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Uncovering Social Network Sybils in the Wild
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BEN Y. ZHAO, University of California, Santa Barbara
YAFEI DAI, Peking University

Sybil accounts are fake identities created to unfairly increase the power or resources of a single malicious
user. Researchers have long known about the existence of Sybil accounts in online communities such as
file-sharing systems, but they have not been able to perform large-scale measurements to detect them or
measure their activities. In this article, we describe our efforts to detect, characterize, and understand Sybil
account activity in the Renren Online Social Network (OSN). We use ground truth provided by Renren Inc.
to build measurement-based Sybil detectors and deploy them on Renren to detect more than 100,000 Sybil
accounts. Using our full dataset of 650,000 Sybils, we examine several aspects of Sybil behavior. First, we
study their link creation behavior and find that contrary to prior conjecture, Sybils in OSNs do not form
tight-knit communities. Next, we examine the fine-grained behaviors of Sybils on Renren using clickstream
data. Third, we investigate behind-the-scenes collusion between large groups of Sybils. Our results reveal
that Sybils with no explicit social ties still act in concert to launch attacks. Finally, we investigate enhanced
techniques to identify stealthy Sybils. In summary, our study advances the understanding of Sybil behavior
on OSNs and shows that Sybils can effectively avoid existing community-based Sybil detectors. We hope that
our results will foster new research on Sybil detection that is based on novel types of Sybil features.
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1. INTRODUCTION
Sybil attacks [Douceur 2002] are one of the most prevalent and practical attacks against
distributed systems. In this attack, a user creates multiple fake identities, known as
Sybils, to unfairly increase their power and influence within a target community. Dis-
tributed systems are ill-equipped to defend against this attack, since determining a
tight mapping between real users and online identities is an open problem. To date,
researchers have demonstrated the efficacy of Sybil attacks against P2P systems [Lian
et al. 2007], anonymous communication networks [Bauer et al. 2007], and sensor net-
works [Newsome et al. 2004].

Recently, Online Social Networks (OSNs) have also come under attack from Sybils.
Researchers have observed Sybils forwarding spam and malware on Facebook [Gao
et al. 2010] and Twitter [Grier et al. 2010; Thomas et al. 2011], as well as infiltrating
social games [Nazir et al. 2010]. Looking forward, Sybil attacks on OSNs are poised to
become increasingly widespread and dangerous as more people come to rely on OSNs
for basic online communication [Murphy 2010; Lenhart et al. 2010] and as replacements
for news outlets [Kwak et al. 2010].

To address the problem of Sybils on OSNs, researchers have developed algorithms
such as SybilGuard [Yu et al. 2006], SybilLimit [Yu et al. 2008], SybilInfer [Danezis
and Mittal 2009], and SumUp [Tran et al. 2009] to perform decentralized detection of
Sybils on social graphs. These systems detect Sybils by identifying tightly connected
communities of Sybil nodes [Viswanath et al. 2010].

However, recent work has shown that one of the key assumptions of community-
based Sybil detectors—fast mixing time—does not hold on social graphs where edges
correspond to strong real-world trust (e.g., DBLP, Physics co-authorship, Epinions)
[Mohaisen et al. 2010]. Thus, community-based Sybil detectors do not perform well on
“trusted” social graphs. To date, however, no large-scale studies have been performed
to validate the assumptions of community-based Sybil detectors on untrusted social
networks such as Facebook and Twitter.

In this article, we describe our efforts to detect and understand Sybil account ac-
tivity in Renren, one of the largest OSNs in China. In Section 2, we use ground-truth
data on Sybils provided by Renren Inc. to characterize Sybil behavior. We identify
several behavioral attributes that are unique to Sybils and leverage them to build a
measurement-based, real-time Sybil detector. Our detector is currently deployed on
Renren’s production systems; between August 2010 and February 2011, it led to the
banning of more than 100,000 Sybil accounts.

In Section 3, we analyze the graph structural properties of Sybils on Renren, based
on the 100,000 Sybils identified by our detector, as well as 560,000 more identified
by Renren using prior techniques. Most interestingly, we find that contrary to prior
conjecture, Sybil accounts in Renren do not form tight-knit communities: >70% of
Sybils do not have any edges to other Sybils at all. Instead, attackers use biased
random sampling to identify and send friend requests to popular users, since these
users are more likely to accept requests from strangers. This strategy allows Sybil
accounts to integrate seamlessly into the social graph.

We analyze the remaining 30% of Sybils that are friends with other Sybils and dis-
cover that 69% (65,000 accounts) form a single connected component. By analyzing the
creation timestamps of these edges, we determine that this component formed acci-
dentally, not due to coordinated efforts by attackers. We briefly survey several popular
Sybil management tools and show that large Sybil components can form naturally due
to the biased way in which these tools target friend requests. These results demonstrate
that even when Sybils on Renren do friend each other, existing community-based Sybil
detectors would not be able to locate these loosely connected Sybil groups. These results

ACM Transactions on Knowledge Discovery from Data, Vol. 8, No. 1, Article 2, Publication date: February 2014.



Uncovering Social Network Sybils in the Wild 2:3

indicate that relying on graph structure alone is not a tenable strategy for detecting
Sybils on today’s OSNs.

One potential way to improve Sybil defense is to incorporate additional information
about Sybil behavior. Toward this end, we examine the fine-grained behaviors of Sybils
on Renren in Section 4. Our study is based on detailed clickstream data summarizing
16,010,645 clicks over a 1-month period for 50,000 Sybils. These traces allow us to
contrast the session-level differences between normal users and Sybils, as well as
capture the exact behavior of Sybils as they crawl the OSN and generate spam. Our
results show that Sybils abuse the friend recommendation features of OSNs to locate
targets for friending.

In Section 5, we examine collusion between spamming Sybils on Renren. We show
that although Sybils do not have explicit friendship links with each other, Sybils collude
behind the scenes to promote spam blogs, revealing that they are under the control of
a single attacker. We use content similarity and temporal correlation to quantify the
inferred links between Sybils and quantify the extent of Sybil collusion on Renren.

Finally, in Section 6, we investigate enhanced techniques to identify stealthy Sybils.
The motivating factor is that attackers may adapt and change the behavior of Sybils,
especially since the details of our detector are now publicly available. We show that
by combining community detection with friend request statistics, we can detect Sybils
that collude to evade our currently deployed Sybil detector. These results demonstrate
that although Sybil behavior may evolve in the future, we will still be able to accurately
detect and ban these malicious accounts.

In summary, the dataset leveraged in this article opens a window of insight into
malicious activity on OSNs that was previously only available to OSN providers. Our
dataset includes key pieces of additional information (e.g., friend requests, edge cre-
ation timestamps, and clickstreams) that cannot be inferred from crawling publicly
available data. Although other studies have examined fake and malicious accounts
on OSNs [Gao et al. 2010; Grier et al. 2010; Thomas et al. 2011], these studies rely
on a limited range of publicly crawlable information to identify Sybils (usually friend
relationships and wall posts).

Unfortunately, the caveat of focusing on a single dataset is that the generality of
results becomes an issue. We do not claim that Sybils on all OSNs exhibit the same
behaviors observed on Renren. Instead, we view this work as a first step toward bring-
ing practical understanding to the area of social Sybil research. Our hope is that our
results will foster new research on Sybil detection that is based on novel types of Sybil
features and grounded in more realistic assumptions about Sybil behavior.

2. DETECTING SYBILS
In this section, we set the backdrop for our data analysis. First, we briefly introduce
the Renren OSN and describe the role of Sybil accounts in Renren. Second, we describe
experiments characterizing Sybil accounts on a verified ground-truth dataset provided
by Renren. Finally, we describe and build a real-time Sybil account detector deployed on
Renren and show how it led to the large Sybil dataset that we analyze in the remainder
of the article.

2.1. The Renren Network and Sybil Accounts
With 220 million users, Renren (http://www.renren.com) is one of the most popular
OSNs in China and provides functionality and features similar to Facebook. Like Face-
book, Renren started in 2005 as a social network for college students in China and
then saw its user population grow exponentially once it opened its doors to nonstu-
dents. Renren users maintain personal profiles, upload photos, write diary entries
(blogs), and establish bidirectional social links with friends. The most popular type of
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user activity is sharing blog entries, which can be forwarded across social hops like
“retweets” on Twitter.

As its user population has grown, Renren has become an attractive venue for compa-
nies to disseminate information about their products. This has created opportunities
for Sybil accounts to spam advertisements for companies, a growing trend observed by
the analytics team at Renren. The increased prevalence of spam on Renren mirrors
similar findings from Facebook [Gao et al. 2010] and Twitter [Grier et al. 2010; Thomas
et al. 2011].

To effectively attract friends and disseminate advertisements, most Sybil accounts on
Renren blend in extremely well with normal users. They tend to have completely filled
user profiles with realistic background information, coupled with attractive profile
photos of young women or men, making their detection quite challenging.

Prior to this project, Renren had already deployed a suite of orthogonal techniques to
detect Sybil accounts, including using thresholds to detect spamming, scanning content
for suspect keywords and blacklisted URLs, and providing Renren users with the ability
to flag accounts and content as abusive. However, these techniques are generally ad
hoc, require significant human effort, and are effective only after spam content has
been posted. To improve security for their users, Renren began a collaboration with our
research team in December 2010 to augment their detection systems with a systematic,
real-time solution. To support the project, Renren provided full access to user data and
operational logs on their servers, as well as allowed us to test and deploy research
prototypes of Sybil detectors on their operational network.

Defining Sybils. In this study, as in prior work [Yu et al. 2006; Danezis and Mittal
2009; Yu et al. 2008; Tran et al. 2009], we are interested in detecting and deterring
the use of mass Sybil identities by malicious users. We broadly define Sybils as fake
accounts created for the purpose of performing spam or privacy attacks against normal
users. In other words, we are interested in malicious Sybils.

Attempting to specifically define the boundary between what is a “real” and what
is a “fake” account on an OSN is a task fraught with ambiguity. Next, we discuss
several cases where the boundaries between real and fake and malicious and benign
are questionable. In each case, we clarify what types of malicious Sybils fall under
our definition. These are the types of accounts that we aim to detect, measure, and
ultimately stop through the rest of the article.

Identifying Malicious Activity. A key component of our definition is that Sybils
engage in malicious activity. This leads to the following question: what is the definition
of malicious activity?

We define malicious activity to be actions taken by an attacker that directly or
indirectly support a monetization strategy. Examples of monetization strategies include
targeting users with spam and phishing attacks. Prior work has shown that these
strategies are widely used by attackers against other OSNs [Gao et al. 2010; Grier
et al. 2010; Thomas et al. 2011]. Note that our definition does not cover legitimate
monetization strategies, such as keyword, banner, or news-feed advertising.

Rather than simply focusing on the outward signs of malicious activity (e.g., spam),
our definition also covers indirect behavior that is a required precursor to attacks. In
particular, in order for attackers to reach a user on OSNs like Renren and Facebook, the
attacker must first be friends with that user. This is because, by default, only friends
may create posts on a user’s wall. Thus, creating friendship links to normal users is
a key step for Sybil accounts on Renren; the Sybils cannot be monetized without first
acquiring many friends. To gather many friends, Sybils must send out a large amount
of unsolicited friend requests to normal users. It is the social network provider’s (e.g.,
Renren’s) responsibility to detect and ban these harmful Sybil accounts to protect users
from malicious attacks.
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Although friending normal users is a precursor for malicious activity, our work is ag-
nostic to the specifics of these malicious activities (e.g., spam, phishing). Furthermore,
we make no assumptions about the methods and tools used to create and control the
Sybils.

Benign Fake Accounts. Our definition of Sybils does not include fake accounts
generated by users for benign purposes. Examples of benign activity include using a
pseudonym to preserve privacy and anonymity, acting on behalf of young children, and
separating work and personal identities. As we discuss in Section 2.3, these benign
Sybils are unlikely to be flagged by the techniques proposed in this work.

It is possible that an attacker could also create benign Sybils that behave identically
to normal users and appear on the surface to be real. However, we are only interested
in detecting Sybil accounts that perform attacks—that is, they deviate from normal
user behavior. Thus, benign Sybils would not be targeted by our techniques, since they
behave exactly like normal users. The goal of our system is to catch fake accounts if
they ever start performing malicious actions.

Inactive Accounts. Inactive accounts do not fall under our definition of malicious
Sybils. Determining whether an inactive account is a malicious Sybil is challenging
because there is no behavioral data (e.g., friend requests, status updates) to leverage for
classification. Renren uses heuristics to detect naı̈ve attempts to create bulk accounts
(e.g., many creations that originate from a single IP address). However, we do not have
access to this data, and thus we do not consider the problem of inactive accounts in
this study.

The Sybil detector that we develop in this article will not catch inactive Sybil accounts
until after they become active (i.e., start generating friend requests and spam). In this
case, the goal of our detector is to catch these accounts as quickly as possible once they
become active to minimize the amount of damage they can do to normal users.

2.2. Characterizing Sybil Accounts
Our approach to building a real-time Sybil detector begins by first identifying features
that distinguish Sybil accounts from normal users. To help, Renren provided us with
two sets of user accounts, containing 1,000 Sybil accounts and 1,000 non-Sybil accounts,
respectively. The Sybil accounts were previously identified using existing mechanisms.
A volunteer team carefully scrutinized all accounts in both sets to confirm that they
were correctly classified by looking over detailed profile data, including uploaded pho-
tos, messages sent and received, email addresses, and shared content (blogs and Web
links).

Using this dataset as our ground truth, we searched for behavioral attributes that
serve to identify Sybil accounts. After examining a wide range of attributes, we found
four potential identifiers. We describe them each in turn and illustrate how they char-
acterize Sybils in our dataset.

Invitation Frequency. Invitation frequency is the number of friend requests that
a user has sent within a fixed time period (e.g., an hour). Figure 1 shows the friend
invitation frequency of our dataset, averaged over long-term (400-hour) and short-term
(1-hour) time scales. Since adding friends is a goal for all Sybil accounts, they are much
more aggressive in sending requests than normal users. There is a clear separation:
accounts sending more than 20 invites per time interval are Sybils. This result holds
true at both long and short time scales, meaning that invitation frequency can be used
to detect Sybils without significant delays. For example, a threshold of 40 requests/hour
can identify ≈70% of Sybils with no false positives. Prior to our work, Renren deployed
a CAPTCHA that users must solve if they send 50 or more requests in a day, which
explains the apparent upper limit on friend requests.
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Fig. 1. Friend invitation frequency over two time
scales.

Fig. 2. Percentage of accepted outgoing friend
requests.

Outgoing Requests Accepted. A second distinguishing feature is the fraction of
outgoing friend requests confirmed by the recipient. The CDF shown in Figure 2 shows
a distinct difference between Sybils and normal users. In general, non-Sybil users have
high accepted percentages, with an average of 79%. On average, however, only 26% of
all friend requests sent by Sybil accounts are accepted. This is unsurprising, since
normal users typically send invites to people with whom they have prior relationships,
whereas Sybils target strangers.

Despite prior studies that show users accept requests indiscriminately [Stringhini
et al. 2010; Sophos 2007], our results show that most users can still effectively identify
and decline invitations from Sybils. The fact that some users still accept requests from
Sybils is explained by two factors. First, most Sybils target members of the opposite
sex by using photos of attractive young men and women in their profiles. Although
women make up 46.5% of the overall Renren user population, they make up 77.3% of
the Sybils in our dataset. Second, Sybils typically target popular, high-degree users
who are more likely to be careless about accepting friend requests from strangers. We
further explore this point in Section 3.4.

Incoming Requests Accepted. Figure 3 plots a CDF of users by the fraction of
incoming friend requests that they accept. The incoming requests accepted by non-
Sybil users are spread across the board. In contrast, Sybil accounts are nearly uniform
in that they accept all incoming friend requests (e.g., 80% of Sybils accepted all friend
requests). In fact, many of the Sybils with <100% accept rate fall into this category
because Renren banned them before they could respond to all outstanding requests.
However, since Sybil accounts receive few friend requests, this detection mechanism
can incur significant delay.

Clustering Coefficient. Clustering coefficient (cc) is a graph metric that measures
the mutual connectivity of a user’s friends. Since normal users tend to have a small
number of well-connected social cliques, we expect them to have much higher cc values
than Sybil accounts, which are likely to befriend users with no mutual friendships.
Figure 4 plots the CDF of cc values for each user’s first 50 friends (sorted by time). As
expected, non-Sybil users have cc values orders of magnitude larger than Sybil users
(average cc values of 0.0386 and 0.0006, respectively). Since cc can be computed based
on invitations only (i.e., user responses are not required), it can potentially perform
well as a real-time Sybil detection metric.

2.3. Building and Running a Sybil Detector
Our analysis results indicate that a threshold-based scheme can effectively detect most
Sybil accounts. Our next step is to verify this assertion by comparing the efficacy of a
simple threshold detector against a more complex learning algorithm.
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Fig. 3. Percentage of accepted incoming friend
requests.

Fig. 4. Clustering coefficient for users’ 50 first
invitees.

Table I. Performance of SVM and Threshold Classifiers

SVM Predicted Threshold Predicted
Sybil Non-Sybil Sybil Non-Sybil

True Sybil 98.99% 1.01% 98.68% 1.32%
Non-Sybil 0.66% 99.34% 0.5% 99.5%

We apply a Support Vector Machine (SVM) classifier to our ground-truth dataset of
1,000 normal users and 1,000 Sybils. We randomly partition the original sample into
five subsamples, four of which are used for training the classifier and the last used
to test the classifier. The results in Table I show that the classifier is very accurate,
correctly identifying 99% of both Sybil and non-Sybil accounts. We compare these
results to those of a threshold-based detector: outgoing requests accepted % < 0.5 ∧
frequency > 20 ∧ cc< 0.01. Our results show that a properly tuned threshold-based
detector can achieve performance similar to the computationally expensive SVM.

Real-Time Sybil Detection. Our analytical results using the ground-truth dataset
led to the design of an adaptive, threshold-based Sybil detector that identifies Sybil
accounts in near real time. The detector monitors all accounts using a combination of
friend-request frequency, outgoing request acceptance rates, and clustering coefficient.
The security team at Renren applied the analysis techniques from Section 2.2 to a large
sample of Sybils (more than 100K Sybil accounts) to derive initial parameter values
for the deployed detector (i.e., the parameter values given in this article are not the
same values used by the deployed detector). After the detector has been bootstrapped,
it uses an adaptive feedback scheme to dynamically tune the threshold parameters on
the fly. The adaptive feedback is drawn from the customer complaint rate to Renren’s
support department, which we outline in more detail below.1

Tuning the thresholds minimizes the likelihood of false-positive classifications of
normal accounts as Sybils. Because our system works by detecting abnormal behavior
in friending or content dissemination, it is unlikely to detect benign Sybils that behave
like normal users. However, as mentioned earlier, the drawback of this approach is
that our detector will not catch inactive Sybils. Inactive Sybils will not be detected
until after they begin friending normal users.

Our detector incorporates real-time changes in friendship links when calculating
acceptance percentages. In some cases, normal users accept friend requests from Sybils
only to later revoke the friendship. This causes the accept percentage for the Sybil to

1We omit details of the adaptive scheme and the specific parameter values to protect Renren’s security and
confidentiality.
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drop. Similarly, when Renren bans Sybils, all of their edges are destroyed. This causes
the acceptance percentages for other Sybils with which they are linked to drop. In both
cases, the decrease in acceptance percentage helps our detector to more accurately
detect Sybils.

After offline testing, Renren deployed our Sybil detection mechanism in late August
2010, and it has been in continuous operation ever since. From August 2010 to February
2011, Renren administrators used our system to detect and subsequently ban nearly
100,000 Sybil accounts in Renren. In addition to these accounts, Renren provided
us with data on nearly 560,000 accounts that were detected and banned using prior
techniques from 2008 to February 2011. For the remainder of this article, we will use
all of these Sybil accounts (660,000 in all) to study the behavior of Sybil accounts.

Sybil Account Behavior. We confirmed that the Sybil accounts identified by our
detector are actually malicious by analyzing the content generated by these accounts.
Offline analysis confirmed that 67% of content generated by Sybils trips Renren’s spam
detectors (e.g., suspicious keyword filter, blacklisted URLs). Of the remaining accounts,
the vast majority were banned before they had a chance to generate any content.
Section 5 delves into the details of Sybil behavior and spam content on Renren.

False Positives. To assess false positives, we examine feedback to Renren’s customer
support department. Renren operates a telephone number and email address where
customers can attempt to get banned accounts reinstated. Complaints are evaluated
by a human operator, who determines if the account was banned erroneously.

We use the complaint rate, measured as the number of complaints per day divided by
the number of accounts banned per day, as an upper bound on false positives. During
the 2-week period between December 13 and 26, 2010, Renren received nearly 50
complaints per day, with the complaint rate being almost 0.015, which is extremely low.
Of these complaints, manual inspection confirms that 48% of the accounts are Sybils,
meaning that attackers attempted to recover Sybils by abusing the account recovery
process. The majority of the remaining complaints can be attributed to compromised
accounts. Thus, the true false-positive rate is even less than the daily complaint rate.

3. SYBIL TOPOLOGY ANALYSIS
We now begin our analysis of Sybil accounts with respect to graph topological charac-
teristics (and user collusion, later in Section 5). The analysis in this section (and sub-
sequent sections) is performed on a large, ground-truth dataset of more than 660,000
Sybil accounts gathered by Renren over more than 5 years. Roughly 15% of this dataset
(100K) was gathered from the new detector described in the previous section. The re-
maining 560K Sybil accounts have been detected using a wide variety of orthogonal
techniques including (but not limited to)2:

—IP Address Tracking: Used to detect bulk account creation (e.g., many creations
that originate from a single IP address or subnet).

—Content Analysis: Scanning content for spam-related keywords and blacklisted
URLs.

—Account Activity Statistics: Simple heuristics used to detect abnormal activity by
monitoring user clicks. Examples of abnormal activity include sending large numbers
of direct messages, browsing many profiles, or sending too many friend requests
within short time frames.

—User Complaints: Renren users can flag accounts and content as abusive, which
triggers a manual response from Renren’s security team.

2To protect Renren’s security and confidentiality, this article does not go into the detail of these detection
techniques.
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Table II. Overview of the Sybil Dataset Used in Section 3

Detection Technique Duration of Collection No. of Sybils Detected
Our real-time detector Aug. 2010 ∼ Feb. 2011 100K

IP tracking, content and activity analysis, user
complaints, etc.

Jan. 2007 ∼ Feb. 2011 560K

Table II summarizes our Sybil dataset. Given the size of the dataset, the time duration
over which the collection spans, and the range of detection techniques used, we believe
that this dataset is representative of Sybil activity on Renren.

In this section, we are interested in analyzing whether Sybils in the wild can be
identified using the community-based Sybil detectors that have been proposed by re-
searchers. These detectors assume that Sybils form tight-knit groups that can be de-
tected by looking for small quotient cuts in the graph. Thus, the linkages between
Sybils are critical for these detectors to function. However, if Sybils do not form tight-
knit groups, these detectors will not function—that is, these detectors are not capable
of detecting loosely connected or disconnected Sybils.

Our results show that Sybils on Renren do not conform to the assumptions of ex-
isting work. Analysis of the degree distribution of Sybil accounts demonstrates that
contrary to expectations, the vast majority of Sybils do not form social links with other
Sybils. Furthermore, temporal analysis of social links between Sybils indicates that
these connections are often formed randomly by accident rather than intentionally by
attacker.

3.1. Sybil Community Detectors
SybilGuard [Yu et al. 2006], SybilLimit [Yu et al. 2008], SybilInfer [Danezis and Mittal
2009], SybilRank [Cao et al. 2012], and SumUp [Tran et al. 2009] are all algorithms for
performing decentralized detection of Sybil nodes on social graphs. At their core, all of
these algorithms are based on two assumptions of Sybil and normal user behavior:

(1) Attackers can create unlimited Sybils and edges between them. Edges between
Sybils are beneficial, because they make Sybils appear more legitimate to normal
users.

(2) The number of edges between Sybils and normal users will be limited, because
normal users are unlikely to accept friend requests from unknown strangers.

Under these assumptions, Sybils tend to form tight-knit clusters, since the number of
edges between Sybils is greater than the number of edges connecting to normal users.
We refer to edges between Sybils as Sybil edges, whereas edges connecting Sybils and
normal users are called attack edges.

Sybil detection algorithms identify Sybil clusters by locating the small number of
edge cuts that separate the Sybil region from the social graph. SybilGuard, Sybil-
Limit, and SybilInfer all leverage specially engineered random walks for this purpose,
whereas SumUp uses a max-flow approach. Although all of these algorithms are im-
plemented differently, it has been shown that they all generalize to the problem of
detecting communities of Sybil nodes [Viswanath et al. 2010].

Problem Statement. Although these five algorithms have been shown to work on
synthetic graphs (i.e., real social graphs with Sybil communities artificially injected),
to date no studies have demonstrated their efficacy at detecting Sybils in the wild. In
other words, all of these techniques rely on the assumption that Sybils exhibit strong
clustering; if Sybils do not follow this behavior, these techniques will not be effective.

In the following sections, we examine the characteristics of Sybils on Renren in
order to ascertain whether they are amenable to identification by community-based
Sybil detectors.
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Fig. 5. The degree of Sybil accounts. Fig. 6. The size of connected Sybil components.

3.2. Sybil Edges
We begin our analysis of Sybil topology by examining the degree distribution of Sybils
on Renren. Our goal is to test the most basic assumption of community-based Sybil
detectors: do Sybils in the wild form tight-knit communities? In order for Sybils to
cluster, they must have at least one edge to another Sybil; otherwise, they will be
disconnected.

Figure 5 shows the degree distribution of all 667,723 Sybil accounts compared to the
degree distribution of a complete, 42 million node snapshot of the Renren social graph
collected in 2008 [Jiang et al. 2010]. When all edges attached to Sybils are considered,
the degree distribution is unremarkable. Sybils tend to have fewer friends than normal
users, but both Sybils and the overall population follow the same general trend.

However, when we restrict the distribution to only edges between Sybils, we discover
an unexpected result: only 20% of Sybils are friends with one or more other Sybils.
This indicates that the vast majority of Sybils do not cluster with other Sybils. Instead,
most Sybils only form attack edges and thus totally integrate into the normal social
graph.

Sampling Bias. One potential issue when comparing degree distributions is
whether the underlying samples are biased. In Figure 5, the degree distribution for
the entire Renren population (the “Actual Degree Distribution” line) is not biased: the
data comes from a complete snapshot of Renren gathered in 2008 [Jiang et al. 2010].

It is also unlikely that there is significant bias in the Sybil degree distribution. As
mentioned earlier, it is possible that our detector did not locate some inactive Sybils.
However, this is not an issue in practice: prior work on social Sybils found that 88%
are dormant for 1 week or less [Thomas et al. 2011]. Given that our ground-truth Sybil
data was collected (1) over the course of multiple years and (2) from multiple, comple-
mentary detection systems, it is likely that our dataset includes the vast majority of
Sybils.

3.3. Sybil Communities
We now shift our focus to the minority of Sybils that do connect to other Sybils. Al-
though we can conclude from Figure 5 that most Sybils in the wild do not obey the key
assumption of community-based Sybil detectors, it is still possible that the connected
minority are vulnerable to community detection. Thus, we now seek to answer the
following questions: what are the characteristics of Sybil communities on Renren, and
would community-based Sybil detectors be able to identify them?

To bootstrap our analysis, we construct a graph consisting solely of Sybils with at
least one edge to another Sybil. The resulting graph is highly fragmented: it consists
of 7,094 separate connected components. Figure 6 shows the size distribution of these
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Table III. Statistics for the Five Largest Sybil Components

Sybils Sybil Edges Attack Edges Audience
63,541 134,941 9,848,881 6,497,179
631 1,153 104,074 21,014
68 67 7,761 7,702
51 50 15,349 15,179
37 40 14,431 13,886

Fig. 7. Scatter plot of Sybil edges versus attack
edges for Sybil components on Renren.

Fig. 8. The order of adding Sybil friends for 1,000
Sybils. Each column represents an individual Sybil.

Sybil components. The distribution is heavy tailed: although 98% of Sybil components
have fewer than 10 members, the vast majority of Sybil accounts belong to a single, large
connected component. Table III lists the details for the five largest Sybil components.

For connected components of Sybils to be identifiable by existing algorithms, they
must form tight-knit communities. Put another way, the number of Sybil edges inside
the community must be greater than the number of attack edges that connect to honest
nodes. However, as shown in Table III, this assumption does not hold for the largest
Sybil components on Renren.

Figure 7 shows a scatter plot comparing the number of Sybil edges and attack edges
in each Sybil component on Renren. All components are above the 45-degree line,
meaning that they have more attack edges than Sybil edges. Thus, no components meet
the requirements for detection using existing community-based Sybil identification
algorithms.

3.4. Sybil Edge Formation
We now examine the processes driving the formation of Sybil edges on Renren. In
particular, we seek to determine if edges between Sybils are intentionally created by
attackers. If so, then this means that community detection may still be a viable ap-
proach to detecting Sybils on OSNs. However, if Sybil edges are created unintentionally,
then this raises a new question: what process drives the accidental creation of Sybil
edges?

Temporal Characteristics. One simple litmus test for identifying intentional Sybil
edge creation is examining the order in which edges were established. If Sybil edges
are formed intentionally by attackers, then we would expect to see them created before
friend requests are sent out to normal users. This behavior maximizes the utility of
Sybil edges by giving Sybils the appearance of “normal” friend relations, thus (poten-
tially) deceiving normal users into accepting friend requests from Sybils. In contrast,
there is little utility for Sybils to gain by friending each other after friend requests have
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Fig. 9. Degree distribution of the largest Sybil
component.

Fig. 10. Degree distribution of normal users (from
Jiang et al. [2010]) and targets of friend requests
from Sybils.

been sent to normal users. These edges will not be seen by normal users, and they are
useless for carrying out attacks (e.g., sending out spam).

Figure 8 shows the order in which edges were created for 1,000 random Sybils drawn
from the largest Sybil component on Renren (containing 63,541 Sybils). For each Sybil
i with n edges, we construct the sequence of edges ⟨ f1, f2, . . . , fn⟩, sorting the edges
chronologically by creation time. Each column of the figure shows the sequence of edge
creations for a particular Sybil, with black dots representing Sybil edges. Thus, if Sybils
create edges to each other intentionally, we would expect to see unbroken lines of black
dots on the figure, indicating rapid, sequential edge creation.

As shown in Figure 8, the order of Sybil edge creation is almost uniformly random.
There are a few examples of solid vertical lines, indicating intentional edge creation. We
highlight these examples in Figure 8. However, most Sybil edge creation is interspersed
randomly with edges created to normal users. This indicates that the vast majority of
Sybil edges in the large component were formed accidentally: attackers had nointention
to link Sybils together and form a connected component. It is unclear why a tiny
minority of Sybils exhibit correlated behavior.

Sybil Degree. In order to reinforce the idea that the vast majority of Sybil edges in
the large component are not intentionally created, we plot the degree distribution of
the large component in Figure 9. Here, 34.5% of Sybils only connect to one other Sybil,
and 93.7% connect to 10 or fewer Sybils. It is unlikely that an attacker would expend
the effort to link Sybils in such a loose way, since these edge counts are not high enough
to make Sybils appear legitimate to normal users.

Biased Random Sampling. At this point, we have established that attackers do
not create the vast majority of Sybil edges intentionally; instead, they appear to occur
randomly by accident. To understand how this happens, we conducted a brief survey
of three software tools used to manage Sybil accounts on Renren. The details for each
tool are given in Table IV. The purpose of these tools is to automate the process of cre-
ating Renren accounts, forming edges between the Sybils and other users, and posting
content en mass. The documentation for the tools in Table IV state that they select tar-
gets for friending by performing biased random sampling on the social graph to locate
popular users. In practice, the tools simplify this process by leveraging Renren’s friend
recommendation features. These recommendation systems are designed to highlight
popular, well-connected users. Thus, attackers are abusing Renren’s features to locate
a biased random sample of targets for friending.

Although we cannot be certain whether the Sybils in our dataset were created using
the tools in Table IV, we can show that Sybils on Renren do bias friend requests
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Table IV. Popular Sybil Creation and Management Tools

Tool Name & URL Platform Cost
Renren Marketing Assistant V1.0 Windows $37
http://www.duote.com/soft/30348.html
Renren Super Node Collector V1.0 Windows Contact
http://www.snstools.com/snstool/86.html Author
Renren Almighty Assistant V5.8 Windows Contact
http://www.sns78.com/ Author

toward users with high degrees. Figure 10 shows the degree distribution for all users
who received friend requests from Sybils (we refer to these users as targeted users).
We compare the degrees of the targeted users to the degree distribution of the same
complete, 42 million node Renren snapshot (from Jiang et al. [2010]) used in Figure 5.
Figure 10 illustrates that the degrees of targeted users are skewed toward high degrees
when compared to the actual degree distribution of the Renren population.

Based on the advertised functionality of these tools, and the results in Figure 10,
we can surmise that Sybil edges are created accidentally due to two factors. First, the
goal of Sybils is to accrue many friends by sending out numerous friend requests. If a
Sybil is successful, it becomes popular by virtue of its large social degree. Second, the
biased random sampling performed by Sybil management tools is intentionally geared
toward locating popular users. Thus, it is likely that these tools will, unbeknownst
to the attacker, occasionally select Sybil nodes to send friend requests to. As shown
in Figure 3, Sybils almost always accept incoming friend requests; hence, when this
situation occurs, a Sybil edge is likely to be created.

4. SYBIL CLICKSTREAMS
To better understand the behavior of Sybil accounts, we now analyze the clickstream
data of Sybils on Renren. We start by comparing the session-level characteristics of
Sybils and normal users and then examine the types of activities in which Sybils engage
within each session. Finally, we construct state-based models of Sybil and normal user
behavior. These models help to underscore differences between normal and abnormal
behavior on Renren.

Dataset and Methodology. Our study is based on detailed clickstream data for
50K Sybils and 50K normal users. These users were selected uniformly at random from
Sybils and normal accounts that registered on Renren after June 1, 2009 (clickstream
data was unavailable for older accounts). Our overall goal is to investigate whether
Sybils can be detected early in their lifetime, so we focus on the first 30-day clickstream
for each Sybil and normal user. In total, our month-long dataset includes 16,010,645 and
21,345,882 clicks for Sybils and normal users, respectively. Each click is characterized
by an anonymized user ID, a timestamp, and a URL from which the click type can be
ascertained.

Clicks from each user in the trace are grouped into sessions, where a session rep-
resents the sequence of a user’s clicks during a single visit to an OSN. As in prior
work, we define a session as over when a user does not click any links for 20 minutes
[Benevenuto et al. 2009]. Session duration is calculated as the time interval between
the first and last action within a session. Overall, the trace includes 3,182,481 and
1,596,531 sessions for Sybils and normal users, respectively.

4.1. Session-Level Characteristics
In this section, we characterize Sybils’ activity at the session level. We seek to determine
how often and how long do Sybils connect to OSN sites, as compared with normal users?
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Fig. 11. Sessions per day for Sybil and normal users. Fig. 12. Overall distribution of session durations.

Table V. Clicks from Normal Users and Sybils on Various Renren Activities
Activities with <1% of clicks are omitted for brevity.

Category Description of Activity No. of Sybil Clicks %
No. of Normal

Clicks %
Photo Visit photo 370,359 2.3 11,410,972 52.9

Visit album 100,915 0.63 1,182,921 5.5
Message Instant message a friend 137,420 0.86 2,085,133 9.7
Share Share content 344,085 2.2 776,461 3.6
Friending Invite from guide page 6,924,738 43.1 810,873 3.8

Invite from
recommendation

2,865,203 17.8 828,573 3.9

Invite from searching 255,341 1.6 364,696 1.7
Accept invitation 135,032 0.84 617,217 2.9

Profile Visit profiles 4,381,877 27.3 2,059,880 9.6

Figure 11 shows the number of sessions that Sybil and normal users initiate per
day. Sixty-four percent of normal users access Renren no more than once per day,
whereas only 8% Sybils fall in this low-frequency range. Sybils average 3.9 sessions
per day versus 1.5 for normal users. However, the session duration of Sybils is much
shorter than for normal users. Figure 12 shows the distribution of session durations for
normal users and Sybils. The median session duration for normal users is 6 minutes,
whereas the median for Sybils is 48 seconds. In contrast, <25% of normal sessions are
48 seconds long. A very small percentage of Sybils exhibit sessions that are hours long.
These Sybils rate limit themselves by only sending friend requests and spam every few
minutes and are hence active for a long period of time.

The observed session-level Sybil characteristics are driven by attacker’s attempts
to circumvent Renren’s security features. Renren limits each account to sending 50
friend requests per day. Thus, in order to collect many friends and increase the reach of
spam, attackers create many Sybils, quickly log in to each one and perform malicious
activities (e.g., sending unsolicited friend requests and spam), and then log out and
move on to the next account. Furthermore, Renren only allows accounts to browse 100
profiles per hour. As shown in Table V, Sybils spend a great deal of clicks browsing
profiles. Hence, attackers maximize the number of profiles that they can browse by
logging in to each Sybil once per hour and maxing out its allotment of profile views.

4.2. Clicks and Activities
Having characterized Sybils at the session level, we now analyze the type and fre-
quency of Sybil clicks within each session. As shown in Table V, we organize clicks into
logical categories that correspond to high-level OSN features. Within each category
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are activities that correspond to particular Renren features. The primary categories on
Renren are:

—Photo: The photo category is the most popular activity in Renren. This includes
uploading photos, organizing albums, tagging friends, and browsing friends’ photos.

—Message: The message category includes textual interactions between users, such
as status updates, wall posts, comments, and real-time instant messages.

—Share: The share category refers to users posting hyperlinks on their wall. Common
examples include links to videos and news stories on external Web sites or links to
blog posts on Renren’s internal blogging service.

—Friending: This category encapsulates friend relationship management. This in-
cludes sending friend requests, accepting or denying those requests, and un-
friending. Renren provides users with several ways to locate new friends. There
is a “guide” that lists popular, high-degree users, as well a recommendation feature
that takes graph connectivity and profile similarity into account. Users can also use
keyword search to locate friends, or they can send invitations directly from a user’s
profile page.

—Profile: This category includes browsing user profiles. Much like Facebook, all ac-
counts on Renren can be browsed by anyone, but the amount of information that
is displayed is restricted by the profile owner’s privacy settings. Unlike Facebook,
Renren profiles display a list of the nine most recent visitors [Jiang et al. 2010].

Table V displays the most popular activities on Renren. The number of clicks on each
activity is shown, as well as the percentage of clicks. Percentages are calculated for
Sybils and normal users separately—that is, each “%” column sums to 100%. For the
sake of brevity, only activities with ≥1% of clicks for either Sybils or normal users are
shown.

Table V reveals contrasting behaviors between Sybils and normal users. Unsur-
prisingly, normal users’ clicks are heavily skewed toward photos (58.4%) and instant
messaging (9.7%). Surprisingly, attackers are not currently abusing these features by
sending spam instant messages or by posting advertisements embedded in images. It is
unclear why attackers are not leveraging these channels yet, although their strategies
may shift in the future.

Normal users and Sybils share content at similar rates (3.6% and 2.2%, respectively).
This is an important observation, because (as we discuss in Section 5) sharing is the
primary channel for spam dissemination on Renren. The similar rates of legitimate
and illegitimate sharing indicate that spam detection systems cannot simply leverage
numeric thresholds to detect spam sharing. Instead, we examine correlative methods
to identify spam sharing in Section 5.

Sybils’ clicks are heavily skewed toward friending (63.3% for Sybils, 12.3% for normal
users). This facilitates the primary goal of Sybil accounts on Renren: to accumulate
friends. Sybils send friend requests using Renren’s guide and recommendation features
eight times more frequently than normal users. As discussed in Section 3.4, this indi-
cates that attackers are abusing Renren’s features in order to locate popular users to
target with friend requests. Although Sybils accept close to 100% of the friend requests
that they receive (see Figure 3), in absolute terms, Sybils receive fewer friend requests
than normal users. Hence, normal users click the “accept friend request” link more
often than Sybils.

Strangely, Sybils on Renren spend 27.3% of their clicks browsing profiles, whereas
normal users only spend 9.6%. The reason for this behavior is not clear. The vast
majority of friend invitations from Sybils are sent using the guide and recommendation
features, so Sybils are not crawling in order to locate targets for friending.
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Fig. 13. Reciprocation of profile views.

Fig. 14. Categories and transition probabilities in the clickstream models of Sybils and normal users.

One possible explanation has to do with the recent visitor list that appears on each
Renren profile. A Sybil can browse other user profiles in the hope that the user will see
the visit in the log and reciprocate. The user will then see (and hopefully click) spam
links in the Sybil account’s profile. Figure 13 shows the percentage of profile visits that
are reciprocated for a sample of 200 normal users and Sybils. Normal users exhibit a
near linear relationship, with 50% of visits being reciprocated for 50% of users. Con-
versely, visits from Sybils are rarely reciprocated: the median reciprocation percentage
for Sybils is just 7%. However, attackers are used to dealing with high attrition rates
for spam [Kanich et al. 2008], so even these small numbers of reciprocated views may
be worth it.

An alternative explanation for the profile browsing behavior of Sybils is to facilitate
theft of personal information. Attackers can use information from personal profiles
to launch targeted spear-phishing attacks. OSN profiles can also be commoditized by
“cloning” them onto other Web sites [Wang et al. 2012]. Unfortunately, we cannot test
conclusively for information theft by Sybils.

4.3. Clickstream Modeling
We now analyze the sequence of clicks from Sybils and normal users using a Markov
chain model. In this model, each state is a category, and edges represent transitions
between categories. We add two abstract states—initial and final—which we insert into
the beginning and end of each click sequence. Figure 14 shows the category transition
probabilities for both Sybils and normal users. The sum of all outgoing transitions
from each category is 1.0. To reduce the complexity of the figure, edges with probability
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<4% have been pruned (except for transitions to the final state). Categories with no
incoming edges after this pruning process are also omitted.

Figure 14 demonstrates that Sybils follow a very regimented set of behaviors. After
logging in, Sybils immediately begin one of three malicious activities: friend invitation
spamming, spam sharing, or profile browsing. The profile browsing path represents
crawling behavior: the Sybil repeatedly views user profiles until the daily allotment of
views is exhausted. The share/friend invitation path represents spamming behavior.
Renren’s security systems place tight limits on the number of shares per account per
day, hence the self-transition on the share category is very small. However, attackers
do try and maximize the utility of each Sybil log in: 31% of spam shares are followed
by friend spam generation.

Compared to Sybils, normal users engage in a wider range of activities, and the
transitions between categories are much more diverse. The highest centrality category
is photos, although it is not the most likely initial category. Intuitively, the most common
path for normal users is to first browse to a friend’s profile, then to start browsing their
photos. Sharing and message generation are relatively low probability categories. As
prior studies of interactions on OSNs have shown, many users generate new content
less than once per day [Wilson et al. 2009]. The message category has a high probability
self-transition due to the presence of real-time instant-message conversations.

4.4. Discussion
Our analysis shows that Sybils have very different clickstream characteristics com-
pared to normal users. In this section, we briefly discuss how these differences can
be leveraged to algorithmically distinguish normal users from Sybils. A more complete
treatment of this subject (including implementation details) can be found in Wang et al.
[2013].

At a high level, the goal is to use ground-truth clickstream data to train a classifi-
cation algorithm, which can then be used to label users as normal or Sybil. We now
discuss two potential classification algorithms that match these criteria.

The first is to use an SVM, a tool that we have already leveraged in our analysis in
Section 2.3. Based on the results in this section, we could train an SVM on the following
clickstream features: (1) session-level features, including average clicks per session,
average session length, average interarrival time between clicks, and average sessions
per day, and (2) features from click activities. As mentioned in Section 4.2, there are
five categories of clicking activities on Renren. The percentage of clicks in each category
could be used as features for an SVM, as well as the transition probabilities between
categories.

A second possible classification method is to use maximum-likelihood estimation
(MLE). Given the click sequence of a user, we can use MLE to examine which click-
stream model (described in Figure 14) better explains the observed sequence. If the
sequence is more likely to be explained by the Sybil clickstream model, the correspond-
ing user would be classified as a Sybil or otherwise as a normal user. In our case,
estimating the likelihood of a model M involves considering each transition {si, si+1}
during the user click sequence {s1, s2, . . . , sn} and computing the likelihood PM(si, si+1)
that the user transits from category si to category si+1 according to the model M. Thus,
the likelihood PM that model M reproduces the sequence is given by the product of the
individual likelihoods according to model M.

Unfortunately, the limitation of these classification algorithms (SVM and MLE) is
that they require training on large samples of labeled ground-truth data. For a practical
Sybil detection system, it would be better to develop clickstream analysis techniques
that leverage unsupervised learning on real-time data samples—that is, require zero
or little ground truth. We leave the development of these techniques to future work.
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Table VI. Average Actions per Sybil on Renren After
June 1, 2009

Sybil Action Avg. per Sybil
Write a blog post 0.11
Update status 2.13
Upload photo 1.81
Post to a friend’s wall 0.73
Share a link 6.88

5. SPAM STRATEGIES AND COLLUSION
In Section 3, we revealed that the vast majority of Sybils on Renren do not form explicit
friend connections with each other. However, this does not imply that each Sybil is
independently controlled by a different attacker. In this section, we uncover collusion
between Sybils by leveraging spam content similarity and temporal correlation to locate
inferred relationships.

We begin by presenting an overview of the strategies used by Sybils to disseminate
spam on Renren. The most common strategy is “sharing” links to spam blogs, and
we present a detailed case study on this phenomenon. The results of the case study
indicate that Sybils share links to the same content at about the same time. These
observations motivate us to cluster Sybils based on content similarity and temporal
correlation. Our results reveal that even under strict correlation thresholds, Sybils form
large connected components. This indicates that Sybils are being controlled collectively
by colluding attackers behind the scenes.

5.1. Share Spam on Renren
We begin our analysis by characterizing the overall spamming behavior of Sybils
on Renren. Prior studies of OSN spam have identified different spam dissemination
strategies used by attackers. On Facebook, attackers post wall messages laden with
spam links [Gao et al. 2010]. On Twitter, attackers attempt to hijack “trending” topics
[Stringhini et al. 2010] or maliciously create new ones [Grier et al. 2010].

On Renren, the dominant method for Sybils to disseminate spam is to “share” links to
spam content. As shown in Table VI, shares per Sybil far outnumber status updates
and wall posts. Sharing is an advantageous strategy because the attacker only needs to
generate one unique piece of spam—that is, the original piece of content. Sybils simply
forward links to this content to all of their friends. Users on all OSNs engage in link
sharing (e.g., “liking” on Facebook), so this behavior is not overtly suspicious. However,
as we show later, there are quantifiable differences between Sybil and normal sharing.

Out of our complete dataset of 660K Sybils, about 64% have not shared any content
due to being banned by Renren before beginning to spam. Hence, in this section, we
focus on the remaining 237,205 Sybils that have shared content. In total, these Sybils
shared 3,491,988 links. Figure 15 shows the number of shares per Sybils. Here, 25%
of Sybils only share a single piece of content before they are caught and banned, and
<1% of Sybils go uncaught long enough to share 100 or more links.

To investigate the purpose of spam on Renren, we manually examined the shares of
a random sample of 1,000 Sybils. We found that Sybils on Renren only share two types
of links:

(1) Blogs: Of shares from Sybils, 62.5% link to spam blog posts. These blogs engage
in typical spam activities, such as promoting shady online merchants and selling
pharmaceuticals. Many of these blogs attempt to obfuscate themselves by copying
content from popular, legitimate blogs and then slightly modifying the content to
include spam text and links.
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Fig. 15. CDF of shares per Sybil. Fig. 16. Distribution of shares across spam blogs.

(2) Videos: The remaining Sybil shares link to bogus online videos. These videos use
provocative titles and thumbnail images to entice users to click on them. Users are
then redirected to sites that include spam content.

5.2. Case Study: Spam Blogs
We now turn our attention to spam blogs and the Sybils that promote them. We focus
on shares of spam blogs because they are the most prolific type of spam on Renren.

Classifying Spam Blogs. Before we begin analyzing our data, we discuss our
methodology for verifying that blogs shared by Sybils are truly spam. In the previous
section, we manually verified that a subset of blogs shared by Sybils are spam—that
is, they include links to phishing sites, Web sites selling contraband goods, sites that
attempt drive-by-download exploits, and so forth. Furthermore, the security team at
Renren confirmed that the majority of blogs shared by Sybils in our dataset were also
banned by Renren’s security systems. Reasons for banning these blogs included com-
plaints from users, blogs containing spam keywords, and blogs containing blacklisted
hyperlinks. Thus, in the remainder of this section, we conservatively assume that all
blogs shared by Sybils are spam blogs.

Identifying Collusion. We start by addressing the fundamental question: are Sybils
colluding to promote spam blogs, or is each Sybil operating independently? To answer
this question, we calculated the amount of duplication among the spam blogs promoted
by Sybils. Among the 3 million individual spam shares in our dataset, only 302,333
unique spam blogs are promoted. Figure 16 shows the number of shares for each spam
blog, sorted from most to least promoted. The top 30 spam blogs are highly promoted,
each garnering more than 10,000 shares; 25% of spam blogs receive 2 or more shares
from Sybils, which is the bare minimum evidence for collusion. However, this result is
a lower bound, since we only compared the precise links shared by Sybils on Renren. It
is possible that these links eventually redirect to the same external Web sites, which
would indicate additional levels of collusion among attackers.

Information Dissemination. One reason that Sybils on Renren collude to promote
spam blogs has to do with the trending content section on the Renren homepage. Each
day, the 100 most popular blog posts, images, and videos on Renren get featured on
the site’s homepage, which receives millions of hits per day. Attackers can use Sybils
to inflate the popularity of spam blogs and try to make them artificially trend. Other
researchers have observed similar attacks against Digg [Tran et al. 2009] and Twitter
[Grier et al. 2010]. Currently, Renren relies on manual inspection by humans to filter
spam out of the trending content section.

This raises our next question: does Sybil collusion create quantifiable differences
in the dissemination pattern of spam content? Intuitively, content on OSNs should
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Fig. 17. Connectivity between users sharing normal
and spam blogs.

Fig. 18. The degree distribution for content similar-
ity graphs with varying thresholds.

spread organically along social links. A user posts a link, then friends and friends
of friends share, “like,” and “retweet” it to an ever-expanding audience. Researchers
have identified information dissemination trees matching this pattern on many OSNs
[Kwak et al. 2010]. However, as we showed in Section 3, Sybils are not friends with each
other. Thus, each Sybil that shares a spam link creates an independent information
dissemination tree.

To test whether this intuition is true, we took a snapshot of the 100 most popular blogs
on Renren on February 2, 2011. We manually inspected each blog and determined that
26 blogs were spam—that is, they included overt spam content and/or links to malicious
Web sites. Figure 17 shows the number of edges that connect users who share links to
the blogs in our sample. There is a clear distinction between normal blogs and spam
blogs. Legitimate blogs exhibit an order of magnitude more shared edges, indicating
that their popularity has grown organically along friendship links.

In contrast, spam blogs promoted by Sybils have far fewer shared edges. This result
makes sense, given that we have shown that Sybils have few edges connecting to each
other. Normal users are unlikely to reshare links to spam blogs, so their popularity
growth is almost entirely driven by disconnected Sybils. Only two spam blogs from our
sample approach the cluster of normal blogs in Figure 17.

5.3. Content-Based Sybil Components
At this point we have demonstrated that Sybils on Renren collude to disseminate
spam content, despite having few social links between them. We now examine whether
content similarity can be used to group Sybils into connected components. Intuitively,
strongly connected components are likely to be under the control of a single attacker.
Understanding these components allows us to estimate the number of attackers that
are behind threats to Renren, as well as the relative strength of each attacker (as
measured by the number of Sybils that they control).

We model collusion between Sybils as a content similarity graph. In a content similar-
ity graph, Sybils are nodes and two Sybils are connected if they share similar content.
We consider the following similarity criteria: let si and sj be the sets of content that two
Sybils i, j share. We define the content similarity between them as sij = si ∩ sj/si ∪ sj .
Content similarity can range from 0 to 1, where 0 means that there is no duplication
of content and 1 means the two Sybils share exactly same content. We say that two
Sybils i, j share similar content if sij is larger than some threshold Ts (or equal to Ts
in the special case of Ts = 1).

To understand collusion between Sybils, we built content similarity graphs using
three values for Ts: 0, 0.5, and 1. Ts = 0 is the most lax threshold: pairs of Sybils sharing
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Fig. 19. Sybil-connected component sizes under dif-
ferent thresholds.

Fig. 20. Time similarity versus content similarity.

1 or more identical pieces of content will be connected. This is the same similarity
threshold used in prior studies of OSN spam [Gao et al. 2010; Grier et al. 2010]. Ts = 1
is the strictest threshold: all content shared by two Sybils must be identical in order
for them to be connected.

Figure 18 shows the degree distribution of our three content similarity graphs.
Compared to the original social graph (see Figure 5), Sybils have many more edges
connecting to each other in the content similarity graphs. Even under the tightest
threshold Ts = 1, >50% of Sybils have at least one Sybil partner forwarding ex-
actly the same content. These Sybils pairs are obviously under the control of a single
attacker.

In the case of moderate and low thresholds, the number of edges significantly in-
creases. Under the most permissive threshold Ts = 0, 97% of Sybils have edges to other
Sybils. Large connected components that emerge under more permissive thresholds
may represent Sybils that are “rented” by spammers. Studies have shown that black-
market crowd-sourcing services allow spammers to cheaply hire workers to spam on
OSNs for them [Wang et al. 2012; Motoyama et al. 2011]. These workers (and the Sybils
they control) end up being involved in multiple spam campaigns, which helps explain
why different groups of Sybils exhibit varying amounts of overlapping content.

Next, we study the component structure of the content similarity graph. Figure 19
shows the quantity and sizes of connected components under different thresholds,
ordered from largest to smallest. As expected, tighter thresholds fragment the graph
into a larger number of distinct components and reduce the size of the largest (giant)
component. Under the lax Ts = 0 threshold, the 237K Sybils form 4.9K connected
components. The giant component contains >219K (90%) Sybils. In contrast, there
are 76K connected components under the moderate Ts = 0.5 threshold. The giant
component only contains 84K (35%) Sybils, but the next 100 largest components contain
an additional 60% of the Sybils. Finally, under the tight Ts = 1 threshold, there are
114K components, with the largest only containing 3,700 Sybils. In this scenario, the
first 1,000 components only contain 40% of the overall Sybils.

The results in Figure 19 confirm our intuition that content similarity can be used to
identify groups of colluding Sybils. Tight thresholds pinpoint Sybils that were created
and managed by a single attacker. The maximum size of these components demon-
strates the upper bound on the number of Sybil accounts that a single attacker can
reasonably generate. More relaxed thresholds identify Sybils that belong to several
overlapping spam campaigns, possibly under the control of different attackers at dif-
ferent times. These components can grow to huge sizes, as attrition forces attackers to
gradually replace old Sybil accounts with new ones.
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5.4. Temporal Correlation Between Sybils
We now investigate whether there are temporal correlations between Sybils that ex-
hibit content similarity. We suspect that Sybils under the control of a single attacker
will be active at similar times engaging in coordinated spam campaigns.

Let ti and tj be the sets of links that two Sybils i, j share during time interval S. We
define the temporal similarity between the Sybils as tij = ti ∩ tj/ti ∪ tj . Like content
similarity, temporal similarity can range from 0 to 1, with 0 meaning no overlap and
1 meaning exact overlap. The size of time interval S can be varied to control the
granularity of comparisons. In our experiments, we evaluate time similarity over two
time intervals: 1 hour and 1 day.

To test our hypothesis, Figure 20 shows content similarity versus time similarity
for Sybils in our dataset under two time intervals. Each line plots the average time
similarity for discreet sets of Sybil pairs with close content similarity. For example, the
first point of the hour-scale line represents the average time similarity for all pairs of
Sybils with content similarity in the range 0 to 0.1. The error bars show the standard
deviation for each data point.

Figure 20 reveals that time similarity is roughly proportional to content similarity.
As expected, Sybils that share similar content tend to do so at similar times, reinforcing
our conclusion that Sybils are colluding. Setting the time interval to 1 day significantly
increases the amount of collusion that we can identify. Sybils that share near-identical
content (content similarity ≈0.95) also exhibit nearly 0.92 time similarity under the
1-day threshold. This shows that attackers move rapidly to complete social spam cam-
paigns using many Sybils within short time spans.

6. MOVING SYBIL DEFENSE FORWARD
In Section 2.3, we present an accurate, scalable system that has been very effective
at catching Sybils on the Renren social network. However, security is a constant cat
and mouse game between attackers and defenders: now that Renren has deployed
countermeasures against Sybils, attackers may try to adapt in order to circumvent our
system.

In this section, we investigate the limits of our detection system. First, we propose
a new, hypothetical strategy that attackers could use to obfuscate their Sybils from
our detector. This new strategy is born from necessity: in order to avoid our deployed
detector, Sybils must collude to inflate key metrics that are leveraged by our detector.
We describe the new attack model in detail and formally define its parameters.

Next, we conduct simulated attacks against a real social graph: the Peking Uni-
versity (PKU) regional network of Renren. We observe that under the new attack
model, colluding Sybils inevitably form tight-knit communities. We leverage this fact
to strengthen our detector against the new attack model. Results from simulated at-
tacks demonstrate that the improved detector is highly accurate at detecting Sybils
operating under the new attack model. We conclude with a summary of results and a
discussion of deployment scenarios.

6.1. New Attack Model
Our existing Sybil detector relies on four key metrics to identify Sybils:

(1) Invitation frequency: how frequently are friend requests sent by the user?
(2) Outgoing requests accepted: what percentage of friend requests sent by the user

are accepted?
(3) Incoming requests accepted: what percentage of friend requests received by the

user are accepted?
(4) Clustering coefficient: what is the user’s clustering coefficient?
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Of these four features, the two most important are outgoing requests accepted and
clustering coefficient. Invitation frequency and incoming requests accepted may be ma-
nipulated by a dedicated attacker—that is, by slowing down the rate at which friend
requests are sent and by randomly denying some fraction of incoming friend requests.
However, the outgoing acceptance rate and clustering coefficient are more difficult to
manipulate, since they depend on the behavior of the users who receive friend requests
from the Sybil.

The only way for a Sybil to influence its outgoing acceptance rate and clustering coef-
ficient is for it to send friend requests to other colluding Sybils. These Sybils are guar-
anteed to accept the requests, thus inflating the outgoing acceptance rate of the sender.
Furthermore, if several colluding Sybils follow the same strategy, they will naturally
form a well-connected cluster, and thus their clustering coefficient scores will go up.

These observations form the basis of our new, hypothetical attack model. In order
to avoid our deployed detector, Sybils must collude in order to inflate their outgoing
request acceptance rate and their clustering coefficient. Intuitively, this causes Sybils to
form a community that links together the colluding Sybils. Although we do not observe
such Sybil communities in our measured data (see Section 3.2), the existence of our
detector forces attackers to adapt. Under this new regime, Sybils are forced to form
communities in order to avoid detection.

Formal Model. We now formally define the parameters of the new attack model.
Consider an attacker that controls N total Sybils. In order to avoid detection, each
Sybil must maintain a friend request acceptance percentage of at least β. Let α be the
probability that normal users accept friend requests from Sybils. In order to keep a high
accept percentage, let each Sybil send friend requests to other Sybils with probability
p and to normal users with probability 1 − p. Thus, in order to avoid detection, each
Sybil must send friend requests that obey the following inequality: β ≤ p + α(1 − p).
If each Sybil sends n total friend requests, then each Sybil will create n∗ p Sybil edges
and n ∗ α(1 − p) attack edges.

6.2. Simulated Attacks and New Defense Strategies
We investigate the graph structure of Sybils that follow the new attack model by
simulating attacks against a real social graph. We use the PKU regional network on
Renren as our target social graph, since its size is reasonable (170,000 nodes) and its
properties have been studied by prior work [Jiang et al. 2010]. In our simulation, we
create N Sybils, each of which sends n friend requests divided between normal users
and Sybils according to the inequality β ≤ p + α(1 − p). We fix α = 0.26, which is the
median acceptance percentage for Sybil friend requests in our dataset (see Figure 2).
Similarly, we set β = 0.5, which is the detection threshold used by our deployed detector.

We experiment with many combinations of attack parameters in order to observe
their effects on Sybil graph structure. As shown in Table VII, we test small and large
groups of Sybils (column N). Given α = 0.26 and β = 0.5, p can be calculated using the
inequality β ≤ p+ α(1 − p) (p = 0.33 in our simulations). For each value of N, we vary
n, the number of friend requests sent per Sybil. Table VII shows the number of Sybil
edges and attack edges per Sybil as n varies.

In order to avoid creating Sybil clusters that obviously deviate from normal graph
structure, the attacker can target Sybil edges in such a way as to create “natural”-
looking clusters. In our simulations, we use two common models to direct the creation
of Sybil edges: (1) Erdős-Rényi, where the attacker links randomly chosen Sybils,
and (2) Preferential Attachment, where the destination of each Sybil edge is chosen
proportionally to the destination Sybil’s degree. Normal users are selected uniformly
at random as targets for attack edges.
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Table VII. Simulated Sybil Attacks Against the PKU Graph

N n Edges per Sybil Erdős-Rényi Pref. Attach.
Sybil Attack Prec. Rec. Prec. Rec.

1K 100 33 17 99.4% 1 99.8% 1
300 99 52 98.3% 1 97.8% 1
500 165 87 89.4% 1 91.3% 1

1,000 330 174 79.6% 1 79.5% 1
2,000 660 348 64.3% 1 63.4% 1

10K 100 33 17 98.9% 1 98.5% 1
1,000 330 174 82.9% 1 82.7% 1
2,000 660 348 72.9% 1 72.5% 1

Evaluating Existing Sybil Community Detectors. Although multiple Sybil de-
tection algorithms have been proposed, such as SybilGuard [Yu et al. 2006], SybilLimit
[Yu et al. 2008], SybilInfer [Danezis and Mittal 2009], and SumUp [Tran et al. 2009],
prior work demonstrates that these Sybil detectors generalize to community detection
[Viswanath et al. 2010]. In essence, these detectors assume that Sybils form tight-knit
groups that can be detected by looking for small quotient cuts in the social graph.

Therefore, we now seek to answer the following question: do Sybils form strong
communities when attackers follow the new attack model? If Sybils do form tight-knit
communities under the new attack model, then this leads to a second question: what is
the accuracy of Sybil community detectors under these conditions? If their accuracy is
high, then we could use them to complement our existing, feature-based Sybil detector.

To answer these questions, we use the community detection algorithm developed
by Blondel et al. [2008] to locate communities in the graphs listed in Table V. For
each simulated attack, we locate the community with the largest number of Sybils
and evaluate its precision (the ratio of Sybils to total number of nodes within the
community) and recall (the ratio of Sybils within the community to total number of
Sybils). Intuitively, these metrics tell us the false-positive (precision) and false-negative
(recall) rates of the community detector when we use it to isolate Sybils.

The results shown in Table VII are mixed. On one hand, when n ≤ 300, the com-
munity detector is able to identify Sybils with high precision. This proves that Sybils
do form tight-knit communities when they follow the new attack model. However, as
n grows, so does the false-positive rate. Thus, although recall is consistently 1 (i.e., all
Sybils are caught), many normal users are mistakenly grouped into the Sybil commu-
nity as well.

The results in Table VII indicate that by themselves, Sybil community detectors are
not practical for locating Sybils that follow the new attack model. A stealthy attacker
could create many Sybils, add Sybil and attack edges over a period of many days
until n is large, and then begin using the Sybils to send spam. Thus, by the time the
Sybils become actively malicious, a Sybil community detector will generate many false
positives when attempting to isolate the Sybil community.

External Acceptance Percentage. In order for Sybil community detectors to be
practical (i.e., not generate false positives), they must be able to identify Sybil commu-
nities early on in their existence. Unfortunately, graph structure alone is not enough
to disambiguate malicious and benign communities. Thus, in order to identify Sybil
communities early in their existence, we must leverage additional features beyond the
graph topology.

Toward this end, we introduce a new feature: the external acceptance percentage. The
external acceptance percentage is the fraction of friend requests sent by members of a
community to users outside the community that are accepted. Intuitively, this feature
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Fig. 21. The external acceptance percentage of normal and Sybil communities.

is useful, because for Sybils the vast majority of accepted friend requests are from other
Sybils inside the local community. Conversely, rejections are from normal users outside
the local community. Thus, Sybil communities will have a low external acceptance
percentage, which can be used to quickly separate them from benign communities.

To confirm our intuition, we plot Figure 21, which shows the external acceptance per-
centage for benign and Sybil communities from the PKU network during our simulated
attacks. There is a clear distinction between normal communities and Sybil commu-
nities, which holds even as attackers vary N and n. The Sybils in Figure 21 follow
the Erdős-Rényi attachment model, but the results are the same for the Preferential
Attachment model.

Figure 21 demonstrates that the external acceptance ratio is an effective feature for
distinguishing between Sybil and benign communities. Without the external acceptance
ratio, Sybil community detectors generate too many false positives to be practically de-
ployed. However, by coupling latent information about rejected friend requests with
graph structural information, the accuracy of Sybil community detectors can be dra-
matically improved.

6.3. Summary and Discussion
In this section, we have investigated the limits of our deployed, feature-based Sybil
detector. We observe that in order for Sybils to avoid our detector, they must form
tight-knit communities. Although Sybil community detectors are able to identify these
clusters, they incur a large number of false positives in the process. We demonstrate
that by incorporating additional information (the external acceptance percentage),
Sybil and benign communities can be disambiguated, thus mitigating the inaccuracy
of community detection.

These results lay out a road map that can be used by OSN providers to build
comprehensive Sybil detection systems. In particular, comprehensive Sybil detection
is composed of two complementary parts: the feature-based detector presented in
Section 2.3, plus the enhanced community detection approach motivated in this section.
The former technology catches Sybils that attempt to completely blend into the social
graph—that is, that do not form edges to other Sybils. The latter technique (community
detection plus external acceptance ratio) identifies Sybils that collude (and thus form
communities).

In practice, the OSN operator would need to run offline community detection on the
social graph once per day. Any community with an external acceptance percentage
below a certain threshold (e.g., 0.6, as seen in Figure 21) would be flagged as suspi-
cious. By running community detection every day, the OSN operator would catch Sybil
communities while the number of edges per Sybil is low. Most OSNs limit the number
of friend requests that each account can send per day (on Renren, the limit is 50).
This slows the growth of n in Sybil communities and gives the OSN operator a window
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of several days to catch the Sybil community before the precision of the community
detector falls below 99% (see Table VII).

7. RELATED WORK
OSN Spam. Recent studies have characterized the growing OSN spam problem on
Facebook [Gao et al. 2010] and Twitter [Grier et al. 2010]. These studies rely on offline
heuristics to identify spam content in status updates/tweets, as well as aberrant behav-
ior that is indicative of spamming. More recent work relies on Twitter’s in-house spam
detection systems to identify a ground-truth set of spamming accounts [Thomas et al.
2011]. These studies locate millions of spam messages on each OSN and use them to
analyze large-scale, coordinated spam campaigns. In Section 5, we also identify large
scale, coordinated spam campaigns on Renren that are promulgated by thousands of
colluding Sybils. Similar to prior work, we leverage content and temporal correlation
techniques to quantify the extent of Sybil collusion on Renren.

OSN Spam Detection. Various techniques borrowed from email spam detection
have been applied to OSN spam. Two studies leverage honeypot accounts on MySpace
and Twitter, respectively, to trap spammers who attempt to friend them [Webb et al.
2008; Lee et al. 2011]. Our results indicate that unless social honeypots are engineered
to appear popular, they will only be targeted by a small subset of spammers.

Other studies use Bayesian filters and SVMs to identify spammers on Twitter [Yardi
et al. 2010; Benevenuto et al. 2010; Wang 2010] and Facebook [Stringhini et al. 2010].
These techniques work well on Twitter, since following and followed information is pub-
lic. However, detection on Facebook and Renren is less successful, since only existing
friendships are publicly viewable, whereas invitation frequency is hidden. Our Sybil
detector overcomes these issues by leveraging friend invitation information that is only
accessible from within Renren. Moreover, we demonstrate in Section 6 that although
Sybil behavior may evolve in the future, it is possible to detect these malicious accounts
by combining network structural features with friend request statistics.

Internally, Facebook uses an elaborate security system called Facebook Immune
System (FIS), which leverages several types of machine learning algorithms [Stein et al.
2011]. Although this article provides information about the high-level design of FIS,
it does not reveal the specific features leverages by the machine learning algorithms,
the accuracy of the detector, or the performance characteristics of the system. Thus,
it is impossible to objectively evaluate the differences between FIS and our proposed
detection system.

8. CONCLUSION AND DISCUSSION
In this article, we make several contributions to the area of Sybil detection on OSNs.
First, we use ground-truth data about the behavior of Sybils in the wild to create a
measurement-based, real-time Sybil detector. We show that a computationally efficient,
threshold-based classifier is sufficient to catch 99% of Sybils, with low false-positive and
false-negative rates. We have deployed our detector on Renren’s production systems,
and in the first 6 months of operation, it identified and banned more than 100,000 Sybil
accounts.

Our second contribution is a characterization of Sybil graph topology on a major
OSN. This characterization was the first of its kind when the conference paper was
originally published [Yang et al. 2011]. Using edge creation information for more than
660,000 Sybil accounts on Renren, we show that Sybils on Renren do not obey behav-
ioral assumptions that underlie previous work on decentralized Sybil detectors. Eighty
percent of Sybils do not connect socially to other Sybils but instead focus on building

ACM Transactions on Knowledge Discovery from Data, Vol. 8, No. 1, Article 2, Publication date: February 2014.



Uncovering Social Network Sybils in the Wild 2:27

friendships with normal users. Even in rare cases where Sybils do form connected com-
ponents, these clusters are loose rather than tightly knit. Temporal analysis indicates
that these Sybil edges are formed accidentally by attackers rather than intentionally.

The third contribution is analysis of Sybil clickstream behavior on Renren. Our data
captures the exact session-level sequences of actions that Sybils use to send spam
and generate friend requests. The results show that Sybil accounts do not engage in
time-consuming behaviors like photo browsing, but they do spend significant amounts
of time crawling the OSN. We also find that Sybils abuse the friend recommendation
features of OSNs in order to locate targets for friending. We provide suggestions for
how these features can be leveraged to further improve the accuracy of behavior-based
Sybil detection systems.

The final contribution of this article is a deeper understanding of collusion between
Sybils. Based on 3,491,988 pieces of spam content shared by 237,000 Sybils, we show
that social links between Sybils are inadequate for identifying colluding behavior.
Sybils with no explicit social ties still act in concert to spread spam. For example, 50%
of Sybils have at least one partner sharing exactly the same spam content. We capture
these inferred relationships between Sybils using content similarity graphs and show
that colluding Sybils exhibit high levels of temporal correlation.

Generality of Our Results. We view the results of our work as a case study on
the behavior of Sybils in the real world. Prior to our work, there were no results in
the literature that reported the behavior of social Sybils based on ground-truth data.
However, given that all of our results come from Renren, this raises the following
question: do our results generalize to other social networks?

Answering this question is challenging for two reasons. First, there are extremely
few ground-truth datasets about social Sybils. This prevents us from evaluating Sybil
behavior, or our techniques, in other contexts. Thomas et al. [2011] collected a sub-
set of ground-truth Sybils from Twitter, but their dataset is (1) not complete and
(2) not publicly available. No large-scale, ground-truth datasets of Sybils are available
for Facebook, LinkedIn, Sina Weibo, or any other well-known social networking Web
sites.

The second challenge is that each social network offers different features and capa-
bilities to users, which means that the attack surface of each Web site is different. In
other words, the behavior of Sybils on a given OSN is intimately related to the function-
ality offered by that OSN. We hypothesize that Sybils on Facebook may act similarly
to Sybils on Renren, since these two OSNs offer almost identical features. Conversely,
Sybils on Twitter and Sina Weibo may behave differently because they exploit features
unique to microblogs. For example, Sybils on Twitter can use hashtags to spread spam,
which obviates the need to send friend requests [Thomas et al. 2011].

Although we cannot be sure that our results generalize to all OSNs, our findings
for a traditional—that is, untrusted—OSN, coupled with results from prior work on
trusted OSNs [Mohaisen et al. 2010], suggest that we should explore new approaches
to perform decentralized detection of Sybil accounts on OSNs.

Future and Ongoing Work. Several of the findings from our measurement study (in
particular, the results in Section 5) indicate that there are additional features that can
be used to detect social Sybils. To leverage these additional features, we have developed
an enhanced Sybil detection system that uses a clickstream analysis abstraction. This
abstraction is a generalization of the approach used in this article and can therefore
incorporate additional behavioral features. The design and evaluation of this system
can be found in Wang et al. [2013]. This system is currently being evaluated by Renren
and LinkedIn, and preliminary results (as reported by security teams at both networks)
have been quite promising.
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