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Abstract: In several extensions of the Standard Model, the top quark can decay into a

bottom quark and a light charged Higgs boson H+, t → bH+, in addition to the Standard

Model decay t → bW . Since W bosons decay to the three lepton generations equally, while

H+ may predominantly decay into τν, charged Higgs bosons can be searched for using the

violation of lepton universality in top quark decays. The analysis in this paper is based on

4.6 fb−1 of proton-proton collision data at
√
s = 7 TeV collected by the ATLAS experiment

at the Large Hadron Collider. Signatures containing leptons (e or µ) and/or a hadronically

decaying τ (τhad) are used. Event yield ratios between e+τhad and e+µ, as well as between

µ+ τhad and µ+ e, final states are measured in the data and compared to predictions from

simulations. This ratio-based method reduces the impact of systematic uncertainties in

the analysis. No significant deviation from the Standard Model predictions is observed.

With the assumption that the branching fraction B(H+ → τν) is 100%, upper limits in

the range 3.2%–4.4% can be placed on the branching fraction B(t → bH+) for charged

Higgs boson masses mH+ in the range 90–140GeV. After combination with results from a

search for charged Higgs bosons in tt̄ decays using the τhad+jets final state, upper limits

on B(t → bH+) can be set in the range 0.8%–3.4%, for mH+ in the range 90–160GeV.
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1 Introduction

Several non-minimal Higgs scenarios, e.g. Two Higgs Doublet Models (2HDM) [1] predict

the existence of charged Higgs bosons (H+ and H−).1 Their observation would clearly indi-

cate physics beyond the Standard Model (SM), because this theory contains no elementary

charged scalar particle. In several models, e.g. a type-II 2HDM describing the Higgs sector

of the Minimal Supersymmetric extension of the Standard Model (MSSM) [2–6], the main

production mode for charged Higgs bosons with a mass mH+ smaller than the top quark

mass (mtop) is through top quark decays t → bH+. The dominant source of top quarks at

the Large Hadron Collider (LHC) is through tt̄ production.2

The combined LEP lower limit on the charged Higgs boson mass is about 90GeV [7].

Results from direct searches for charged Higgs bosons decaying via H+ → τν using 4.6 fb−1

of LHC data were recently presented by the ATLAS collaboration [8], with upper limits on

the branching fraction B(t → bH+) between 5% and 1% for charged Higgs boson masses

ranging from 90GeV to 160GeV, respectively. Using about 2 fb−1 of LHC data, the CMS

collaboration established upper limits on B(t → bH+) in the range 4–2% for charged Higgs

boson masses between 80GeV to 160GeV [9]. In all of these measurements, as well as in

this paper (unless otherwise specified), the assumption B(H+ → τν) = 100% is made.

1In the following, charged Higgs bosons are denoted H+, with the charge-conjugate H− always implied.

Hence, τ denotes a positively charged τ lepton.
2Since the cross section for H+ production from events containing a single top quark is much smaller,

this production mode is not considered here.
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This paper uses an alternative technique [10] for H+ searches in the mass range 90–

160GeV. Instead of using the shape of discriminating variables in order to search for a

local excess of events above the predicted SM background, this analysis is based on the

measurement of a ratio of event yields between two tt̄ final states, which in turn allows for

the cancellation of most of the systematic uncertainties. In top quark decays, W bosons

decay equally to leptons of the three generations, while H+ may decay predominantly

into τν. Hence, an excess of tt̄ events with at least one hadronically decaying τ lepton

(τhad) in the final state, as compared to the rate for tt̄ events with only electrons and/or

muons, is a signature for charged Higgs bosons. A measurement of event yield ratios Rl for

tt̄ → bb̄+ lτhad+Nν and tt̄ → bb̄+ ll′+Nν, where Nν stands for any number of neutrinos

and where l and l′ are electrons and muons, with l 6= l′, is performed:

Rl =
B(tt̄ → bb̄+ lτhad +Nν)

B(tt̄ → bb̄+ ll′ +Nν)
. (1.1)

This study is performed in a model-independent way, and so exclusion limits are given

in terms of B(t → bH+), as well as in the mmax
h scenario [11] of the MSSM. The results

are based on 4.6 fb−1 of data from pp collisions at
√
s = 7 TeV, collected in 2011 with the

ATLAS experiment [12] at the LHC. These data, as well as the simulated samples used

in the analysis, are the same as in ref. [8] and are described briefly in section 2. Then,

in section 3, an event selection aimed at collecting a data sample enriched in tt̄ events

is presented, together with the data-driven methods to estimate the backgrounds due to

misidentified electrons, muons and hadronically decaying τ leptons. Exclusion limits in

terms of B(t → bH+) and tanβ are discussed in section 4, based on the measured ratios

among event yields in τhad+lepton and dilepton final states. Finally, a summary is given

in section 5.

2 ATLAS data and simulated events

The ATLAS detector [12] consists of an inner tracking detector with coverage in pseudora-

pidity3 up to |η| = 2.5, surrounded by a thin 2 T superconducting solenoid, a calorimeter

system extending up to |η| = 4.9 for the detection of electrons, photons and hadronic jets,

and a large muon spectrometer extending up to |η| = 2.7 that measures the deflection of

muon tracks in the field of three superconducting toroid magnets. A three-level trigger

system is used, which reduces the recorded event rate to about 300 Hz.

In ATLAS, electrons are reconstructed by matching clustered energy deposits in the

electromagnetic calorimeter to tracks reconstructed in the inner detector, and muons are

required to contain matching inner detector and muon spectrometer tracks. The combina-

tion of all sub-systems provides precise lepton measurements in the pseudorapidity range

3ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in

the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre

of the LHC ring, and the y-axis points upwards. Cylindrical coordinates (r, φ) are used in the transverse

plane, φ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the

polar angle θ as η = − ln tan(θ/2).

– 2 –
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|η| < 2.5. Jets, as well as the magnitude of the missing transverse momentum, Emiss
T ,

are reconstructed using energy deposits over the full coverage of the calorimeters, up to

|η| = 4.9. The anti-kt algorithm [13, 14] with a radius parameter value of R = 0.4 is used

for jet reconstruction. At least 75% of the tracks associated to a jet (weighted by their

transverse momenta) must point to the primary vertex, corresponding to the hardest inter-

action. This requirement on the “Jet Vertex Fraction” [15] allows the identification of jets

originating from the hard-scatter interaction. An algorithm combining impact-parameter

information with the explicit observation of a secondary vertex [16] is used in order to iden-

tify jets initiated by b-quarks, within |η| < 2.4. The working point chosen for this study

corresponds to an average efficiency of about 70% for b-jets with pT > 20 GeV in tt̄ events

and a rejection factor of about 130 for light-quark jets. In order to reconstruct hadroni-

cally decaying τ leptons, anti-kt jets with either one or three associated tracks, depositing

ET > 10 GeV in the calorimeter, are considered as τ candidates [17]. Dedicated algorithms

are used to reject electrons and muons. The τ candidates are further required to have a

visible transverse momentum pτT > 20 GeV and to be within |η| < 2.3. The hadronic τ de-

cays are identified using a likelihood criterion designed to discriminate against quark- and

gluon-initiated jets. The working point chosen for this study corresponds to an efficiency

of about 30% for hadronically decaying τ leptons with pτT > 20 GeV in Z → ττ events,

leading to a rejection factor of about 100–1000 for jets. Selected τ candidates fulfilling the

identification criteria are referred to as “τ jets”. When objects selected using the criteria

above overlap geometrically, the following procedures are applied, in this order: muons

are rejected if found within ∆R =
√

∆η2 +∆φ2 < 0.4 of any jet with pT > 25 GeV; a τ

candidate is rejected if found within ∆R < 0.4 of a b-tagged jet, or within ∆R < 0.2 of a

selected muon or electron; jets are removed if they are within ∆R < 0.2 of a selected τ jet

or electron.

The same full 2011 data set and simulated samples as the analysis in ref. [8] are used,

corresponding to an integrated luminosity of 4.6 fb−1, with an uncertainty of 3.9% [18, 19].

In addition to the SM pair production and decay of top quarks, tt̄ → bb̄W+W−,4 the

background processes include the production of single top quark, W+jets, Z/γ∗+jets,

diboson, and multi-jet events. Except for the last, which is estimated using data-driven

methods, the SM backgrounds are determined using the simulated samples summarised

in table 1. In addition to the SM background samples, three types of signal samples

are produced with PYTHIA 6.425 [20] for 90 GeV < mH+ < 160 GeV: tt̄ → bb̄H+W−,

tt̄ → bb̄H−W+ and tt̄ → bb̄H+H−, where charged Higgs bosons decay as H+ → τν.

TAUOLA 1.20 [21] is used for τ decays, and PHOTOS 2.15 [22] is used for photon radiation

from charged leptons. All generated events are propagated through a detailed GEANT4

simulation [23, 24], and they are reconstructed using the same algorithms as the data.

3 Event selection and background determination

This analysis uses events passing a single-lepton trigger with an ET threshold of 20GeV or

22GeV for electrons and a pT threshold of 18GeV for muons. In order to select a sample

4In the simulated SM tt̄ events, all leptonic W decay modes have the same branching fraction (10.8%).

– 3 –
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Process Generator Cross section [pb]

SM tt̄ with at least one lepton ℓ = e, µ, τ MC@NLO 4.01 [25] 91 [26]

Single top quark t-channel (with ℓ) AcerMC 3.8 [27] 21 [28]

Single top quark s-channel (with ℓ) MC@NLO 4.01 [25] 1.5 [29]

Single top quark Wt-channel (inclusive) MC@NLO 4.01 [25] 16 [30]

W → ℓν ALPGEN 2.13 [31] 3.1× 104 [32]

Z/γ∗ → ℓℓ with m(ℓℓ) > 10 GeV ALPGEN 2.13 [31] 1.5× 104 [33]

WW HERWIG 6.520 [34] 17 [35]

ZZ HERWIG 6.520 [34] 1.3 [35]

WZ HERWIG 6.520 [34] 5.5 [35]

H+ signal with B(t → bH+) = 3% PYTHIA 6.425 [20] 9.9

Table 1. Cross sections for the simulated processes and the generators used to model them.

All background cross sections are normalised to next-to-next-to-leading-order (NNLO) predictions,

except for diboson event production where the next-to-leading-order prediction (NLO) is used. For

the diboson events, a filter is applied at the generator level, by requiring at least one electron or

muon with pT > 10 GeV and |η| < 2.8.

enriched in tt̄ events, the following requirements are made:

• one charged lepton l (e, µ) having ET > 25 GeV (e) or pT > 25 GeV (µ) and matched

to the corresponding trigger object;

• at least two jets having pT > 20 GeV and |η| < 2.4, including exactly two b-tags;

• either exactly one τ jet with pτT > 25 GeV and |η| < 2.3 with no additional charged

lepton, or exactly one additional charged lepton l′ with ET or pT above 25GeV and

a different flavour than the trigger-matched lepton;

• Emiss
T > 40 GeV.

At this stage, the selected events are classified into two categories according to the

single-lepton trigger that they fire: an electron trigger (EL) or a muon trigger (MU). Each

category contains τhad+lepton and dilepton (ll′) events. The lepton appearing first in the

final state is, by convention, matched to the corresponding trigger object. The EL category

therefore consists of e + τhad and e + µ events, while the MU category contains µ + τhad
and µ+ e events. Events firing both a single-electron trigger and a single-muon trigger are

assigned to both categories, and accounted for in the combined limit setting, see section 4.3.

The analysis uses the generalised transverse mass mH
T2 [36] as a selection variable. By

construction, it gives an event-by-event lower bound on the mass of the charged (W or

Higgs) boson produced in the top quark decay. Hence, it is larger than the true charged

Higgs boson mass mH+ and smaller than mtop. For incorrect pairings of τ jets or leptons

with b-jets, the numerical determination of mH
T2 may fail, hence only events with mH

T2 > 0

are kept in the following.

– 4 –



J
H
E
P
0
3
(
2
0
1
3
)
0
7
6

3.1 Backgrounds due to misidentified electrons and muons

A significant background for the search described in this paper consists of events with

reconstructed electrons and muons arising from the semileptonic decay of hadrons with b-

or c-quarks, from the decay-in-flight of π or K mesons and, in the case of electrons, from π0

mesons, photon conversions or shower fluctuations. These are referred to as “misidentified

leptons” in the following. Two data samples are defined, which differ only in the lepton

identification criteria. The tight sample corresponds to the selection used in the analysis

and contains mostly events with real leptons. The loose sample is obtained by loosening the

isolation and identification requirements, and it contains mostly events with misidentified

leptons.5 The efficiencies pr and pm for a real or misidentified lepton, respectively, to be

detected as a tight lepton, are determined from data, with the same method as in ref. [8]. In

the final parameterisation of pr and pm, dependencies on the pseudorapidity of the lepton,

its distance ∆R to the nearest jet and the leading jet pT are taken into account. Based on

these efficiencies, the number of misidentified leptons passing the final requirements can be

calculated by weighting each event in the data sample with one loose lepton, according to

the following per-lepton weights wl:

• for a loose but not tight lepton, wlL =
pmpr

(pr − pm)
;

• for a tight lepton, wlT =
pm(pr − 1)

(pr − pm)
.

3.2 Backgrounds due to misidentified τ jets

About 51% of the simulated tt̄ events in the τhad+lepton final state contain a τ jet matched

to a hadronically decaying τ lepton at the generator level. In the other events, the τ jet

is called “misidentified”. It originates from leptons (e, µ) in 3% of the simulated events

and hadronic objects (initiated by light quarks, b-quarks or gluons) in 46%. Data-driven

methods are used in order to determine the probability of misidentification from electrons

and hadronic jets. In the case of electrons, the misidentification probabilities are measured

using a Z → ee control region in the data [17] and then applied to the simulated events, as

in the analysis in ref. [8]. The majority of misidentified τ jets in the final event selection

originate from jets, for which the misidentification probability depends on the initial parton

(light quark, heavy-flavour quark or gluon). All jet types occur in tt̄ events, and it is

not possible to accurately predict the fraction of each of them, potentially leading to

a large systematic uncertainty on the jet→ τhad misidentification probability. However,

the influence of all jet types other than light-quark jets can effectively be eliminated by

categorising all events in terms of the charge of the lepton relative to the τ jet as opposite-

sign (OS) or same-sign (SS) events. All processes with gluon and b-quark jets produce

positively and negatively charged misidentified τ objects at the same rate. On the other

hand, the light-quark jet component in SS events represents both charge misreconstruction

and quarks which fragment such that the leading charged particle does not have the same

charge as the initial quark. Giving a negative weight to the SS events therefore cancels, on

5By construction, the tight sample is a subset of the loose sample.
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average, the gluon and heavy-flavour-quark jet contributions from the OS events, leaving

only light-quark jets misidentified as τ jets.

The rate at which light-quark jets are misidentified as τ candidates is derived using a

region enriched with W + >2 jets events6 in the data, selected by requiring:

• exactly one electron or muon with ET or pT larger than 25GeV;

• at least one τ candidate;

• at least two jets in addition to the τ candidate(s), none of them being b-tagged;

• Emiss
T > 40 GeV.

In order to reduce the contribution from events with a true τ lepton, mostly from Z+jets

events, a requirement on the transverse mass mT is made:

mT =
√

2plTE
miss
T (1− cos∆φl,miss) > 30 GeV, (3.1)

where ∆φl,miss is the azimuthal angle between the lepton and the direction of the missing

momentum. The W + >2 jets events are classified as OS and SS events using the charges

of the lepton and the τ candidate. Figure 1 shows the mT distribution for OS, SS and

OS-SS events fulfilling the W + >2 jets selection. This demonstrates the cancellation of

heavy-flavour-quark and gluon contributions.

The number of tracks associated to jets misidentified as τ candidates is found to be

poorly modelled in simulation. Events in the data tend to have fewer τ candidates with one

or three tracks (this explains the differences between data and simulation in figure 1). In

order to correct the τ candidate selection efficiencies in simulation, τ track multiplicity scale

factors are derived using OS-SS events fulfilling the W + >2 jets selection, and are then

applied to all jets misidentified as τ candidates in the simulation: 0.71± 0.03 for 1-track τ

candidates; 0.92± 0.03 for 3-track τ candidates, where the errors are only statistical.

The probability for a light-quark jet to be misidentified as a τ jet is measured in the

data and is binned in pτT, the number of associated tracks N τ
track (one or three), and the

number of tracks N iso
track found within 0.2 < ∆R < 0.4 of the τ candidate. For each bin,

the jet→ τhad misidentification probability is defined as the number of objects passing the

τ identification based on the likelihood criterion divided by the number prior to requiring

identification. OS events are given a weight +1 and SS events are given a weight −1, in

both the numerator and denominator of the jet→ τhad misidentification probability. After

OS-SS subtraction, the selected events mostly contain τ candidates coming from light-

quark jets and, to a much lesser extent, electrons, muons, and true hadronically decaying τ

leptons. Figure 2 shows the measured values of the jet→ τhad misidentification probability

in W + >2 jets events selected from the data, after OS-SS subtraction. These are used to

scale all simulated events in the signal region. Events fulfilling the requirements listed in

the beginning of this section, in which the selected τ object originates from a jet (of any

type), are weighted by the misidentification probabilities. An additional weighting factor

(+1 for OS events and −1 for SS events) is then used to perform the OS-SS subtraction.

6The leading process in this control region is gq → Wq′.
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Figure 1. Distributions of the transverse mass mT for events fulfilling the W + >2 jets selection,

without the requirementmT > 30 GeV. Each colour corresponds to a type of generator-level particle

matched to a τ candidate (i.e. the highest energy particle within a cone of radius ∆R = 0.2 around

the τ candidate is considered). The SS events are (a) given a weight of −1 and (b) subtracted from

the OS events. All simulated SM processes are considered.
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Figure 2. Probability for a light-quark jet to be misidentified as a 1-track or 3-track τ jet, measured

in a region enriched with OS-SS W + >2 jets events in the data, as a function of (a) pτT and (b)

the number of tracks N iso
track found within 0.2 < ∆R < 0.4 of the τ jet.

4 Results

4.1 Computation of event yield ratios

For each of the four final states considered here (e + τhad, e + µ, µ + τhad and µ + e),

the OS-SS event yield N can be split into two contributions: from tt̄ events (where the

top quarks may decay into both bW and bH+) and from all other SM processes except

tt̄ → bb̄W+W−. The contributions from tt̄ events are expressed as a function of the

– 7 –
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cross section σtt̄, the integrated luminosity L, the branching fraction B ≡ B(t → bH+),

as well as the selection efficiencies ǫW+W− , ǫH+W− , ǫH−W+ and ǫH+H− for, respectively,

tt̄ → bb̄W+W−, tt̄ → bb̄H+W−, tt̄ → bb̄H−W+ and tt̄ → bb̄H+H− events, in each of the

four final states considered here:

N = σtt̄ × L×
[

(1−B)2ǫW+W− +B(1−B) (ǫH+W− + ǫH−W+) +B2ǫH+H−

]

+NOthers . (4.1)

In turn, event yield ratios are defined as:

Re =
N (e+ τhad)

N (e+ µ)
and Rµ =

N (µ+ τhad)

N (µ+ e)
. (4.2)

The event yields in the τhad+lepton and dilepton final states are summarised in table 2

for the background-only hypothesis, as well as in the presence of a 130GeV charged Higgs

boson in the top quark decay. The predicted values in the SM-only hypothesis and the

measured values of the ratios Re and Rµ are summarised in table 3. Note that the event

yields for dilepton final states become smaller in the presence of a charged Higgs boson in

top quark decays, despite the fact that a τ lepton decays into an electron or muon more

often than a W boson. This results from the fact that electrons and muons produced in

the decay chain t → bH+ → bτν → bl+Nν are, on average, softer than those coming from

t → bW → bl +Nν.

Figure 3 shows the variation of the event yields N (e + τhad), N (e + µ), N (µ + τhad)

and N (µ+ e) with B(t → bH+), for a charged Higgs boson mass of 130GeV. The presence

of H+ → τν in a fraction of the top quark decays leads to an increase of the number of

tt̄ events with a lepton and a τ jet. In combination with a small decrease of the number

of dilepton tt̄ events, this leads to an increase of the ratios Re and Rµ. The sensitivity of

this analysis to charged Higgs bosons is determined by the rate at which the ratios Re and

Rµ change with B(t → bH+), which depends on the selection efficiencies ǫH+W− , ǫH−W+ ,

ǫH+H− and, in turn, on the charged Higgs boson mass. For mH+ = 150 (160) GeV, the

rate at which the ratios Re and Rµ change with B(t → bH+) is found to be two (five)

times smaller than for mH+ = 130 GeV. Indeed, the selection efficiencies ǫH+W− , ǫH−W+ ,

ǫH+H− are reduced for mH+ values in the vicinity of mtop, because the b-jet arising from

t → bH+ becomes softer when the mass difference mtop −mH+ is smaller.

4.2 Systematic uncertainties

Systematic uncertainties arise from the simulation of the electron and muon triggers, from

the reconstruction and identification efficiencies of the physics objects, as well as from the

energy/momentum scale and resolution for these objects. In order to assess their impact,

the selection cuts of this analysis are re-applied after shifting a particular parameter by its

±1 standard deviation uncertainty, while other parameters are fixed. The largest instru-

mental systematic uncertainties are for jets. In comparison, the systematic uncertainties

arising from the reconstruction and identification of electrons, muons and τ jets are small.

All instrumental systematic uncertainties are propagated to the reconstructed Emiss
T .

– 8 –
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Sample OS-SS event yields

e+ τhad e+ µ

Misidentified electrons or muons −0.8± 3.0 94 ± 37

W/Z+jets & diboson 2.1± 0.9 0.7± 0.4

Single top quark 3.3± 0.8 24 ± 4

tt̄ 111 ± 25 980 ± 200
∑

SM 116 ± 25 1100 ± 210

Data 144 1247

tt̄ with t → bH+ (130GeV) 30 ± 4 27 ± 4

Prediction with signal 139 ± 28 1070 ± 200

µ+ τhad µ+ e

Misidentified electrons or muons 0.2± 1.0 74 ± 37

W/Z+jets & diboson 2.6± 1.6 0.7± 0.4

Single top quark 4.6± 0.9 18 ± 3

tt̄ 131 ± 28 740 ± 150
∑

SM 138 ± 29 830 ± 160

Data 153 929

tt̄ with t → bH+ (130GeV) 35 ± 4 20 ± 3

Prediction with signal 166 ± 32 810 ± 150

Table 2. Expected OS-SS event yields after all selection cuts in τhad+lepton and dilepton channels,

compared with 4.6 fb−1 of ATLAS data. The numbers shown for a hypothetical 130GeV H+ signal

correspond to B(t → bH+) = 3%. The contribution of tt̄ → bb̄WW events to the background is

scaled accordingly. Statistical and systematic uncertainties are combined.

Ratio Re Rµ

SM value 0.105± 0.012 0.166± 0.017

Measured value 0.115± 0.010 (stat) 0.165± 0.015 (stat)

Table 3. Predicted (in the SM-only hypothesis) and measured values of the event yield ratios

Re and Rµ. For the values of the ratios predicted using simulation, the statistical and systematic

uncertainties are combined.

The tt̄ cross section used in this analysis is σtt̄ = 167+17
−18 pb [26]. To estimate systematic

uncertainties arising from the tt̄ generation and the parton shower model, the acceptance

is computed for tt̄ events produced with either MC@NLO interfaced to HERWIG and

JIMMY [37] for the hadronisation and the underlying event, or POWHEG [38] interfaced to

PYTHIA. Systematic uncertainties on initial- and final-state radiation are computed using

tt̄ samples generated with AcerMC interfaced to PYTHIA, where the relevant parameters

in PYTHIA are varied in a range given by current experimental data [39]. These systematic

uncertainties are dominated by the difference in modelling the numbers of tracks N τ
track

and N iso
track in, respectively, the core and isolation regions of the jets misidentified as τ
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Figure 3. Relative variation with B(t → bH+) of (a) the event yields N (e+ τhad), N (e+ µ) and

their ratio, as well as (b) N (µ+τhad), N (µ+e) and their ratio, assuming the presence of a 130GeV

charged Higgs boson in tt̄ events.

candidates. The various simulated tt̄ samples are reweighted so that the N τ
track and the

N iso
track distributions match7 before the systematic uncertainties on the tt̄ generation, the

parton shower model, as well as initial- and final-state radiation, are evaluated.

For the signal samples, which are generated with PYTHIA (i.e. without higher-order

corrections), no alternative generator is available, hence the systematic uncertainty is set to

the relative difference in acceptance between tt̄ events generated with MC@NLO interfaced

to HERWIG/JIMMY and with AcerMC, which is also a leading-order generator, interfaced

to PYTHIA. For the systematic uncertainty coming from initial- and final-state radiation,

the same simulated samples as for the SM tt̄ events are used. In the evaluation of the

systematic uncertainties for the signal samples, only τ jets matched to true hadronically

decaying τ leptons in the generated events are considered.

For the backgrounds with misidentified leptons, the largest systematic uncertainties

arise from the sample dependence: the misidentification probabilities are calculated in

a control region dominated by gluon-initiated events, but later used in a data sample

with a higher fraction of quark-initiated events. The total systematic uncertainty on the

backgrounds with misidentified leptons is 38% for electron-triggered events and 49% for

muon-triggered events. It corresponds to the relative variation of the number of events

with exactly one trigger-matched lepton and two jets, after having considered all systematic

uncertainties. The requirement of having two b-jets in the event does not have a significant

impact on these systematic uncertainties and neither does the presence of a second lepton.

For the estimation of backgrounds with jets misidentified as hadronically decaying τ

leptons, the systematic uncertainty on the scale factors associated with the number of

tracks is determined by varying the requirement on the jet multiplicity and the magnitude

of the subtraction of τ candidates matched to a true electron, muon or τ lepton in the

7Both variables are reweigthed in a correlated way.
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generated events. This uncertainty is 7% for 1-track τ jets and 11% for 3-track τ jets.

In addition, systematic uncertainties on the jet→ τhad misidentification probability arise

from statistical uncertainties due to the limited control sample size, the differences between

misidentification probabilities computed in the region enriched with W + >2 jets events

and the signal region, as well as the small contamination from true τ leptons (including

those possibly coming from H+ → τν) in the region enriched with W + >2 jets events.

Some of the systematic uncertainties above affect the τhad+lepton and dilepton event

yields in the same manner and, as a result, have a limited impact on Re and Rµ. Systematic

uncertainties arising from jets and Emiss
T are common to all reconstructed events in the

simulation, hence they should cancel in the ratios Re and Rµ. However, due to the use of

data-driven background estimates and because of the removal of geometric overlaps between

reconstructed objects, some of these systematic uncertainties still have a minor impact. In

the EL (MU) category, the systematic uncertainties related to the trigger-matched electron

(muon) are the same for the e + τhad and e + µ (µ + τhad and µ + e) events, thereby not

affecting the predicted value of the ratio Re (Rµ). Those coming from the reconstructed

muon (electron) only affect event yields in the denominator, and hence the ratio. Similarly,

the systematic uncertainties coming from the τ jets and their misidentification probabilities

only affect the numerator of Re and Rµ, hence they do have an impact on the analysis.

This is also the case for systematic uncertainties on the backgrounds with misidentified

leptons, which have a larger contribution in the dilepton events, i.e. on the denominator

of Re and Rµ. Table 4 shows how these ratios (in the SM-only hypothesis) change when

shifting a particular parameter by its ±1 standard deviation uncertainty.

4.3 Exclusion limits

To test the compatibility of the data with the background-only or the signal+background

hypotheses, a profile likelihood ratio [40] is used with Re and Rµ as the discriminating

variables. The systematic uncertainties are incorporated via nuisance parameters, and the

one-sided profile likelihood ratio, q̃µ, is used as a test statistic. No significant deviation from

the SM prediction is observed in 4.6 fb−1 of data. Exclusion limits are set on the branching

fraction B(t → bH+) by rejecting the signal hypothesis at the 95% confidence level (CL)

using the CLs procedure [41]. These limits are based on the asymptotic distribution of

the test statistic [40]. They are first set for electron-triggered and muon-triggered events

separately (see figure 4), and then using a global event yield ratio Re+µ defined as:

Re+µ =
N (e+ τhad) +N (µ+ τhad)

N (e+ µ) +NOR(µ+ e)
, (4.3)

where NOR(µ+e) is the event yield in the µ+e channel after removing the dilepton events

that simultaneously fire a single-electron trigger and a single-muon trigger, as those already

appear in N (e+ µ). The fraction of dilepton events common to the µ+ e and e+ µ final

states is about 42% in the data. Using this global event yield ratio, upper limits in the

range 3.2%–4.4% can be placed on B(t → bH+) for charged Higgs boson masses in the

range 90–140GeV, as shown in figure 5 and table 5.
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Systematic uncertainty ∆Re ∆Rµ

Integrated luminosity 0.3% 0.3%

Electron trigger efficiency 0.1% N/A

Electron reco. and ID efficiencies 0.2% 1.9%

Electron energy resolution 0.1% <0.1%

Electron energy scale 0.1% 0.3%

Muon trigger efficiency N/A 0.1%

Muon reco. and ID efficiencies 1.0% 0.1%

Muon momentum resolution <0.1% <0.1%

Muon momentum scale 0.1% <0.1%

τ ID efficiency 3.9% 3.9%

τ energy scale 2.9% 3.0%

τ mis-ID (data-driven): number of associated tracks 2.1% 2.1%

τ mis-ID (data-driven): true τhad contamination 0.2% 0.2%

τ mis-ID (data-driven): H+ signal contamination 0.6% 0.6%

τ mis-ID (data-driven): event environment 1.3% 1.2%

τ mis-ID (data-driven): statistical uncertainties 3.3% 3.2%

τ mis-ID (data-driven): electron veto uncertainties 0.6% 0.3%

b-tagging 1.9% 2.3%

Jet vertex fraction 0.1% 0.4%

Jet energy resolution 0.4% <0.1%

Jet energy scale 0.7% 0.5%

Jet reconstruction efficiency 0.1% 0.4%

Emiss
T 0.3% 0.1%

tt̄: cross section 0.7% 0.6%

tt̄: generator and parton shower 5.7% 4.4%

tt̄: initial- and final-state radiation 3.6% 3.7%

Backgrounds with misidentified leptons 3.5% 4.3%

Total (added in quadrature) 10.3% 10.1%

Table 4. Relative variation of the ratios Re and Rµ in the SM-only hypothesis after shifting a

particular parameter by its ±1 standard deviation uncertainty.

mH+ (GeV) 90 100 110 120 130 140 150 160

95% CL observed

(expected) limit on 3.3% 3.6% 3.2% 3.4% 3.6% 4.4% 7.3% 18.3%

B(t → bH+) using (3.1%) (3.3%) (3.0%) (3.1%) (3.3%) (4.0%) (6.7%) (16.8%)

the ratio Re+µ

Table 5. Observed (expected) 95% CL upper limits on B(t → bH+) derived from the event yield

ratio Re+µ, as a function of the charged Higgs boson mass, obtained for an integrated luminosity

of 4.6 fb−1 and with the assumption that B(H+ → τν) = 1.
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Figure 4. Upper limits on B(t → bH+) derived from the event yield ratios (a) Re and (b) Rµ, as

a function of the charged Higgs boson mass, obtained for an integrated luminosity of 4.6 fb−1 and

with the assumption B(H+ → τν) = 1. The solid line in the figure is used to denote the observed

95% CL upper limits, while the dashed line represents the expected exclusion limits. The green

and yellow regions show the 1σ and 2σ error bands.
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Figure 5. Upper limits on B(t → bH+) derived from the event yield ratio Re+µ, as a function

of the charged Higgs boson mass, obtained for an integrated luminosity of 4.6 fb−1 and with the

assumption B(H+ → τν) = 1. The solid line in the figure is used to denote the observed 95% CL

upper limits, while the dashed line represents the expected exclusion limits. The green and yellow

regions show the 1σ and 2σ error bands.

In a previously published search for charged Higgs bosons [8], based on the data col-

lected in 2011 with ATLAS, upper limits on B(t → bH+) were derived using various

distributions of discriminating variables in τhad+jets, τhad+lepton and lepton+jets final

states. The most sensitive channel was τhad+jets, except for low values of mH+ . A new

set of combined upper limits on B(t → bH+) is derived, using the transverse mass distri-

bution of τhad+jets events from ref. [8] and the global event yield ratio Re+µ, as shown in

figure 6 and table 6. Since a lepton veto is applied for charged Higgs boson searches in

τhad+jets final states, there is no correlation between such events and those selected in this

study to determine the event yield ratios. With this combination of upper limits, charged

Higgs bosons can be excluded for values of the branching fraction B(t → bH+) larger than
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Figure 6. Upper limits on B(t → bH+) derived from the transverse mass distribution of τhad+jets

events in ref. [8] and the event yield ratio Re+µ, as a function of the charged Higgs boson mass,

obtained for an integrated luminosity of 4.6 fb−1 and with the assumption B(H+ → τν) = 1.

The solid line in the figure is used to denote the observed 95% CL upper limits, while the dashed

line represents the expected exclusion limits. The green and yellow regions show the 1σ and 2σ

error bands.

mH+ (GeV) 90 100 110 120 130 140 150 160

95% CL observed

(expected) limit on 3.4% 2.9% 1.7% 1.1% 0.9% 0.8% 1.0% 1.1%

B(t → bH+) using (3.1%) (2.8%) (1.9%) (1.4%) (1.2%) (1.1%) (1.2%) (1.2%)

Re+µ and τhad+jets

95% CL observed

(expected) limit 4.8% 3.4% 2.1% 1.3% 1.1% 1.0% 1.1% 1.0%

in ref. [8] (4.2%) (3.5%) (2.5%) (1.9%) (1.5%) (1.3%) (1.2%) (1.3%)

Table 6. Observed (expected) 95% CL upper limits on B(t → bH+) derived using τhad+jets

events in ref. [8] and the ratio Re+µ, as a function of the charged Higgs boson mass, obtained for

an integrated luminosity of 4.6 fb−1 and assuming that B(H+ → τν) = 1. The exclusion limits

published in ref. [8] are also shown for comparison purposes.

0.8% to 3.4%, for mH+ between 90GeV and 160GeV. These exclusion limits represent an

improvement with respect to those published in ref. [8].

In figure 7, the combined limit on B(t → bH+) × B(H+ → τν) is interpreted in the

context of the mmax
h scenario [11] of the MSSM. The following relative theoretical uncer-

tainties on B(t → bH+) are considered [42, 43]: 5% for one-loop electroweak corrections

missing from the calculations, 2% for missing two-loop QCD corrections, and about 1%

(depending on tanβ) for ∆b-induced uncertainties, where ∆b is a correction factor for the

running b-quark mass [44]. These uncertainties are added linearly, as recommended by the

LHC Higgs cross-section working group [43].
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Figure 7. Limits for charged Higgs boson production from top quark decays in the mH+ -tanβ

plane, derived using τhad+jets events in ref. [8] and the ratio Re+µ, in the context of the mmax
h sce-

nario of the MSSM. The 1σ band around the observed limit (dashed lines) shows the theoretical un-

certainties. Values below tanβ = 1, where the calculations in the MSSM become non-perturbative,

are not considered, as the results become unphysical.

Assuming that the boson recently discovered at the LHC [45, 46] is one of the neutral

MSSM Higgs bosons, only a certain region in the mH+-tanβ plane is still allowed for a

given scenario [47]. If the new boson is the lightest neutral MSSM Higgs boson (h0),

it would imply tanβ > 3 and mH+ > 155 GeV. However, the allowed region depends

strongly on MSSM parameters which, on the other hand, do not affect the charged Higgs

boson production and decay significantly. Thus, by adjusting these MSSM parameters,

the region in which the Higgs boson mass can take a value of about 125GeV can be

changed significantly, while the ATLAS exclusion region shown here is relatively stable

with respect to these changes. Should the recently discovered boson instead be the heavier

CP-even Higgs boson (H0), the additional constraint from mH0 ≃ 125 GeV only leads

to an upper limit of roughly mH+ < 150GeV, with suppressed couplings for h0. If the

recently discovered particle is an MSSM Higgs boson, excluding a low-mass charged Higgs

boson would thus imply that it is the lightest neutral state h0.

5 Conclusions

Charged Higgs bosons have been searched for in tt̄ events, in the decay mode t → bH+

followed by H+ → τν. A total of 4.6 fb−1 of pp collision data at
√
s = 7 TeV, recorded in

2011 with the ATLAS experiment at the LHC, is used. Event yield ratios are measured

in the data and compared to the predictions from simulations, between electron-triggered

e + τhad and e + µ events, and between muon-triggered µ + τhad and µ + e events, in

order to search for a violation of lepton universality in tt̄ events. This method reduces

the impact of several systematic uncertainties in the analysis. Data-driven methods and
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simulation are employed to estimate the number of background events. The observed data

are found to be in agreement with the SM predictions. Assuming B(H+ → τν) = 100%,

upper limits at the 95% confidence level in the range 3.2%–4.4% have been placed on the

branching fraction B(t → bH+) for charged Higgs boson masses in the range 90–140GeV.

For charged Higgs boson masses below 110GeV, this analysis improves the previously

published limits on B(t → bH+), based on direct searches for charged Higgs bosons in tt̄

decays using the lepton+jets, τhad+jets and τhad+lepton final states. When the results

of the present analysis are combined with the results from the search for charged Higgs

bosons in tt̄ decays using the τhad+jets final state [8], upper limits on B(t → bH+) are set

in the range 0.8%–3.4%, for mH+ between 90GeV and 160GeV.
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G. Aielli133a,133b, T.P.A. Åkesson79, G. Akimoto155, A.V. Akimov94, M.A. Alam76, J. Albert169,
S. Albrand55, M. Aleksa30, I.N. Aleksandrov64, F. Alessandria89a, C. Alexa26a, G. Alexander153,
G. Alexandre49, T. Alexopoulos10, M. Alhroob164a,164c, M. Aliev16, G. Alimonti89a, J. Alison120,
B.M.M. Allbrooke18, P.P. Allport73, S.E. Allwood-Spiers53, J. Almond82, A. Aloisio102a,102b,
R. Alon172, A. Alonso36, F. Alonso70, A. Altheimer35, B. Alvarez Gonzalez88,
M.G. Alviggi102a,102b, K. Amako65, C. Amelung23, V.V. Ammosov128,∗,
S.P. Amor Dos Santos124a, A. Amorim124a,c, N. Amram153, C. Anastopoulos30, L.S. Ancu17,
N. Andari115, T. Andeen35, C.F. Anders58b, G. Anders58a, K.J. Anderson31, A. Andreazza89a,89b,
V. Andrei58a, M-L. Andrieux55, X.S. Anduaga70, S. Angelidakis9, P. Anger44, A. Angerami35,
F. Anghinolfi30, A. Anisenkov107, N. Anjos124a, A. Annovi47, A. Antonaki9, M. Antonelli47,
A. Antonov96, J. Antos144b, F. Anulli132a, M. Aoki101, S. Aoun83, L. Aperio Bella5,
R. Apolle118,d, G. Arabidze88, I. Aracena143, Y. Arai65, A.T.H. Arce45, S. Arfaoui148,
J-F. Arguin93, S. Argyropoulos42, E. Arik19a,∗, M. Arik19a, A.J. Armbruster87, O. Arnaez81,
V. Arnal80, A. Artamonov95, G. Artoni132a,132b, D. Arutinov21, S. Asai155, S. Ask28,
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R.P. Middleton129, S. Migas73, L. Mijović136, G. Mikenberg172, M. Mikestikova125, M. Mikuž74,
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90 B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of

– 31 –



J
H
E
P
0
3
(
2
0
1
3
)
0
7
6

Belarus
91 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic

of Belarus
92 Department of Physics, Massachusetts Institute of Technology, Cambridge MA, United States of

America
93 Group of Particle Physics, University of Montreal, Montreal QC, Canada
94 P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
95 Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
96 Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia
97 D.V.Skobeltsyn Institute of Nuclear Physics, M.V.Lomonosov Moscow State University, Moscow,

Russia
98 Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
99 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany

100 Nagasaki Institute of Applied Science, Nagasaki, Japan
101 Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
102 (a) INFN Sezione di Napoli; (b) Dipartimento di Scienze Fisiche, Università di Napoli, Napoli, Italy
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(Commissariat à l’Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France
aa Also at Section de Physique, Université de Genève, Geneva, Switzerland
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