation terminates

after processing exactly the same number n of input values for each value of J. Thus the SN

computation for Query 2 realizes the formal fixpoint semantics of the equivalent stratified

where the cardinality is pre-computed before the semi-naive fixpoint computation begins.

Then we formally conclude these findings with the following Theorem 2.

Theorem 2 The results of Query 2 are semantically equivalent to the same result with a

stratified query that does not have aggregates in recursion.

We can use the similar techniques proposed in [GWM19] for testing PreM to enable

automatically testing of the PCC property.

4.5 Conclusion of Chapter

In this chapter, we investigate the formal semantics on a completed set of aggregates in

recursive queries. We demonstrate that recursive computations on datasets of fixed cardi-

nality represent an area of great theoretical and practical interest for Datalog and other

67

logic-based languages. Indeed, we have shown that many important analytical queries can

be efficiently expressed using aggregates in recursion, while avoiding the difficult semantic

issues besetting the use of non-monotonic constructs in recursive programs. We have found

that, when the number of such facts in the world remains unchanged, aggregates on the at-

tributes of them can be used in recursive logic rules while preserving the desirable properties

of fixpoint computations. With such a theoretical tool, we provide the formal semantics of

the queries designed for ML applications. This and other recent results using the PreM

property of extrema suggest that aggregate can provide the long-sought bridge between for-

mal non-monotonic semantics and efficient implementations that, over many years of work,

could not be built by non-monotonic reasoning researchers using only negation.

68

CHAPTER 5

Optimizing Parallel Recursive Datalog Evaluation on

Multi-core Machines

5.1 Introduction

In the past years, there is a resurgence of Datalog due to its ability to specify declarative data-

intensive applications that execute efficiently over different systems and architectures. The

recent theoretical advances [ZYD17, MSZ13] enable the usage of aggregates in recursions,

and this leads to considerable improvements in the expressive power of Datalog. As a result,

Datalog has been widely adopted to express complicated recursive queries in many domains,

such as artificial intelligence [Dar20], graph analysis [ATO16], knowledge reasoning [BSG18],

declarative network [LCG06] and many others.

With the ever-growing scale of data analysis tasks, a high level of performance and scala-

bility becomes critical for Datalog systems. In response to this need, many parallel Datalog

engines have been developed by researchers from both academia and industry. Based on the

environment they are deployed, these Datalog engines can be divided into two categories:

shared-memory [SGL13, YSZ17, FZZ19] and shared-nothing [SYI16, WBH15, SPS13] ones.

These approaches implement the idea of parallel bottom-up evaluation [GST92] by splitting

the tables into disjoint partitions via discriminating functions, such as hashing, where each

partition is then mapped to one of the parallel workers. After each iteration, workers coordi-

nate with each other to exchange newly generated tuples when necessary. The final result is

the union of contributions by all workers. In this way, the entire computation can be divided

69

among all workers and operated in parallel.

Witnessing the emergence of modern commodity machines with massively parallel pro-

cessors [AGN13], it is shown in previous studies that shared-memory multicore architectures

have demonstrated superior performance for Datalog applications. However, these studies

either (i) underutilize the multicore architecture due to poor parallelism [YSZ17]; or (ii)

are based on different system architectures [FZZ19, SJS16, SGL13]. Therefore, while these

studies provide highly valuable techniques, mechanisms and execution models, none of them

uses the knowledge at hand to solve the problem we address here.

DCDatalog

SociaLite

BigDatalog

RecStep

DeALS-MC

0 100 200 300 800

12

42

54

213

792

Time (s)

Figure 5.1: Query Performance of SSSP on LiveJournal Dataset

In this paper, we propose Dynamic Coordinate Datalog (DCDatalog), a parallel engine

on shared-memory multicore machines to scale up Datalog evaluation. The key challenge

of finding a good plan for parallel evaluating recursive Datalog programs is that it should

provide an efficient mechanism to resolve the race conditions, which requires to ensure the

atomicity of concurrent update operations. The existing study [YSZ17] solves this problem

by just identifying a family of lock-free programs and forcing global coordination after each

iteration in the parallel evaluation plan. Firstly, the scope of lock-free programs or those

can be turned into lock-free ones by simple rules rewriting is rather narrow. As a result, it

fails to support more complicated applications, especially those with aggregates in recursion.

Secondly, it will incur costly coordination overhead and give rise to the problem of poor par-

allelism, where the faster workers are blocked by waiting for the slowest ones to arrive at the

coordination point. Witnessing this problem, we propose a new system architecture to elim-

70

inate the limitation of lock-free or decomposable programs on Datalog applications as well

as boost the performance in parallel evaluation. We deal with race conditions by leveraging

a light-weight scheme that can get rid of the global coordination among workers. This is

enabled by the newly proposed Dynamic Weight-based Strategy (DWS). Instead of blocking

the faster workers, DWS reduces the straggler with effective local checkers controlled by a

simple weight-based mechanism. Since such weights are calculated on-the-fly, the workers

can dynamically make the decision about whether to perform idle waiting or proceed to the

next iteration. This relaxation will definitely reduce the overall execution time and improve

the parallelism of evaluation plans. For example, the performance of Single Source Shortest

Path (SSSP) query depicted in Figure 5.1 shows that DCDatalog is considerably better than

other competitors since it is equipped with a better coordination strategy. We conduct ex-

tensive experiments using five widely used recursive Datalog programs on several real world

datasets. The experimental results demonstrate that our DCDatalog engine provides across-

board performance gain and outperforms existing Datalog engines by one to two orders of

magnitude.

The rest of this paper is organized as following: We provide some necessary backgrounds

and introduce the overall system architecture in Section 5.2. We propose the dynamic

coordination strategy in Section 5.3. We show the experimental results in Section 5.4. We

survey the related work in Section 5.5. Finally the conclusion is made in Section 5.6.

5.2 Preliminary

5.2.1 Parallel Evaluation of Datalog Programs

There are two kinds of parallel execution architectures: shared-memory and shared-nothing.

In the shared-memory architecture, all the base and recursive relations are stored in memory

71

that can be directly accessed by all processors 1, as supported by most modern multicore

machines. When different processors visit the same piece of memory, the race condition

happens once at least one of the operation is write. In this case, the lock mechanism is

required to ensure the atomicity of operations. The examples of Datalog engines under

this architecture include DeALS-MC [YSZ17], Souffle [JSZ19] and RecStep [FZZ19]. In this

paper, we focus on this category of studies. In the shared-nothing architecture, the data

is distributed into different computation nodes. The nodes in a cluster use the message

passing mechanism to exchange information with each other, which involves extra network

communication. The examples in shared-nothing architecture include BigDatalog [SYI16],

Distributed SociaLite [SPS13] and Myria [WBH15].

The state-of-the-art method for evaluating Datalog programs in parallel is the substitution

partitioned parallelization scheme [GST92]. It first divides the workload into n disjoint

partitions using hash-based discrimination function. Then each partition is assigned to

exactly one worker. Since such partitions are disjoint with each other, each worker operates

on a distinct non-overlapping partition during the bottom-up SN evaluation, which thus avoid

redundant computation. The correctness of such a parallel execution can be summarized as

Definition 7, which has been formally proved in [GST92].

Definition 7 Suppose P is a recursive Datalog program to be executed over n workers.

Under above partitioned parallelization scheme, suppose Qi is the program to be executed at

worker i and Q = ∪ni=1Qi. For every interpretation, the least model of the recursive relation

in Q is identical to the least fixpoint obtained from the sequential execution of P .

To describe this process, we say that a local iteration is executed by a worker when it

finishes one iteration of SN evaluation; while a global iteration is executed when all workers

have finished the same number of local iteration. If the delta table becomes empty after a

1We will use the terms processor, thread and worker interchangeably if there is no ambiguity in the
context.

72

local iteration, the local fixpoint is reached; the parallel evaluation terminates if the global

fixpoint is reached.

Although the above method is theoretically sound, many issues must be addressed before

it can be turned into practical system implementation. Specifically, we need to address

the issue of how to deal with race conditions in parallel execution. Previously the DeALS-

MC [YSZ17] system achieves parallelization for a set of programs that are either lock-free, or

can be translated into lock-free programs via simple rule rewriting. However, the lock-free

conditions required by DeALS-MC are too strict and many Datalog programs with aggregates

in recursion, such as Connected Component, Single Source Shortest Path and Path Counting,

do not satisfy such conditions. In order to achieve a correct evaluation for such programs,

the programmers need to generate their execution plans manually by inserting locks into

proper places that race conditions might happen. Furthermore, even for lock-free programs,

coordination among all the workers must be enforced after each global iteration. This will

cause the fast workers to be blocked since they cannot move on to the next local iteration

until slow straddlers complete the current global iteration.

5.2.2 Overall Framework

In this paper, we aim at developing a Datalog engine which, by eliminating the requirement

that programs must be lock-free, will support a wide scope of applications with superior

performance and scalability.

To reach this goal, we propose a new architecture for parallel Datalog evaluation, based on

the following key design principles about its runtime. Firstly, we subdivide the memory space

into partitions with finer granularity. Then, rather than let workers request information from

all others after a global iteration, each worker just sends the newly generated delta table to

the memory space owned by other workers after its local iteration. In this way, we eliminate

the requirement of global coordination, and thus significantly save the time of idle waiting.

The dynamic strategy DWS used to control this process is described in Section 5.3. Secondly,

73

���������������

 !"!#�$��!����

%�$&�!#��#!''��

�(��&�!#��#!''��

��������

)*���"&�'�)'$&'�

�!�"&"&�'�+!'!$��

,���-&'!"��

�������������������

����������������� �����

����������

."��!$��%!���

+�"!-!"!�/�0'-�*�+!'!$��

 !"!�."��!$�

����������

�������

 ���!"�

#$"$

%&'(

 �!!"#�

����������

$�"�%!�%&!'�����&���

 !"!�1������0'"��2!��

�#!'�)*���"��

 �$)

*+�

,��"�

*+�

 ����������������

�!!"�!����������������

���������� ���������������

Figure 5.2: DCDatalog: The Overall Architecture

instead of locks, we use light-weight atomic operations to deal with race conditions among

workers. Such an approach provides an efficient implementation of DWS and significantly

reduces the overhead brought by locks.

The overall architecture of DCDatalog is shown in Figure 5.2. It consists of the following

components:

Query Processor The Query Processor provides the functionality of analyzing and plan-

ning for input Datalog programs. It consists of three steps: (i) The Datalog Parser compiles

the input Datalog program and generates its Predicated Connected Graph (PCG) [AOT03],

which is implemented with the data structure of AND/OR Tree; (ii) The Logical Planner

maps the AND/OR Tree into relational operators to form the logical plan; (iii) The Physical

Planner further generates the physical plan to be executed in parallel.

Execution Engine The Execution Engine aims at providing efficient and scalable im-

plementation to execute operators in the physical plan. The Partition Manager splits the

input data into disjoint partitions with hashing mechanism2. The Coordinator implements

2The choice of hashing mechanism is beyond the scope of this paper. Here we just use a popular hash

74

the DWS strategy that controls execution at runtime. The Buffer and Message Controller

is responsible for managing the memory access and information exchange among different

workers. Various optimizations affecting the computation of aggregates in recursion are also

performed by this component.

Storage Layer The Storage Layer provides the index and storage functions for the base

and recursive relations during the SN evaluation process. In this paper, we utilize the storage

engine of the DeALS system [SYZ15] along with a new the B+-Tree index implemented by

ourselves. Alternatively, other relational DBMSes could be also used as the storage and

index engines.

5.3 Dynamic Coordination Strategy

In this section, we present the dynamic coordination strategy used in the shared-memory

multicore architecture. In Section 5.3.1 below, we introduce the basic parallel execution

coordination process along with a straightforward improvement. Then in Section 5.3.2, we

propose the new strategy DWS to optimize the performance. Finally, we provide a formal

proof for its correctness in Section 5.3.3.

5.3.1 Parallel Execution Mechanism

We start from the general framework for parallel bottom-up evaluation described in Algo-

rithm 3. The algorithm first splits the key range into disjoint partitions using the predefined

hash function H (line 2). Here we just follow the previous study [YSZ17] and use the same

hash function to make partitions of both base and recursive tables. Suppose there are m

partitions P1, ..., Pm and n workers W1, ...,Wn (m ≥ n), all workers will run in parallel, while

each deals with its own partition. Next, we build a hash index for each partition of the base

function for integer.

75

�

!

"

#

$

%

&

�

��

�'

(

�������� ������� �������!

(a) A Toy Graph

�������� !"#$%&�'""(&��)*�"��

+,

+-

+.

+,

+-

+.

+,

+-

+.

/,012!"3)!

/-01445

/.016+4

(b) Global, SSP and DWS

Figure 5.3: Execution Time under Different Coordination Strategies

relation to accelerate the evaluation (line 3). Then all workers start with an active state and

execute the SN evaluation in parallel: each worker Wi will first initialize its recursive table

Ri according to the base rule (line 8) and build a B-Tree index on Ri (line 9). Next, a local

iteration of semi-naive evaluation is processed and the new delta relation δR′i is generated

(line 11). After all workers finish a global iteration, they will coordinate with each other

by exchanging the newly generated tuples according to H and then proceed to the next

iteration (line 13). We call this simple approach Global. At this time, we also need to update

indices on recursive tables and perform deduplication. In this process, If δR′i is empty, then

the local fixpoint has been reached, and thus Wi is set to inactive (line 15). But if δRi of an

inactive worker Wi becomes non-empty after coordinating with other workers, it will become

active again(line 17). The parallel evaluation terminates when all workers become inactive

(line 20), denoting that the global fixpoint is reached. The final result is equal to the union

of recursive tables of all workers (line 22).

76

Query 6 - Connected Component (CC)

r2,1 : cc2(Y,min〈Y 〉) ← arc(Y,).

r2,2 : cc2(Y,min〈Z〉) ← cc2(X,Z), arc(X, Y).

r2,3 : cc(Y,min〈Z〉) ← cc2(Y, Z).

Example 8 We evaluate the CC program on the graph shown in Figure 5.3(a). The execu-

tion process of Global (Algorithm 3) is displayed in Figure 5.3(b)(1). The workers W2, W3

are slower than W1 since they are associated with more edges. In the first global iteration,

workers W1, W2 and W3 take 5,8,8 time units, respectively. Under Global, when W1 finishes

running, it is blocked as it should wait for other workers to finish the global iteration. Once

W2 and W3 have finished their work, they coordinate and exchange their newly generated tu-

ples with each other together with W1. At that time, W2 and W3 are aware of the connected

component with vertex 4. That is, they realize the connected component with vertex 1 after

4 global iterations. Finally, Global spends 128 time units in total.

We can see that in above procedure idle waiting might happen before coordination

(line 13). This is due to the requirement that all workers should wait until the current

global iteration is finished. For complex queries that are not lock-free, coordination among

all workers can result in serious race conditions, which will involve significant overhead.

To address this problem, we first provide a straightforward improvement by extending the

method of Datalog evaluation under shared-nothing settings recently proposed in [DZ19].

This method uses the Stale-Synchronous Parallel (SSP) model which was previously pro-

posed for distributed machine learning [HCC13, CCH14]. The core idea in this approach

is that we can relax the constraints now imposed on local iterations as follows: Instead of

conducting just one local iteration and then waiting, we allow all workers to continue exe-

cuting at most s local iterations before stopping to wait for the current global iteration to

be finished. Thus the intuition driving our approach consists in having workers spend more

time performing actual computation rather than idle waiting for straddlers to finish. These

benefits could be optimized by carefully tuning the hyper-parameter s.

77

Algorithm 3: Parallel Evaluation (B, H)

Input: B: The base table, H: The hash function for partition

Output: R: All results in the recursive table

begin1

Split the key range into disjoint partitions with H;2

Construct Index for the each partition of B on the partition key;3

while True do4

foreach worker Wi do5

// Run in parallel6

if In the first iteration then7

Initialize Ri and δRi with the base rule;8

Construct an index on Ri;9

if Wi is active then10

Conduct one local iteration of evaluation with δRi and generate δR′i;11

// Wait until global iteration is finished12

Coordinate with all workers to update δRi according to H, update the13

index for Ri;

if δRi = ∅ then14

Mark Wi as inactive;15

else16

Mark Wi as active;17

18

if All workers are inactive then19

Terminate the evaluation;20

21

return R as the union of all workers;22

end23

78

Example 9 Let’s look back to the previous example, suppose s = 1 in the SSP method. As

depicted in Figure 5.3(b)(2), W1 is not blocked by W2 and W3 in the first 3 local iterations

as it can proceed one iteration ahead of them under SSP. After that, due to the constraint

s = 1, W1 needs to wait until W2 and W3 finish their 2nd local iteration. In this example,

the coordination only takes 1 time unit since it only requires the information dispatched by

one worker. Even so, SSP finishes in 88 time units, i.e., about 40% faster than Global.

To alleviate the overhead brought by race conditions, we split the main memory space

into units with finer granularity: Each worker is associated with a segment of memory buffer

Mi to hold the delta relation newly generated by other workers whose key falls in the range

of Wi under H. Specifically, the space for storing newly generated tuple from worker Wj is

denoted as Mj
i . In this way, when performing coordination among workers, the race condition

will happen just in a buffer Bi rather than the whole memory space.

5.3.2 The DWS Approach

Although the SSP-based strategy is quite effective, some limitations still remain. In partic-

ular, since the value of s remains unchanged, there is no guarantee that it will be the best

for all workers during the whole evaluation process. Consequently, it is very difficult to set a

proper value for s. Moreover, it still requires coordination after each global iteration, causing

additional overhead due to race conditions.

Based on the above observation, we propose the Dynamic Weight-based Strategy (DWS)

to further improve coordination during parallel SN evaluation. In DWS, we eliminate the

requirement of global coordination. This is realized by allowing workers to automatically

decide whether to proceed to the next iteration after a local iteration is finished. During the

evaluation by a worker Wi, the evaluation time per iteration depends on the cardinality of

its delta table. If this cardinality is rather small, it means that the worker Wi is probably

faster than other workers. In this case, Wi should pause to collect more tuples from slower

79

workers. Otherwise, Wi should allocate the newly generated tuples to the message buffers

Mi
j of other workers Wj (j 6= i) and move on to the next iteration. To this end, we need the

following two parameters for each worker i: τi is the time Wi should wait before proceeding

to the next iteration; ωi is a threshold such that Wi will proceed to the next iteration if

the cardinality of delta table is larger than it. Since the values of such parameters can be

automatically calculated in each iteration, we can avoid manual tuning and take advantage

of more background knowledge for coordination. Moreover, as each worker just updates the

memory buffer with the delta table in an asynchronous manner, there will be fewer chances

for race conditions on the memory buffer of each worker.

Algorithm 4 describes the behavior of DWS in each iteration. In a way similar to Al-

gorithm 3, it first initializes the recursive table Ri and the delta table δRi from base rules.

If Wi is active, it will collect newly generated tuples from the memory buffer Mj
i , remove

tuples already existed in Ri and merge them into the delta table. (line 4). Then the al-

gorithm makes a decision according to the cardinality of newly generated delta table. A

cardinality smaller than ωi means the algorithm must wait for τi time units during which it

will collect more tuples from other workers before going back to computing δRi
3 (line 6). If

the cardinality is zero, then the local fixpoint is reached and Wi becomes inactive (line 8).

Otherwise, the evaluation proceeds to the next iteration by (i) updating the two parameters

with a weight-based mechanism (line 10), (ii) performing one iteration of evaluation with

the collected delta table δRi (line 11), (iii) sending the tuples of newly generated delta table

δR′i to buffers Mi
j of other workers and preparing for the next iteration (line 12-15).

3Starvation and Deadlock can be avoided in this process via common techniques in operating system such
as setting a maximum total waiting time.

80

Algorithm 4: Execution of DWS on worker Wi

begin1

//Replace line 10 to 18 in Algorithm 3, all workers are active in the beginning2

if Wi is active then3

δRi ← (∪jMj
i −Ri) ∪ δRi;4

if 0 < |δRi| < ωi then5

Let Wi wait for τi time units and then goto line 4;6

else if |δRi| = 0 then7

Make Wi as inactive;8

else9

Update ωi and τi;10

Conduct one local iteration of evaluation with δRi, generate δR′i;11

if ∃ tuple R ∈ δR′i associated with Wj then12

Update Mi
j and make Wj as active;13

Ri ← Ri ∪ δRi;14

Update the index for Ri, δRi ← ∅;15

16

end17

Example 10 As shown in Figure 5.3(b)(3), W1 is never blocked thus it can quickly propagate

the connected component with vertex 1 to other workers. Besides, to reduce the unnecessary

computation happened in SSP, W2 and W3 wait for a short while to obtain the newly generated

tuples produced by W1 in its second local iteration. As a result of these improvements, DWS,

with little additional waiting time included, requires 67 time units: this is about half the time

of Global and represents a solid improvement over SSP.

A remaining issue is to dynamically adjust the values of ωi and τi for each worker Wi.

We propose a weight-based mechanism to decide the values according to the statistical

81

information collected after each iteration. The reason for which Wi waits for τi time units

is to collect enough tuples for its delta table from slower workers. Therefore, the value of

τi should be determined by all workers Wj that have ever sent tuples into Mj
i . Thus, we

use the average of evaluation time spent by these workers in the last iteration as the value

of τi. Suppose there are b workers Wj s.t. Mj
i 6= ∅, then we have: τi = 1

b

∑
j,Mj

i 6=∅
τj. To

take the historical information into consideration, we further summarize the value of τi in

all iterations till now by assigning more recent iterations higher weights. Specifically, in the

t-th iteration, the value of τ ti is calculated as Equation (5.1):

τ ti =
1∑t−1

k=1 e
k−t

t−1∑
k=1

ek−t ∗ τ ki (5.1)

where ek−t is the weight for the k-th iteration.

Similarly, the value of ωi should be determined by considering both the cardinality of the

delta table generated in Wi and the number of tuples that will be sent to buffers of other

workers. To this end, we need to estimate the cardinality of the delta table generated in the

k-th iteration, by using the historical information collected in the first k−1 iterations. Such

estimation can be realized by maintaining a histogram on each worker, where the key range

on a worker is subdivided into a set of buckets. After each iteration, the number of join

results in each bucket is updated accordingly. When the delta table δRi is received by Wi,

we can estimate the cardinality of join results by leveraging its histogram. Suppose we have

c buckets, and δRi contains zl records whose keys match the range of corresponding buckets

in the histogram. The cardinality of newly generated tuples can be derived in linear time as∑c
l=1 zl. Next, we estimate the number of tuples that another worker Wj expects to receive

from Wi. As each worker j corresponds to a key range decided by the hash function H, the

cardinality of Mj
i can also be estimated with the help of its histogram, which is denoted as

M̃j
i . Therefore, the value of ωi can be estimated using Equation 5.2.

ωi =
∑

j,Wj is active

M̃j
i ∗ ωj (5.2)

82

Observe that the estimated value of ωi is calculated in an asynchronous manner, i.e.,

before each iteration starts. Therefore, the overhead to obtain ωi is trivial compared with

the overall evaluation process occurring in each iteration.

5.3.3 Theoretical Analysis

Finally, we provide a formal proof for the correctness of DWS strategy. While it is trivial to

show the correctness for simple queries like Same Generation, the correctness for programs

with min and max aggregates, that are viewed as extrema constraints in recursion, can

be guaranteed by leveraging the PreM property [ZYD17]. The correctness is stated as

Theorem 3.

Theorem 3 Let P be a recursive Datalog program with T as the corresponding ICO and

γ as the aggregate in recursion, we generate the parallel execution plan on n workers using

Global and DWS, respectively. If γ is PreM to T , the parallel plan generated by DWS yields

the same minimal fixpoint as that of Global, i.e. γ(T ↑ω(∅)).

For the proof of above Theorem, we begin from defining an operator E to denote the

relationship between two sets. Given a recursive Datalog program P with T as the corre-

sponding ICO, assume that γ denotes min〈C〉, or max〈C〉, applied to the recursive table S

with group-by attributes G. If γ is PreM to T and P , then for two sets of tuples S1 and

S2 with the same schema S, we define that S1 E S2 if for every tuple t2 ∈ S2 there exists

exactly one tuple t1 ∈ S1 s.t. t1[G] = t2[G] and γ(t1[C], t2[C]) = t1[C]. Note that in above

definition, the commutative property does not hold for E.

Let us next consider two intermediate results obtained during the semi-naive evaluation.

If γ stands for either min or max, and Tγ(I) defines γ(T (I)), we have the following lemma:

Lemma 1 Given a recursive Datalog program P with ICO T where γ is PreM to T , then

for any two positive integers x, y with x ≥ y: T ↑x(∅) E T ↑y(∅).

83

Proof: Due to the definition of semi-naive evaluation: ∀s1 ∈ T ↑x(∅) there exist a s2 ∈ T ↑y(∅),

where t1[G] = t2[G]. Moreover, since γ is PreM to T , it is obviously that γ(t1[C], t2[C]) =

t1[C].

We can then further extend our discussion to the case described in Lemma 1 to parallel

evaluation, which lead to Lemma 2.

Lemma 2 Given a recursive Datalog program P with T as the corresponding ICO and γ

is a min or max aggregate in recursion, we generate the parallel evaluation plan for P on

n workers and Ti is the ICO for worker Wi. Suppose γ is PreM to P and T , and for

all i ∈ [1, n], γ is PreM to Ti. Let Ig and Id are the interpretations of Global and DWS

respectively. Then after x(x > 0) rounds of iterations, Id E Ig holds.

Proof: During DWS based fixpoint computation, new tuples are produced by all workers

Wi in three ways: (i) From local computation of Wi; (ii) From join operation with a tuple

fetched from another worker Wj (j 6= i); (iii) Form both (i) and (ii) together.

Then we can provide the proof by induction. For the base case, before the first coordi-

nation, each workers just perform one round of local iteration under Global. Meanwhile, a

worker under DWS could perform more than one round of iterations. According to Lemma 1,

Id E Ig holds. Suppose for some x ≥ 1 it is true that Id E Ig, under DWS each worker Wi

conducts the fixpoint computation on the tuples that generated from both Wi in the previ-

ous iterations (case (i)) and the memory buffer of other workers (case (ii)) after x rounds of

iterations. In this process, for each Id and its corresponding Ig we have Id E Ig. Therefore,

Id E Ig holds also for the x+ 1-th iteration. As a result, the lemma holds for all x > 0.

Finally, with the help of Lemma 2, we can reach the conclusion shown in Theorem 3,

which demonstrate the correctness of DWS. The detailed proof of Theorem 3 is as following:

According to the description of PreM in [ZYD17], it is easy to observe that on other

workers for all i ∈ [1, n], γ is also PreM to each Ti. Therefore, under the parallel evaluation

plan generated by Global, it will yield the fixpoint γ(T ↑ω(∅)). Meanwhile, under DWS any

84

tuple t generated in any worker Wi satisfies t ∈ T ↑ω(∅). That is, the interpretation under

DWS Id is bounded, i.e. Id ⊂ T ↑ω(∅). From Lemma 2, we can see that Id E Ig holds. Since

γ(T ↑ω(∅)) is the least fixpoint under the γ constraint, we also have γ(T ↑ω(∅)) ⊂ Id, as tuples

in γ(T ↑ω(∅)) should have the same values after aggregates are performed. Therefore we

conclude from above discussion:

γ(T ↑ω(∅)) ⊂ Ig ⊂ T ↑ω(∅).

Furthermore, since γ is PreM to each Ti, under DWS each worker Wi also applies γ in every

iteration during the fixpoint computation. Thus we have: Ig ⊂ γ(T ↑ω(∅)). By summing

up above results and note that Ig := γ(T ↑ω(∅)), we conclude that Ig = Id. Therefore, the

parallel plan generated by DWS yields the same minimal fixpoint γ(T ↑ω(∅)) as that of Global.

For programs with sum, count and average in recursion, the correctness could be ensured

with the PCC property in Chapter 4 in a similar way.

5.4 Evaluation

5.4.1 Experiment Setup

5.4.1.1 Benchmark Programs and Datasets

Table 5.1: Graph and Network Datasets

Name # Vertices # Edges Size

Livejournal 4,847,572 68,993,773 527 MB

Orkut 3,072,441 117,185,083 895 MB

Arabic 22,744,080 639,999,458 4.8 GB

Twitter 41,652,231 1,468,365,182 11 GB

To evaluate our proposed DCDatalog engine, we conduct experiments using five Datalog

programs which were widely used in previous studies. The first two are Same Generation

85

(SG) and Delivery [bom] (Query 7-8) that were popular examples for deductive database;

the other three express the following popular graph algorithms (Query 6, 9-10): Connected

Component, PageRank and Single Source Shortest Path.

Query 7 - Same Generation (SG)

r3,1 : sg(X, Y) ← arc(P,X), arc(P, Y), X! = Y.

r3,2 : sg(X, Y) ← arc(A,X), sg(A,B), arc(B, Y).

Query 8 - BoM – Delivery

r6,1 : delivery(P,max〈D〉) ← basic(P,D).

r6,2 : delivery(P,max〈D〉) ← assbl(P, S),

delivery(S,D).

r6,3 : results(P,max〈D〉) ← delivery(part,D).

Query 9 - PageRank (PR)

r4,1 : rank(X, sum〈(X, I)〉) ← matrix(X, ,),

I = (1− α)/V NUM.

r4,2 : rank(X, sum〈(Y,K)〉) ← rank(Y,C),

matrix(Y,X,D),

K = α ∗ (C/D).

r4,3 : results(X, V) ← rank(X, V).

Query 10 - Single Source Shortest Path (SSSP)

r5,1 : sp(To,min〈C〉) ← To = start, C = 0.

r5,2 : sp(To2,min〈C〉) ← sp(To1, C1),

warc(To1, T o2, C2),

C = C1 + C2.

r5,3 : results(To,min〈C〉) ← sp(To, C).

86

For the three graph queries, we evaluate them on four real world datasets Livejournal,

Orkut, Arabic and Twitter, whose detailed statistics are shown in Table 5.1. For

the first two queries, we evaluate on synthetic datasets used in previous studies [SYI16,

FZZ19, GWM19]: Tree-11 is a tree of height 11, and the degree of a non-leaf vertex is

a random number between 2 and 6. G-10K is a 10,000-vertex random graph 4 generated

by randomly connecting vertices so that each pair is connected with probability 0.001. The

Rmat-n graphs are generated by the RMAT graph generator, which has n vertices and

10 × n directed edges. The N-n are trees with n vertices, which are generated in different

levels following [GWM19]: each tree node has randomly 5 to 10 children, and each child has

a 20% to 60% chance of becoming a leaf.

5.4.1.2 Baseline Systems

We used the following Datalog engines designed for shared-memory multicore architectures

as the baseline for our work: SociaLite [SGL13], DeALS-MC [YSZ17], Souffle [SJS16] equipped

with the concurrent index [JSZ19] and RecStep [FZZ19]. We also compared with the BigDat-

alog [SYI16] engine which works under shared-nothing architecture to further demonstrate

the significance of these results in the wider context of parallel system.

For above baseline systems, we obtained the source code of DeALS-MC and SociaLite

from original authors. The codes of Souffle5, BigDatalog6, and RecStep7 are public available.

The rationale for focusing on the those Datalog systems, and excluding a few others from

our comparisons, is based on the following considerations. It has been shown in [YSZ17] that

the single-node based DeALS [SYZ15] and LogicBlox [ACG15] cannot outperform DeALS-

4http://www.cse.psu.edu/ kxm85/software/GTgraph

5https://souffle-lang.github.io/

6We fix some bugs in this version to support PageRank : https://github.com/ashkapsky/BigDatalog

7https://github.com/Hacker0912/RecStep

87

MC. Meanwhile, BigDatalog has significantly better performance than Myria [WBH15] and

Distributed SociaLite [SPS13]. Furthermore, we have not considered specialized non-Datalog

systems such as special-purpose graph systems.

We use the end-to-end query execution time as the metric for evaluation. Since in this

paper we focus on in-memory computation, we exclude the time of loading data for all the

systems, which is in fact rather trivial for DCDatalog. We run all the experiments 5 times

and report the average results. If a system cannot finish within 10 hours under a particular

setting, we will regard it as timeout.

5.4.1.3 Environment

We implement the DCDatalog engine with C++. We run the experiments of all the systems

except BigDatalog on a server with four AMD Opteron 6376 CPUs (8 physical cores per

CPU, 2 hyper-thread per core), 256GB memory (configured into eight NUMA regions) and

1 TB hard disk. The operating system is Ubuntu Linux 14.04 LTS and the compiler is GCC

9.0 with O3 flag. For BigDatalog, we conduct the experiments on a cluster with 16 nodes.

Each node runs Ubuntu 14.04 LTS and has an Intel i7-4770 CPU (3.40GHz, 4 core/8 thread),

32GB memory and a 1 TB 7200 RPM hard drive. Each worker node is allocated 30 GB

RAM and 8 CPU cores (120 total cores) for execution.

88

Table 5.2: Comparison with State-of-the-art Systems (seconds): OOM means out of memory;

NS means the system does not support the corresponding query; TO means timeout

Query Dataset DCDatalog SociaLite DeALS-MC Souffle RecStep BigDatalog

SG

Tree-11 40.77 30687.42 71.99 1438.98 OOM 53.40

G-10K 16.04 4762.25 76.18 194.09 458.41 95.32

Rmat-10K 12.18 5013.76 80.11 143.46 512.48 108.17

Rmat-20K 54.90 21048.49 299.16 664.65 2378.16 577.65

Rmat-40K 237.07 TO 1358.42 2879.03 OOM OOM

Delivery

N-40M 3.32 233.71 NS 88.06 40.26 12.57

N-80M 5.15 854.73 NS 167.67 71.71 15.69

N-160M 11.28 2332.05 NS 369.81 154.13 18.35

N-300M 18.78 8170.65 NS 729.52 334.43 28.17

CC

Livejournal 8.49 31.70 319.88 OOM 55.12 27.98

Orkut 11.09 40.91 379.30 OOM 49.41 31.78

Arabic 50.58 184.55 OOM OOM 495.54 213.59

Twitter 77.84 TO OOM OOM 637.51 307.69

SSSP

Livejournal 11.93 42.36 791.83 OOM 212.50 53.80

Orkut 8.66 36.84 361.71 OOM 88.01 39.47

Arabic 9.90 61.69 OOM OOM 113.96 276.55

Twitter 24.01 TO OOM OOM 178.24 260.71

PageRank

Livejournal 113.42 12339.52 NS OOM NS 135.87

Orkut 45.71 4770.41 NS OOM NS 88.77

Arabic 203.94 TO NS OOM NS 680.00

Twitter 2020.85 TO NS OOM NS 2356.57

89

5.4.2 End-to-end Query Time Comparison

We first report results of comparing with existing Datalog engines as shown in Table 5.2.

For the two recursive queries SG and Delivery, we can find that DCDatalog achieves 3 to

100 times performance gain over the baselines. For example, for the SG query on G-10K

dataset, the times for Souffle, RecStep, DeALS-MC and SociaLite are 194.09, 458.41, 76.18

and 4762.25 seconds, respectively. Meanwhile, DCDatalog takes only 16.04 seconds. The

superior performance of DCDatalog comes from the comprehensive optimizations made in

all components of the system. A separate issue is that some of the language constructs of

DCDatalog are not supported in other systems. For instance, Souffle does not allow aggregates

in recursion, and thus it must use a stratified query has very poor performance to express

the Delivery query. Compared with DeALS-MC, we adopt DWS approach for coordination

between different workers and thus can save the time for idle waiting. The performance of

SociaLite queries underscores that the system was optimized for social network applications

rather than general-purpose Datalog queries. For RecStep, the source code released by the

author does not include the claimed PBME optimizations in [FZZ19]. Therefore, we just

report the results we obtained from their currently released version, which are likely to be

worse than those reported in the original paper.

We further look at the results on the three graph algorithms CC, SSSP and PageRank.

The trends are similar to those observed in the two recursive queries we just discussed. Many

baseline systems, such as DeALS-MC and RecStep, cannot support PageRank because they

fail to support expressing the sum aggregate in recursion. Souffle runs out of memory on all

graph queries because the equivalent stratified queries involve too many intermediate results.

Compared with other baseline systems, DCDatalog has both great expressive power and

performance because it relaxes the constraint on lock-free programs and uses a light-weight

scheme to deal with the race condition that happens in evaluating programs with complicated

aggregates in recursion. For instance, for the SSSP query on Orkut dataset, the time for

RecStep, DeALS-MC and SociaLite is 88.01, 361.71 and 36.84 seconds, respectively; while

90

that for DCDatalog is 8.66 seconds. Even compared with the BigDatalog system which runs

in the shared-nothing environment, DCDatalog still has better performance on all queries in

most settings.

5.4.3 Micro-Benchmarking Results

 10
1

 10
2

 10
3

 10
4

 10
5

LiveJournal Orkut Arabic Twitter LiveJournal Orkut Arabic Twitter LiveJournal Orkut Arabic Twitter

CC SSSP PageRank

6
6 6
9

8
2

5

7
4

0

1
3

2

6
1 7
0

1
7

0

1
5

1
9

3
8

8

1
6

4
9

2
1

4
3

5

1
8 2
4

1
0

7 1
8

7

3
4

2
9

3
0

6
5

2
0

9

9
8

3
7

7

4
5

9
3

8 1
1

5
1 7

8

1
2

9 1
0

2
4

1
1

3

4
6

2
0

4

2
0

2
1

T
im

e
 (

s
)

Global SSP DWS

Figure 5.4: Effect of Different Coordination Strategies

Next we dive into the details of how the various optimization techniques improve query

performance. We aim at assessing the effectiveness of the parallel coordination strategy DWS

(Section 5.3.2).

To test the effect of different coordination strategies, we consider the following three

methods: Global is the method that requires a coordination after each global iteration; SSP

simply extends the techniques proposed in [DZ19] designed for shared-nothing environment,

which allows fast workers to proceed at most s iterations; DWS is our proposed dynamic

coordination strategy. In this experiment, we set s as 5 empirically, which has the best

performance under most settings. The results of different coordination strategies are shown

in Figure 5.4. We see that DWS achieves the best performance under all settings. For

example, for the SSSP query on Livejournal dataset, the time for Global, SSP and DWS

is 131.68, 34.45 and 11.93 seconds, respectively. SSP performs worse than DWS because

it relies on a predefined threshold s to avoid the idle waiting of faster workers, which fails

91

to reflect the characteristics of different iterations during the evaluation. Global has the

worst performance as it suffers from the idle waiting involved in the parallel evaluation.

Note that Global uses the same coordination strategy with DeALS-MC but is equipped with

better implementation techniques by us. Therefore, its general performance is better than

DeALS-MC due to the benefits of our designs.

5.4.4 Scalability

Finally we evaluate the scalability of DCDatalog.

0

4

8

12

16

20

1 2 4 8 16 32 64

S
p
e
e
d
U

p

of Threads

CC
SSSP

Delivery

(a) Varying # Threads

2
3

2
4

2
5

2
6

2
7

10 20 40 80 160

T
im

e
 (

s
)

of Vertexes (10
6
)

CC
SSSP

Delivery

(b) Varying Data Size

Figure 5.5: Scalability: Datalog on Multicore Machines

We first conduct experiments of scaling up the number of workers (threads). We evaluate

the CC, SSSP and Delivery programs on dataset Livejournal, Arabic, and N-300M,

respectively. We vary the number of threads from 1 to 64. The results are shown in Fig-

ure 5.5(a). We observe that DCDatalog scales well using up to 32 threads. After that, the

speedup tends to be stable because the number of physical cores on the machine is 32 and

they are fully utilized. SSSP query achieves smaller speedup since its evaluation starts from

one vertex and is not fully paralleled in a long period after beginning.

Then we increase the size of dataset and observe how our system scales over large volume

of data. We use the synthetic dataset Rmat-n by varying the number of vertices in the

92

generated graph from 10M to 160M. Figure 5.5(b) shows the results of CC, SSSP and

Delivery programs. We observe that the time increases proportionally to the size of datasets.

For example, the execution time of CC is 12.48, 27.26, 48.23, 97.55, 160.19 seconds on

the synthetic graph with 10M, 20M, 40M, 80M, 160M vertices, respectively. It shows the

potential ability of DCDatalog for dealing with ever larger datasets on modern multicore

machines.

5.5 Related Work

5.5.1 Datalog Language and Evaluation

Supporting aggregates in recursive Datalog programs is an old and difficult problem which

has been the topic of much previous research work. Earlier studies tried to reach this

goal by providing formal semantics for recursive Datalog programs with unstratified aggre-

gates [GGZ91, MPR90, FGG02]. In particular, Ross et al. [RS92] used semantics based

on specialized lattices to express the four aggregates, while Ganguly et al. [GGZ95] sought

to optimize programs with extrema. Mazuran et al. [MSZ13] proposed the monotonic ag-

gregates and prove that they can be used freely in recursion. More recently, Zaniolo et

al. [ZYD17] introduced the Pre-mappability(PreM) property under which programs using

extrema in recursion are equivalent to those aggregate-stratified ones. It also enables the

RaSQL language [GWM19, WXG20], a recursive SQL that supports aggregates in recursion.

There is a long stream of studies about supporting parallel evaluation of recursive Dat-

alog programs. Wolfson et al. [WS88] identified the decomposable programs which can be

evaluated in parallel without communication and duplicated computation. The parallel SN

evaluation fixpoint was proposed in [GST90] for message passing. Seib et al. [SL91] provided

the Generalized Pivoting to divide the workload in Datalog program for parallel execution

and Ganguly et al. [GST92] proposed the substitution partitioned parallelization scheme.

Shaw et al. [SKH12] and Afrati et al. [ABC11, AU12] studied how to support Datalog eval-

93

uation under MapReduce framework. Motik et al. [MNP14] focused on the specific problem

of RDF data. All these studies focused more on theoretical results rather than providing

concrete system implementation.

5.5.2 Datalog Systems and Applications

Many efforts have been paid to design and implement an efficient engine for Datalog evalu-

ation. LogicBlox [ACG15] designed the Datalog engine according to the similar idea of rela-

tional DBMS. DeALS [SYZ15] implemented the idea of monotonic aggregation to efficiently

support aggregates in recursion. To deal with large-scale analytical queries, another line of

studies focus on developing distributed Datalog engines. Distributed SociaLite [SPS13] ex-

tended its single node version [SGL13] to shared-nothing environment with message passing

to communicate. Myria [WBH15] proposed an asynchronous approach for Datalog evalua-

tion. BigDatalog [SYI16] developed the Datalog engine on top of Apache Spark. There are

also some special purposed systems that use Datalog-like interfaces due to its succinct pro-

gram structure and superior expressive power to support a wide spectrum of applications,

such as knowledge reasoning [BSG18], graph analysis [ATO16], program analysis [WAC05]

and data center management [ZAC19].

For the systems in shared-memory architectures, DeALS-MC [YSZ17] implements and

optimizes the idea of substitution partitioned parallelization for lock-free programs. However,

it has certain limitations of performance due to its coordination strategy, which has been

detailed in Section 5.2.1. Souffle [SJS16, JSZ19] is a Datalog engine designed with concurrent

B-Tree indexes. It cannot support aggregates in recursion and thus fail to express many

advanced analytical queries. RecStep [FZZ19] is a parallel Datalog engine implemented on

top a parallel relational database system named QuickStep [PDZ18], which is responsible to

support the parallel execution of the analyzed Datalog programs. The RecStep engine itself

did not propose techniques for improving the parallel evaluation as our work did.

94

5.5.3 Parallel Query Evaluation

In the past years, many distributed big data platforms have been developed to cope with

the ever-increasing volume of data collections. For distributed big data platforms, a criti-

cal bottleneck is the synchronization mechanism over all workers. The Bulk Synchronous

Parallel (BSP) model is the most popular one for distributed computation. Under BSP,

iterative computation is separated into super steps, and messages from one super step are

only accessible in the consequent one. It has been adopted by both general purpose sys-

tems like Apache Spark [ZCD12] and graph processing systems, such as Pregel [MAB10]

and GraphX [GXD14]. To alleviate the overhead of synchronization in BSP, some other

systems adopted the Asynchronous Processing (AP) model, such as GraphLab [LGK12] and

Giraph++ [TBC13]. Some follow-up studies [CCH14, XCG15, HD15, FLL18] targeted at

making a trade-off between AP and BSP to propose new synchronization techniques, which

can reduce both the cost of global synchronization and communication overheads. Above

strategies are all designed for applications of graph analysis or machine learning in a shared-

nothing environment, which was not the focus of our study. It is an interesting direction to

investigate how to extend them to our problem in the future work.

5.6 Conclusion of Chapter

In this paper, we introduce DCDatalog, a parallel Datalog engine on shared-memory multicore

architectures. DCDatalog is equipped with a light-weight scheme to resolve race conditions

in parallel execution, thus enabling more efficient evaluation for a broad range of Datalog

applications. We propose a novel dynamic coordination strategy to overcome the limitations

of existing approaches for parallel Datalog evaluation. The proposed strategy significantly

reduces the idle waiting time and brings additional benefits to recursive queries. Experimen-

tal results on several real world datasets demonstrate the superior efficiency and scalability

of DCDatalog compared with existing Datalog engines.

95

CHAPTER 6

Conclusion and Future Work

The recent new findings in Datalog research enable the use of aggregates in recursion, and

this has brought a revival of interest in Datalog for expressing more powerful data-intensive

applications. In this dissertation, we have addressed several research problems from language

semantics to applications and performance driven by such recently introduced notions in

Datalog .

To begin with, we propose a declarative framework to support machine learning appli-

cations on Apache Spark. The proposed framework (i) expresses popular ML applications

with succinct Datalog programs and user friendly DataFrame APIs; (ii) provides effective

compilation and planning techniques to support complex recursions in ML applications; (iii)

devises efficient and automatic optimizations to improve the overall performance. We per-

form an extensive set of experimental study on both synthetic and real world datasets. The

results demonstrate the superior performance and scalability of our framework over several

large-scale datasets.

In addition, we present the Pre-Countable Cardinality(PCC) Property, which provides

formal semantics for a complete set of aggregates in recursion. We find that set aggregates can

be used inside the recursion when the cardinality of involved relations can be pre-computed

before the recursive computation begins, and simply passed to the fixpoint computation

that follows. We then use several examples to show how this property can benefit a wide

spectrum of data analysis applications, especially complicated machine learning and data

mining algorithms.

96

Last but not least, we design and implement a prototype system for scaling up Datalog

evaluation on shared-memory multi-core machine. We propose a novel coordination strategy

to improve the parallelism of semi-naive evaluation by avoiding unnecessary idle waiting and

providing finer granularity concurrency management. The experimental results show that

our system outperforms other coordination strategies by an obvious margin.

The research findings in this dissertation also open up new opportunities in several re-

search directions. First of all, we believe the usage of completed aggregates in recursive rules

made possible by the PCC property can lead to further extensions in a variety of applica-

tions, such as natural language understanding, data integration and data mining. Besides,

some of my previous research works lies in the applications of many data types, such as

text [WLL20, ZWW20, TZW19, WLZ19, WLL19], spatial [WZW19, YZZ19], and stream-

ing [DWG19, ASW19, GWZ16]. Nowadays, machine learning techniques have been widely

adopted in such domains, which brings new challenges in expressiveness and performance.

Thus, it is worthy to investigate how to take advantage of the expressive power of Datalog

to express queries over such a broad scope of applications and provide efficient and scalable

implementations for these powerful tools.

97

REFERENCES

[ABC11] Foto N. Afrati, Vinayak R. Borkar, Michael J. Carey, Neoklis Polyzotis, and
Jeffrey D. Ullman. “Map-reduce extensions and recursive queries.” In EDBT,
pp. 1–8, 2011.

[ABC16] Mart́ın Abadi, Paul Barham, Jianmin Chen, and et al. “TensorFlow: A System
for Large-Scale Machine Learning.” In OSDI, pp. 265–283, 2016.

[ACG15] Molham Aref, Balder ten Cate, Todd J. Green, Benny Kimelfeld, Dan Olteanu,
Emir Pasalic, Todd L. Veldhuizen, and Geoffrey Washburn. “Design and Imple-
mentation of the LogicBlox System.” In SIGMOD, pp. 1371–1382, 2015.

[AGN13] Raja Appuswamy, Christos Gkantsidis, Dushyanth Narayanan, Orion Hodson,
and Antony I. T. Rowstron. “Scale-up vs scale-out for Hadoop: time to rethink?”
In SOCC, pp. 20:1–20:13, 2013.

[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.
Addison-Wesley, 1995.

[AOT03] Faiz Arni, KayLiang Ong, Shalom Tsur, Haixun Wang, and Carlo Zaniolo. “The
Deductive Database System LDL++.” TPLP, 3(1):61–94, 2003.

[ASS17] Michael J. Anderson, Shaden Smith, Narayanan Sundaram, Mihai Capota,
Zheguang Zhao, Subramanya Dulloor, Nadathur Satish, and Theodore L. Willke.
“Bridging the Gap between HPC and Big Data frameworks.” PVLDB, 10(8):901–
912, 2017.

[ASW19] Xiang Ao, Haoran Shi, Jin Wang, Luo Zuo, Hongwei Li, and Qing He. “Large-
Scale Frequent Episode Mining from Complex Event Sequences with Hierarchies.”
ACM TIST, 10(4):36:1–36:26, 2019.

[ATO16] Christopher R. Aberger, Susan Tu, Kunle Olukotun, and Christopher Ré. “Emp-
tyHeaded: A Relational Engine for Graph Processing.” In SIGMOD, pp. 431–446,
2016.

[AU12] Foto N. Afrati and Jeffrey D. Ullman. “Transitive closure and recursive Datalog
implemented on clusters.” In EDBT, pp. 132–143, 2012.

[BBC12a] Vinayak R. Borkar, Yingyi Bu, Michael J. Carey, Joshua Rosen, Neoklis Polyzotis,
Tyson Condie, Markus Weimer, and Raghu Ramakrishnan. “Declarative Systems
for Large-Scale Machine Learning.” IEEE Data Eng. Bull., 35(2):24–32, 2012.

[BBC12b] Yingyi Bu, Vinayak R. Borkar, Michael J. Carey, Joshua Rosen, Neoklis Polyzotis,
Tyson Condie, Markus Weimer, and Raghu Ramakrishnan. “Scaling Datalog for
Machine Learning on Big Data.” CoRR, abs/1203.0160, 2012.

98

[BCG11] Vinayak R. Borkar, Michael J. Carey, Raman Grover, Nicola Onose, and Rares
Vernica. “Hyracks: A flexible and extensible foundation for data-intensive com-
puting.” In ICDE, pp. 1151–1162, 2011.

[BDE16] Matthias Boehm, Michael Dusenberry, Deron Eriksson, Alexandre V. Evfimievski,
Faraz Makari Manshadi, Niketan Pansare, Berthold Reinwald, Frederick Reiss,
Prithviraj Sen, Arvind Surve, and Shirish Tatikonda. “SystemML: Declarative
Machine Learning on Spark.” PVLDB, 9(13):1425–1436, 2016.

[bom] “Recursion Example: Bill Of Materials.” https://www.ibm.com/

support/knowledgecenter/en/SS6NHC/com.ibm.swg.im.dashdb.sql.ref.

doc/doc/r0059242.html.

[BSG18] Luigi Bellomarini, Emanuel Sallinger, and Georg Gottlob. “The Vadalog System:
Datalog-based Reasoning for Knowledge Graphs.” PVLDB, 11(9):975–987, 2018.

[CCH14] Henggang Cui, James Cipar, Qirong Ho, Jin Kyu Kim, Seunghak Lee, Abhimanu
Kumar, Jinliang Wei, Wei Dai, Gregory R. Ganger, Phillip B. Gibbons, Garth A.
Gibson, and Eric P. Xing. “Exploiting Bounded Staleness to Speed Up Big Data
Analytics.” In USENIX ATC, pp. 37–48, 2014.

[CD97] Surajit Chaudhuri and Umeshwar Dayal. “An Overview of Data Warehousing
and OLAP Technology.” SIGMOD Record, 26(1):65–74, 1997.

[CDI18] Tyson Condie, Ariyam Das, Matteo Interlandi, Alexander Shkapsky, Mohan
Yang, and Carlo Zaniolo. “Scaling-up reasoning and advanced analytics on Big-
Data.” TPLP, 18(5-6):806–845, 2018.

[CEF17] Paris Carbone, Stephan Ewen, Gyula Fóra, Seif Haridi, Stefan Richter, and
Kostas Tzoumas. “State Management in Apache Flink R©: Consistent Stateful
Distributed Stream Processing.” PVLDB, 10(12):1718–1729, 2017.

[CKN17] Lingjiao Chen, Arun Kumar, Jeffrey F. Naughton, and Jignesh M. Patel. “To-
wards Linear Algebra over Normalized Data.” PVLDB, 10(11):1214–1225, 2017.

[CLL15] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun
Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. “MXNet: A Flexible and Effi-
cient Machine Learning Library for Heterogeneous Distributed Systems.” CoRR,
abs/1512.01274, 2015.

[CVP13] Zhuhua Cai, Zografoula Vagena, Luis Leopoldo Perez, Subramanian Arumugam,
Peter J. Haas, and Christopher M. Jermaine. “Simulation of database-valued
markov chains using SimSQL.” In SIGMOD, pp. 637–648, 2013.

[Dar20] Adnan Darwiche. “Three Modern Roles for Logic in AI.” PODS, 2020.

99

[DLW19] Ariyam Das, Youfu Li, Jin Wang, Mingda Li, and Carlo Zaniolo. “BigData Appli-
cations from Graph Analytics to Machine Learning by Aggregates in Recursion.”
In ICLP, pp. 273–279, 2019.

[DWG19] Ariyam Das, Jin Wang, Sahil M. Gandhi, Jae Lee, Wei Wang, and Carlo Zan-
iolo. “Learn Smart with Less: Building Better Online Decision Trees with Fewer
Training Examples.” In IJCAI, pp. 2209–2215, 2019.

[DZ19] Ariyam Das and Carlo Zaniolo. “A Case for Stale Synchronous Distributed Model
for Declarative Recursive Computation.” TPLP, 19(5-6):1056–1072, 2019.

[EBH16] Ahmed Elgohary, Matthias Boehm, Peter J. Haas, Frederick R. Reiss, and
Berthold Reinwald. “Compressed Linear Algebra for Large-Scale Machine Learn-
ing.” PVLDB, 9(12):960–971, 2016.

[ELB17] Tarek Elgamal, Shangyu Luo, Matthias Boehm, Alexandre V. Evfimievski,
Shirish Tatikonda, Berthold Reinwald, and Prithviraj Sen. “SPOOF: Sum-
Product Optimization and Operator Fusion for Large-Scale Machine Learning.”
In CIDR, 2017.

[FGG02] Filippo Furfaro, Sergio Greco, Sumit Ganguly, and Carlo Zaniolo. “Pushing
extrema aggregates to optimize logic queries.” Inf. Syst., 27(5):321–343, 2002.

[FKR12] Xixuan Feng, Arun Kumar, Benjamin Recht, and Christopher Ré. “Towards a
unified architecture for in-RDBMS analytics.” In SIGMOD, pp. 325–336, 2012.

[FLL18] Wenfei Fan, Ping Lu, Xiaojian Luo, Jingbo Xu, Qiang Yin, Wenyuan Yu, and
Ruiqi Xu. “Adaptive Asynchronous Parallelization of Graph Algorithms.” In
SIGMOD, pp. 1141–1156, 2018.

[FZZ19] Zhiwei Fan, Jianqiao Zhu, Zuyu Zhang, Aws Albarghouthi, Paraschos Koutris,
and Jignesh M. Patel. “Scaling-Up In-Memory Datalog Processing: Observations
and Techniques.” PVLDB, 12(6):695–708, 2019.

[GGZ91] Sumit Ganguly, Sergio Greco, and Carlo Zaniolo. “Minimum and Maximum
Predicates in Logic Programming.” In PODS, pp. 154–163, 1991.

[GGZ95] Sumit Ganguly, Sergio Greco, and Carlo Zaniolo. “Extrema Predicates in Deduc-
tive Databases.” J. Comput. Syst. Sci., 51(2):244–259, 1995.

[GLP17] Zekai J. Gao, Shangyu Luo, Luis Leopoldo Perez, and Chris Jermaine. “The
BUDS Language for Distributed Bayesian Machine Learning.” In SIGMOD, pp.
961–976, 2017.

[GST90] Sumit Ganguly, Abraham Silberschatz, and Shalom Tsur. “A Framework for the
Parallel Processing of Datalog Queries.” In SIGMOD, pp. 143–152, 1990.

100

[GST92] Sumit Ganguly, Abraham Silberschatz, and Shalom Tsur. “Parallel Bottom-Up
Processing of Datalog Queries.” J. Log. Program., 14(1&2):101–126, 1992.

[GWM19] Jiaqi Gu, Yugo Watanabe, William Mazza, Alexander Shkapsky, Mohan Yang,
Ling Ding, and Carlo Zaniolo. “RaSQL: Greater Power and Performance for
Big Data Analytics with Recursive-aggregate-SQL on Spark.” In SIGMOD, pp.
467–484, 2019.

[GWZ16] Jiaqi Gu, Jin Wang, and Carlo Zaniolo. “Ranking support for matched pat-
terns over complex event streams: The CEPR system.” In 32nd IEEE Inter-
national Conference on Data Engineering, ICDE 2016, Helsinki, Finland, May
16-20, 2016, pp. 1354–1357, 2016.

[GXD14] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw, Michael J.
Franklin, and Ion Stoica. “GraphX: Graph Processing in a Distributed Dataflow
Framework.” In OSDI, pp. 599–613, 2014.

[HCC13] Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee, Jin Kyu Kim, Phillip B.
Gibbons, Garth A. Gibson, Gregory R. Ganger, and Eric P. Xing. “More Effective
Distributed ML via a Stale Synchronous Parallel Parameter Server.” In NIPS,
pp. 1223–1231, 2013.

[HD15] Minyang Han and Khuzaima Daudjee. “Giraph Unchained: Barrierless Asyn-
chronous Parallel Execution in Pregel-like Graph Processing Systems.” PVLDB,
8(9):950–961, 2015.

[HRS12] Joseph M. Hellerstein, Christopher Ré, Florian Schoppmann, Daisy Zhe Wang,
Eugene Fratkin, Aleksander Gorajek, Kee Siong Ng, Caleb Welton, Xixuan Feng,
Kun Li, and Arun Kumar. “The MADlib Analytics Library or MAD Skills, the
SQL.” PVLDB, 5(12):1700–1711, 2012.

[JLY19] Dimitrije Jankov, Shangyu Luo, Binhang Yuan, Zhuhua Cai, Jia Zou, Chris Jer-
maine, and Zekai J. Gao. “Declarative Recursive Computation on an RDBMS.”
PVLDB, 12(7):822–835, 2019.

[JSZ19] Herbert Jordan, Pavle Subotic, David Zhao, and Bernhard Scholz. “A specialized
B-tree for concurrent datalog evaluation.” In PPoPP, pp. 327–339, 2019.

[JZC16] Yu-Chin Juan, Yong Zhuang, Wei-Sheng Chin, and Chih-Jen Lin. “Field-aware
Factorization Machines for CTR Prediction.” In RecSys, pp. 43–50, 2016.

[KQT17] Zoi Kaoudi, Jorge-Arnulfo Quiané-Ruiz, Saravanan Thirumuruganathan, Sanjay
Chawla, and Divy Agrawal. “A Cost-based Optimizer for Gradient Descent Op-
timization.” In SIGMOD, pp. 977–992, 2017.

101

[KTD13] Tim Kraska, Ameet Talwalkar, John C. Duchi, Rean Griffith, Michael J. Franklin,
and Michael I. Jordan. “MLbase: A Distributed Machine-learning System.” In
CIDR, 2013.

[LAP14] Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr Ahmed,
Vanja Josifovski, James Long, Eugene J. Shekita, and Bor-Yiing Su. “Scaling
Distributed Machine Learning with the Parameter Server.” In OSDI, pp. 583–
598, 2014.

[LCC17] Xupeng Li, Bin Cui, Yiru Chen, Wentao Wu, and Ce Zhang. “MLog: Towards
Declarative In-Database Machine Learning.” PVLDB, 10(12):1933–1936, 2017.

[LCG06] Boon Thau Loo, Tyson Condie, Minos N. Garofalakis, David E. Gay, Joseph M.
Hellerstein, Petros Maniatis, Raghu Ramakrishnan, Timothy Roscoe, and Ion
Stoica. “Declarative networking: language, execution and optimization.” In
SIGMOD, pp. 97–108, 2006.

[LCH05] Boon Thau Loo, Tyson Condie, Joseph M. Hellerstein, Petros Maniatis, Timothy
Roscoe, and Ion Stoica. “Implementing declarative overlays.” In SOSP, pp. 75–
90, 2005.

[LGG17] Shangyu Luo, Zekai J. Gao, Michael N. Gubanov, Luis Leopoldo Perez, and
Christopher M. Jermaine. “Scalable Linear Algebra on a Relational Database
System.” In ICDE, pp. 523–534, 2017.

[LGK12] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin,
and Joseph M. Hellerstein. “Distributed GraphLab: A Framework for Machine
Learning in the Cloud.” PVLDB, 5(8):716–727, 2012.

[lib] “LIBSVM Data .” https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/

datasets/.

[MAB10] Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. “Pregel: a system for large-scale
graph processing.” In SIGMOD, pp. 135–146, 2010.

[mah] “Apache Mahout .” https://mahout.apache.org/.

[MBY16] Xiangrui Meng, Joseph K. Bradley, Burak Yavuz, and et al. “MLlib: Machine
Learning in Apache Spark.” Journal of Machine Learning Research, 17:34:1–34:7,
2016.

[MIG12] Svilen R. Mihaylov, Zachary G. Ives, and Sudipto Guha. “REX: Recursive, Delta-
Based Data-Centric Computation.” PVLDB, 5(11):1280–1291, 2012.

102

[MMI13] Frank McSherry, Derek Gordon Murray, Rebecca Isaacs, and Michael Isard. “Dif-
ferential Dataflow.” In CIDR, 2013.

[MNP14] Boris Motik, Yavor Nenov, Robert Piro, Ian Horrocks, and Dan Olteanu. “Par-
allel Materialisation of Datalog Programs in Centralised, Main-Memory RDF
Systems.” In AAAI, pp. 129–137, 2014.

[MNW18] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard
Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I. Jordan,
and Ion Stoica. “Ray: A Distributed Framework for Emerging AI Applications.”
In OSDI, pp. 561–577, 2018.

[MPR90] Inderpal Singh Mumick, Hamid Pirahesh, and Raghu Ramakrishnan. “The Magic
of Duplicates and Aggregates.” In VLDB, pp. 264–277, 1990.

[MSS09] Justin Ma, Lawrence K. Saul, Stefan Savage, and Geoffrey M. Voelker. “Identi-
fying suspicious URLs: an application of large-scale online learning.” In ICML,
pp. 681–688, 2009.

[MSZ13] Mirjana Mazuran, Edoardo Serra, and Carlo Zaniolo. “Extending the power of
datalog recursion.” VLDB J., 22(4):471–493, 2013.

[MVP18] Nantia Makrynioti, Nikolaos Vasiloglou, Emir Pasalic, and Vasilis Vassalos.
“Modelling Machine Learning Algorithms on Relational Data with Datalog.” In
DEEM@SIGMOD, pp. 5:1–5:4, 2018.

[PDZ18] Jignesh M. Patel, Harshad Deshmukh, Jianqiao Zhu, Navneet Potti, Zuyu Zhang,
Marc Spehlmann, Hakan Memisoglu, and Saket Saurabh. “Quickstep: A Data
Platform Based on the Scaling-Up Approach.” PVLDB, 11(6):663–676, 2018.

[RS92] Kenneth A. Ross and Yehoshua Sagiv. “Monotonic Aggregation in Deductive
Databases.” In PODS, pp. 114–126, 1992.

[SAD10] Michael Stonebraker, Daniel J. Abadi, David J. DeWitt, Samuel Madden, Erik
Paulson, Andrew Pavlo, and Alexander Rasin. “MapReduce and parallel DBMSs:
friends or foes?” Commun. ACM, 53(1):64–71, 2010.

[SDC19] Benoit Steiner, Zachary DeVito, Soumith Chintala, and et al. “PyTorch: An
Imperative Style, High-Performance Deep Learning Library.” In NeurIPS, 2019.

[SGL13] Jiwon Seo, Stephen Guo, and Monica S. Lam. “SociaLite: Datalog extensions for
efficient social network analysis.” In ICDE, pp. 278–289, 2013.

[SJS16] Bernhard Scholz, Herbert Jordan, Pavle Subotic, and Till Westmann. “On fast
large-scale program analysis in Datalog.” In CC, pp. 196–206, 2016.

103

[SKH12] Marianne Shaw, Paraschos Koutris, Bill Howe, and Dan Suciu. “Optimizing
Large-Scale Semi-Näıve Datalog Evaluation in Hadoop.” In Datalog in Academia
and Industry, pp. 165–176, 2012.

[SL91] Jürgen Seib and Georg Lausen. “Parallelizing Datalog Programs by Generalized
Pivoting.” In PODS, pp. 241–251, 1991.

[SOC16] Maximilian Schleich, Dan Olteanu, and Radu Ciucanu. “Learning Linear Regres-
sion Models over Factorized Joins.” In SIGMOD, pp. 3–18, 2016.

[SPS13] Jiwon Seo, Jongsoo Park, Jaeho Shin, and Monica S. Lam. “Distributed So-
ciaLite: A Datalog-Based Language for Large-Scale Graph Analysis.” PVLDB,
6(14):1906–1917, 2013.

[STS19] Raghav Sethi, Martin Traverso, Dain Sundstrom, David Phillips, Wenlei Xie,
Yutian Sun, Nezih Yegitbasi, Haozhun Jin, Eric Hwang, Nileema Shingte, and
Christopher Berner. “Presto: SQL on Everything.” In ICDE, pp. 1802–1813,
2019.

[SV17] Umar Syed and Sergei Vassilvitskii. “SQML: large-scale in-database machine
learning with pure SQL.” In SoCC, p. 659, 2017.

[SVK17] Evan R. Sparks, Shivaram Venkataraman, Tomer Kaftan, Michael J. Franklin,
and Benjamin Recht. “KeystoneML: Optimizing Pipelines for Large-Scale Ad-
vanced Analytics.” In ICDE, pp. 535–546, 2017.

[SYI16] Alexander Shkapsky, Mohan Yang, Matteo Interlandi, Hsuan Chiu, Tyson Condie,
and Carlo Zaniolo. “Big Data Analytics with Datalog Queries on Spark.” In
SIGMOD, pp. 1135–1149, 2016.

[SYZ15] Alexander Shkapsky, Mohan Yang, and Carlo Zaniolo. “Optimizing recursive
queries with monotonic aggregates in DeALS.” In ICDE, pp. 867–878, 2015.

[TBC13] Yuanyuan Tian, Andrey Balmin, Severin Andreas Corsten, Shirish Tatikonda,
and John McPherson. “From ”Think Like a Vertex” to ”Think Like a Graph”.”
PVLDB, 7(3):193–204, 2013.

[TK18] Anthony Thomas and Arun Kumar. “A Comparative Evaluation of Systems for
Scalable Linear Algebra-based Analytics.” PVLDB, 11(13):2168–2182, 2018.

[TSJ10] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka,
Ning Zhang, Suresh Anthony, Hao Liu, and Raghotham Murthy. “Hive - a
petabyte scale data warehouse using Hadoop.” In ICDE, pp. 996–1005, 2010.

[TZW19] Bing Tian, Yong Zhang, Jin Wang, and Chunxiao Xing. “Hierarchical Inter-
Attention Network for Document Classification with Multi-Task Learning.” In
IJCAI, pp. 3569–3575, 2019.

104

[WAC05] John Whaley, Dzintars Avots, Michael Carbin, and Monica S. Lam. “Using
Datalog with Binary Decision Diagrams for Program Analysis.” In APLAS, pp.
97–118, 2005.

[WBH15] Jingjing Wang, Magdalena Balazinska, and Daniel Halperin. “Asynchronous
and Fault-Tolerant Recursive Datalog Evaluation in Shared-Nothing Engines.”
PVLDB, 8(12):1542–1553, 2015.

[WCP06] Steve Webb, James Caverlee, and Calton Pu. “Introducing the Webb Spam
Corpus: Using Email Spam to Identify Web Spam Automatically.” In CEAS,
2006.

[WLL19] Jin Wang, Chunbin Lin, Mingda Li, and Carlo Zaniolo. “An Efficient Sliding Win-
dow Approach for Approximate Entity Extraction with Synonyms.” In EDBT,
pp. 109–120, 2019.

[WLL20] Jin Wang, Chunbin Lin, Mingda Li, and Carlo Zaniolo. “Boosting approximate
dictionary-based entity extraction with synonyms.” Inf. Sci., 530:1–21, 2020.

[WLZ19] Jin Wang, Chunbin Lin, and Carlo Zaniolo. “MF-Join: Efficient Fuzzy String
Similarity Join with Multi-level Filtering.” In ICDE, pp. 386–397, 2019.

[WS88] Ouri Wolfson and Abraham Silberschatz. “Distributed Processing of Logic Pro-
grams.” In SIGMOD, pp. 329–336, 1988.

[WXG20] Jin Wang, Guorui Xiao, Jiaqi Gu, Jiacheng Wu, and Carlo Zaniolo. “RASQL: A
Powerful Language and its System for Big Data Applications.” In SIGMOD, pp.
2673–2676, 2020.

[WZW19] Jiacheng Wu, Yong Zhang, Jin Wang, Chunbin Lin, Yingjia Fu, and Chunxiao
Xing. “Scalable Metric Similarity Join Using MapReduce.” In ICDE, pp. 1662–
1665, 2019.

[XCG15] Chenning Xie, Rong Chen, Haibing Guan, Binyu Zang, and Haibo Chen. “SYNC
or ASYNC: time to fuse for distributed graph-parallel computation.” In PPoPP,
pp. 194–204, 2015.

[XHD15] Eric P. Xing, Qirong Ho, Wei Dai, Jin Kyu Kim, Jinliang Wei, Seunghak Lee,
Xun Zheng, Pengtao Xie, Abhimanu Kumar, and Yaoliang Yu. “Petuum: A New
Platform for Distributed Machine Learning on Big Data.” In ACM SIGKDD, pp.
1335–1344, 2015.

[XMM18] Doris Xin, Stephen Macke, Litian Ma, Jialin Liu, Shuchen Song, and Aditya G.
Parameswaran. “Helix: Holistic Optimization for Accelerating Iterative Machine
Learning.” PVLDB, 12(4):446–460, 2018.

105

[YBT17] Da Yan, Yingyi Bu, Yuanyuan Tian, and Amol Deshpande. “Big Graph Analytics
Platforms.” Found. Trends Databases, 7(1-2):1–195, 2017.

[YIF08] Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu, Úlfar Erlingsson,
Pradeep Kumar Gunda, and Jon Currey. “DryadLINQ: A System for General-
Purpose Distributed Data-Parallel Computing Using a High-Level Language.” In
OSDI, pp. 1–14, 2008.

[YSZ17] Mohan Yang, Alexander Shkapsky, and Carlo Zaniolo. “Scaling up the perfor-
mance of more powerful Datalog systems on multicore machines.” VLDB J.,
26(2):229–248, 2017.

[YZZ19] Junye Yang, Yong Zhang, Xiaofang Zhou, Jin Wang, Huiqi Hu, and Chunxiao
Xing. “A Hierarchical Framework for Top-k Location-Aware Error-Tolerant Key-
word Search.” In ICDE, pp. 986–997, 2019.

[ZAC19] Qizhen Zhang, Akash Acharya, Hongzhi Chen, Simran Arora, Ang Chen, Vin-
cent Liu, and Boon Thau Loo. “Optimizing Declarative Graph Queries at Large
Scale.” In SIGMOD, pp. 1411–1428, 2019.

[ZBW12] Jingren Zhou, Nicolas Bruno, Ming-Chuan Wu, Per-Åke Larson, Ronnie Chaiken,
and Darren Shakib. “SCOPE: parallel databases meet MapReduce.” VLDB J.,
21(5):611–636, 2012.

[ZCD12] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauly, Michael J. Franklin, Scott Shenker, and Ion Stoica. “Resilient
Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Com-
puting.” In NSDI, pp. 15–28, 2012.

[ZCF97] Carlo Zaniolo, Stefano Ceri, Christos Faloutsos, Richard T. Snodgrass, V. S. Sub-
rahmanian, and Roberto Zicari. Advanced Database Systems. Morgan Kaufmann,
1997.

[ZWW20] Yong Zhang, Jiacheng Wu, Jin Wang, and Chunxiao Xing. “A Transformation-
Based Framework for KNN Set Similarity Search.” IEEE Trans. Knowl. Data
Eng., 32(3):409–423, 2020.

[ZYD17] Carlo Zaniolo, Mohan Yang, Ariyam Das, Alexander Shkapsky, Tyson Condie,
and Matteo Interlandi. “Fixpoint semantics and optimization of recursive Datalog
programs with aggregates.” TPLP, 17(5-6):1048–1065, 2017.

[ZYI18] Carlo Zaniolo, Mohan Yang, Matteo Interlandi, Ariyam Das, Alexander Shkap-
sky, and Tyson Condie. “Declarative BigData Algorithms via Aggregates and
Relational Database Dependencies.” In AWM, 2018.

106

