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Abstract

Background: The variation in articular cartilage thickness (ACT) in healthy knees is difficult to 

quantify and therefore poorly documented. Our aims are to (1) define how machine learning (ML) 

algorithms can automate the segmentation and measurement of ACT on magnetic resonance 

imaging (MRI) (2) use ML to provide reference data on ACT in healthy knees, and (3) identify 

whether demographic variables impact these results.

Methods: Patients recruited into the Osteoarthritis Initiative with a radiographic Kellgren-

Lawrence grade of 0 or 1 with 3D double-echo steady-state MRIs were included and their gender, 

age, and body mass index were collected. Using a validated ML algorithm, 2 orthogonal points on 

each femoral condyle were identified (distal and posterior) and ACT was measured on each MRI. 

Site-specific ACT was compared using paired t-tests, and multivariate regression was used to 

investigate the risk-adjusted effect of each demographic variable on ACT.

Results: A total of 3910 MRI were included. The average femoral ACT was 2.34 mm (standard 

deviation, 0.71; 95% confidence interval, 0.95-3.73). In multivariate analysis, distal-medial (−0.17 

mm) and distal-lateral cartilage (−0.32 mm) were found to be thinner than posterior-lateral 

cartilage, while posterior-medial cartilage was found to be thicker (0.21 mm). In addition, female 

sex was found to negatively impact cartilage thickness (OR, −0.36; all values: P < .001).

Conclusion: ML was effectively used to automate the segmentation and measurement of 

cartilage thickness on a large number of MRIs of healthy knees to provide normative data on the 

variation in ACT in this population. We further report patient variables that can influence ACT. 

Further validation will determine whether this technique represents a powerful new tool for 

tracking the impact of medical intervention on the progression of articular cartilage degeneration.
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Knee osteoarthritis (OA) is an increasingly common joint disease—almost 15% of US 

citizens will develop OA in their lifetime [1]. Establishing clinical measures associated with 

cartilage health and identifying changes in cartilage thickness may be useful when 

evaluating the effectiveness of protocols to reduce the risk of knee OA progression [2,3]. 

Although the very earliest OA stages may result in an increase in cartilage thickness [4], 

structural changes in the development and progression of clinical OA are commonly 

understood to be characterized by erosion and loss of articular cartilage. Individuals with 

symptomatic knee OA have been shown to have particularly significant changes in their 

posterior femoral condylar cartilage [5], which engages with the tibia in flexion, and in their 

distal femoral condylar cartilage [6,7], which engages with the tibia in extension. Current 

knowledge on the variation in normal and abnormal cartilage thickness, however, is outdated 

[8] and often studied in small patient samples [9] and with older imaging technologies [10].

In order to further understand the impact of the disease on articular cartilage thickness 

(ACT), it would be helpful to understand the variation in physiologic cartilage thickness 

across a large population of healthy patients and identify demographic factors that influence 

this variation. Furthermore, accurate measurement of cartilage thickness may be clinically 

useful in detecting and monitoring treatment effects for focal and nonfocal disease. In other 

areas, such as surgical technique for total knee arthroplasty, assumptions are made around 

ACT that impact implant positioning.

Magnetic resonance imaging (MRI) has become a gold standard for assessing knee cartilage 

thickness [11]. However, manual calculation of cartilage thickness from MRI is challenging 

and prone to error rendering the analysis of larger cohorts of patients or individualized 

therapy planning impractical [12,13]. Therefore, automated cartilage segmentation methods 

have been designed which are increasing in both popularity and accuracy [12,14]. Machine 

learning (ML), specifically neural networks, has been shown to successfully elucidate 

complex spatial relationships in images [15] and to segment cartilage successfully [12,16].

The objectives of this article were to determine (1) whether the automated segmentation and 

measurement of cartilage thickness using ML algorithms applied to a large number of MRIs 

can be used to (2) provide reference data on cartilage thickness in a large patient (control 

subjects in this case) population and (3) identify how demographic variables impact these 

results.

Methods

Study Sample

Patients in our analysis were selected from the Osteoarthritis Initiative (OAI), which 

contains MRIs of 4796 patients. The OAI is a public-private partnership focused on 

understanding the development and progression of symptomatic knee OA. Only patients 

without OA were included in this analysis, defined as patients having a Kellgren-Lawrence 
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grade of 0 or 1. The Kellgren-Lawrence grade was determined through the OAI where 2 

expert readers independently assessed each X-ray and were blinded to both each other’s 

reading and the subject’s clinical data. Furthermore, only patients with double-echo steady-

state (DESS) MRI series were included in our analysis (n = 3910). DESS MRI series are 3D 

DESS MRIs performed on a 3T MRI Machine from Siemens (repetition time/echo time, 

16.2/4.7; field of view, 14 cm; matrix, 307 × 348; bandwidth, 62.5 kHz; and image 

resolutions, [0.3646 0.3646 0.7] mm).

Cartilage Segmentation

A validated ML segmentation model was used in order to identify which pixels of each MR 

image represented which tissue type for each series of MR images [17].

The model used in this study was a convolutional neural network which converts the 

greyscale value of each pixel of a radiograph to 1 of 6 numbers each representing 6 different 

tissue types. The identified tissue types included femoral cartilage, lateral tibial cartilage, 

medial tibial cartilage, patellar cartilage, lateral meniscus, and medial meniscus.

The neural network model chosen for this problem is based on the U-Net architecture which 

has previously shown promising results in the task of segmentation particularly for medical 

images [18-20]. The model was trained on 167 images which had been manually segmented 

by senior radiologists and technicians at our host institution. The automatic segmentation 

model used in this study has previously been found to have a correlation with manual 

segmentation for calculation of cartilage volume and thickness of 0.9349 and 0.9384, 

respectively, and the automatic segmentation was found to have comparable longitudinal 

precision to manual segmentation [12,14,21]. The server used to conduct this analysis had 

64 processors, 251.6 GB of memory, and 4× Titan 12 GB GPUs.

Data Analysis

We investigated the cartilage thickness across 4 points in the knee: the distal most point of 

the medial and lateral femoral condyle (DM, DL), and the posterior most point of the medial 

and lateral femoral condyle (PM, PL). We chose to calculate thickness at these landmarks 

rather than averages across compartments because of their function in knee kinematics and 

how cartilage thickness changes in these locations affect clinical disease progression. 

Specifically, the distal most point of each femoral condyle engages with and demonstrates 

high levels of contact pressure with the tibia in extension [22,23] and has shown particularly 

sharp changes in medial knee OA [6,7]. In addition, the posterior most point on each femoral 

condyle engages with and shows high levels of contact pressure with the tibia in flexion 

[17,24,25] and has also demonstrated sharp changes, particularly in valgus knee OA [5].

Cartilage thickness was calculated based on previously published methodology to calculate 

thickness from MRIs. Several methods have been proposed which calculate the thickness of 

cartilage based on a vector perpendicular to the surface of the subchondral femur [26,27]. 

Certain methods use a 3D method in a grid created by the MRI to find a vector which is 

perpendicular to the point on the knee of interest [28]. Others align the MR image so that the 

y-axis of the image is aligned to the long axis of the femur and then use a 2D vector to 

calculate thickness from the point of interest on the femur [29]. Our study similarly aligned 
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the images to the axis of the femoral condyle and used a 2D vector to calculate cartilage 

thickness.

The distal most points were identified by aligning the MRI so that the femur was parallel to 

the vertical axis of the image (the femoral y-axis was aligned with the vertical axis of the 

sagittal plane) and finding the most distal point that coded for femoral cartilage on each 

condyle. Thickness was measured by calculating how many pixels coded for femoral 

cartilage proximal to the most distal point within the same anterior-posterior slice and 

lateral-medial slice as the distal point. Each pixel on the vertical axis represented 0.346 mm. 

The pixel representation of distal cartilage thickness was converted into millimeters.

The posterior most point was found by finding the point most posterior in reference to the 

long axis of the femur that coded for femoral cartilage on each respective condyle. 

Thickness was calculated by calculating how many pixels coded for femoral cartilage 

anteriorly to the most posterior point within the same inferior-superior slice and lateral-

medial slice as the posterior most point. Each pixel on the anterior-posterior axis represented 

0.346 mm. The pixel representation of cartilage thickness was converted into millimeters.

We calculated the average and standard deviation for cartilage thickness in the 4 sites 

defined above. In univariate analysis, we investigated the association between age, sex, and 

body mass index (BMI) and cartilage thickness at each site with correlation coefficients. 

Pearson correlation coefficients were used for continuous variables (age, BMI), and 

Spearman correlation coefficients were used for dichotomous variables (sex). We then 

compared the differences in cartilage thickness at each of the 4 sites with paired t-tests. 

Finally, a multivariate linear regression was run to investigate the risk-adjusted effect of each 

demographic variable and cartilage location on cartilage thickness.

Results

A total of 3910 MRI series met the inclusion criteria used in our study from the OAI. 

Demographic information on the average patient is included in Table 1. The time required to 

process all the MRIs was 68 hours. The average femoral ACT was 2.34 mm (standard 

deviation, 0.71; 95% confidence interval [CI], 0.95-3.73).

The average thickness of the distal medial, distal lateral, posterior medial, and posterior 

lateral cartilage was 2.13 mm, 1.99 mm, 2.52 mm, and 2.30 mm (Table 2). There was a wide 

range of distal cartilage thickness, as the 95% CI spanned almost 3 mm on both condyles. 

The effect of age, gender, and BMI on average cartilage thickness is shown in Figures 1-3 

and Table 3. Male sex had a significant positive correlation with thickness at all 4 locations 

(ρ = 0.21-0.55, P < .0001), and this correlation was particularly marked for distal medial 

cartilage thickness. In addition, BMI had a significant positive correlation with thickness at 

all 4 locations (r = 0.067-0.14, P < .0001). The difference in cartilage thickness between 

locations in univariate analysis is displayed in Table 4. Distal medial cartilage was 

significantly thinner than posterior medial and lateral cartilage (−0.39 mm and −0.17 mm, 

respectively, P < .0001 for both). Distal lateral cartilage also was significantly thinner than 

posterior medial and lateral cartilage (−0.53 mm and −0.32 mm, respectively, P < .001 for 
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both). Finally, distal medial cartilage was found to be thicker than distal lateral cartilage by 

0.14 mm (P < .0001).

The results of our multivariate regression are displayed in Table 5. We found that female sex 

and lower BMI were associated with significantly thinner ACT, while male sex and higher 

BMI were associated with thicker ACT (all P < .001). In addition, we found that distal 

lateral and distal medial cartilage was thinner than posterior cartilage after risk adjustment 

(P < .001).

Discussion

A methodology that allows for an accurate and automated measurement of cartilage 

thickness may be clinically useful in detecting and monitoring treatment effects and natural 

progression of OA over time. Previous efforts to investigate the average cartilage thickness 

at weight-bearing points in the healthy knee are now outdated in terms of the technology 

used for the analysis and generally studied in a small number of patients. Furthermore, the 

methodologies described previously have been very resourceintensive. In this study, we 

document the use of a technique that was able to analyze cartilage thickness in the MRIs of 

the knees of a large population of patients by using ML methods. We found that healthy 

female patients and patient with lower BMIs have significantly thinner cartilage than male 

patients and those with higher BMIs. In addition, we found that distal femoral cartilage is 

significantly thinner than posterior cartilage in healthy and OA knees. Our data can serve as 

a baseline for referencing average ACT in future studies and provides a template on how to 

use ML to manage large imaging study datasets. Furthermore, we demonstrate that the use 

of ML-based algorithms presents a promising new methodology through which to study 

ACT and, by inference, OA progression, in large populations. Such capability is particularly 

relevant in the context of medical interventions designed to alter disease progression.

The trends in cartilage thickness presented here provide further insights in the context of 

past studies on the thickness of distal femoral articular cartilage. Several small wet lab-based 

studies have found distal cartilage thickness ranging from 1.65 mm to 2.65 mm [8,30] A 

study done on the same OAI dataset used in this analysis in 2017 similarly found that distal 

medial cartilage thickness in healthy knees was on average 1.820 mm [31]. However, this 

analysis was done on images segmented by a probably approximately correct learning 

method which is not validated. In addition, little information was provided on the site where 

thickness was calculated. Our study calculates thickness at specific clinical sites and used a 

validated method to segment cartilage. We found that distal medial cartilage was slightly 

thicker on average at 2.13 mm and that there is a wide range of thickness in healthy knees as 

the 95% CI spanned nearly 3 mm in both condyles.

Past research has investigated the effect of age on cartilage thickness. For example, a study 

done in 2017 on 10 knees under 30 years of age found femoral cartilage thickness of 3.6 mm 

to 4.3 mm [32], suggesting that age may negatively impact cartilage thickness, a finding 

which has also been shown in slightly larger studies [33,34]. In our study, older patients 

without radiographic signs of OA were found to have thinner cartilage than younger patients 

but this finding did not reach statistical significance. Furthermore, our study found that 
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female patients had significantly thinner cartilage distally compared to males. This is a 

finding that has been published in small populations in the past [35-38], but our study is the 

first to demonstrate it in a large population and across several distinct areas of the knee. 

Additionally, our study found that increasing BMI is associated with thicker cartilage in 

healthy patients. This pattern of the effect of BMI on thickness has been reported before in 

small populations [39] but other studies have demonstrated the opposite effect [40]. Our 

study confirms the positive correlation of BMI on cartilage thickness with a much larger 

population than previously evaluated and across several areas in the knee. Finally, our study 

found that posterior condylar cartilage is thicker than distal cartilage in healthy patients, 

which has been supported elsewhere [6]. This information taken as a whole provides a 

comprehensive baseline on the normal physiologic variation in cartilage thickness of the 

distal femur in radiographically healthy knees across a broad population.

The strengths of this study are that it uses ML to automatically segment cartilage in knee 

MRIs using ML algorithms in a large population. Several past research projects have 

demonstrated how ML can automatically segment knee MRIs with equal performance to 

manual segmentation [12,14,41]. Our study builds on these frameworks to perform an 

automated analysis of nearly 4000 images using a validated ML methodology. Furthermore, 

the study sample was balanced with respect to age, gender, and BMI.

There are several limitations to this study. First, this study is based on a US population who 

participated in the OAI and therefore our findings need to be replicated in other populations 

before they are generalized beyond the United States. In addition, the analysis was done on 

3.0 Tesla MRI studies which create a high-quality image to perform the analysis. However, 

our methodology uses a 2D landmarked-based method that can be easily translated to 

standard MRI sequences. We acknowledge that we relied on prior validation of this 

technique and did not attempt to replicate work performed elsewhere showing ML to be an 

accurate method to analyze cartilage thickness and to be faster, cheaper, less laborintensive, 

and less subjective than manual segmentation [13,15,17]. Additionally, we have not 

accounted for race in the analysis as that data point was not available. It is important to note 

that the goal of this investigation was to create a template for how to analyze a large number 

of MRIs in a large population in hopes that further research can build on our work. To 

validate this tool in the context of disease progression, a large data set of sequential images 

would need to be studied. However, we have shown that the methodology we report is 

sufficiently sensitive in differentiating ACT that it can be used in such a context.

In conclusion, this study provides insight into the normal physiologic variation in cartilage 

thickness in a large cohort of patients considered to have healthy knees based on their 

radiographic and clinical findings. It also confirms that ML can be used to analyze cartilage 

thickness in a large number of MRI studies in an automated and efficient manner. Further 

study is needed to evaluate the ability of these techniques to track disease progression over 

time and determine the feasibility of applying ML as a longitudinal clinical tool for the 

evaluation of treatment modalities for diseases of articular cartilage.
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Fig. 1. 
The effect of age on average cartilage thickness on the distal medial, posterior medial, distal 

lateral, and posterior lateral femoral condyle. Error bars display 1 standard deviation.
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Fig. 2. 
The effect of sex on average cartilage thickness on the distal medial, posterior medial, distal 

lateral, and posterior lateral femoral condyle. Error bars display standard deviation.
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Fig. 3. 
The effect of BMI on average cartilage thickness on the distal medial, posterior medial, 

distal lateral, and posterior lateral femoral condyle. Error bars display standard deviation.
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Table 1

The Distribution of Demographic Variables With Respect to Age, Sex, and Body Mass Index (BMI).

Age

 <50 678 (17.3%)

 50-60 1505 (38.4%)

 60-70 1062 (27.1%)

 >70 665 (17%)

Sex

Male 1692 (43.2%)

 Female 2218 (56.7%)

BMI

<25 1239 (31.6%)

 25-30 1578 (40.3%)

 30-35 852 (21.7%)

 >35 241 (6.1%)
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Table 2

Average and Standard Deviation of Cartilage Thickness and Joint Space in Healthy Knees.

Average (SD) 95% Confidence
Interval

Cartilage thickness (mm)
Distal medial condyle 2.13 (0.62) 0.91-3.34

 Distal lateral condyle 1.99 (0.74) 0.53-3.44

 Posterior medial condyle 2.52 (0.56) 1.42-3.61

 Posterior lateral condyle 2.30 (0.54) 1.24-3.35

OA, osteoarthritis; SD, standard deviation.
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Table 5

Multivariate Analysis of the Effect of Location and Patient Variables on Cartilage Thickness.

Patient Characteristic Odds Ratio (Confidence Interval) P Value

Age −0.001 (−0.011 to 0.007) .7073

BMI 0.04 (0.03 to 0.051) <.0001

Female −0.361 (−0.38 to −0.342) <.0001

Location of cartilage

 Posterior lateral condyle REF

 Posterior medial condyle 0.214 (0.188 to 0.24) <.0001

 Distal lateral condyle −0.317 (−0.344 to −0.291) <.0001

 Distal medial condyle −0.173 (−0.199 to −0.147) <.0001

BMI, body mass index.

Bold represents a P-value of less than 0.05 was considered statistically significant.
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