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A viscous suspension of negatively buoyant particles released into a wide, open channel on
an incline will stratify in the normal direction as it flows. We model the early dynamics
of this stratification under the effects of sedimentation and shear induced migration.
Prior work focuses on the behaviour after equilibration where the bulk suspension either
separates into two distinct fronts (settled) or forms a single, particle-laden front (ridged),
depending on whether the initial concentration of particles exceeds a critical threshold.
From past experiments, it is also clear that this equilibration timescale grows considerably
near the critical concentration. This paper models the approach to equilibrium. We
present a theory of the dramatic growth in this equilibration time when the mixture
concentration is near the critical value, where the balance between settling and shear-
induced resuspension reverses.

1. Introduction

The motivation for our present work is the following simple experiment. Starting with
a uniformly mixed suspension of negatively buoyant particles (ρp > ρℓ) in a viscous
fluid, a volume of this mixture is poured into a wide, inclined channel and allowed to
flow under the influence of gravity (see figure 1). We consider introducing either a finite
initial volume or a constant flux of a mixed suspension at the top of the incline. The
particles are uniform spheres of diameter d, large enough that shear-induced migration
(rather than Brownian diffusion) drives the particle motion relative to the fluid. The film
has a characteristic height H and an x-scale L satisfying

H

L
≪
(
d

H

)2

≪ 1,

which is the asymptotic regime in which the film is thin (the lubrication limit) and the
migration of particles in the normal direction is fast relative to the flow down the incline.
Under this assumption, there are two phases to the development of the flow from a uni-

form mixture (Murisic et al. 2011, 2013). Initially, the particles rapidly equilibrate in the
normal direction. In the ‘settled regime’, particles settle to the substrate, leaving a clear
fluid layer above; in the ‘ridged regime’, they accumulate towards the free surface (see
figure 2). This determines the suspension velocity profile, which can be depth-integrated
in the lubrication limit to produce a pair of hyperbolic conservation laws depending
only on x and t (time) for the film height and depth-averaged particle concentration.
The behaviour of this bulk flow is determined by the equilibrium concentration profile.
As shown experimentally (Zhou et al. 2005; Ward et al. 2009; Murisic et al. 2011) and
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Figure 1. Problem diagram: A suspension with particle and fluid densities ρp and ρℓ with a
free surface h(x, t) and ρp > ρℓ flows under the influence of gravity down an incline at an angle
α from horizontal. The film has a characteristic height H and length L with H ≪ L.

Figure 2. Left: Evolution of the flow on two different time scales. On the fast timescale, particles
migrate in z due to settling (g) and shear induced migration (γ̇ is the shear rate). On the slow
timescale, the particles are in z-equilibrium, either settling to the substrate or accumulating at
the surface. Right: Pictures in each regime from experiments done at UCLA Fluids Lab; the
centre picture shows the ‘mixed’ regime where the equilibrium distribution is nearly uniform.

theoretically (Murisic et al. 2011, 2013), below a ‘critical concentration’ ϕc the suspension
is in the settled regime and the particle and fluid phases tend to separate, producing
two advancing fronts with pure fluid flowing ahead of the particles. Above the critical
concentration is the ridged regime, where the particles accumulate at a single particle-
rich front. Exactly at the critical concentration, the suspension remains uniformly mixed.
Such models that assume a rapid equilibration in the normal direction to the bulk flow
have been used to study the properties of the bulk flow such as the evolution of the
particle and fluid fronts (Murisic et al. 2013; Wang & Bertozzi 2014), shock and singular
shock solutions (Cook et al. 2008; Wang & Bertozzi 2014), and flow in helical channels
(Lee et al. 2014; Arnold et al. 2015).
More broadly, our work fits into the study of particle-laden flows (see (Delannay et al.

2017) for a review), which includes the study of landslides (Leonardi 2015; Katz &
Aharonov 2006) and more fundamental engineering questions on using oil-contaminated
sand for construction (Abousnina et al. 2015). There are also many industrial applications
that arise including how particle-laden fluids drain (Chen et al. 2018), the behaviour of
processed foods (Lareo et al. 1997) - including molten chocolate as it is being prepared
(Taylor et al. 2009). The phenomenon of shear-induced migration has been a subject of
considerable interest; prior work on the incline problem, notably that of Murisic et al.
(2013), utilized the diffusive flux model of Leighton & Acrivos (1987). Here we employ a
simplified suspension balance model instead in which the migration is modeled through
a normal stress in the particle phase (Morris & Boulay 1999; Miller & Morris 2006). This
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Figure 3. In the settled regime, sketch of the model for the ‘transition distance’ L before the
suspension separates into distinct fronts, given either a fixed initial area A (top) or constant
upstream height H (bottom). The bulk flow is assumed to evolve as well-mixed up to a time te
as the particles equilibrate in the z-direction.

model has been employed to some success in studying shear-induced migration in Couette
flow (Boyer et al. 2011), steady flow of a free surface film on an incline (Timberlake &
Morris 2005) and secondary flows in inclined channels (Ramachandran & Leighton 2008),
despite some potential inconsistencies (Nott et al. 2011).

While the bulk flow model yields accurate predictions, it is only appropriate once the
particles have reached z-equilibrium (see figure 1 for the coordinate system). In this
paper, our primary focus is understanding this equilibration process and how it relates
to the properties of the flow. Notably, we endeavour to obtain a simple estimate for the
length and time scales over which the suspension establishes either a settled or ridged
behaviour. Figure 3 illustrates our heuristic: the suspension begins well-mixed, either with
a finite initial volume or with a constant volumetric flux; as equilibrium is established
in the z-direction, we approximate the bulk fluid flow as though it is well-mixed; once
equilibrium is established, the suspension flows in either the settled or ridged regime.
On the timescale for equilibration, the model reduces to a degenerate nonlinear

diffusion equation for the particles in the z-direction driven by the shear flow (Sec-
tion 2), similar to the equation describing Taylor dispersion (Taylor 1954). Degenerate
parabolic equations with similar structure arise in the study of sedimenting particles in
a quiescent fluid (Berres et al. 2005). The solutions to our model equations converge
to the equilibrium profile assumed in models for bulk incline flow. Through analysis of
the fast diffusion equation (Section 3) we estimate the time required for equilibration,
and in Section 4 we compare to experiments in prior work by Murisic et al. (2011).
In that work, it was speculated that for an initially uniform suspension, the time scale
for z-equilibration diverges as the mixture approaches the critical concentration, from
experimental observations (e.g. the mixed regime in figure 2) where the mixture travels a
long distance before separating. We address this claim and show that the mathematical
model exhibits this divergence in the settled regime. Finally, we consider the ridged
regime and the behaviour of the model at high concentrations in Appendix B.

2. Particle equilibration model

Consider, as depicted in figure 1, an inclined plane at an angle α from horizontal with
coordinates x and z aligned, respectively, down and normal to the incline. Adopting a
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simplified suspension balance model (Morris & Boulay 1999; Miller & Morris 2006), we
derive equations for the film height h(x, t), the particle concentration ϕ(x, z, t) and the
depth-integrated concentration

ϕ(x, t) =
1

h

∫ h

0

ϕ(x, z, t) dz.

The depth-integrated equations become a pair of equations for h and ϕ, with fluxes
determined by the equilibrium distribution of particles (Murisic et al. 2013). This equi-
librium model framework has provided an understanding of the bulk flow properties after
z-equilibrium has been established.

The starting point for our work is to introduce a fast timescale on which the system
reaches its z-equilibrium distribution. Within this framework, we uncover a nonlinear
diffusion process that governs the particle dynamics. Analysis of the resulting equations
allows us to make predictions relevant to experiments studying the bulk flow.

2.1. Review of suspension balance model

First, we state the model equations for the time-dependent incline flow, leaving the
timescale unspecified. The derivation here follows Miller & Morris (2006) and extends
that by Timberlake & Morris (2005), wherein the equations are derived for steady flow.
Let u = (u,w) be the suspension velocity and let ρ(ϕ) be the effective density, given by

ρ(ϕ)/ρℓ = 1 + bϕ, b := ρp/ρℓ − 1. (2.1)

We assume for our work that b > 0, i.e. the particles are denser than the fluid (but the
derivation we present is valid for neutrally and positively buoyant particles, too). The
model equations consist of incompressibility and momentum balance for the suspension
and a particle transport equation,

0 = ∇ · u, (2.2a)

ρ
Du

Dt
= −∇p+∇ ·Σs + ρg, (2.2b)

∂ϕ

∂t
+ u · ∇ϕ = −∇ · J . (2.2c)

where J is the particle flux relative to the suspension average, g = g(sinα,− cosα) and
g = 9.8m/s2. The suspension stress and particle phase stress (to be used in (2.5)) are

Σs = µ(s)(ϕ)E +ΣN , Σp = (µ(s)(ϕ)− µℓ)E +ΣN

where E = 1
2 (∇u + ∇uT ), µ(s)(ϕ) is the suspension viscosity and the Reynolds stress

contribution to the suspension stress has been neglected. As in (Miller & Morris 2006),
the expression for the normal stress in the lubrication limit is taken to be

ΣN = −µ(n)(ϕ)γ̇(Λ1exe
T
x + Λ2eze

T
z ) (2.3)

where ex and ez are unit column vectors in the x− and z−directions, γ̇ =
√
2E : E is

the shear rate, Λ1 = 1 and Λ2 = 0.8. The principal stress is aligned with the flow (x)
and gradient (z) directions. Note that this stress is proportional to the shear rate, which
is γ̇ ≈ |uz| for a thin film. We use the normal and suspension viscosities µ(n), µ(s) from
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(Boyer et al. 2011) and scaled versions µ̂(n), µ̂(s) given by

µ(n)(ϕ)

Knµℓ
= µ̂(n) :=

(ϕ/ϕm)2

(1− ϕ/ϕm)
2 , (2.4a)

µ(s)(ϕ)

µℓ
= µ̂(s) := 1 +

5

2

ϕ

(1− ϕ/ϕm)
+ I(ϕ)

(ϕ/ϕm)2

(1− ϕ/ϕm)
2 . (2.4b)

Here ϕm = 0.58 is the maximum packing fraction, Kn is a normal viscosity coefficient
and the function I(ϕ) corrects for the behaviour at high concentrations and is given by

I(ϕ) = m1 + (m2 −m1)/(1 + I0ϕ
2/(ϕm − ϕ)2).

The constants used here are Kn = 1, I0 = 0.005, m1 = 0.32 and m2 = 0.7. The value
of Kn, which controls the balance between shear-induced migration and sedimentation,
is chosen to best match the existing theory for particles in z-equilibrium (as we discuss
in Section 2.3). While the coefficients such as Kn may depend on concentration (Dbouk
et al. 2013), we take it to be constant for simplicity. As in (Miller & Morris 2006) we use
the following expression for the particle flux in (2.2c):

J =
d2

18µℓ
fh(ϕ) (∇ ·Σp + ρℓbϕg) . (2.5)

The first term is the contribution from the particle stress, and the second is due to
sedimentation (note that the Stokes settling velocity is (ρp−ρℓ)d2g/18µℓ). The hindrance
function fh(ϕ) accounts for the effect of the particle concentration on the Stokes drag
force and is chosen to be

fh(ϕ) = (1− ϕ/ϕm)(1− ϕ)2 (2.6)

The reduction of the governing equations (2.2) in the lubrication limit is standard
(Oron et al. 1997; Murisic et al. 2013). Define non-dimensional quantities (denoted with
a hat) as follows:

(x, z) = L(x̂, ϵẑ), (u,w) = U(û, ϵŵ), t = T t̂, p = pa +
µℓU

H
p̂, J =

d2U

18H2
Ĵ

where ϵ = H/L, the atmospheric pressure is pa and T is a timescale to be selected later.
The value of U is chosen to balance gravity and the suspension viscous stress, leading to

U =
H2ρℓg sinα

µℓ
.

As discussed in the introduction, the equations are studied in the asymptotic limit

ϵ≪ (d/H)
2 ≪ 1, (2.7)

which ensures that the time scale for normal equilibration of particles is fast relative to
the bulk flow (Murisic et al. 2013). The non-dimensional shear rate is

γ̂ =
H

U
γ̇ ≈ |ûẑ|. (2.8)

Near the free surface, there is a non-local contribution to the shear rate (Miller & Morris
2006) of size O(d/H). For simplicity, we elect to use (2.8) as the adjustment has little
effect on solutions except at very high concentrations (addressed in Appendix B).
Non-dimensionalizing the suspension balance equations (2.2), substituting in the ex-
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pression (2.3) for the normal stress and retaining leading order terms in ϵ yields

ρH2

µT

(
ût̂ +

TU

L
∇ · û

)
= (µ̂(s)ûẑ)ẑ + 1 + bϕ (2.9a)

ϕt̂ +
TU

L
∇ · (ϕû) = −d

2TU

18H3
(Ĵz)ẑ, (2.9b)

with the z-component of the particle flux (2.5) reducing to

Ĵz = fh(ϕ)
(
−Λ2(µ̂

(n)γ̂)ẑ − bϕ cotα
)
. (2.10)

The boundary conditions are the tangential stress balances and kinematic condition at
the free surface and no-slip at the substrate:

µ(s)uz = 0, ht + uhx = w, at z = h,

u = w = 0 at z = 0.

There are two choices for the time scale T in the particle transport equation (2.9b). On
the bulk timescale

TB = L/U (2.11)

the transport equation, at leading order, simply reduces to

Ĵz = 0,

i.e. the particles are in equilibrium in the z-direction. This assumption leads to the bulk
flow equations considered in prior work (Murisic et al. 2013).

2.2. Fast timescale model equations

Since we are interested in the approach of the system to equilibrium, we choose a
different timescale where Ĵz and ϕt̂ balance in (2.9b). We then obtain new equations
that describe the equilibration of the particles. Under the asymptotic assumption (2.7),
we identify the fast timescale

Te =
18H3

KnΛ2d2U
=

18Hµℓ

KnΛ2d2ρℓg sinα
. (2.12)

The model equations (2.9) governing the flow are then

KnΛ2

18

d2Re

HL

(
ût̂ +

TeU

L
∇ · û

)
= (µ̂(s)ûẑ)ẑ + 1 + bϕ (2.13)

ϕt̂ +
TeU

L
∇ · (ϕû) = − 1

Λ2
(Ĵz)ẑ. (2.14)

where Re = ρLU/µ is the Reynolds number. The convective terms ∇ · û and ∇ · (ϕû) in
(2.13) and (2.14) are small since, by (2.7),

TeU

L
=

18

KnΛ2

(
ϵH2

d2

)
≪ 1. (2.15)

We further assume that inertial terms can be neglected entirely on the equilibration
timescale, which requires that

Re ≪ HL

d2
.

Moreover, it follows from (2.15) that to leading order, the kinematic condition is

0 = ĥt̂ +
TeU

L
(ŵĥẑ − ûĥx̂) ≈ ĥt̂
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i.e. the height may be treated as quasi-static.
Thus to leading order, (2.14) at each fixed x̂ on the incline is an equation with no

x̂-dependence, which upon substituting for Ĵ is

ϕt̂ =
(
fh(ϕ)

[
βϕ+ (µ̂(n)|ûẑ|)ẑ

])
ẑ

(2.16)

where û is determined from ϕ by (2.13) and the ‘settling’ parameter

β = b cotα/(KnΛ2) (2.17)

describes the ratio of the force of gravity on the particle to that of shear-induced
migration.
With further simplification, (2.16) reduces to a nonlinear convection-diffusion equation

for ϕ on a fixed domain. Hereafter, we treat ϕ as a function of ẑ and t̂ only and consider
ĥ and depth-integrated concentration ϕ to be a constant. Define the scaled height, time
and velocity

s = ẑ/ĥ, τ = t̂/ĥ, ũ = ĥ−2û,

the scaled shear stress

σ(s, τ) = 1− s+ b

∫ 1

s

ϕ(ζ, τ) dζ (2.18)

and the ratio of normal to suspension viscosity,

R(ϕ) = µ(n)(ϕ)/µ(s)(ϕ). (2.19)

We will assume here that

R′(ϕ) > 0 for ϕ > 0, lim
ϕ→ϕm

R(ϕ) <∞ (2.20)

which is satisfied, in particular, for the choices of µ̂(n), µ̂(s) specified in (2.4) (note that
for both viscosities, the order of the pole as ϕ → ϕm is 2, so their ratio remains finite
(Boyer et al. 2011)). It follows from the momentum equation (2.13) that ũs ⩾ 0 so

(µ̂(n)|ũs|)s = (R(ϕ)µ̂(s)ũs)s =
(
R(ϕ)σ

)
s
.

Equation (2.16) then becomes

ϕτ =
(
fh(ϕ)

[
βϕ+ (R(ϕ)σ)s

])
s

(2.21)

with σ given by (2.18), which can also be written in the more standard form

ϕτ + F (ϕ)s = (G(ϕ)σϕs)s (2.22)

where (see figure 4)

F (ϕ) = fh(ϕ)
(
− βϕ+R(ϕ)(1 + bϕ)

)
, G(ϕ) = fh(ϕ)R

′(ϕ). (2.23)

We impose no-flux boundary conditions and assume that ϕ is initially uniform:

F = Gσϕs at s = 0 and s = 1, (2.24)

ϕ(s, 0) = ϕ, (2.25)

where ϕ =
∫ 1

0
ϕ(s, τ) ds is the total concentration. Due to (2.24), this value is constant.

Equations (2.22)-(2.25) form an initial value problem for ϕ(s, τ), which we study
numerically and approximately, foregoing a rigorous analysis of existence. Note that the
diffusion coefficient Gσ degenerates when ϕ = 0 or ϕm and when s = 1 (where the shear
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Figure 4. Flux F (ϕ) (for selected angles) and G(ϕ) in (2.23).

stress σ is zero) and that (2.22) is not a standard diffusion equation since Gσ depends
on an integral of ϕ.
As a technical note, the no-flux boundary condition (2.24) requires either ϕ = 0, ϕ = ϕc

or ϕ = ϕm at the surface since σ vanishes at s = 1. In reality, there should be an initial
transient where ϕ(1, τ) approaches one of these values, which is not within the scope
of the model. As the transient does not affect the analysis that follows, we omit it for
simplicity. The inconsistency can be resolved by the non-local shear rate at the surface
(see Appendix B).

2.3. Equilibrium profile: qualitative behaviour

As the equation is diffusive with no-flux boundary conditions, we expect that for each
total concentration ϕ, there is a unique equilibrium profile φ̃(s;ϕ) to which all solutions
to the initial value problem (2.22)-(2.25) converge as τ → ∞, i.e. such that

lim
τ→∞

ϕ(s, τ) = φ̃(s;ϕ).

Numerically, we observe this is true. The equilibrium profile φ̃(s;ϕ) is the solution to

ϕs =
F (ϕ)

G(ϕ)σ
,

∫ 1

0

ϕds = ϕ (2.26)

with σ as given by (2.18). The properties of (2.26) are similar to the corresponding
equilibrium equation derived using the diffusive flux model (e.g. (Murisic et al. 2011)).
In particular, if β is not too large (i.e. the angle α is not too small) then there is a critical
concentration ϕc ∈ (0, ϕm) satisfying

0 = F (ϕc) = −βϕc + (1 + bϕc)R(ϕc) (2.27)

for which the solution ϕ ≡ ϕc to (2.26) is constant. Moreover, G ⩾ 0 due to the
assumption (2.20), so solutions are monotonically increasing with respect to s if ϕ > ϕc
(‘ridged’) and monotonically decreasing with respect to s if ϕ < ϕc (‘settled’). If β is large
enough then ϕc lies outside the physical range (ϕc > ϕm) so all solutions are settled.
To justify the use of the suspension balance model, we verify that the predicted

critical concentration ϕc is consistent with the diffusive flux approach and experimental
results (Murisic et al. 2011). The critical concentration (as a function of α) and typical
equilibrium profiles are shown in figure 5, illustrating the close agreement. This also
justifies the choice of KnΛ2 = 0.8, which is the physical parameter that determines the
critical concentration through β in eq. (2.27).
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Figure 5. Left: critical concentration ϕc(α) for b = 1.55 for the suspension balance model
derived here (’SB’) and the diffusive flux model of (Murisic et al. 2011) for comparison (’DF’).

Right: equilibrium profiles φ̃(s;ϕ) at various total concentrations ϕ and α = 50◦ (dashed line:

ϕc ≈ 0.295).

It is worth noting, however, that at high concentrations, the two models are qualita-
tively different. Unlike the diffusive flux model, for which solutions are strictly less than
ϕm except at s = 1, the equilibrium profile here may achieve a ‘packed’ layer with ϕ = ϕm
of finite thickness. The packed layer at exactly ϕm is a consequence of the omitting the
additional surface shear rate (Miller & Morris 2006), which regularizes the solution and
prevents formation of a packed layer (see Appendix B).

3. Approach to z-equilibrium

Here we estimate the time required for the particles to become close to equilibrium,
starting from a uniform initial concentration. To be precise, define the ‘z-equilibration
time’ τeq to be the time required for the L2 error of the solution to the problem (2.22)-
(2.25) to reach a fraction θ of its initial value, i.e. such that

||ϕ(·, τ)− φ̃||L2 < θ||ϕ(·, 0)− φ̃||L2 . (3.1)

We choose the L2 norm for simplicity; in the settled regime, one could also use the
difference between the fluid layer thickness and its equilibrium value, i.e.

|sb(τ)− s∗b | < θ(1− s∗b) (3.2)

with sb as defined in (3.3) (the top of the particle layer). The results that follow do not
substantially change when using (3.2) in place of (3.1).
For the PDE solution ϕ(s, τ) define the location of the ‘free boundary’ and its equilib-

rium value,

sb(τ) = sup{s : 0 < ϕ(s, τ) < ϕm}, s∗b := lim
τ→∞

sb(τ). (3.3)

The equilibrium solution degenerates in the interval [s∗b , 1], with a value of either zero
(settled) or ϕm (ridged). The evolution of the particle profile has two qualitative phases,
illustrated in figure 6:
• Descent phase: The free boundary sb(τ) recedes from s = 1, decreasing towards s∗b

at an approximately linear rate.
• ‘Linear’ phase: Once the solution is ‘close’ to the equilibrium φ̃, then the concentra-

tion will relax to φ̃, with the free boundary sb(τ) moving only a small amount.
The first phase corresponds to the formation of the top layer (clear fluid in the settled
regime and a packed layer of particles in the ridged regime).
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Figure 6. Evolution of concentration ϕ(s, τ) from a flat initial state (dot-dashed) to the steady

state (dashed) with α = 50◦ from numerical simulation. Top row: settled; ϕ = 0.05 and ϕ = 0.1

up to τ = 0.5. Bottom row: ridged with ϕ = 0.5 and ϕ = 0.55 up to τ = 1. Arrows show
increasing time.

Note that the first phase is particular to the initially uniform concentration; for a
different initial concentration such as a bed of particles that is resuspended into the
fluid, the initial ascent/descent of particles towards the equilibrium will be different.
However, the second phase is characterized by behaviour near the equilibrium, and is
independent of the initial shape (depending only on ϕ).

We remark that the packed layer in the ridged regime is a consequence of the simple
model; more realistically, it should be that ϕ is large but not quite ϕm due to the non-
degeneracy of the shear rate at the surface (Miller & Morris 2006). This means that
defining the thickness of this high-concentration layer (where the particles accumulate
near the surface) is somewhat more ambiguous and cannot be done through sb. As we
do not perform the same detailed analysis as in the settled case, we do not pursue the
analytical details here, although we briefly discuss the issue (in Appendix B) and estimate
the settling time only using the linear phase.

3.1. Linearization

Linearizing the PDE about the equilibrium profile provides an estimate for the settling
time in either regime. Near equilibrium, the L2 distance between the equilibrium and
ϕ(s, τ) should decay like e−λ0τ for the minimum eigenvalue λ0 of the linearized problem.
This provides an estimate for the equilibration time (3.1), given by

τeq ≈ τ (l)eq := − log θ

λ0
. (3.4)
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To linearize, fix a value ϕ and consider the perturbation (with δ ≪ 1 a small parameter

ϕ = φ̃(s) + δe−λτψ′(s), σ =

∫ 1

s

(1 + bϕ) ds′ = σ̃(s)− bδe−λτψ(s).

where φ̃(s) is the equilibrium concentration. For simplicity, we ignore the effect of
the moving boundary on convergence. This is justified a posteriori through numerical
simulations that indicate that the effect of the boundary perturbation on the estimate
can be neglected.
Substituting the ansatz into (2.21), we obtain the eigenvalue problem

−fh(φ̃)(R′(φ̃)σ̃ψ′ + (β − bR(φ̃))ψ)′ = λψ, ψ(0) = ψ(1) = 0, (3.5)

noting that the boundary conditions for ψ follow from the fact that σ(0) = 1 + bϕ
and σ(1) = 0. Under the assumptions (2.20) on R, the diffusion coefficient R′σ̃ for
the linearized problem is non-negative, and so it follows by a simple calculation (see
Appendix A) that the eigenvalues are non-negative.
When the total concentration is at the critical value (ϕ = ϕc), the equilibrium profile

φ̃ ≡ ϕc is constant, permitting an exact solution. The eigenvalue problem (3.5) becomes

−(A(1− s)ψ′ +Bψ)′ = λψ, ψ(0) = ψ(1) = 0 (3.6)

where A and B are constants given by

A = fh(ϕc)R
′(ϕc)(1 + bϕc), B = fh(ϕc)(β − bR(ϕc)) = fh(ϕc)R(ϕc)/ϕc.

Defining

η(ϕ) =
β − bR(ϕ)

R′(ϕ)(1 + bϕ)
, ηc = η(ϕc), (3.7)

the general solution to (3.6) is

ψ = k1(1− s)ηc/2Jηc
(2
√
λ(1− s)/A) + k2(1− s)ηc/2Yηc

(2
√
λ(1− s)/A)

where Jη and Yη are Bessel functions of the first and second kind, respectively. Note that
β − bR(ϕc) = 1/ϕc due to (2.27) and R′(ϕc) > 0 by (2.20) so ηc > 0. It follows from this
fact and the boundary conditions that k2 = 0, so the smallest eigenvalue is

λ0(ϕc) =
1

4
fh(ϕc)R

′(ϕc)(1 + bϕc)γ(ηc)
2 (3.8)

where γ(η) is the smallest positive zero of Jη. This ‘well-mixed’ eigenvalue (see figure 7)
is the rate of convergence in the special case where the equilibrium profile is uniform
(starting, of course, from a non-uniform initial profile). The peculiar local maximum of
λ0(ϕc) for small angles α (ϕc near ϕm) in figure 7 is due to the sensitivity of the model
functions R′ and fh when ϕ is close to ϕm (which corresponds to α ≈ 15◦ in the figure).
It is clear from the numerically computed eigenvalues (figure 7) that λ0 is decreasing

with ϕ for ϕ < ϕc and increasing for ϕ > ϕc. The value is minimized exactly at the
critical concentration, which means that the well mixed eigenvalue (3.8) is a lower bound
on the convergence rate for a given inclination angle α. However, an analytical proof of
this result is missing, which would necessitate a more precise analysis of the eigenvalues
as ϕ→ ϕc.
In Figure 8 we show the effect of the hindrance function on the convergence rate by

considering expressions of the form taking it to be

fh(ϕ) = (1− ϕ/ϕm)(1− ϕ)ah−1 (3.9)
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Figure 7. Left: Eigenvalue λ0 (solid) and well-mixed value at ϕc (star) with b = 1.55 at angles

α = 30◦ and α = 50◦. Right: Eigenvalue λ0(ϕc) in the well-mixed case given by (3.8) as a
function of angle α.
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Figure 8. Eigenvalue λ0(ϕ) for selected exponents ah in the hindrance function (3.9) at a
fixed angle α = 50◦ (parameters otherwise as in figure 7).

with ah ∈ [2, 5]. We observe that the predominant effect of the hindrance function fh
in the settled regime is to scale the eigenvalues down as the exponent ah increases. The
numerical computations suggest that the situation is more complicated in the ridged
regime, where we speculate the degeneracy in fh(ϕ) (as ϕ→ ϕm) may become important.

3.2. Descent estimate

We now consider the descent phase in the settled regime, where the free boundary
position sb(τ) < 1 decreases towards s∗b . The particles settle, moving down towards their
equilibrium state. The speed s′b(τ) of the free boundary is approximately constant during
this phase, which yields an estimate for the settling time τeq as

τeq ≈ (1− θ)
1− s∗b
s′b

. (3.10)

To calculate this speed, observe that the system (2.22) and (2.18) with boundary
condition

ϕ(1, τ) = 0

(equivalent to the boundary condition (2.24) at s = 1) has a similarity solution

ϕ(s, t) = v(
1− s

τ
) = v(ξ) (3.11)
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Figure 9. Left: With ξ = (1 − s)/t, similarity solutions ϕ(s, τ) = v(ξ) = V ′(ξ) with V solving

(3.12) for various limiting values ϕ = limξ→∞ v at α = 50◦ (dashed line: ϕc ≈ 0.29). Right:

Corresponding values of the descent speed ξ0, which approaches zero as ϕ → ϕc.

where v satisfies the ODE

−ξ dv
dξ

− d

dξ
F (v) =

d

dξ

(
G(v)

(∫ ξ

0

(1 + bv(ζ)) dζ

)
dv

dξ

)

and boundary condition v(0) = 0. Setting V (ξ) =
∫ ξ

0
v(z) dz and integrating from 0 to ξ

and using that F (0) = 0 we obtain

−ξV ′ + V − F (V ′) = G(V ′)(ξ + bV )V ′′, V (0) = V ′(0) = 0. (3.12)

Define, for each solution to (3.12), the quantity

ξ0 = inf{ξ : v(ξ) > 0}.

Observe that if the similarity solution is valid near the free boundary (where ϕ = 0),
then according to the definition (3.11), this boundary will descend at a speed ξ0.
However, the bounded domain poses difficulties, since the similarity ODE is incompati-

ble with the boundary condition at s = 0. To obtain a useful solution, we instead consider
ϕ in the half-infinite domain (−∞, 1] and impose the far field boundary condition

lim
s→−∞

ϕ = ϕ.

In terms of the similarity variable, this condition becomes

lim
ξ→∞

v(ξ) = ϕ. (3.13)

Solutions to the ODE (3.12) with the far-field boundary condition (3.13) appear to be
a one-parameter family of solutions V (ξ;ϕ) whose support is the interval [ξ0(ϕ),∞) as
shown in figure 9.
The validity of the similarity solution near the free boundary is illustrated in the

figure 10. As time varies, the solutions ϕ(s, τ) collapse onto the similarity solution
v(ξ) close to the free boundary (ξ = ξ0 or s = sb(τ)). So long as the solution near
the free boundary connects to a locally constant region at the value ϕ, the similarity
solution remains a valid approximation for the descent speed. Eventually, the flat region
disappears (figure 11), so the far-field condition (3.13) is no longer appropriate and the
similarity solution ceases to be valid; this signifies the end of the descent phase.
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(circles) at early times as defined in Eq. (3.11) (parameters: ϕ = 0.05 and α = 50◦). The
dashed line is the equilibrium profile; dot-dashed line is ϕ(s, τ) at τ = 0.3. At early times, the
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(circles) at later times (parameters: ϕ = 0.05 and α = 50◦). The dashed line is the equilibrium

profile; dot-dashed line is ϕ(s, τ) at τ = 0.3. The locally constant region with ϕ = ϕ vanishes at

τ ≈ 0.3, which makes the far field approximation lims→−∞ ϕ = ϕ no longer apply.

3.3. Discussion of convergence estimates

Substituting ξ0 into (3.10) yields the convergence estimate

τeq ≈ τ (d)eq := (1− θ)
1− s∗b
ξ0

. (3.14)

This estimate behaves quite differently from the linear estimate (3.4) when ϕ is close to
ϕc, capturing the dramatic increase in settling time in this limit. Recall from Section 2.3
(see figure 5) that in the settled regime the equilibrium fluid layer thickness

Hf = 1− s∗b

decreases to zero as ϕ increases to ϕc. It is evident from numerical calculations that

ξ0 ∼ C1(ϕc − ϕ)Γξ , ΓH ∼ C2(ϕc − ϕ)ΓH as ϕ↗ ϕc (3.15)

for exponents Γξ, ΓH that depend on α. This suggests that

τeq ∼ C(ϕc − ϕ)ΓH−Γξ as ϕ↗ ϕc (3.16)

and so the settling time should diverge as ϕ approaches the critical concentration if
Γξ > ΓH , i.e. if the fluid layer thickness shrinks in size slower than the descent velocity.
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curve.

As shown in figure 12, the settling time τeq calculated from numerical simulations (solid
line) is consistent with this divergence.

A plot of the exponents Γξ and ΓH as a function of angle for b = 1.55 is shown in

figure 12 along with the estimate τ
(d)
eq for the settling time τeq at some sample angles.

Note that Γξ > ΓH for all values of α, but that the difference is small (at most 0.35 for
the range of angles where ϕc exists in figure 12, for instance), so the dramatic growth in
equilibration time occurs only very close to ϕc. For other values of b > 0, the situation
is similar. We do not have a theoretical estimate for the exponents Γξ and ΓH , which
would provide a condition determining when time diverges to infinity or converges to zero.
Nevertheless, there is a clear increase over a wide range of physically realistic parameters,
consistent with observations of past experiments (Murisic et al. 2011).

The descent estimate (3.14) (plotted in figure 13) is most relevant when the equilibrium
layer thickness Hf is large relative to the descent speed, which holds both in the dilute
limit (when Hf ≈ 1) and near ϕc (where Hf is small but the speed is much smaller).
Notably, the preceding analysis suggests that

lim
ϕ↗ϕc

τ (l)eq = const., lim
ϕ↗ϕc

τ (d)eq = ∞.

The calculations in figure 12 indicate that the divergence predicted for τ
(d)
eq is indeed the

correct behaviour for τeq. However, this growth is only noticeable in a narrow window,
since the exponent ΓH − Γξ in (3.16) is negative but small.

4. Connection to bulk flow

Here we aim to obtain a simple heuristic for the transition distance L (as depicted in
figure 3) using the equilibration model. For the bulk flow, the model equations (2.9) and
conservation of fluid/particle mass yield conservation laws for the film height h(x, t) and
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ϕ(x, t) (Murisic et al. 2013) which are, in dimensional form,

0 = ht + (

∫ h

0

u dz)x (4.1a)

0 = (hϕ)t + (

∫ h

0

ϕu dz)x (4.1b)

We make the simplifying assumption that the bulk suspension, governed by (4.1), evolves
as if it were uniform while the z-equilibration takes place. This decouples the two
processes, and we can then estimate the transition distance as the point at which the
particles are within some threshold of their z-equilibrium.

4.1. Transition time and distance

Consider a fixed area A of an initially uniform mixture released from a reservoir and
allowed to flow down an incline (see figure 3). Assume that the suspension height h(x, t)
and leading edge xf (t) evolve in a well-mixed state while the equilibration process occurs.
The flow is then that of an effective fluid with viscosity µ(ϕ) as given by (2.4) and density
ρ(ϕ) = 1 + bϕ. The conservation laws (4.1) reduce, in dimensional form, to

ht +
g sinα

3νℓν̂(ϕ)
(h3)x = 0 (4.2)

where

ν̂(ϕ) :=
µ̂(s)(ϕ)

1 + bϕ

is the effective kinematic viscosity relative to νℓ. The height profile of the uniform
suspension, after the formation of the rarefaction-shock pair, is given by (Huppert 1982)

h =

{
(x/(cf t))

1/2, x < xf (t),

0 x > xf (t)
, xf (t) = (9cfA

2t/4)1/3, (4.3)

where A is the initial area of the fluid and

cf = g sinα/(νℓν̂(ϕ)). (4.4)
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Now suppose that the z-equilibration process is occurring at the front xf (t) while the
height changes (which affects the process only through the timescale Te for equilibration
(Eq. (2.12)). We then estimate that the transition time te as the time required for this
process at the front to reach a threshhold θ of equilibrium as defined in Section 3.
Given a length scale L, we define an estimate L for the non-dimensional transition

distance, as follows:

L = xf (te)/L. (4.5)

The effect of the changing height on the equilibration timescale Te and time variable τ
is taken into account by using h(xf (t)) as the instantaneous height scale. The relevant
timescale is proportional to the height at the front. Denote H the initial height scale and
Te the timescale based on this initial height. Then at each time t, the height at the front
induces a dimensionless time scale over which the system can evolve. Relating these time
scales we have

dτ =
H

h(xf (t))Te
dt =

H

Te

(
2cf
3A

)1/3

t1/3,

thus a step forward of dt in dimensional units brings about a time step ∝ 1/h in
dimensionless time units dτ . Thus the dimensional settling time te and settling time
τeq defined in (3.1) are related by

τeq =

∫ τeq

0

dτ =
H

Te

∫ te

0

1

h(xf (t))
dt =

3H

4Te

(
2cf
3A

)1/3

t4/3e .

The transition distance (4.5) is then, using (2.12),(4.3) and (4.4) to simplify,

L =
1

L

9A2

4

((
24

KnΛ2d2
τeq
ν̂

)3
3A

2

)1/4
1/3

,

noting that the explicit factor of sinα cancels, but L does depend on angle through the
value of τeq = τeq(ϕ, β) determined by the equilibration process described in Section 3 (in
particular, τeq is a function of ϕ and the parameter β (eq. (2.17)). Upon simplifying, we
arrive at an expression for the transition distance as a function of mixture concentration
ϕ and incline angle α:

L(ϕ, α) =
((

81A3

KnΛ2L4d2

)
τeq(ϕ, β(α))

ν̂(ϕ)

)1/4

. (4.6)

Note that L depends on angle only through the parameter β in the equilibration time.

To get a more concrete formula for L, we then replace τeq with one of the estimates τ
(l)
eq

or τ
(d)
eq from the linearized or descent processes (equations (3.4) and (3.14), respectively).

It is useful to interpret the result using the asymptotic assumption on the particles,

ϵH2/d2 ≪ 1.

Define the parameter

δ :=

(
81

KnΛ2

ϵH2

d2

)1/4

. (4.7)

Choose H and L to be the height/length of the reservoir (so A = HL). Then (4.6)
becomes

L = δ
(τeq
ν̂

)1/4
(4.8)
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Thus if δ ≪ 1 (the limit of very fast equilibration) then L ≪ 1. However, if the size
difference is not so small (moderately fast equilibration) then L may be larger than 1,
i.e. the suspension may stay well-mixed for a distance on the order of the length scale
L. To be precise, the estimate suggests that the length L will be significant despite the
‘fast’ equilibration when

KnΛ2

81
≲ ϵH2

d2
≪ 1

noting that Λ2 = 0.8.
For a suspension with a constant input flux forming a film of height H, the estimate is

simpler. The solution to (4.2) is then a shock that travels at a constant speed U/3, from
which it follows that

L =
TeU

3L

τeq
ν̂

= δ
τeq
ν̂
, δ :=

6

KnΛ2

(
ϵH2

d2

)
,

which can be interpreted in the same way (L ∼ 1 when ϵH2/d2 ∼ KnΛ2/6). Alternatively,

L =
Te
3TB

τeq
ν̂

where TB = L/U is the bulk timescale.

4.2. Comparison to experiments

We now wish to use this notion of L to understand experiments where a suspension
in this asymptotic regime is observed to remain well-mixed over the distance of the
experimental track for some concentrations and angles. The ‘well-mixed band’ for the
experiments in (Murisic et al. 2011) consists of the region in the (ϕ, α) plane where the
suspension remained well-mixed until it reached a distance of approximately 0.6m down
the track.
Based on our model assumptions, the predictions we make for L are independent of

the suspending fluid (kinematic) viscosity νℓ. However, the inclusion of higher order
effects may include such dependence (there is a small viscosity-dependence observed in
experiments). Here we compare to the results of experiment B in (Murisic et al. 2011), in
which the fluid viscosity is fixed at νℓ = 1000 cSt and three particle sizes are considered:
small (d = 0.143mm), moderate (d = 0.337mm) and large (d = 0.625mm).
To compare, we take the length scale to be L = 0.1m (the reservoir length) and

b = 1.55, an initial area of A ≈ 1× 10−3 m2 and ϕm = 0.58. The ’well-mixed band’ in
the experiment corresponds to the set {L > 6}. The convergence threshhold θ = 0.08
is chosen to match the moderate particle size. For the small and moderate particle size,
the experimental well-mixed band is plotted against the value of L in figure 14. The
shape of the well-mixed band for the linear estimate, which is wider (in ϕ) for larger
angles, is consistent with the experimental data, except near the critical concentration
and at small angle, where it tapers sharply. The cutoff value for the small particles that
matches the data is larger than L = 6, which does not match as well (though the shape
is reasonable). The descent estimate (figure 15) predicts a well-mixed band of a different
shape that does not match experimental observations. Note that the contour lines are
asymptotically parallel to the critical concentration line ϕc(α), which is a consequence of

the fact that τ
(d)
eq → ∞ as ϕ ↗ ϕc. The overall size of the well-mixed band is similar to

that predicted by the linear estimate, but the lower bound is nearly flat. From the better
fit of the linearized estimate, it seems that the relaxation to equilibrium rather than the
descent phase is the primary mechanism for the transition distance.
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Figure 14. Contours of the transition distance L(ϕ, α) of Eq. (4.8) using the linearized
estimate (3.4) compared to experimental data in (Murisic et al. 2011) for small particles with a
wide well-mixed band (left) and larger particles (right). Stars, circles, and pluses represent,
respectively, to ‘settled’, ‘mixed’ and ‘ridged’ suspensions when observed at 0.6m (which
corresponds to L = 6). The shaded region is the the best fit the well-mixed band (the expected
set is {L ⩾ 6}). The convergence threshold θ = 0.08 was chosen to match the d = 0.337mm
band.
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Figure 15. Contours for the transition distance L using the descent estimate (3.14) with
threshold θ = 0.08 compared to experimental data in (Murisic et al. 2011) (see figure 14 for
key); the expected well-mixed band is {L ⩾ 6}. We observe a poorer fit to the data compared
to the linearized estimate, both in value and qualitative shape.

Note that, since (τ
(l)
eq /ν̂)1/4 is bounded above, we predict that the well-mixed band

should vanish if the particle size d is large enough. That is, for large enough particles
and a fixed track length, the particles will always equilibrate by the time the suspension
reaches the end of the track. For experiments considered here, this corresponds to the
condition that (4.8) is less than 6 for all relevant ϕ and α. We obtain

dmax ≈ 1

L2
max
α,ϕ

(
81A3

KnΛ2L4

τ
(l)
eq

ν̂

)1/2

≈ 0.407mm

with L = 6 and the maximum taken over α ∈ [20◦, 50◦] and ϕ ∈ [0.2, 0.5]. The data in
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(Murisic et al. 2011) also shows the well-mixed band vanishing, finding it absent with
d = 0.625mm.

5. Conclusion

When a uniform mixture of a viscous suspension is poured onto an incline, there is a
transient distance over which the particles migrate in the shear flow to either settle or
rise to the surface, depending on the balance of forces. Beyond this transient distance,
the resulting stratification of particles in the normal direction determines the evolution
of the bulk flow. Our work here has focused on the transient dynamics that precede
the developed flow, using a suspension balance model to study the particle equilibration
on a fast time scale. From a uniform initial state in the settled regime, this process
takes place in two qualitatively distinct phases: the formation of a clear fluid layer as
the particles descend from the free surface at roughly constant speed and the relaxation
of the near-equilibrium particle distribution to its final state, which is described by the
slowest decaying mode of the linearized system.
The speed of the particle descent was understood by means of a local similarity solution,

which shows that at the beginning of the settling process, the clear fluid layer does
descend at a roughly constant rate (consistent with numerical computations). Using
this analysis, we found the equilibration time for particle descent diverges near the
critical concentration; however, such analysis yielded well-mixed bands that did not agree
with experimental observations. Using the linearized system, we found better agreement
with data. We therefore hypothesize that the particle descent may only be a short-
lived phenomenon that blends into a diffusive equilibration process, the latter ultimately
governing the settling time and length. Given the correct apparatuses, it should be
possible to observe and study these processes in experiments.
The rough estimate for the equilibration length provides some insight into its depen-

dence on physical parameters. In particular, we note that even when the z-equilibration
timescale is fast, the length traveled while mixed may be substantial. However, the
estimate requires some crude assumptions on the evolution of the flow to simplify the
estimate. Mathematically, it would be fruitful to study the fully coupled system for the
transient flow - without assuming quasi-static evolution in either direction - and/or to
carefully study some approximate (asymptotic) solutions that take into account both the
fast and long time scales inherent to the system. Our analysis of the equilibrium profile
for the particles and its stability was limited to the fast time scale; it would be interesting
to study the influence of the downstream flow on the stability of the particle layer or
the effect of the particles on the stability of the advancing fronts through analysis of the
coupled system.
From a modeling perspective, this paper has shed light on the fast timescale dynamics

in the settled regime, but the dynamics for dense suspensions (the ridged regime) remain
to be explored in depth. The complications in the model introduced by the surface
particle concentration approaching maximum packing warrant further study; a different
model may be necessary to consider the formation of such particle layers at the surface
and their effect on the equilibration dynamics.
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Appendix A. Spectrum for the linearized problem

Here we provide the details for the linearized eigenvalue problem (3.5) in the settled
regime as discussed in Section 3.1. We wish to verify that the eigenvalue problem is of
a standard form and has positive eigenvalues. Suppose ϕ < ϕc, so there is a degeneracy
where the solution reaches ϕ = 0 but no point at which ϕ = ϕm. Define coefficients A(s)
and B(s) as

A(s) = R′(φ̃(s))σ̃(s), B(s) = β − bR(φ̃(s))

so that (3.5) has the form

−(A(s)ψ′ +B(s)ψ)′ =
λ

fh(φ̃(s))
ψ, ψ(0) = ψ(1) = 0.

Recall that the support of φ̃ is [0, s∗b ] in the settled regime, with s∗b < 1. Thus A(s)
vanishes for s > s∗b , we look for a solution with ψ = 0 for s > s∗b , i.e. to instead solve

−(A(s)ψ′ +B(s)ψ)′ =
λ

fh
ψ, ψ(0) = ψ(s∗b) = 0

for which A(s) > 0 except at the right endpoint s = s∗b . In the interior, define

E(s) = exp

(
−
∫ s

0

B(x)

A(x)
dx

)
.

From the equilibrium theory (Section 2.3), we have that

lim
s↗s∗

φ̃′(s) = − β

R′′(0)(1− s∗b)

from which it follows that as s↗ s∗b ,

A(s) = R′(φ̃(s))σ̃(s)

= R′′(0)σ̃(s∗b)φ̃
′(s∗b)(s− s∗b) +O((s− s∗b)

2)

= −β(s− s∗b) +O((s− s∗b)
2).

Since B ∼ β (a non-zero constant) as s↗ s∗b we have

E(s) ∼ exp

(
O(s) +

∫ s

0

1/(x− s∗b) dx

)
∼ C(s∗b − s) as s↗ s∗b . (A 1)

We can place the eigenvalue problem in a standard self-adjoint form by defining

p = AE, r = E/fh, χ = ψ/E,

This gives a (singular) self-adjoint problem for χ,

−(pχ′)′ = rλχ, χ(0) = 0.

From (A1), the coefficients have the following behaviour as s↗ s∗b :

p ∼ Cβ(s− s∗b)
2, r ∼ C(s− s∗b).
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Figure 16. Evolution of particle concentration ϕ(s, t) in the ridged regime for α = 50◦ and

ϕ = 0.55 with δ0 = 0 (no surface shear rate) and γ0 = 10−4, which reduces the maximum
concentration.

Since the operator is formally self-adjoint with mild singularities on the coefficients, we
expect a spectrum of positive eigenvalues with a minimum eigenvalue λ0 (Zettl 2005).
Since p ⩾ 0 and χ(0) = p(s∗b) = 0, this eigenvalue is positive.

Appendix B. Non-local shear rate correction

The equations for particle equilibration change if we include a shear rate regularization

γ̇ =
√
|uz|2 + γ̇20

instead of γ̇ = |uz|. This extra shear rate at the surface is due to non-local effects that are
relevant a distance O(d) from the surface (Miller & Morris 2006) and can be important
because it means the effective shear rate is not zero at the free surface (in contrast to
a pure fluid). Using this expression for the normal stress changes the particle flux (2.5),
which results in the equilibration PDE

ϕτ − β(fhϕ)s = (fh(Rσ̃)s)s, σ̃ =
√
σ2 + δ20(µ

(s))2, (B 1)

analogous to Equation 2.21, where δ0 ≪ 1 is a small non-dimensional γ̇0. For our model,
the main effect is to remove the degeneracy in the diffusion coefficient at s = 1 in the
equation due to σ(1) = 0 (but the equation is still degenerate when ϕ = 0 or ϕ = ϕm). The
shear-rate correction at the surface ensures that the shear-induced migration flux does
not vanish at s = 1, which pushes particles away from the maximum packing fraction.
The effect is shown in figure 16 (compare figure 6) and the equilibrium profiles are shown
in figure 17.
The equation for particle equilibration has the form

ϕτ + F (ϕ, σ)s = (D(ϕ, σ)ϕs)s

with

F (ϕ, σ) = fh(−βϕ+Rρ
σ√

σ2 + δ20(µ
(s))2

)

D(ϕ, σ) = fhR
′
√
σ2 + δ20(µ

(s))2.

Note that the non-local shear rate has a small effect on the coefficients except when s→ 1,
where σ → 0 and D = O(δ0) instead of approaching zero. The equilibrium solution no
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Figure 17. Left: Equilibrium profiles (upper left) in the ridged regime for α = 50◦. and ϕ = 0.55.
Right: Eigenvalues in the ridged regime (α = 50◦) with and without the surface shear rate
(γ0 = 0, 10−5 and 10−4). The starred value is the well-mixed eigenvalue with δ0 = 0 as in (3.6).

longer has a packed region at the surface for large concentrations. In addition, although
there is a ‘critical’ value of ϕ separating settled solutions (with a clear fluid layer) and
ridged solutions (where ϕ > 0 everywhere), the solution is never exactly constant. A
comparison of the evolution of ϕ for various values of the regularization (including the
equilibrium state) are shown in figure 16.
The eigenvalue calculations are the same as in the previous sections, except that when

δ0 ̸= 0 the equations contain some additional terms. Proceeding from (B 1) with δ0 ̸= 0,
we obtain the linearization

ψτ =
[
fh
(
(R′σ̃0ψ − b

Rσ̂

σ̃0
ξ)s +

(
β +

Rδ20(µ
2)s

2σ̃0

)
ψ
)]

s
(B 2)

with all functions evaluated at φ̃(s). Note that this is an O(δ20) perturbation of the
uncorrected linearized equation (B 2). The regularization has a small effect on the
eigenvalue except very close to ϕm where the value is dampened somewhat. Thus, except
at near the maximum packing fraction, the analysis in this paper does not depend
significantly on this correction at the surface.
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