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Abstract

Expanding the Operational Environments of UAVs: Design, Control, and Motion Planning
for a Tensegrity Aerial Vehicle and an Uncrewed Underwater Aerial Vehicle

By

Jiaming Zha

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Assistant Professor Mark Mueller, Chair

This dissertation explores methodologies for enhancing the operational capabilities of Un-
crewed Aerial Vehicles (UAVs). By tightly integrating design, control strategy, and planning
algorithms, we have enabled UAVs to operate in environments that pose significant challenges
for traditional flying robots.

The dissertation comprises three parts. The first part focuses on collision-resilient UAVs
designed for cluttered environments with obstacles that are difficult to detect and/or avoid.
We introduce a vehicle featuring an icosahedron tensegrity structure for resilience to high-
speed collisions. The design of the vehicle is guided by a model-based approach, which
employs dynamics simulation to predict structural stresses in the system. Furthermore, an
autonomous re-orientation controller is presented to facilitate post-collision flight resumption,
enabling the vehicle to rotate from any given orientation to ones ready for takeoff.

The second part presents a collision-inclusive, sampling-based motion planning algorithm
for narrow and cluttered environments. Incorporating collisions into planning yields two
benefits. First, collisions can be exploited for quick changes of movement directions. Second,
the allowance of collisions results in more efficient sampling in confined spaces, thereby
reducing the planning time needed. The algorithm’s effectiveness in narrow environments
is demonstrated through Monte Carlo simulations, and the trajectories generated by the
algorithm are validated by tracking experiments using the tensegrity aerial vehicle.

The final part broadens UAVs’ use to multi-domain environments with a miniature Uncrewed
Aerial Underwater Vehicle (UAUV), capable of operation both in air and underwater. A
pressure-based depth estimator and a control strategy for water breaching have been devel-
oped to facilitate the water-air transition. These tools help the UAUV to create a transition
window, ensuring all propellers are exposed to air, and to determine the ideal timing to
switch controller modes from water to air, thereby guaranteeing a successful transition.
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Chapter 1

Introduction

With improvements in computational power and sensing technologies, Uncrewed Aerial
Vehicles (UAVs) have seen significant advancements in recent years. They have found use in
a wide array of applications across multiple sectors, ranging from aerial photography [1] and
mapping [2] to agricultural monitoring and spraying [3]. Despite these substantial strides, the
full potential of UAVs remains untapped. Currently, UAV applications are mostly confined
to open-air spaces with minimal obstacles, heavily relying on clear visibility and GPS signals.

The limitations of UAVs become apparent when compared with birds, the natural flyers
that have inspired the initial design of aerial vehicles. Birds exhibit remarkable abilities far
exceeding UAVs when operating in complex environments. For instance, torpedo gannets [4]
and shags [5] can dive deep into water to catch fish, then immediately re-emerge into flight,
demonstrating the ability to operate seamlessly in environments encompassing multiple me-
dia. Meanwhile, goshawks can fly in narrow spaces and cluttered environments by pushing
their wings and claws against their surroundings, thereby incorporating contact into their
flight [6]. These capabilities, honed over millions of years of evolution, are typically achieved
through a combination of specialized body structures, agile kinesthetic skills, and efficient
flight planning stategies.

In this dissertation, we explore methods to expand the operational environments and ca-
pabilities of UAVs. Similar to how birds have developed their specialized skills, the enhanced
abilities of the aerial vehicles presented in this dissertation are accomplished through tight
integration of physical advancements in design with computational enhancements in control
strategies and motion planning algorithms.

Specifically, we introduce two types of specialized UAVs designed to operate in envi-
ronments that pose challenges for traditional flying robots. The first is a collision-resilient
tensegrity aerial vehicle. Thanks to its ability to withstand and recover from high-speed
collisions, it can safely operate in cluttered environments with hard-to-detect and/or avoid
obstacles. Additionally, we propose a motion planning algorithm that leverages collisions for
quick changes of movement directions and more efficient random tree exploration. The sec-
ond specialized UAV is an amphibious robot named miniature Uncrewed Aerial Underwater
Vehicle (mini UAUV), capable of operating both underwater and in the air, and transi-
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tioning between the two media. The mini UAUV features a soft, waterproof shell design
that enables ambient pressure measurement without direct contact between water and the
onboard pressure sensor. Moreover, a breaching strategy is proposed to facilitate the mini
UAUV’s control mode switch from water to air. With its specialized design and breaching
control strategy, the mini UAUV can operate smoothly in a multi-domain environment with-
out the need for any additional mechanical structure, achieving amphibious mobility while
maintaining agility comparable to that of purely aerial vehicles.

1.1 Dissertation outline
This dissertation is organized as follows.
In Chapter 3, we discuss methods to expand UAV capabilities in cluttered environments.

We introduce the tensegrity aerial vehicle, a collision-resilient flying robot designed with an
icosahedron tensegrity structure. We establish an approach for predicting structural stresses
during collisions via dynamics simulation, guiding component selection during the design pro-
cess. Our approach leads to the successful creation of an experimental vehicle with robust
collision resilience, capable of surviving a 7m drop with an 11.7m/s landing speed. Further-
more, we propose a re-orientation controller, enabling the vehicle to rotate on the ground
post-collision, so as to reach an orientation easy for takeoff. This combination of collision re-
silience and post-collision flight resumption makes the tensegrity aerial vehicles ideally suited
for field operations in cluttered environments. Related experimental videos can be viewed at
youtu.be/XsLVRd2nMd0. The tools used to develop and analyze the tensegrity aerial
vehicles can be accessed at github.com/muellerlab/TensegrityAerialVehicle.git.

In Chapter 4, we introduce a novel motion planning algorithm, which can enhance the
ability of collision-resilient aerial vehicles in cluttered environments. The planner samples
collisions as intersection between generated motion primitives and obstacles, and connects
collision states with other sampled states to create collision-inclusive trajectories. We demon-
strate that allowing for collision in planning improves the performance of the sampling-based
planner in narrow spaces like tunnels. Additionally, we validate the trajectory generated by
the planner with tracking experiments using the collision-resilient tensegrity aerial vehicle.
Related experimental videos are available at youtu.be/MmDHra3wYK4.

In Chapter 5, we shift our focus to broadening the operational medium of aerial vehi-
cles. Specifically, we present the design of a miniature uncrewed aerial underwater vehicle,
which can fly in air, swim in water, and transition between these two media. The vehicle
features a simplified mechanical design akin to a traditional quadcopter, eliminating the
need for additional mechanical components. To facilitate the transition from water to air,
we introduce a water-breaching control strategy, which can autonomously switch between
the underwater and the aerial control modes. Related experimental videos can be viewed at
youtu.be/y4-ZcgsTGAQ.

Chapter 6 concludes the dissertation and discusses potential future research directions.

https://youtu.be/XsLVRd2nMd0
https://github.com/muellerlab/TensegrityAerialVehicle.git
https://youtu.be/MmDHra3wYK4
https://youtu.be/y4-ZcgsTGAQ
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1.2 Contribution
The contributions of this dissertation include proposing new UAV designs that can op-

erate in challenging environments, their corresponding controllers, and related planning al-
gorithms. Specifically:

1. Collision-Resilient Tensegrity Aerial Vehicle: 1) We present a model-based ap-
proach for designing collision-resilient tensegrity aerial vehicles, supported by a dynam-
ics simulation tool we have open sourced. 2) We propose a re-orientation controller
to facilitate flight resumption post-collision, and make the corresponding development
and analysis tools open sourced. 3) We validate the design approach and the controller
with an experimental vehicle and demonstrate its ability to survive collisions, resume
flight, and perform short-range autonomous operations in an unknown environment.

2. Collision-Inclusive Motion Planning: 1) We present a sampling-based motion
planner that can find collision-inclusive trajectories for quadcopters. 2) We demon-
strate that the collision-inclusive planner is more likely to generate better result than
collision-exclusive planner in narrow spaces with Monte Carlo studies. 3) We exper-
imentally validate the planned collision-inclusive trajectory by tracking it with our
tensegrity aerial vehicle.

3. Mini UAUV: 1) We propose a miniature UAUV design that can operate in water,
air, and breach the still water surface without the aid of additional mechanical actu-
ators. The vehicle is lightweight and can fly with agility comparable to purely aerial
vehicles. 2) We create a barometer-based Kalman Filter depth estimator and a water-
breaching control strategy that can switch the control mode based on the surrounding
environment. 3) We experimentally validate the water breaching strategy.

Together, these works provide new approaches to enable UAVs to operate with enhanced
safety in cluttered spaces, and with greater agility in multi-domain environments, two spaces
traditionally considered infeasible for UAVs.

1.3 Source publications
The materials in this dissertation are based on following publications:

• Jiaming Zha, Xiangyu Wu, Ryan Dimick, and Mark W. Mueller, “Design and con-
trol of a collision-resilient aerial vehicle with an icosahedron tensegrity structure,”
IEEE/ASME Transactions on Mechatronics (TMECH), under review.

• Jiaming Zha and Mark W. Mueller, “Exploiting collisions for sampling-based mul-
ticopter motion planning,” in Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), 2021, pp. 7943-7949.



4

• Jiaming Zha, Xiangyu Wu, Joseph Kroeger, Natalia Perez, and Mark W. Mueller, “A
collision-resilient aerial vehicle with icosahedron tensegrity structure,” in Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
IEEE, 2020, pp. 1407–1412.

• Jiaming Zha, Eric Thacher, Joseph Kroeger, Simo A. Mäkiharju, and Mark W. Mueller,
“Towards breaching a still water surface with a miniature unmanned aerial underwater
vehicle,” in Proceedings of the International Conference on Unmanned Aerial Systems
(ICUAS), IEEE, 2019, pp. 1178–1185.
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Chapter 2

Related work in the literature

This chapter provides a review of the literature pertinent to the three core parts of this
dissertation: collision-resilient tensegrity aerial vehicles, collision-inclusive quadcopter mo-
tion planning, and uncrewed aerial underwater vehicles (UAUV). The review is structured
into three sections, each dedicated to one of these themes, providing an exploration of pre-
vious advancements and existing challenges that have informed the research objectives and
methodologies presented in the subsequent chapters.

2.1 Collision-resilient UAVs and tensegrity-structured
applications

One of the primary design objectives for UAVs is to decrease weight, as additional mass
can impede UAVs’ agility and maneuverability. However, this often results in structures that
are susceptible to impacts and collisions. Contacts with the surrounding environment can
compromise the operational abilities of UAVs, leading to premature termination of missions.

Despite significant advancements, collision-avoidance algorithms have yet to fully mit-
igate this issue. The limitations primarily stem from two areas: sensor technology and
onboard computational power. Cameras, serving as critical sensors for most UAV collision-
avoidance pipelines, frequently encounter difficulties in detecting thin objects like wires due
to constraints dictated by sensing physics and processing algorithms. Additionally, their
performance can deteriorate under extreme light conditions such as intense sunlight or pitch
darkness. The limit of onboard computational power can also cap the performance of col-
lision avoidance systems. In complex environments, the vehicle may fail to compute a safe
trajectory under the given time limit, thereby increasing the risk of collisions.

Given these challenges, collision-resilient aerial vehicles provide a viable solution for op-
erating safely in cluttered environments. These resilient designs give UAVs “second chances”
when onboard collision-avoidance systems fail. Among the various collision-resilient designs,
the concept of tensegrity holds considerable promise. Tensegrity refers to a structural prin-
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ciple that suspends rigid components within a tension network. It can avoid large stress
caused by bending and thus achieve substantial resilience with little structural weight.

In the following paragraphs, we will explore studies proposing designs for collision-resilient
aerial vehicles. Additionally, we will discuss application examples using tensegrity structures
to enhance collision resilience.

Collision-resilient flying robot designs

Main approaches to create collision-resilient flying robots in the literature include 1)
protecting the robot with external structures, 2) constructing the robot with soft materials
or morphing structures capable of absorbing substantial energy before breaking, and 3) using
a combination of both.

The first approach emphasizes shielding vulnerable parts from obstacles with external
protectors. For example, spherical body shells that can completely encase aerial vehicles
have been proposed in [7] and [8]. Meanwhile, spherical propeller guards that can passively
rotate around quadcopter motors are suggested in [9]. These guards can also serve as wheels,
allowing the vehicle to horizontally move on the ground. Likewise, a cylindrical body guard
that can fully envelop the vehicle and enable it to roll laterally on the ground is discussed
in [10]. A freely rotating origami shell that offers lightweight protection is demonstrated in
[11], and a mortise-and-tenon protector that can be created from 2D sheet materials and
assembled into a 3D protective structure is detailed in [12].

The second approach utilizes materials or components specifically designed to absorb
significant energy before breaking. Examples include dual-stiffness flight frames that soften
upon impact to prevent damage [13], flexible rotor blades that can bend without breaking
during collisions [14], and passively-foldable frames for quadcopters [15].

Some designs incorporate both approaches, protecting the vehicle with an external struc-
ture capable of absorbing a large amount of energy. For instance, a propeller-guarded vehicle
with spring-loaded arms is proposed in [16], and a quadcopter with a passively-morphing ex-
oskeleton is introduced in [17].

Tensegrity structure

Tensegrity structures have gained popularity in recent years for collision-resilient appli-
cations. Comprised of rigid bodies suspended in a tension network, tensegrity structures can
distribute external loads among structural members through tension and compression, effec-
tively avoiding large stress caused by bending. Due to this structural advantages, tensegrity
structures have been proposed for applications in diverse areas such as aircraft wings [18],
landers [19, 20, 21], exploratory rovers [22, 23], swarm terrestrial explorers [24], and general
collision-resilient robotic platforms [25]. The benefits of tensegrities also make them suitable
for aerial vehicles. An investigation comparing different tensegrity shells for aerial vehi-
cles, supported by drop tests, is detailed in [26]. In [27], our first publication on tensegrity
aerial vehicles, and the prior work to the research to be presented in Chapter 3, we create a
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quadcopter with a stiff tensegrity shell that can survive high-speed collisions and rotate on
the ground. Another example is the ‘Tensodrone’ which incorporates a soft tensegrity shell
with springs, as showcased in [28], along with a subsequent design featuring self-morphing
abilities. The soft tensegrity design helps increase collision resilience at the potential cost
of larger vehicle size and vibration. The comparison between stiff and soft tensegrity shell
designs will be further discussed in Chapter 3.

2.2 Work related to the collision-inclusive
sampling-based planner for quadcopters

This section introduces literature related to the sampling-based collision-inclusive mo-
tion planner for quadcopters. Specifically, we will discuss quadcopter motion primitives,
sampling-based planning structures, and methods to integrate collisions into motion plan-
ning schemes.

Quadcopter Motion Primitives

Motion primitives are short trajectory segments which form a critical foundation for
quadcopter path planning. Planning algorithms for quadcopters usually revolve around the
creation, selection, and connection of primitives to form safe reference trajectories.

The generation of quadcopter motion primitives typically leverages the property of differ-
ential flatness [29]. Differential flatness enables the full recovery of a dynamic system’s states
and inputs from a group of “flat states” and their finite order derivatives. In the context
of a quadcopter, both thrust and attitude can be directly computed from acceleration, the
second-order derivative of position. Consequently, quadcopter motion primitives only need
to explicitly define the position, and the rest of the states (velocity, acceleration, attitude,
etc.) and inputs (thrust and angular rates) will be implicitly encoded. This greatly reduces
the dimensionality of the planning problem.

A crucial category of quadcopter primitives is the minimum snap primitive proposed
in [30]. This method defines the quadcopter primitives as polynomial splines and solves a
quadratic problem (QP) to minimize snap (the second derivative of acceleration) in order to
determine the parameters of the splines. Improved formulations of minimum snap primitives
designed for enhanced online computation speed were later proposed in [31] and [32]. The
minimum snap trajectory is highly versatile and extendable. As these primitives are gen-
erated by solving optimization problems online, costs and constraints can be customized to
meet various planning requirements. However, extra attention to the optimization problem
formulation is needed to ensure the formulation possesses desirable properties. Otherwise,
the problems may not be solved efficiently and reliably.

The minimum jerk primitives, introduced in [33], present a useful alternative for quad-
copter motion planning. These primitives are defined as fifth-order polynomials of time,
with fully or partially fixed start and end state, as well as a specified total time duration.
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The optimization problem that minimizes the integration of jerk (the derivative of acceler-
ation) for these primitives is found to have an elegant closed-form algebraic solution. This
discovery paves the way for an efficient method of generating quadcopter motion primitives,
enabling the creation of over a million minimum jerk primitives in less than a second using
a modern laptop. Furthermore, the feasibility of control inputs (thrust and body rates) can
be swiftly verified, and collisions between minimum jerk primitives and convex obstacles
can be efficiently detected [34]. This makes these primitives particularly useful for tasks in
cluttered environments. Their rapid generation speed, coupled with the abilities to quickly
check input-feasibility and detect collisions, makes it possible to generate a large array of
primitive candidates and select the best primitive during real-time operation.

Sampling-based planning

One effective approach to assist autonomous systems in finding feasible trajectories be-
tween desired states is to gather samples in the state space and connect them with feasible
(in terms of both input-feasible and collision-free) trajectories. Methods using this approach,
such as rapidly exploring random trees (RRT) [35] and probabilistic road maps (PRM) [36],
are referred to as sampling-based planning methods. In particular, RRT*, a variant of RRT,
has gained considerable popularity due to its unique asymptotic optimality characteristic
[37]. Researchers have extended the RRT* algorithm to work with dynamic systems with
differential constraints [38] and have developed various sampling methods [39] and heuristics
to guide the sampling process [40, 41] in order to increase the rate of convergence for RRT*.

Collision-inclusive planning

A key step of motion planning is to check for possible collisions with the surrounding
environment. Trajectories that intersect with obstacles are typically discarded by plan-
ners. However, in recent years, the development of many autonomous systems capable of
withstanding collisions (vehicles detailed in Section 2.1 are perfect examples) has made a
change in this perspective. Given that these vehicles can implement trajectories that are not
collision-free, they can plan their motion within an expanded feasible state space. This can
lead to better planning results with decreased trajectory cost or shorter duration time.

This concept of utilizing collisions for improved trajectories is discussed in [42], which
also proposes a method for finding collision-inclusive optimal trajectories using mixed in-
teger programming. The effectiveness of this method is later experimentally validated in
[43]. Meanwhile, a collision-inclusive planning structure with proof of optimality for hybrid
dynamical systems is proposed in [44]. Moreover, collisions have been found to be advan-
tageous in stochastic optimal steering problems, as contact helps reduce the uncertainty in
state estimation [45].

In Chapter 4, we will explore how collisions can be utilized for enhanced sampling-based
motion planning for quadcopters.
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2.3 UAUV designs in the literature
UAUVs are amphibious vehicles capable of operating both underwater and in the air.

They can perform challenging tasks within multi-domain environments, such as inspecting
offshore oil platforms and surveying coastal ecosystems. UAUVs appear in various forms in
the literature, from waterproof fixed-wing aeroplanes [46] to squid-like soft robots [47]. A
comprehensive survey of recent UAUV developments can be found in [48].

In the following discussion, we will primarily focus on UAUVs with vertical take-off and
landing (VTOL) capabilities, a category to which our work to be introduced in Chapter 5
belongs. Compared to fixed-wing UAUVs, VTOL UAUVs exhibit greater agility and maneu-
verability. However, they also encounter larger challenges during water-air transitions due to
the drastic change in propeller thrust from operating in water to operating in air, which have
a 1000-fold difference in density. Moreover, during the transition, propellers’ interaction with
the fluid interface also creates a significant variability in the phase fraction of the operating
media, primarily attributed to propeller-induced air entrainment. This entrainment is driven
by a combination of shear forces at the water-air interface, vortex-induced entrainment, and
air entrapment from falling liquid [49]. The interaction of these mechanisms generates a
highly unsteady flow field in which the VTOL UAUV must operate, thereby making water-
air transition more difficult. To overcome challenges during the transition process, VTOL
UAUV designs in the literature typically use supportive mechanical structures, which are
detailed below.

VTOL UAUV Designs

One popular approach for water-air transition for VTOL UAUVs is to use double-layered
propellers. The Naviator UAUV series [50, 51], for instance, feature designs with eight pro-
pellers grouped in two layers and a hybrid control system. They can reliably generate thrust
during the water-air transition as there is always a set of four propellers clearly underwa-
ter or in the air. Similarly, the Hybrid UAUV [52] employs two layers of propellers: four
aerial propellers and four aquatic propellers specifically designed for underwater mobility.
Accompanying the Hybrid UAUV, a robust switched control strategy is proposed and vali-
dated with high fidelity simulation [53]. Another double-layered design is presented in [54],
wherein the vehicle employs an adaptive sliding mode dynamical surface control to transi-
tion between different media. An alternative design approach for media transition involves
the use of buoyant devices. For example, the Loon-Copter [55] is a UAUV equipped with a
controllable water ballast that can adjust the overall density of the vehicle. To emerge from
the water, the Loon-Copter empties its ballast, floats to the water surface, and then takes
off when all propellers are clearly out of the water. The SeaHawk Alfa drone [56] is designed
with a detachable buoy. This buoy floats on the water surface and is connected to the drone
body with cables. Prior to take-off from water, the drone reattaches itself to the buoy, us-
ing the additional buoyancy force to raise the propellers out of the water. Furthermore, a
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piston-driven buoy system is applied in the NeZha III [57], a hybrid UAUV design with both
rotor-based VTOL capability and wing-based horizontal glide ability.

While these additional mechanical structures facilitate media transition, they come at the
cost of increased weight and reduced agility. In Chapter 5, we will introduce our approach,
which creates a UAUV without additional mechanical structures with the help of a specialized
breaching control strategy, thereby maintaining agility comparable to purely aerial vehicles.
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Chapter 3

Collision-resilient tensegrity aerial
vehicle for cluttered environments

In this chapter, we introduce an aerial vehicle design that can safely operate in cluttered
environments filled with obstacles that are hard to detect and/or avoid. With an icosahedron
tensegrity structure (a 20-face polygon composed of rigid rods suspended in a tension network
of strings), the design is exceptionally collision-resilient. With a re-orientation controller,
the vehicle can rotate on the ground to point its propellers upward, enabling it to take
off again post-collision. To help the vehicle navigate in GPS-denied and vision-occluded
environments, we have in addition adopted the inertial navigation strategy in [58], which
decreases estimation error by breaking long trajectories into shorter hops and using pseudo-
velocity measurement updates when the Inertial Measurement Unit (IMU) indicates the
vehicle is stationary.

The development of the tensegrity aerial vehicle went through two key stages. The first
stage involved a conceptual exploration. We attached an existing miniature quadcopter to
a tensegrity shell (see the left vehicle in Fig. 3.1), and developed a naive re-orientation
controller by adapting our existing flight attitude controller. The outcomes of this initial
stage of research was detailed in the following paper:

• Jiaming Zha, Xiangyu Wu, Joseph Kroeger, Natalia Perez, and Mark W. Mueller, “A
collision-resilient aerial vehicle with icosahedron tensegrity structure,” in Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
IEEE, 2020, pp. 1407–1412. [27]

During the second stage, an improved design fully leveraging the properties of the tensegrity
structure was created (see the right vehicle in Fig. 3.1). By directly mounting the motors and
electronics onto the tensegrity shell, we eliminated the need for rigid connections between
the tensegrity rods, thereby enhancing the vehicle’s resilience to collisions. In addition, we
created a new and more accurate method for stress analysis based on a dynamics simulator,
which can capture transient effects and structural deformation. Furthermore, we proposed an
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Figure 3.1: The icosahedron tensegrity aerial vehicles. Left: stage one experimental vehicle,
built with a miniature quadcopter attached to a tensegrity shell. Right: stage two experi-
mental vehicle, all electronics of which are directly mounted on the tensegrity rods. Both
vehicles are built with carbon fiber rod of 20cm length.

enhanced re-orientation strategy, which can systematically evaluate the feasibility of rotation
between icosahedron faces, and map torque control signals to individual propeller commands,
all while considering the feasible operational range of each propeller. The resulting vehicle
has remarkable collision resilience, capable of withstanding impacts with speed of 11.7 m/s.
Its ability to survive collisions, resume operation post-collision, and operating using only
inertial sensors were validated through a field experiment conducted in a forest previously
unknown to the vehicle. The discussion pertaining this second stage of our work, which is
the primary focus of this chapter, has been submitted for potential publication:

• Jiaming Zha, Xiangyu Wu, Ryan Dimick, and Mark W. Mueller, “Design and con-
trol of a collision-resilient aerial vehicle with an icosahedron tensegrity structure,”
IEEE/ASME Transactions on Mechatronics (TMECH), under review.

3.1 Introduction
Autonomous aerial vehicles, being weight-sensitive, are often fragile. Damage to their

propellers or electronics can result in the loss of their ability to fly. Protective measures
for these vehicles typically fall into two categories: detecting and avoiding collisions, and/or
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preventing physical damage caused by collisions. Methods of the first category focus on
sensing surrounding spaces and finding safe paths based on the collected information. A
survey summarizing recent development in the area is in [59]. Methods of the second category,
which the work in this chapter belongs to, help aerial vehicles operate more safely in cluttered
environments, where accidental collisions may occur due to imperfect sensing or control.
Many aerial vehicles with collision-resilient designs exist in the literature, and a review of
them can be found in in Chapter 2.

In this chapter, we present the design of collision-resilient flying robots, termed tensegrity
aerial vehicles, featuring icosahedron tensegrity structures. These vehicles incorporate the
collision resilience of tensegrities and the mobility of quadcopters. They can withstand
high-speed impacts and resume operation after collisions. With these capabilities, they
can safely operate in cluttered environments without complex collision-avoidance strategies.
To guide the design process of these vehicles, we propose a model-based approach that
employs dynamics simulation to predict structural stresses during collisions, and to help us
select components that can endure these stresses. Additionally, we create an autonomous
re-orientation strategy to help the vehicles take off again after collisions. Leveraging the
sphere-like geometry of the icosahedron, the tensegrity aerial vehicles can rotate from an
arbitrary orientation on the ground to ones easy for takeoff. With collision resilience and re-
orientation ability, tensegrity aerial vehicles can operate in cluttered environments without
complex collision-avoidance strategies. Moreover, we further extend the vehicles’ ability by
adopting the inertial navigation method in [58], which enables the vehicles to perform short-
range autonomous operations without external sensors. The resulting vehicles can thus serve
as field robots and work on challenging tasks such as traversing through a cluttered corridor
filled with smoke to search for survivors.

The rest of the chapter is organized as follows. In Section 3.2, we introduce the simulation-
based approach used for designing the tensegrity, along with an analysis showcasing the
structural advantages of the icosahedron tensegrity shells. Subsequently, in Section 3.3, we
explore the dynamics of tensegrity aerial vehicles and introduce the re-orientation controller.
Experimental validations are presented in Section 3.4, and finally, Section 3.5 concludes
the chapter. Related experimental videos can be viewed at youtu.be/XsLVRd2nMd0.
The tools used to develop and analyze the tensegrity aerial vehicles can be accessed at
github.com/muellerlab/TensegrityAerialVehicle.git.

3.2 Design of the tensegrity shell
In this section, we motivate the idea of protecting a quadcopter with a stiff icosahedron

tensegrity shell, introduce the approach used to design the tensegrity with stress analysis
based on a dynamics simulation, and showcase the structural advantage of the tensegrity
design. The tools for the related simulation and analysis can be accessed via the link in
Section 3.1.

We choose to design the tensegrity aerial vehicle in the form of a quadcopter because

https://youtu.be/XsLVRd2nMd0
https://github.com/muellerlab/TensegrityAerialVehicle.git
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the abilities to hover and to vertically take off and land make operations easier in cluttered
environments. Meanwhile, we choose to protect the quadcopter with a 6-rod orthogonal
icosahedron [60] tensegrity, whose near-spherical shape offers omnidirectional protection with
minimal structural weight.

The tensegrity shell’s primary role is to shield the quadcopter from damage during col-
lisions. Hence, it must withstand impacts without breaking, and its deformation should
be small to prevent external obstacles from making contact with the internal components.
Consequently, the successful design of the tensegrity depends on the selection of components
(rods and strings) that possess suitable stiffness and strength.

We favor stiff components with little flexibility for two reasons. First, a stiff shell exhibits
little deformation during collisions, requiring less buffer space to protect internal components
like propellers from exposure. Thus, the tensegrity can be smaller in size, and this helps the
vehicle to fit through narrow gaps. Second, a stiff tensegrity has little vibration within
the shell structure, resulting in less flight disturbance. Meanwhile, we prefer lightweight
components as they help retain the agility and flight time of the aerial vehicle. In the
following subsection, we detail the process of determining whether certain components meet
these design requirements.

Stress analysis with dynamics simulation

To predict if a tensegrity aerial vehicle can survive a collision, we simulate the dynamics of
the tensegrity structure during the collision and calculate the stress in the structure with the
simulation result. In contrast to the static stress analysis method previously proposed during
the stage one of the tensegrity aerial vehicle research [27], this dynamics simulation method
has two advantages. First, it accounts for the tensegrity deformation and captures the tran-
sient effects during the propagation of stress. Second, it considers the stress concentration
caused by the mass of the quadcopter mounted on the tensegrity rods. These advantages
lead to a more accurate stress estimate and allow us to easily verify if the tensegrity design
meets the deformation criteria.

The tensegrity vehicle is modeled as point masses suspended in a stress network, as
depicted in Fig. 3.2a. We define a tensegrity node as the point where a rod connects to
strings. An icosahedron tensegrity has 12 nodes, each is a point mass representing the mass
of the fasteners at the node’s position, as well as half of the rod and the strings connected
to that node. Each tensegrity node connects to a rod and four strings, represented as a
massless linear spring-damper pair (see Fig. 3.2b).

The quadcopter is modeled using four evenly-distributed quadcopter nodes, which are
mass nodes attached to a pair of parallel rods in the tensegrity shell. Each quadcopter node
represents the mass of propeller and motor at its location, and a quarter of the batteries and
electronics. These quadcopter nodes divide the full-length rod they’re mounted on into three
short rods. Each connection between short rods is represented as a torsional spring-damper
pair, as shown in Fig. 3.2c, with the torsional spring constant derived from the rod bending
model, as we will show later. It is important to note that our model does not treat the rod
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(a) (b) (c)

Figure 3.2: (a) The tensegrity vehicle is simplified as point masses in a stress network. Cyan
spheres represent tensegrity nodes whereas orange spheres represent quadcopter nodes. (b)
Strings and rods are modeled as massless spring-damper pairs. (c) Connections between two
short rods are modeled as torsional spring-damper pairs.

hosting quadcopter nodes as a single, inflexible entity. Instead, it allows for relative rotation
between short rods, facilitating the capture of transient stress concentration effects resulting
from the uneven mass distribution caused by the mounting of the quadcopter.

We denote the nodes in the system as ni, where i = 1, ..., 12 for the tensegrity nodes
and i = 13, ..., 16 for the quadcopter nodes. The position of the ith node is represented by
xi. For simplicity and consistency, variables related to rods are denoted with a superscript
r and those related to strings with a superscript s. The connectivity of the nodes can then
be represented with indicator variables N r

i,j and N s
i,j:

N r
i,j =

{
1, if a rod connects ni and nj

0, otherwise
(3.1)

N s
i,j =

{
1, if a string connects ni and nj

0, otherwise
(3.2)

We further define Ti,j and Ci,j as the value of the tensile force in string and compression
force in rod connecting node ni and nj. They can be calculated from Hooke’s law, with a
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special modification that compressed strings generate no force:

Ti,j =

{
N s

i,jK
s(Li,j − Ls), if Li,j ≥ Ls

0, otherwise
(3.3)

Ci,j = N r
i,jK

r
i,j(L

r
i,j − Li,j) (3.4)

where Ks and Kr
i,j respectively are the spring constants of the string and the rod. We use

subscripts i and j to specify rod-related variables, as these indices correspond to the two
end nodes of the rod. Li,j = ||xi − xj|| is the distance between node ni and nj. Ls and Lr

i,j

are the corresponding pre-deformation length of the string and the rod. Note that due to
the existence of possible self-stress (also known as pre-tension) in the icosahedron tensegrity
[61], tensegrity components may be deformed even without an external load.

In addition to the tensile and compression forces, there exist linear damping forces which
inhibit relative linear motion between nodes. We assume that each damping force is aligned
with the corresponding string or rod, and its value is proportional to the relative velocity of
the nodes:

Di,j = (N s
i,j +N r

i,j) ci,j(ẋj − ẋi)
Tei,j (3.5)

where ei,j ∈ R3 is the unit vector pointing from ni to nj and ci,j is the corresponding linear
damping coefficient.

Additionally, for the connections between short rods, which are modeled as torsional
spring-damper pairs and shown in Fig. 3.2c, we assume the spring moment is proportional
to the angle between the neighboring rod and the damping moment is proportional to the
angular velocity:

Mj =

{
ξjθ + cj θ̇, if nj connects two short rods
0, otherwise

(3.6)

where ξj is the torsional spring constant at nj, derived from rod bending model, while cj is
the torsional damping constant at nj. For pure bending of a rod, the radius of curvature
equals the product of Young’s modulus Er and second moment of area Ir, divided by the
bending moment Mj [62]. Given that the bending angle is the ratio between the rod length
and the radius of curvature, the torsional spring constant can be computed as:

ξj =
ErIr

Li,k

(3.7)

As the mass of rods is assumed to be lumped at the nodes, the moment is equivalent to
forces acting on nodes at the ends of the rods in orthogonal directions and a balancing force
acting on the joint:

f i =
Mj

Li,j

e⊥ji, fk =
Mj

Lj,k

e⊥jk, f j = −(fk + f i) (3.8)
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where e⊥ji and e⊥jk are respectively unit vectors perpendicular to ej,i and ej,k, pointing in
the directions that would decrease the joint angle θ.

Let f bi represent the force due to bending on node ni and let ui represent the external
force acting on ni. We use a method similar to [63] and derive the equations of motion of
the system with Newton’s second law for each node i:

f bi + ui +
∑
j

(Ti,j − Ci,j +Di,j)ei,j = miẍi (3.9)

where mi is the mass of ni.
To simulate the system’s dynamics, we need to define the external forces that act on the

tensegrity during the collision process. We estimate the force by simplifying the obstacle
as a stiff linear spring, and assume the magnitude of the force acting on the tensegrity is
proportional to the distance that the tensegrity node has penetrated the obstacle:

||ui|| = kopi (3.10)

where ko is the stiffness of the obstacle and pi is the penetration distance of node ni. Studies
on the stiffness of common obstacles like concrete walls can be found in the literature [64].
We assume the surface of the obstacle is frictionless, so reaction forces are normal to the
surface of the obstacle.

We simulate the dynamics system described by Eq. (3.9) by providing the initial position
and velocity of the nodes and numerically solving the corresponding initial value problem
with the Radau method in the SciPy library [65], which is chosen for its good general
performance with stiff problems. The solution gives us positions of nodes over the simulated
time, and we can then extract the tensile and compressive forces, as well as bending moment
from these positions. The axial stress in the string or rod connecting nodes ni and nj can
then be expressed as a function of simulation time as follows:

σs
i,j(t) =

Ti,j(t)

As
, σr

i,j(t) =
Ci,j(t)

Ar
(3.11)

where σs
i,j and σr

i,j are axial stress in corresponding strings and rods respectively. As and Ar

are cross sectional areas of strings and rods. Furthermore, when considering the connection
between two short rods, we can use the rod bending formula from [62] to compute the stress
induced by bending at the rod’s surface:

σb
j(t) =

Mj(t)r

Ir
(3.12)

where r is the radius of rod. Thus, we can calculate the maximum stress at the node
connecting two short rods as the sum of the bending stress at the rod surface and the
maximum axial stress in the rods connected to it:

σr
j (t) = σb

j(t) + max
i

(σr
i,j(t)) (3.13)
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We can then use the computed stress information to check if the candidate components meet
the design objectives. First, the stresses in the strings have to be smaller than their yielding
strength σsy, with a factor of safety for string ηs:

∀i, j, t ηsσs
i,j(t) < σsy (3.14)

Second, we need to ensure that the axial stress in each rod is less than its yield strength σry

and critical buckling strength σrb
i,j, with a safety factor for the rod ηr:

∀i, j, t ηrσr
i,j(t) < min(σry, σrb

i,j) (3.15)

Here the rod’s critical buckling strength can be approximated with Euler’s buckling theory:

σrb
i,j =

π2ErIr

Ar(Lr
i,j)

2
(3.16)

Third, the stresses at the nodes connecting two short rods should also be smaller than the
rod yielding strength with the safety factor for rod:

∀j, t ηrσr
j (t) < σry (3.17)

In addition to these stress conditions, we also need to ensure that the propellers and
electronic components are not exposed during collisions. This can be done by computing the
distances between the tensegrity surface and the quadcopter nodes, and ensuring that they
are larger than a given threshold. By using this dynamics simulation along with stress checks
and exposure checks, we can efficiently rule out candidate components that don’t meet our
design objectives without the need to physically construct and test the tensegrity structures.

Structural advantage of the icosahedron tensegrity

In an icosahedron tensegrity shell, external loads are distributed among structural mem-
bers as tension and compression, thereby avoiding large stress caused by bending. As a
result, an icosahedron tensegrity shell can better survive collisions than common protective
structures like propeller guards. We illustrate this structural advantage through a Monte
Carlo study, which simulates wall-collision experiments and compares the maximum stresses
in two aerial vehicle designs (a tensegrity and a propeller-guarded) during the collisions.

Both designs for our simulated experiments host a quadcopter with a total mass of mq

and propellers of diameter d. The first design has the smallest tensegrity shell that can fully
enclose the propellers, whereas the second design features the smallest propeller-guarded
frame able to host the quadcopter. For simplicity, we depict the vehicles’ body-fixed frames
with three axes (eB

x , eB
y , eB

z ) orthogonal to each other, as illustrated in Fig. 3.3. We assume
that the tensegrity shell and the propeller guard frame both have the same mass ms and
are composed of solid cylindrical rods of identical material, thus sharing the same density
ρr and Young’s modulus Er. To fully define the tensegrity structure, we in addition specify
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Figure 3.3: Left: illustration of the two collision-resilient aerial vehicles used for comparison.
The top has a tensegrity shell whereas the bottom uses a propeller guard. Both vehicles
have the smallest possible protection structure to host quadcopters with propellers of the
same size. Right: we model both vehicles as point masses suspended in a stress network.
We describe the vehicle’s body-fixed frame with a set of three axes orthogonal to each other:
eB
x , eB

y and eB
z . Notice that for the tensegrity aerial vehicle, the quadcopter nodes are on

the rods parallel to the eB
x axis.

γm, the ratio between the total mass of rods and total mass of strings in the tensegrity
shell, and Fs, the pre-tension force in strings. It is worth noting that our analysis shows the
maximum stress during a collision is insensitive to these parameters. Meanwhile, similar to
the tensegrity model, the quadcopter with propeller guard is simplified as point masses in a
network of rods modeled as massless linear spring-damper pairs connected by joints modeled
as torsional springs and dampers. Notice that there is a minor difference in the model: for
the joints connecting perpendicular rods, the rest angles corresponding to zero moment are
π
2
. Moreover, for both the tensegrity vehicle and the propeller-guard vehicle, we assume the

dampers will make the corresponding systems, including the spring-damper pair and their
directly-connected nodes, critically damped. In our simulated experiments, we consider a
wall with stiffness ko. Before the collision, the tensegrity aerial vehicle and the propeller
guard vehicle move perpendicularly toward the wall with a speed v. Both vehicles do not
rotate before collisions. In the Monte Carlo study, we simulate 2000 experiments, each with
a different random collision orientation generated by the following steps. First, we randomly
sample points with a uniform distribution on the surface of a unit sphere attached to the
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vehicle’s body-fixed frame. Then, we compute the collision orientation as the rotation which
maps the vector pointing from the origin to the sampled point in the body-fixed frame to a
vector pointing perpendicularly to the wall in an inertial frame attached to the wall. Due to
the symmetry of both vehicles, we only need to study orientations corresponding to nodes
sampled in a single octant (one of the eight divisions of the Euclidean space separated by
the three orthogonal axes) of the sphere surface.

The Monte Carlo study are conducted with key parameters in Table 3.1. The parameters
correspond to a tensegrity shell made with carbon fiber rods and braided nylon string.
Additionally, we choose Fs = 20N, which corresponds to a stiff shell without large pre-
tension stress in the system. Notice that given the same structural mass budget, the rods
used in the tensegrity are longer and therefore thinner.

Table 3.1: Key parameters used in the comparison simulation example

Parameter Value
total structure mass ms = 50g

total quadcopter mass mq = 250g
string pre-tension F s = 20N

rod-string mass ratio γm = 20
rod density ρr = 2000kg/m3

string density ρs = 1150kg/m3

rod Young’s modulus Er = 3.2×1010Pa
string Young’s modulus Es = 4.1×109Pa

diameter of 2.5-inch propellers d = 63mm
wall stiffness ko = 4.7×107N/m

initial speed before collision v = 5m/s

The result of the Monte Carlo study, visualized in Fig. 3.4, shows that the tensegrity
holds a structural advantage over the propeller guard for collision resilience. Among the
2000 simulations, the tensegrity’s mean maximum stress is 34.4MPa, compared to 100.5MPa
in the propeller guard. For 80% of the samples, the maximum stress in the tensegrity
vehicle is smaller than half of that in the propeller-guarded vehicle. On the other hand, the
propeller-guarded vehicle experiences a smaller maximum stress than the tensegrity aerial
vehicle (i.e. propeller guard is superior) in only 2.7% of the cases. Moreover, note that
the high-stress points in the tensegrity plot are not symmetrically distributed. This comes
from the non-uniform placement of the quadcopter parts, which are solely attached to the
rods parallel to the eB

x axis. Hence, the most severe stress is experienced when these rods
collide perpendicularly with the wall. In such circumstances, the deformation within the
tensegrity structure is restricted, leading to a less effective load distribution. This analysis
result suggests that during high-speed operations, tensegrity aerial vehicles should avoid
flying with these rods pointing forward to avoid structural failures.
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Maximum Stress: 
Tensegrity (Pa)

Maximum Stress: 
Prop-guard (Pa)

Ratio of Maximum Stress: 
Prop-guard/Tensegrity (Pa/Pa)

Figure 3.4: Visualization of the Monte Carlo study result. The positions of the points corre-
spond to the collision orientation. Top left: scatter plot of the maximum stress in propeller
guard during collisions. Bottom left: scatter plot of the maximum stress in tensegrity. Right:
the ratio of the maximum stress in propeller guard to that in tensegrity. Larger values indi-
cate more tensegrity advantage. The color on the surface is interpolated from the scattered
simulated experiment data points.

In addition, we have investigated the structural advantage of the icosahedron tensegrity
for vehicles of various scales. Specifically, we scale all length-related parameters linearly,
all mass and force-related parameters cubically, while maintaining the ratios and material
characteristics parameters from Table 3.1. We then conduct the same Monte Carlo analysis
for the scaled tensegrity aerial vehicle and propeller-guarded vehicle and record the ratio
of maximum stresses. The result of the analysis is shown in Fig. 3.5. As the vehicle size
increases, the icosahedron tensegrity’s collision resilience relative to the propeller guard also
improves. As the propeller guard increases in size, bending becomes the primary source
of stress due to the increased moment arm length. Consequently, as the vehicle scales
up, the maximum stress in the tensegrity shell increases at a slower rate than that in the
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Tensegrity Better

Prop-guard Better

Figure 3.5: This figure illustrates the structural advantage of tensegrity over propeller guard
for aerial vehicles of varying scales. The horizontal axis represents the scaling factor, while
the vertical axis indicates the relative advantage, measured as the ratio of the maximum
stress in the propeller guard to that in the tensegrity during collision simulations. The rising
trend suggests the tensegrity’s advantage becoming more prominent with larger vehicles.

propeller guard. Conversely, as the vehicle size decreases, the propeller guard becomes more
effective compared to the tensegrity. However, at smaller scales, the maximum stresses
during collisions also decrease, and factors like air resistance become dominant, which in
turn reduces the necessity for high-speed collision resilience.

3.3 Dynamics model and control of tensegrity aerial
vehicle

In this section, we introduce the models and controllers of the tensegrity aerial vehicles.
The vehicles primarily execute two types of motion: in-flight, they operate like standard
quadcopters with a flight controller; on the ground, they employ a re-orientation controller
to rotate themselves to an orientation with propellers pointing upward, preparing for takeoff.

During stage one of the tensegrity aerial vehicle development [27], we proposed a strat-
egy that repurposed the flight attitude controller for re-orientation. It relied on physical
experiments to determine the feasibility of rotations and imposed a constraint of sum of
thrusts being zero, limiting the rotational torque the vehicle could produce. This section
introduces a new re-orientation strategy, which offers two improvements. First, it systemat-
ically determines rotation feasibility and plans re-orientation paths. Second, it incorporates
a new thrust converter that optimizes the vehicle’s re-orientation torque command while
considering the thrust constraints. Hence, it increases the reliability of the re-orientation
process.

This section aims to provide a generalized strategy for modeling and controlling tensegrity
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(a) (b)

Figure 3.6: The figure shows the dynamics model of a tensegrity aerial vehicle during a
rotation between faces. (a) The vehicle experiences weight w, thrusts and yaw torques
generated by the propellers, fi and τi (where i = 1, 2, 3, 4), and contact forces rj (where
j = 1, 2, 3, . . .). W denotes the world frame fixed to the ground and B denotes the vehicle’s
body-fixed frame. (b) The tensegrity rotates from face Fa to its neighbor face Fb. We study
the rotation about rotation point nr with a rotation axis sr and a total rotation angle Θr.
The tensegrity contacts the environment at multiple points denoted by nj.

aerial vehicles. For discussions on the specific experimental vehicle we created, please refer
to Section 3.4. The code for related re-orientation analysis is available in our open source
repository (see link in Section 3.1).

Vehicle dynamics and controller during flight

Given the stiff shells of the tensegrity aerial vehicles, we make the assumption that the
vehicles behave as rigid bodies when they are not colliding with obstacles. As a result,
the vehicles are modeled identically to standard quadcopters, and conventional quadcopter
controllers are utilized for flight operations.
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Vehicle dynamics for re-orientation

The model used to describe the dynamics of a tensegrity aerial vehicle during re-orientation
is shown in Fig. 3.6a. External forces and torques include weight of the vehicle, thrust and
torque from propellers, and reaction forces and torques due to contact with the environment.
The vehicle’s attitude is defined as a rotation matrix R, mapping vectors from the body-fixed
frame B, which is affixed to the center of mass o, to the world frame W , which is inertial
and affixed to the ground, i.e., vW = RvB. To avoid possible confusion, when a vector is
used in analysis across different frames, we use superscript to indicate in which frame the
vector is expressed.

The translational dynamics comes from Newton’s law:

md̈ = wW +ReB
z

4∑
i=1

fi +
∑
j

rW
j (3.18)

where m is the vehicle mass, w is its weight, d is its position relative to a fixed point in
the world frame, d̈ is the cooresponding acceleration, fi is the thrust generated by the ith

propeller, eB
z is a unit vector pointing along the z-axis of the body-fixed frame, and rj

represents the reaction force from the environment acting on node j.
Rotational dynamics is modeled with Euler’s equation:

Jω̇ + S(ω)Jω =
4∑

i=1

fimo,i +
∑
j

(S
(
nB

j

)
rB
j ) (3.19)

where S(·) maps a R3 vector to a corresponding R3×3 skew-symmetric matrix. Left mul-
tiplying S(·) is equivalent to the cross product. J is the moment of inertia matrix of the
vehicle with respect to its center of mass, and nj is the position of the node j that is in
contact with the environment. Meanwhile, the angular velocity vector of the vehicle, ω ∈ R3,
represents the rotation velocity between the body-fixed frame and the world frame, and it
relates to the attitude matrix as follows:

Ṙ = RS(ω) (3.20)

Moreover, mo,i ∈ R3 represents the torque with respect to the center of mass generated by
the ith propeller with a unit thrust, and can be computed as:

mo,i = S
(
pB
i

)
eB
z + hiκe

B
z , (3.21)

where pi is the position of propeller i, hi denotes the handedness of the propeller i (1 for
right-handed, −1 for left-handed), and κ is the propeller’s torque coefficient. On the right of
Eq. (3.21), the first term represents the torque coming from the cross product of the moment
arm and its respective thrust force, whereas the second term captures the drag torque from
propeller rotation.
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Re-orientation strategy

To facilitate the resumption of flight after collisions, a re-orientation controller is created
to rotate the vehicles from arbitrary orientations to ones easy for takeoff. An icosahedron
tensegrity has twenty faces, and we define two faces as neighboring if they share two nodes.
Assuming the tensegrity is on flat ground, we denote the face in contact as Fi if the ith face
is touching the ground. Fig. 3.7 shows an unfolded icosahedron, illustrating the neighboring
relationship of tensegrity faces. When face 4 or 9 (highlighted in the figure) is the contact
face, the propellers point upward, indicating the tensegrity is prepared for takeoff. Thus,
the objective of the re-orientation is to rotate the tensegrity aerial vehicle so that face 4 or
9 becomes the contact face.

The re-orientation strategy decomposes the task into a sequence of rotations between
neighboring tensegrity faces, offering two key benefits. First, each rotation is simple to
model, as the rotation axis corresponds to the line shared by the neighboring faces and the
total rotation angle is determined by the icosahedron shape. Second, the strategy simplifies
the problem into a finite state machine, thus enhancing robustness. If a rotation fails and
the vehicle lands on an unexpected face, the controller can re-plan the path and continue
with the task.

We define the re-orientation paths as a series of desired rotations to rotate the vehicle
from the starting faces to a goal face. To find these paths, we follow a two-step procedure.
First, we create a connection graph where the nodes represent the contact faces, and directed
edges indicate feasible rotations between neighboring faces. Then, we search on this graph
to find the shortest path from any starting face to its closest goal face.

The feasibility of a rotation between neighboring faces is evaluated by assessing whether
the tensegrity aerial vehicle can generate a set of thrusts that counteract the gravitational
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Figure 3.7: Faces of an unfolded icosahedron tensegrity. The tensegrity can take off when
face 4 or 9 is contacting the ground. Dashed lines with the same color indicate overlapped
edges when the tensegrity is folded back.
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torque, without causing the vehicle to slide or leave the ground. We assume that the elec-
tronic speed controllers (ESCs) of the vehicles are configured to drive the propellers bi-
directionally, enabling the vehicles to generate additional torque for re-orientation. For the
following analysis, we use the notation illustrated in Fig. 3.6b, where Fa denotes the start-
ing face and Fb represents the neighboring face to rotate to. We denote nr as the rotation
point, sr as the rotation axis in the body-fixed frame, and Θr as the rotation angle. For
a rotation to be feasible, there must exist a set of thrusts [f1, f2, f3, f4] and reaction forces
[r1, r2] satisfying following conditions:
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The above conditions specify the scenario when the tensegrity vehicle fully compensates
its gravitational torque and is about to initiate rotation. At this moment, the third contact
point is about to leave the ground. Thus, its reaction force goes to zero and is therefore
not included in the equations. Eq. (3.22), derived from Newton’s law, describes the force
balance, while Eq. (3.23) illustrates the balance of the moments about the rotation point,
nr. We use mr,i ∈ R3 to represent the torque with respect to nr generated by a unit thrust
of propeller i. Similar to Eq. (3.21), it is computed as:

mr,i = S
(
pB
i − nB

r

)
eB
z + hiκe

B
z , (3.27)

The constraint (3.24) assures that the two nodes retain contact with the ground, as the reac-
tion forces have non-negative components along va, the unit ground-normal vector. Mean-
while, the no sliding condition is captured by (3.25), where µ denotes the friction coefficient
between the vehicle and the ground. The feasible propeller thrust range is given in (3.26),
where fmax represents the maximum thrust each propeller can generate, and fmin symbolizes
the negative thrust value produced when the propeller spins reversely at peak speed.

Based on the feasibility analysis, a connection graph can be constructed. A fully con-
nected graph indicates that the vehicle can re-orient to any contact face. In contrast, the
presence of disconnected nodes on the graph indicates that the vehicle is incapable of leav-
ing the corresponding contact faces through rotation. This suggests that the vehicle fails to
generate enough torque to counterbalance the gravitational torque under the thrust range,
the contact constraint and the no-sliding constraint. A design update incorporating stronger
motors and/or longer moment arms, and a recheck of re-orientation feasibility are recom-
mended to solve the problem. Once the connection graph has been constructed, the shortest
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paths from any starting face to the goal faces can be determined. Section 3.4 provides an
example of generating the re-orientation paths for our experimental vehicle.

Reference rotation trajectory for re-orientation

For each re-orientation step, the controller first identifies the rotation required for the
face change, generates a reference rotation trajectory, and then tracks the generated trajec-
tory. We employ a two-piece trajectory, which accelerates from a stationary state to the
maximum angular velocity for the first half of the duration and then decelerates to stop for
the second half. The angular acceleration remains constant in magnitude throughout, with
a direction change at the midpoint of the duration. We have opted for this trajectory since
it allows for straightforward tuning of the reference angular acceleration (which determines
the aggressiveness of the trajectory) by adjusting the total trajectory time, denoted as T .
Note that the total rotation angle Θr is constant, so the magnitude of the reference angular
acceleration solely depends on T :

||Θ̈ref || =
4Θr

T 2
(3.28)

Ideally, in the absence of tracking error, the total torque command equals the sum of the
gravitational torque offset and the torque to generate the desired angular acceleration, which
is inversely proportional to T 2. Thus, for large T , the offset predominantly dictates the total
torque command. As T decreases, tracking torque becomes dominant, and even a small
adjustment in T can significantly alter the torque command. Hence, when tuning T , we
recommend beginning with a large initial value and then reducing it incrementally until the
desired rotational behavior is achieved, all while ensuring the feasibility of the thrusts.

At a given time t, we can express the reference state with a reference rotation vector
Θref , a reference angular velocity vector Θ̇ref , and a reference angular acceleration vector
Θ̈ref . All three vectors point along the rotation axis sr. Moreover, we can find the reference
vehicle attitude at time t from the reference rotation vector as:

Rref (t) = RsfRv(Θref (t)), (3.29)

where Rs is the attitude of the vehicle before the start of rotation, and fRv(·) converts a
rotation vector to its corresponding rotation matrix [66].

Tracking controller for re-orientation

To track the reference trajectory, we design a controller which generates a desired angular
acceleration reducing the error as a second-order system:

Θ̈d = Θ̈ref + 2ζrωr(Θ̇ref − ω̂) + ω2
r(δr) (3.30)
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where ζr is the desired damping ratio, ωr is the desired natural frequency of the rotation and
ω̂ is the angular velocity reading from the rate gyroscope. The attitude error, δr, represented
as a rotation vector in the body-fixed frame, can be computed as:

δr = fvR(R
−1Rref ) (3.31)

where fvR(·) is the inverse of fRv(·) and it converts a rotation matrix to a rotation vector.
The total desired torque command to track the trajectory can then be computed as the

sum of the torque needed to offset gravity and the torque required to track the trajectory:

τ d = J rΘ̈d + S(ω̂)J rω̂ − τ g (3.32)

where J r is the mass moment of inertia of the tensegrity aerial vehicle with respect to the
rotation point. τ g is the gravitational torque offset and can be computed as the cross product
between the vector pointing from rotation point to the center of mass and the gravitational
vector.

Next, we convert the torque command to per-propeller thrust commands that the vehicle
can directly implement. The mapping from the thrusts to the generated torque is:

τ p =
4∑

i=1

fimr,i (3.33)

Notice torque τ p ∈ R3. Hence, Eq. (3.33) forms a linear system with three equations
and four unknown thrusts, leading to an under-determined mapping from torque to thrust.
Moreover, due to the physical limits of the motors and the propellers, we also need to
take thrust saturation into account. To find the thrust commands, we solve the following
problems:

When no thrusts are saturated and the exact desired torque can be generated, we com-
mand thrusts that minimize the sum of squares of the thrusts:

min
fi

4∑
i=1

f 2
i

s.t. τ d =
4∑

i=1

fimr,i

fmin ≤ fi ≤ fmax

(3.34)

If problem (3.34) has no feasible solution, force saturation is unavoidable. This usually
happens when the controller tries to correct a larger-than-expected tracking error. In these
cases, we solve for a set of feasible thrusts that minimize the norm of the error between the
desired torque and the torque that can be generated, while taking into account the constraint
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of thrust generation authority:

min
fi
||

4∑
i=1

fimr,i − τ d||2

s.t. fmin ≤ fi ≤ fmax

(3.35)

Both optimization problems (3.34) and (3.35) are of relatively low dimension. Conse-
quently, they can be solved in real-time, even on embedded systems with limited compu-
tation power, using tools like CVXGEN [67]. A figure illustrating the thrust mapping for
an example rotation problem and demonstrating the advantage of the optimization-based
thrust converter introduced above can be found in Section 3.4.

3.4 Validation with experimental vehicle
In this section, we present the experimental tensegrity aerial vehicle, and the tests and

analysis demonstrating its abilities. Video clips of all experiments are available online (see
link in Section 3.1).

Experimental vehicle

An experimental vehicle (the right vehicle in Fig. 3.1) is designed and built to validate
the proposed vehicle functionalities. We have designed the tensegrity shell with rods of
20mm length, so the shell can fit micro-scale quadcopter parts inside while still able to pass
through narrow gaps between obstacles. Our design aims at providing protection against
collisions at a target operation speed of 6m/s. We employ the design methodology described
in Section 3.2 to identify suitable candidate materials for constructing the tensegrity shell.
Among all candidates that satisfy the design requirements, carbon fiber rods with 6mm outer
diameters and braided nylon strings have been selected based on factors such as weight, cost,
and availability. The vehicle weighs 300g. Each motor can generate a maximum thrust of
2.8N for a short time (for re-orientation) or 2.2N continuously (for flight). The thrust-to-
weight ratio for flight is about 3:1. The mass breakdown of the vehicle is as follows.

Shell Batteries Electronics Motors
95g 75g 50g 80g

The resulting vehicle does not have a flat frame commonly used in quadcopter designs.
Instead, its motors and computation units are directly mounted to the tensegrity shell using
custom-designed 3D-printed mounts. Furthermore, to ensure even weight distribution, the
design is powered by two batteries connected in series. Each battery is attached to one of
the horizontal rods of the shell (see Fig. 3.8a). The design uses tension hooks to adjust
self-stress in the tensegrity (see Fig. 3.8b) and 3D-printed end caps with fiber-glass infill to
secure connections between rods and strings (see Fig. 3.8c).
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Battery

3D Printed 
MountCarbon Fiber Rod

Motors and ESCs

(a) (b) (c)

Figure 3.8: (a) Side-view of the tensegrity vehicle. Each horizontal rod has a battery and a
pair of motors and ESCs attached to it. (b) Tension hook. (c) End cap connecting a rod to
strings.

Collision resilience

A drop experiment and an in-flight collision experiment are conducted to verify the
collision resilience of the experimental vehicle. In the drop experiment, the vehicle is dropped
to a concrete pavement to find the collision speed it can survive. The vehicle successfully
survives a drop from a 7m tall balcony with a landing speed of 11.7m/s. When we drop
the vehicle from the next available balcony of 10.5m with a landing speed of 14.4m/s, the
tensegrity fails with a string getting snapped. For comparison, a 250g quadcopter built with
a commercial propeller-guarded frame [68] hosting the same propellers and electronics as the
experimental vehicle, fractures after a 3.25m drop with a 8.0m/s landing speed. A composite
image showing both drop experiments is shown in Fig. 3.9.

In addition to the drop test, we also control the experimental vehicle to accelerate towards
a concrete wall and collide with it to confirm the vehicle’s ability to survive collision during an
actual flight. An image sequence from a high-speed video of the collision process is displayed
in Fig. 3.10. The vehicle survives a collision of 7.8m/s, the fastest flying speed it can reach
under the space limit of our flight space. All components within the tensegrity structure
remain intact throughout the process, and the vehicle retain its ability to fly post-collision.

Re-orientation

We implement and test our re-orientation strategy proposed in Section 3.3. When gener-
ating the re-orientation paths, we assume friction coefficient µ = 0.2, accounting for friction
between the vehicle and slippery surfaces like wooden floors. The vehicle’s ESCs are config-
ured for bi-directional motor operation, thus providing increased torque generation authority
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7m 3.25m

Figure 3.9: Composite image of the drop experiments validating the collision resilience of the
experimental vehicle. Left: the experimental vehicle survives a 7m drop with a landing speed
of 11.7m/s. Right: for comparison, the quadcopter hosting same electronics and propellers,
built with commercial propeller guard, fractures after a 3.25m drop with a landing speed of
8m/s. The fracture is highlighted with the yellow box.
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(a) (b) (c)

Figure 3.10: Sequence of images showing the process of a collision against a concrete wall:
(a) Vehicle accelerates towards the wall. (b) Vehicle comes to a full stop. (c) Vehicle bounces
back from the wall. The collision speed is 7.8m/s.
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Figure 3.11: Generation of reorientation path. Nodes represent contact faces, with red
denoting the goal faces to rotate towards. (a) A graph of all feasible face rotations is
generated. Arrows indicate feasible rotations. (b) The shortest paths for each face to rotate
to its closest goal face are generated, with arrows showing rotation directions.

during re-orientation. Fig. 3.11a illustrates feasible rotations between adjacent faces, while
Fig. 3.11b presents the generated re-orientation paths. Notice that the vehicle can re-orient
from any start face to the desired goal faces.

We also investigate the advantage of relaxing the constraint of sum of thrusts being zero
in [27] via computing the additional payload that can be added to the center of mass before
the re-orientation paths fail. We solve the optimization problems maximizing the vehicle
mass under constraints (3.22) to (3.26) for all neighboring rotations. When an additional
0-thrust-sum constraint is imposed, the re-orientation paths will fail with an additional 12g
mass. However, without this constraint, the vehicle can re-orient from all faces with an
additional mass up to 30g.

In addition, we analyze the advantage of the optimization-based torque-thrust converter
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0-Thrust-Sum + Inverse
+Saturation

Pseudoinverse
+Saturation

Optimization

Figure 3.12: Thrust conversion error rates for rotation from face 3 to 4 with three different
methods. Axis-1 is the rotation axis, and axis-2 points from the rotation point to the origin
of the body-fixed frame. Darker color represents larger error rate and is undesirable.

in Section 3.3. When thrust saturation occurs, the generated torque will deviate from the
command. The rate of this error, defined as the ratio between the error’s norm and the
command’s norm, is used to gauge the effectiveness of thrust conversion. To demonstrate
the advantage of our method, we use the rotation from face 3 to face 4 as an example, as it
requires a torque that rolls, pitches, and yaws the vehicle simultaneously. We compare the
error rates of three methods, as shown in Fig. 3.12: 1) Adding an additional 0-thrust-sum
constraint to the under-determined linear system Eq. (3.33) to make it fully-determined,
solving the combined linear system for desired thrusts, and saturating the thrusts based
on the feasible range. 2) Computing desired thrusts by solving Eq. (3.33) with the pseu-
doinverse method, and then saturating the thrusts. 3) Computing the thrust commands
by directly solving the optimization problems in (3.34) and (3.35). The figure shows that
the optimization method has the largest error-free region. Furthermore, in scenarios with
thrust saturation, the optimization-based method shows a much smaller error rate. This
suggests that the optimization-based torque-thrust converter improves the vehicle’s ability
to implement re-orientation rotations.

With the planned re-orientation paths and the optimization-based thrust converter, the
experimental vehicle can reliably re-orient and take off. Videos demonstrating successful
re-orientations, including a scenario overcoming an initial failure caused by an external dis-
turbance can be accessed through the link in Section 3.1.
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Autonomous operation in forest environment

In this subsection, we present an experiment demonstrating the experimental vehicle’s
ability to autonomously operate in a cluttered environment. The vehicle is directed towards
a goal in a forest previously unknown to the vehicle, which contains tree obstacles and uneven
terrain. We employ the Extended Kalman Filter (EKF) from [69] to estimate the vehicle’s
state, including position, velocity, and attitude. Given the absence of external aids like GPS
or motion capture, we employ the estimation strategy from [58], which improves estimation
accuracy by breaking a long flight into short hops and updating the EKF with pseudo zero-
velocity measurements when vehicle sensors indicate a stationary status. Upon detecting
a collision (the norm of accelerometer readings exceeds a threshold), the vehicle seeks to
stabilize itself and land softly. After landing, it re-orients and attempts to hop around the
obstacle it has collided with.

Start
Goal End

Collision

(1)

(6)

(5)

(4)

(3)

(7)

(2)
(8)

(9)

Figure 3.13: Composite image of the tensegrity aerial vehicle autonomously operating in a
previously unknown forest environment. The cyan curve marks the movement of the vehicle.
The vehicle is ordered to move from the start point on the right side of the figure to the goal
point on the left. A tree obstacle exists between the two points. The vehicle successfully
survives a collision with the tree and arrives at an endpoint close to the goal. The distance
between the goal point and the end point is 0.25m. The background is desaturated to
highlight the vehicle movement.

The outdoor environment experiment reveals certain limitations of the vehicle. Naviga-
tion accuracy is restricted by the inertial sensors’ accuracy and range. High-impact collisions
can cause sensor saturation, introducing significant error into the state estimator. Also, the
re-orientation controller’s performance can be hindered by torque limitations, particularly
when the vehicle lands on steep slopes or is trapped by large ground indentations. To mit-
igate these issues, we lower the hop speed to avoid high-velocity collisions and instruct the
vehicle to attempt backward hops when trapped.

Fig. 3.13 presents a composite image from the test. The vehicle is tasked to travel 3m in
a specified direction with an unforeseen tree obstacle en route. During its second hop, the



35

vehicle collides with the tree, manages to survive the impact, logs the obstacle’s position,
executes a sideways hop to evade the obstacle, and proceeds towards the goal.

3.5 Conclusion
In this chapter, we introduce the tensegrity aerial vehicle, a collision-resilient flying robot

design with an icosahedron tensegrity structure. We establish an approach for predicting
structural stresses during collisions via a dynamics simulation, which facilitates component
selection during the design process. This approach contributes to the successful creation of
an experimental vehicle with strong collision resilience, capable of surviving a 7m drop with
a 11.7m/s landing speed. Additionally, we develop a re-orientation controller, enabling the
vehicle to take off post-collision. This combination of collision resilience and post-collision
flight resumption makes the tensegrity aerial vehicle ideally suited for field operations in
cluttered environments filled with obstacles.
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Chapter 4

Exploiting collisions for quadcopter
motion planning in cluttered
environments

Aerial vehicles with collision-resilient designs, such as the tensegrity aerial vehicle dis-
cussed in Chapter 3, have brought new opportunities for motion planning in cluttered envi-
ronments. Aerial vehicles can leverage collisions to instantaneously change their movement
directions, thereby circumventing aggressive maneuvers required for rapid turning. In this
chapter, we present a sampling-based collision-inclusive motion planning algorithm for quad-
copters. This algorithm extends from the classic Optimal Rapidly-Exploring Random Tree
(RRT*) [37] structure with following key modifications. First, it connects sampled states
with quadcopter primitives, thereby facilitating efficient candidate trajectory generation and
enabling rapid checks for command feasibility. Second, it samples candidate collision states
by evaluating potential intersections between motion primitives and obstacles, and therefore
incorporating collisions as integral components of the generated candidate trajectories.

In addition to harnessing collisions for rapid direction changes, the integration of collisions
into the sampling-based motion planning offers another notable advantage: it can help the
planner find feasible trajectories in confined spaces, such as tunnels, with less computation
time. In such scenarios, allowing for collision expedites the random tree growth, as samples
are no longer discarded due to collisions, leading to more exploring efficiency.

The planning algorithm introduced in this chapter builds upon two insightful research
in the field of quadcopter motion planning, which we recommend to interested readers. The
first is the minimum-jerk quadcopter motion primitive generator, proposed in:

• Mark W. Mueller, Markus Hehn, and Raffaello D’Andrea, “A computationally efficient
motion primitive for quadrocopter trajectory generation,” in IEEE Transactions on
Robotics, IEEE, 31, no. 6 (2015): 1294-1310. [33]

This tool allows us to quickly generate quadcopter primitives between sampled states and
check their feasibility.
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The second is the rapid collision detection algorithm for polynomial quadcopter motion
primitives:

• Nathan Bucki, and Mark W. Mueller, “Rapid collision detection for multicopter tra-
jectories,” in International Conference on Intelligent Robots and Systems (IROS),
IEEE/RSJ, 2019, pp. 7234-7239. [34]

This tool allows us to efficiently check if a minimum jerk motion primitive will collide
with a convex obstacle. We update the algorithm to predict the specific time and quadcopter
state at the collision.

It is noteworthy that the algorithm proposed in this chapter is specifically tailored for
quadcopter motion planning. By specializing the algorithm for quadcopters and exploiting
the differential flatness of quadcopter dynamics, we achieve exceptional planning speed, a
trade-off we believe to be worthwhile given the widespread use of quadcopters and the critical
role of timeliness in UAV navigation.

The material in this chapter is based on the following previously published work:

• Jiaming Zha and Mark W. Mueller, “Exploiting collisions for sampling-based mul-
ticopter motion planning,” in Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), 2021, pp. 7943-7949.

4.1 Introduction
Our research on collision-resilient tensegrity aerial vehicles, discussed in Chapter 3, opens

up new possibilities for physical contact with surrounding objects during operation. This
development prompts us to harness this unique capability to create trajectories within an
expanded, collision-inclusive state space. The method we propose in this chapter takes a
sampling-based approach to incorporate collisions into quadcopter motion planning.

Our method, based on the RRT* algorithm [37], exploits the differential flatness inherent
in quadcopter dynamics. This enables swift generation of minimum jerk motion primi-
tives and efficient collision detection. A literature review on quadcopter motion primitives,
sampling-based planning structures, and planning with collisions can be found in Chap-
ter 2. By identifying collisions and predicting post-collision vehicle states, our method can
generate collision states and potentially connect them with other sampled states to form
collision-inclusive trajectories.

Planning trajectories with collisions presents an interesting trade-off. On one hand, more
computation time is required to detect and generate states involving collisions. On the other
hand, the planner will no longer discard samples because of collisions, enabling more efficient
exploration of the random tree. We find that the benefit of planning with collision is likely
to outweigh its computation cost in narrow environments such as tunnels, where collision
is likely to take place and collision-exclusive planners are forced to discard most of their
samples. Furthermore, both simulations and experiments have shown that collisions can
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assist aerial vehicles in rapidly changing their direction of movement, thereby eliminating
the need for aggressive maneuvers.

The remainder of this chapter is organized as follows: In Section 4.2, we introduce the
quadcopter minimum jerk primitive and rapid collision detection algorithm for these primi-
tives, two vital components of our motion planner. Section 4.3 details the collision-inclusive
motion planning algorithm itself. A Monte Carlo study demonstrating the algorithm’s ad-
vantages is then presented in Section 4.4. Section 4.5 presents the experimental validation
of tracking the planned trajectory with our tensegrity aerial vehicle. We then conclude the
chapter with Section 4.6.

4.2 Quadcopter motion primitive and collision detector
This section introduces two important building blocks of the collision-inclusive motion

planner, the motion primitive generator for quadcopters [33] and the rapid collision detector
[34] for such primitives. Here we only introduce the key results and explain how they are
adapted to work with our collision-inclusive motion planner.

Quadcopter motion primitive generator

The quadcopter motion primitive generator is a computationally efficient tool that can
generate and check the input-feasibility of about one million motion primitives in a second
on a modern computer. This enables us to rapidly connect sampled states to form feasible
trajectories.

The generator computes a thrice differentiable trajectory which guides the quadcopter
from an initial state at time t0 to a final state at time tf , while minimizing the cost function

J =

∫ tf

t0

||j(t)||2dt (4.1)

where j(t) is the jerk of the quadcopter at time t and is defined as the third order derivative
of the position. The cost J can be interpreted as the upper bound of the product of the
norm of inputs (in terms of total thrust and angular velocity) to the quadcopter system (see
detailed derivation in [33]). Hence, a trajectory with lower cost tends to be less aggressive
and is more likely to be input-feasible.

The quadcopter motion primitive generated is a fifth order polynomial:

x(t) = a0t
5 + a1t

4 + a2t
3 + ẍ0t

2 + ẋ0t+ x0 (4.2)

where x(t) is the position at time t and x0, ẋ0, ẍ0 are position, velocity and acceleration
at the start of motion primitive. Vector parameters a0, a1 a2 ∈ R3 describe the trajectory,
and are solved as linear functions of the initial state and the final state.
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Let P = MotionPrimitive((s0, t0), (sf , tf )) be the function generating the motion
primitive connecting state s0 and sf between time t0 and tf . A state is defined as the
combination of position, velocity and acceleration of the vehicle. We define C(P) as the
function evaluating the cost of the motion primitive with Eq. (4.1). For each generated
motion primitive, we can check if the inputs for the quadcopter to implement the primitive
satisfy bounds on the minimum and maximum total thrust and the magnitude of the angular
velocity. We define InputFeasible(P) as the function checking the input feasibility of the
motion primitive. A method for quickly implementing this check is detailed in [33].

Rapid Collision Detection

The rapid collision detection algorithm [34] checks if a generated motion primitive will
collide with convex obstacles in the environment. Non-convex obstacles may be approximated
by defining them as a union of convex obstacles.

(a) (c)(b)

Figure 4.1: A graphic illustration of key ideas of the collision detection process. (a) The
detector checks if the primitive stays on the same side of the separation plane. If not, it
bisects the primitive and checks either half that crosses the plane. (b) If the primitive piece
stays on the same side of the separation plane, we know the primitive is free of collision. (c)
We can estimate the collision time by keep bisecting the primitive until the section crossing
the separation plane is shorter than a certain duration threshold.

For a given motion primitive starting at time t0 and ending at time tf , the algorithm first
checks the spatial relationship between the given obstacle and the begin position x(t0), end
position x(tf ) and the mid-time position x(tsplit) respectively. Here tsplit = (t0 + tf )/2. If
all three points are outside the obstacle, the algorithm then checks if the primitive crosses a
separation plane between the obstacle and x(tsplit). This separation plane is defined as the
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tangential plane of obstacle surface that includes a point p, which is located in the obstacle
and has minimum distance to x(tsplit).

If the whole primitive does not cross the separation plane, it is guaranteed to be free of
collision. If the primitive crosses the separation plane, we can bisect it into two sections,
x(t0) → x(tsplit) and x(tsplit) → x(tf ) and repeat the above checking process on the sec-
tion(s) crossing the separation plane. An illustration of this idea is shown in Fig 4.1a and
Fig 4.1b.

In [34], the recursion terminates once any part of the primitive is found lying inside
the obstacle. We modify the recursion termination rule to compute the time of the collision.
When checking for collision, we can keep bisecting the primitive until the time of the checked
primitive section crossing the separation plane is smaller than a certain threshold. We can
thus estimate the time of collision as the beginning time of this primitive section, as shown
in Fig. 4.1c. We define CollisionFree(P) as the function checking if the primitive collides
with any obstacle in the space. We also denote CollisionTime(P) as the function finding
the time of the first collision between a given primitive and the obstacles in the environment.

4.3 Algorithm description
This section introduces the algorithm of the sampling-based method for collision-inclusive

motion planning. The algorithm searches for a potentially collision-inclusive trajectory con-
necting the start state s0 and the goal state sf .

The algorithm is based on the RRT*, but with following differences. First, a collision
state generation step is introduced to allow states involving collisions to be considered. Sec-
ond, instead of connecting sampled states with lines, we connect them with motion primitives
described in Section 4.2. Third, we pair each sampled state with a sampled time. The cor-
responding time difference between two states is the duration of the primitive connecting
them, which determines the input-feasibility of the primitive. Within a given computation
time limit, the algorithm keeps sampling and connecting state-time pairs to generate trajec-
tories in the class of concatenated minimum jerk primitives. The fastest candidate among
all generated trajectories connecting s0 and sf is then returned as the best solution found by
the planner. For the rest of this section, we will first introduce how key steps of the original
RRT* algorithm are modified to find collision-inclusive trajectories for quadcopters. Then,
we will present the whole planner and discuss the benefits and disadvantages of planning
with collisions.

Collision model

We define the state of the vehicle by its position, velocity and acceleration, i.e. s =
[x, ẋ, ẍ]. Given a pre-collision state s, the function CollisionModel(s) predicts the post
collision state s+ = [x+, ẋ+, ẍ+]. This model depends on the vehicle design and the material
of contact surface and may vary among different quadcopters.
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Connecting nodes as state-time pairs

We define a node n as a pair of vehicle state and end time, n = (s, t). This indicates
that it takes the vehicle time t to reach s from the start node (s0, 0), where s0 is the start
state of the planning problem. When a node represents a state at collision, it will be coupled
with a post-collision node containing the same time and a post-collision state predicted by
the collision model. Denote PC(n) as the function accessing the post-collision node of n.
Define Connect(n1,n2) as the process of generating the motion primitive connecting two
nodes, as shown in Algorithm 1. Moreover, we define a path between two nodes as a set
of primitives connecting the nodes and the cost of the path as the sum of the costs of the
primitives the path contains. We further define the cost of node, cost(n) as the lowest cost
of the feasible path found connecting the start node to n.

Algorithm 1 Connect nodes
1: function Connect(n1, n2)
2: assert time of n1 is before time of n2

3: if n1 is a collision node then
4: return MotionPrimitive(PC(n1),n2)
5: else
6: return MotionPrimitive(n1,n2)

Generating sample states

For each step, the planner generates a node sample ns via a random process. With
possibility ηf , the goal sampling rate, the state of ns is set as the goal state and with
possibility (1- ηf ), the state of ns is uniformly sampled from the state space. The time t of
ns is sampled uniformly from [0, t∗end] where t∗end is the time of the shortest feasible trajectory
from the start state to the goal state the algorithm has found. This value is initiated with
an overestimate of the shortest feasible trajectory time and then updated throughout the
planning. We use function Sample() to denote the above process.

Collision node generation

After the sampled node is generated, we search for a node in T whose time is before
the sampled node and can be connected to it with a primitive of the lowest cost. Define
ClosestNode(T ,ns) as the function of finding such node.

Then, we check if the primitive connecting the closest node to the sampled node collides
with any obstacle in the environment. If the primitive is free of collision, we use the sampled
node directly for future optimal connection attempts. However, if the primitive collides with
any obstacle in the environment, we generate a collision node with the time and the state of
the vehicle right before the collision. Meanwhile, we use the collision model to predict the
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Figure 4.2: A graphic illustration of the collision node generation process. After node ns

is sampled, we connect it with its closest node nc. If a collision takes place, we generate a
pre-collision node with the time and the state right before the collision. We also predict its
state after the collision and set it as the post-collision node for possible future connections.

Algorithm 2 Collision node generation
1: function GetCollisionNode(ns)
2: nc ← ClosestNode(T ,ns)
3: P ← Connect(nc,ns)
4: if CollisionFree(P) then nn ← ns

5: else
6: tn ← CollisionTime(P)
7: sn ← P(tn)
8: nn ← (sn, tn)
9: PC(nn)← (CollisionModel(sn), tn)

10: return nn

post-collision state. This process is illustrated in Fig. 4.2 and we define the process as the
GetCollisionNode(ns) function, with its implementation detailed in Algorithm 2.

Connect along minimum cost path and rewire

After sampling and collision node generation, we want to connect the generated node to
a best feasible parent node in T so that its cost is minimized. If such a feasible parent can
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be found, we will add the generated node to T . Afterwards, we rewire the tree to ensure the
optimality of all connections.

Algorithm 3 Connect along minimum cost path and rewire
1: function ConnectMinCostPath(nn)
2: Initialize an empty heap H.
3: k ← 2e · log(|T |)
4: Parent(nn)← null
5: Cost(nn)←∞
6: for n in T with time prior to nn do
7: P ← Connect(n,nn)
8: if C(P) > max(H) then continue
9: if not InputFeasible(P) then continue

10: if not CollisionFree(P) then continue
11: if Cost(n) +C(P) < Cost(nn) then
12: Cost(nn)← Cost(n)+ C(P)
13: Parent(nn)← n

14: Push C(P) into H
15: if |H| > k then pop the largest value in H
16: if Parent(nn) is not null then
17: T ← T ∪ {nn}
18: return
19: function Rewire(nn)
20: Initialize an empty heap H.
21: k ← 2e · log(|T |)
22: for n in T with time after nn do
23: P ← Connect(nn,n)
24: if C(P) > max(H) then continue
25: if not InputFeasible(P) then continue
26: if not CollisionFree(P) then continue
27: if Cost(nn) +C(P) < Cost(n) then
28: Cost(n)← Cost(nn)+ C(P)
29: Parent(n)← nn

30: Update the cost of descendants of n
31: Push C(P) into H
32: if |H| > k then pop largest value in H
33: return

Notice that comparing to the original RRT*, we are not generating a “near neighbor” set
to decrease the number of connections, because the metric of “distance” between two nodes
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is the cost of the primitive connecting them and such cost cannot be calculated before the
connection attempt. However, for planning tasks that involve a large number of nodes, we
can use a heap, H to track k-smallest costs of feasible primitives found so far. Following
the suggestion of [37], we set k = 2e · log(|T |), where |T | is the cardinality of T . If a
primitive candidate has a cost exceeding the largest value in the heap, it will be discarded
without the feasibility check. This pre-screening helps decrease computation time and has
an effect similar to the “near neighbor” screening in the original RRT*. The whole process
of connecting and rewiring the exploring tree is shown in Algorithm 3.

Full collision-inclusive sampling-based planner

Now, we combine the previous parts and present the full planner as Algorithm 4. After
running the planner, we find the best end node as the node in T with an end state that has
a smallest end time. After identifying the best end node, we can recover the best trajectory
via backtracking from the best end node to the start node.

Algorithm 4 Collision-inclusive sampling-based planner
1: input: Start state s0, goal state sf , set of obstacles O, state space S, goal-sampling

rate ηf
2: n0 ← (s0, 0)
3: Parent(n0)← null
4: Cost(n0)← 0
5: T ← {n0}
6: while computation time < planning time limit do
7: ns ← Sample()
8: if ns is not a goal node then
9: nn ← GetCollisionNode(ns)

10: else
11: nn ← ns

12: ConnectMinCostPath(nn)
13: if nn is added to T then Rewire(nn)

Planning with collision brings two benefits. First, allowing collisions extends the feasible
state space that the sampling-based planner can search in. Second, sampled nodes will not
be discarded due to infeasibility caused by collisions. Hence, the collision-inclusive planner
may add nodes to T more efficiently.

However, planning with collision also comes with disadvantages. First, the process of
generating collision nodes takes additional computation time. Second, due to the collision
node generation process, sampled nodes may concentrate near obstacle surfaces facing the
exploring tree. As a result, expansion of the exploring random tree towards the other side
of the obstacle may be slowed down. An example is illustrated in Fig. 4.3. Nodes na and
nb are in T and a node ns is sampled on the right side of the obstacle. In Fig. 4.3a, with
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the collision node generation process, ns will be connected with its closest node, na and a
collision node is generated on the left side of the obstacle. If the process is disabled, as in
Fig. 4.3b, the sampled node will be connected with nb and added directly to T . We see that
with the collision node generation, T can no longer reach the right of obstacle at this step
and its expansion is slowed down in this example.

(a) (b)

Figure 4.3: Illustration of how the collision node generation process can slow down the
expansion of the tree. na and nb are nodes in T . The planner generates a sampled state
ns that can be connect to na with a lower cost. (a) During the collision node generation
process, a collision node nn will be generated on the left of the obstacle and added to T .
(b) If the collision node generation is disabled, ns will be added to T directly. As a result,
T can expand to the right of the obstacle in this step.

4.4 Illustrative example: motion planning in a tunnel
In this section, we present an illustrative example to showcase the trade-off between the

cost and the benefits of planning with collisions and illustrate why the collision-inclusive
planner may perform better than collision-exclusive planner in narrow spaces.

In this 2D example, the vehicle starts at position (1, 2)[m] and is in a 1m wide tunnel.
It needs to move in the positive x-direction for 3.5 meters to leave the tunnel and then move
in an open space to get to a goal position at (4, 5)[m]. We run both the collision-inclusive
planner and the collision-exclusive planner on this problem for 105 times and compare the
results generated.

A snapshot of the planning result after computing for 0.1s is shown in Fig. 4.4. We
observe that the collision-inclusive planner generates a trajectory colliding with the tunnel
wall. Moreover, its nodes in T are mainly collision nodes. This phenomenon is expected. The
tunnel is very narrow, so most of the primitives generated involve collisions. Moreover, we
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notice that the collision-exclusive planner generates more nodes in the open space right of the
tunnel than the collision-inclusive planner, indicating a faster expansion of the exploring tree
in that region. This echoes the discussion in Section 4.3 that the collision node generation
process can sometimes slow down the spatial expansion of the exploring tree.

Figure 4.4: Snapshots after (a) collision-exclusive planner and (b) collision-inclusive planner
running for 0.1s. Red dots are the feasible collision nodes in T and green triangles are the
feasible non-collision nodes in T . The blue curve is the feasible trajectory connecting n0 to
nf with the shortest time found. The blue circle on trajectory is an intermediate node.

Despite the slower expansion in the open space, the collision-inclusive planner still has
a better overall planning performance. Here we compare the performance of the planners
with the median of the minimum feasible trajectory time the planners have found among
all trials. Median, instead of mean, is used to filter out the influence of outliers. Fig. 4.5a
plots the median of the best trajectory time found versus computation time. It shows that
the collision-inclusive planner finds a better trajectory than the collision-exclusive planner
under the same time limit. The better performance can be credited to the two benefits
of collision-inclusive planning. First, allowing collisions extends the feasible state space.
Second, collision-inclusive planner can add nodes to T more efficiently, because no nodes are
discarded due to infeasibility caused by collision. Fig. 4.5b shows the median of the numbers
of nodes in T versus computation time. The figure shows that collision-inclusive planner can
add nodes to T with a higher speed. The relatively low efficiency of the collision-exclusive
planner suggests that most of its sampled nodes are deemed as infeasible due to collisions
and cannot be added to T . This example shows that the collision-inclusive planner is likely
to outperform the collision-exclusive planner when the vehicle is in narrow spaces, which are
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usually the environments that collision-resilient vehicles are designed to operate in.

Figure 4.5: Comparison of the performance of planners after running the problem for 105

times. (a) Median of the minimum trajectory time vs computation time. (b) Median of the
number of the nodes in T vs computation time.

4.5 Experimentally tracking planned trajectories
This section demonstrates the experiment of tracking planned collision-inclusive and

collision-exclusive trajectories generated by our planner with a collision-resilient tensegrity
aerial vehicle [27]. Link to the experiment videos: youtu.be/MmDHra3wYK4.

Collision model for the test platform

We predict that the post-collision position stays the same as the pre-collision position,
x+ = x. For post collision velocity, we use an empirical model similar to the one in [70]
for the non-sliding case. The model predicts the velocity component normal to the obstacle
with a linear function:

ẋ+
n = −eẋn (4.3)

Where e is the coefficient of restitution and ẋn and ẋ+
n are velocity component normal to the

obstacle before and after the collision. Moreover, the model predicts that the ratio between
tangential impulse and normal impulse is proportional to the incidence angle, which is the

https://youtu.be/MmDHra3wYK4
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angle between the pre-collision velocity vector and the normal vector of the obstacle surface.
As a result, we have

ẋ+
t = ẋt + κ(−e− 1)arctan

(
ẋt

ẋn

)
ẋn (4.4)

where κ is a constant. ẋt and ẋ+
t are velocity component tangential to the obstacle before and

after the collision. With experiments, we identify e = 0.43 and κ = 0.20 for our experimental
vehicle.

The post-collision acceleration is dependent on the attitude of the vehicle after collision,
which can be hard to predict due to the large torque disturbance the vehicle may experience
during the collision process. As a result, we assume ẍ = 0, which corresponds to a hovering
status, and treat the difference between the true attitude after collision and the hovering
attitude as an initial attitude error for the trajectory piece after the collision. As quadcopters
have responsive attitude controllers, this error is expected to be corrected in a negligible time.

Improving the tracking of collision trajectories

Due to the torque disturbance during the collision, the vehicle can rotate with a large
angular velocity after the collision. To mitigate the tracking error caused by this, we tem-
porarily (for 0.3s) increase the gains of the attitude and angular rates controller of the vehicle
after the collision.

Tracking experiment

The planned trajectories and tracking results for both collision-inclusive and collision-
exclusive cases are shown in Fig. 4.6, and a composite image of the tracking experiment is
shown in Fig. 4.7. The obstacle separates the space into two parts, connected by a 1m gap.
The planned collision-inclusive trajectory takes 2.34 seconds, whereas the collision-exclusive
trajectory takes 2.39 seconds.

For both scenarios, the quadcopter can successfully follow the reference to reach the end
goal. However, we observe tracking error starting at the tip of the U-shape for both tracking
attempts. For the collision-exclusive case, the error is caused by aggressive maneuver. For
the collision-inclusive case, the collision introduces a torque disturbance that is not fully
captured by the collision model. This makes the state of the vehicle deviates from the
reference state and causes tracking error after the collision. This experiment verifies that
trajectories generated by the collision-inclusive planner can be tracked successfully, and also
suggests that better tracking of the collision trajectory can be achieved through decreasing
the impact of torque disturbance on the system during collisions, either via physical designs
or control strategies.
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Figure 4.6: Experimental result of tracking planned trajectories from n0 to nf . Top: gener-
ated and executed collision-inclusive trajectory. Bottom: generated and executed collision-
exclusive planner. The blue rectangles are the obstacles. Green triangles are non-collision
nodes and the red dots are collision nodes in T . The blue circle is an intermediate node.
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Figure 4.7: Composite image of the tracking experiment. The quadcopter tracks a trajectory
from left to right while avoiding the black obstacle in the middle of the space. For the
collision-inclusive trajectory, the quadcopter takes advantage of a collision with the yellow
obstacle in the back. The distance between the shown left-most state and right-most state
is about 2m.

4.6 Conclusion
In this chapter, we present a sampling-based motion planner that can exploit collisions

to generate better trajectories for quadcopters. The planner samples collisions as impacts
between generated motion primitives and obstacles, and connects collision states with other
sampled states to form collision-inclusive trajectories.

Planning with collisions offers two benefits. First, allowing for collisions extends the
feasible state space the planner can work in. Second, sampled states are no longer discarded
due to infeasibility caused by collisions. Thus, the rate of adding samples to the exploring
tree may increase. Collision-inclusive planning also has its disadvantages. The process of
generating collision nodes requires additional computation time and it may cause sampled
nodes to concentrate near obstacles, potentially slowing down the spatial expansion of the
exploring tree. We illustrate with an example that the benefits of planning with collisions are
likely to outweigh the disadvantages when searching for trajectories in narrow environments,
where most generated trajectory pieces involve collisions.

We experimentally track trajectories generated by our planner. Experiment results indi-
cate that a major source of tracking error comes from the disturbance that is not captured
by the collision model. This can be mitigated by designing short and aggressive recovery
trajectory pieces to decrease the variance of the state after collisions. Such trajectory pieces
can also make the planner less dependent on the accuracy of collision models and hence make
it easier to apply the planner on different quadcopter platforms.
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Chapter 5

Water-air transition with a miniature
unmanned aerial underwater vehicle

In previous chapters, we have introduced our work on extending the capabilities of UAVs
in cluttered environments. In this chapter, we shift our focus and expand the operational
environments of UAVs to multi-domain spaces with both air and water.

Amphibious mobility presents a unique opportunity in addressing an array of challenging
tasks. These tasks include, but are not limited to, inspecting oil platforms, examining
bridges, and surveying coastal ecosystems. However, accomplishing amphibious mobility
is far from trivial for propeller-driven robots. The difference in densities between air and
water, about a thousand-fold, poses a significant operation challenge. With the same rotating
speed, a propeller will generate drastically different levels of thrust in air and water, which
complicates the control of the robots. Furthermore, the transition from water to air is
demanding, especially considering the added disturbance from the turbulence near the water
surface.

To tackle these challenges, we introduce a miniature Unmanned Aerial Underwater Vehi-
cle (mini UAUV) in this chapter, capable of amphibious mobility and transitioning between
water and air. The mini UAUV features a simple mechanical design that resembles a tra-
ditional quadcopter. Its amphibious mobility is supported by three key components: 1)
an in-depth characterization of the quadcopter propellers operating in both air and water
regimes, 2) a Kalman Filter fusing accelerometer readings and barometer readings for depth
estimation, and 3) a control strategy designed for the UAUV to breach still water surfaces.
Using this strategy, the mini UAUV will first accelerate towards water surface to help its
propellers leave water. It will then switch the control mode from water to air, spinning up
its propellers and generating extra thrust to fully take off from water surface.

The material in this chapter is based on the following previously published work:

• Jiaming Zha, Eric Thacher, Joseph Kroeger, Simo A. Mäkiharju, and Mark W. Mueller,
“Towards breaching a still water surface with a miniature unmanned aerial underwater
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vehicle,” in Proceedings of the International Conference on Unmanned Aerial Systems
(ICUAS), IEEE, 2019, pp. 1178–1185.

5.1 Introduction
Unmanned Aerial Vehicles (UAVs) and Autonomous Underwater Vehicles (AUVs) have

been deployed for missions such as search and rescue [71], and construction inspection in
environments hazardous to humans, like tall bridge towers [72] and hydroelectric dams [73].
In recent years, efforts have been made to combine UAVs and AUVs, resulting in the creation
of Unmanned Aerial Underwater Vehicles (UAUVs) possessing both aerial and underwater
mobility.

Figure 5.1: Image of the mini UAUV. The vehicle weighs 202g, and its largest linear measure
is 14 cm. The three reflective markers are used by a motion capture system for in-flight state
estimation.

To achieve such amphibious capability, a UAUV faces many challenges. Firstly, a UAUV
needs to be waterproof yet lightweight enough for efficient flight. Secondly, a UAUV has to
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generate sufficient thrust in both water and air, two media with densities differing by three
orders of magnitude. Lastly, and the main focus of this chapter, a UAUV must overcome
the difficulty of transitioning between water and air.

During the water-air transition, the UAUV loses the vertical buoyancy force provided
by water. Concurrently, the thrust generated by propellers drastically decreases due to the
change of the surrounding medium density. Furthermore, vortices will be induced by the
propellers near the water surface, causing significant disturbances.

The challenges associated with water-air transition have led to the development of inno-
vative UAUV designs incorporating various supportive mechanical structures such as multi-
layered propellers and buoys. A literature review of these designs can be found in Chapter
2. However, such mechanical aids add extra weight and drag, which decrease the agility,
maneuverability, and operation time of the vehicle.

In this chapter, we tackle the UAUV water-air transition challenge without relying on
additional mechanical supports. We present a mechanically simple miniature UAUV system
(abbreviated as mini UAUV, and shown in Fig. 5.1), which resembles conventional quad-
copters, along with a transition control strategy to assist the mini UAUV in breaching the
still water surface.

The trade-off with a simpler mechanical design is a deeper understanding of the operation
of individual components in the air, water, and transition regimes. Particularly, as we use
single-layered propellers instead of multi-layered ones, it becomes crucial to precisely define
the performance of the propellers in both air and water. In addition, we have devised
a depth estimator to help determine the vertical position of the mini UAUV relative to
the free surface. This information helps the mini UAUV execute a well-timed switch from
underwater to aerial operation. With the foundation provided by the propeller performance
analysis and the depth estimator, we manage to achieve a mechanically-simple and low cost
vehicle system that has amphibious mobility and can carry out media-transition.

The remainder of the chapter is structured as follows. We introduce the vehicle’s dynamic
model in Section 5.2. In Section 5.3, we present our result of characterizing the propeller
performance in water, air, and the transition regimes. Section 5.4 details the depth estimator
and control strategy for water breaching. The final design of the mini UAUV is presented
in Section 5.5, followed by experimental validation in Section 5.6. We conclude the chapter
in Section 5.7.

5.2 Modeling of the system dynamics
In this section we present the derivation of the translational and rotational dynamics of

the mini UAUV. We will use non-bold letters like m for scalar, bold lower-case letters, such
as g for vectors and bold upper-case letters, like J for matrices.
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Figure 5.2: Salient forces and torques acting on the mini UAUV. Each propeller produces
thrust fP,i and propeller torque τP,i. The vector pointing from the center of mass of the
vehicle to propeller i is denoted ri. When underwater, the system also experiences buoyancy
fB and drag fD. The vehicle’s body-fixed frame is attached to the center of mass and
defined with three axes orthogonal to each other, (eB

x , eB
y , eB

z ).

Translational dynamics

A diagram showing the mini UAUV under salient forces is shown in Fig. 5.2. Similar to
our notation system in Chapter 3, the vehicle’s attitude is defined as a rotation matrix R,
mapping vectors from the body-fixed frame B affixed to the center of mass, to the world
frame W , which is inertial and affixed to the ground, i.e., vW = RvB. The vehicle’s body-
fixed frame is described with (eB

x , eB
y , eB

z ), three unit vectors orthogonal to each other. To
avoid possible confusion, when a vector is used in analysis across different frames, we use
superscript to indicate in which frame the vector is expressed.

The mass of the mini UAUV is m. Each propeller produces thrust force fP,i in the
direction of eB

z , and τP,i is the drag torque on propeller i. We use ri to denote the vector
pointing from the vehicle’s center of mass to the propeller i. It is shifted up in the diagram
for visibility. The buoyancy of the mini UAUV is given by fB, and fD denotes the drag
force the mini UAUV experiences. The unit gravity vector is denoted by g.

With Newton’s second law, we can derive the translational dynamics of the system:
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md̈ = mg +ReB
z

4∑
i=1

fP,i + fB + fD (5.1)

where d is the vehicle’s position relative to a fixed point in the world frame, and d̈ is the
acceleration vector of the mini UAUV.

According to Archimedes’ principle, the direction of buoyancy is opposite to gravity and
its value is equal to the weight of the media displaced by the vehicle:

fB = −ρV g (5.2)

where V denotes the volume of the media displaced and ρ denotes the density of the media.
Meanwhile, drag force is exerted by the fluid in a direction that is opposite to the relative

motion of the body with respect to fluid and can be approximated as [74]:

fD = −1

2
ρCD(Re)A

∥∥∥ḋF

∥∥∥ ḋF (5.3)

where CD represents drag coefficients and is a function of shape and Reynolds number, Re.
A is the characteristic area of the mini UAUV. ḋF denotes the velocity vector of the vehicle
with respect to surrounding fluid. Notice that when the surrounding fluid is stationary with
respect to the world frame, ḋF = ḋ .

Here we neglect the effect of added mass and surface tension, which are likely to be small
in comparison to buoyancy, thrust, and drag for a vehicle with a small body size.

Rotational dynamics

Similar to translational dynamics, we can model the rotational dynamics of the mini
UAUV with Euler’s equation:

Jω̇ + S(ω)Jω =
4∑

i=1

(S(ri) e
B
z fP,i + eB

z τP,i) (5.4)

where S(·) maps a R3 vector to a corresponding R3×3 skew-symmetric matrix. Left multiply-
ing S(·) is equivalent to the cross product. J is the moment of inertia matrix of the vehicle
with respect to its center of mass. Meanwhile, the angular velocity vector of the vehicle,
ω ∈ R3, represents the rotation velocity between the body-fixed frame and the world frame.
It is expressed in the body-fixed frame and is related to the attitude matrix as follows:

Ṙ = RS(ω) (5.5)

Here we are neglecting the moment caused by drag as it is small comparing to the moment
generated by propeller thrusts.
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5.3 Vehicle performance in different media and during
transitions

In this section we present the experimentally determined mapping between the input
pulse-width modulation (PWM) command signal, motor’s rotational speed, and thrust in
both air and water for the mini UAUV’s electronic speed controller (ESC) and brush-less
motor pair. Notice that the mapping curves are only defined in the steady-state region
far from the free surface. It is not possible to generate such curves accurately near the
free surface (i.e. in the water-air transition region) because of the unsteady phase fraction
of the fluid interacting with the propeller. Instead, we choose to characterize the bounds
of the transition region, outside of which the free surface has minimal effect on propeller
performance.

Figure 5.3: Propeller speed as a function of depth below free surface for different PWM
command signals.
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To simplify fluid-propeller interactions, the experiments are conducted using a single
propeller. The propeller is mounted to a test stand, which measures the thrust generated.
Rotational speed is measured independently by sampling the change in voltage from a single
phase wire. For a three phase, 12-pole motor, the rotational speed, ω, is given in units of
rad/s by ω = 12πf where f is the frequency of voltage fluctuations in the phase wire in
Hz. The test stand is mounted to a linear stage, for which the position is determined with a
encoder with 0.5µm accuracy. The linear stage is positioned vertically, so that the propeller
is parallel to the free surface. This setup allows for precise control of the vertical position of
the propeller relative to the free surface.

Figure 5.4: (a) Rotational speed and (b) thrust as a function of PWM input for operation
of propeller underwater.

To determine the depth at which free surface effects are important, the propeller is moved
smoothly from -55mm to 10mm while given constant PWM commands. The rotational speed
plot for the tests can be found in Fig. 5.3. From the figure, we notice that increasing the
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command signal value also increases the distance below water at which surface aeration can
occur, and all rotational speed converges to steady state when the propeller is below -20mm.
When above -20mm, air can be entrained below the surface of the water, and the propeller
speed increases due to the reduction of the density of the surrounding fluid. Notice that the
phase fraction of the fluid interacting with the propeller is highly variable, which in turn
increases the variability of the speed across multiple tests.

Figure 5.5: (a) Rotational speed and (b) thrust as a function of PWM input for operation
of propeller in air.

The steady-state thrust and rotational speed of the propeller underwater as a function
of command signal is given in Fig. 5.4. The given results are for a depth of -45mm. The
buoyancy of the test setup below the water is subtracted from the data, so that the value
plotted is solely the thrust generated by the propeller. It is worth noting that the lowest
command signal used for the test is 1030 PWM, because this is the lowest signal that can
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command the brushless motor to start spinning reliably underwater. The rotational speed
and thrust of the propeller as a function of command signal in air is given in Fig. 5.5.

Comparing Fig. 5.4 and Fig. 5.5, we observe that the relationship between command
signal and thrust, defined as command-thrust mapping, depends on the medium the propeller
operates in. For example, a 1100 PWM command signal input will generate 0.42N in water,
but only 0.03N in air. Clearly, if the command signal were to be kept constant during the
transition from water to air, the UAUV would not produce enough thrust to support its
own weight. Moreover, with the change of the command-thrust mapping, we also observe
a significant shift of the operating range of command signals. Consequently, it is of great
importance to accurately identify the medium the propellers operate in and precisely trigger
the switch of the control regime at the interface. The control strategy for doing so is described
in the following section.

5.4 State estimation and control strategy
In this section, we discuss the mini UAUV’s sensing system, its depth estimator and its

control strategy. It is worth noting that the mini UAUV’s underwater state estimator is
quite different from the one used in air, which relies on a motion capture system that can
track objects in 3D space. When the mini UAUV operates underwater, it only has access to
its IMU and pressure sensor. Thus, it can only estimate its roll, pitch, depth and vertical
position with confidence.

Sensors

The mini UAUV’s onboard sensing system is based on an IMU with 6 DOF. In addition,
the mini UAUV also features a high precision pressure sensor (barometer) that provides am-
bient pressure readings. When the mini UAUV is flying, a motion-capture system measures
position and orientation of the vehicle. However, the motion-capture measurement does not
work well when the mini UAUV operates underwater because water attenuates the infrared
signal reflected by motion-capture markers.

Underwater state estimation

When the vehicle operates underwater, we aim to estimate its depth and vertical speed.
We present a simple Kalman Filter for estimating these states, using measurements from the
onboard barometer and accelerometer.

The linear kinematics in the vertical direction of the world frame is captured as follows:[
ḋz
v̇z

]
=

[
0 1
0 0

][
dz
vz

]
+

[
0
1

]
az (5.6)
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where dz is the vehicle’s position along the world-fixed vertical, while vz and az are the
vehicle’s velocity and acceleration along the vertical. The acceleration along the vertical is
estimated using the onboard accelerometer, and a barometer provides depth measurements.

As a result, we can estimate the depth and the vertical velocity of the vehicle with a
Kalman Filter, assuming constant acceleration over a sampling time T . The barometer
reading is linear in the depth, allowing for a straight-forward implementation of a linear,
time-varying Kalman Filter.

In-flight estimation

In flight, the vehicle is visible to a motion capture system, allowing for off-board estima-
tion of the vehicle’s full 6-DOF position and orientation states.

UAUV controller

Figure 5.6: Controller architecture of the mini UAUV

The controller of the UAUV is presented in Fig. 5.6. It features a cascaded control
structure. A position controller outputs desired total thrust and thrust direction, whereas an
inner attitude controller computes desired torques. Finally, a mixer converts the total thrust
and body torque commands to per-propeller thrust commands. This cascaded structure
can be decoupled into two separate parts: an offboard controller for position and attitude
control, and an onboard part implementing thrust conversion.

The position controller regulates the position error as a diminishing second order system
with damping ratio ζp and natural frequency ωp:

d̈d = 2ζpωp(ḋd − ḋ) + ω2
p(dd − d) (5.7)

wherein d is the position of the vehicle, d̈d is desired acceleration, ḋd is desired velocity and
dd is desired position. All vectors in the equation above are represented in the world frame.
Thus, we can find desired total thrust and its corresponding direction as:
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fd = m||d̈d − g||2, zW
B,d =

d̈d − g

||d̈d − g||2
(5.8)

With the desired thrust direction and an additional desired yaw angle, the desired attitude
can be defined as the attitude which maps eB

z to a vector aligned with zW
B,d in the world

frame, while achieving the desired yaw angle. A desired angular velocity ωB
d can be computed

as proportional to the attitude error and then the desired angular acceleration follows:

ω̇B
d =

1

τt
(ωB

d − ω̃B) (5.9)

where ω̃B is the angular velocity measured by the onboard rate gyroscope and τt is the
desired feedback time constant. All vectors are in vehicle’s body-fixed frame. Thus, the
desired torque, computed from the Euler’s equation, follows as:

τB
d = Jω̇B

d + S
(
ω̃B

)
Jω̃B (5.10)

Lastly, the thrust converter computes the desired thrust force for each propeller as:

fP,i =
1

4

([
r−1
i,y −r−1

i,x hiκ
−1
]
τB
d + fd

)
(5.11)

where ri,x and ri,y are the components of ri, along the eB
x and the eB

y direction respectively.
Handedness of the propeller i is denoted by hi (1 for right-handed, −1 for left-handed), and
κ is the propeller’s torque coefficient.

Transition strategy between underwater and air operation

As is discussed in Section 5.3, the command-thrust mapping and the command signal
operating range in water are significantly different from those in air. If an erroneous mapping
were used, the mini UAUV would generate thrusts far away from desired, and fail to breach
the water. As a result, the key to a successful water-air transition is to switch the command-
thrust mapping from underwater mode to air mode precisely when the vehicle reaches the
interface. Moreover, it is desirable to carry out the mapping switch when the propellers
are exposed to air rather than fully submerged in water, as using the air command-thrust
mapping underwater will generate an unexpected large thrust that can potentially destabilize
the system. Based on above discussion, we propose a three-step transition strategy (Fig. 5.7):

1. Accelerate towards water surface with underwater command-thrust mapping.

2. Breach the water surface. Switch to air command-thrust mapping when all propellers
are exposed to air.

3. Proceed flying in air with air command-thrust mapping.
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Figure 5.7: Illustration of mini UAUV’s control strategy for water breaching. Top: the mini
UAUV accelerates toward the water surface. Middle: the mini UAUV switch its control
mode when all of its propellers have left water. Bottom: the mini UAUV continue its flight
with the aerial mode.
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While accelerating towards the water surface, the depth estimator is used to track the
vertical position and velocity of the mini UAUV. However, once the mini UAUV enters the
transition region, the location of which is characterized in Section 5.3, air entrainment alters
the medium density and we can no longer reliably calculate depth based on the pressure
reading. Hence, the depth estimator cannot tell us the exact time at which the mini UAUV
breaches the water.

To solve the problem, we start a timer once the the mini UAUV reaches the transition
region. During breaching, the mini UAUV has an strict time window in which the propellers
are exposed to air. We can switch the mini UAUV to use the air command-thrust mapping
when the timer reading falls in this window.

We estimate the time window with the force balance on the body in the vertical direction,
which is given in Eq. (5.1). To simplify the model, we assume the mini UAUV as a prism.
It has a base area A, and its volume is uniformly distributed along its height, h. We define
zsurface as the vertical position of the water surface and zt as the vertical position of the
prism’s top surface, both in the world frame. Then, when zsurface < zt < zsurface + h the
buoyancy force can be given as:

fB,z = ρgA(h+ zsurface − zt) (5.12)

Meanwhile, the drag force in the vertical direction can be derived from Eq. (5.3) as:

fD,z = −
1

2
ρCD(Re)A|żt|żt (5.13)

Hence, we can estimate the vertical motion of the vehicle with the following ordinary
differential equation:

z̈t = −g +
ρgA(h+ zsurface − zt)

m
− ρCD(Re)A|żt|żt

2m
(5.14)

Notice that propeller thrusts are ignored here, because when the vehicle operates in the
air with the underwater command-thrust mapping, the thrusts generated are small compared
to buoyancy and drag.

We can solve Eq. (5.14) numerically using the position and velocity at the start of the
breaching event to obtain the estimated time window. Due to the uncertainty associated
with the density of the surrounding fluid and the magnitude of the related forces, this is
computed offline and used as a benchmark value after which the switching time is manually
tuned.

5.5 Hardware design
To build a miniature UAUV capable of breaching the water surface, we need to fulfill the

following design requirements:
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First, the vehicle is small-scale, lightweight, and slightly negatively buoyant (i.e. the
gravity force acting on it is larger than the buoyancy force), so that the vehicle can both
sink underwater and operate in the air. Second, the whole vehicle system should be water-
proof. Third, the onboard pressure sensor should have access to the pressure information of
surrounding media so as to provide readings for the depth estimator.

In order to meet these requirements, we have created a system featuring following designs.

Vehicle frame and aviation stack

To minimize the size, we build a small vehicle frame and a highly compact aviation stack.
As can be seen in Fig. 5.1, the vehicle features a lightweight carbon fiber frame with

an arm length of 65mm manufactured by water-jet and four EMAX 7500KV high thrust-to-
weight ratio brushless motor.

The onboard aviation stack is composed of a Bitcraze Crazyflie 2.0 [75] chip as an in-
tegrated computation and sensing unit, and a 4-in1 DYS 18A BLHeli_S ESC to drive the
brushless motors. Additional auxiliary circuits, including power regulators and voltage di-
viders are arranged on a custom-made printed circuit board. All electronic components are
powered by a single 2-cell 800mAh LiPo battery. Laser-cut mounting adapters were designed
to help assemble the electronic stack vertically and minimize the space it takes.

Waterproof housing with membrane

To waterproof the mini UAUV, we fabricate a housing shell encasing all on-board elec-
tronics via 3D-SLA-printing. An O-ring groove that docks a 55mm ID O-ring is engraved
at bottom of the shell to provide sealing between the shell and carbon fiber frame. To pass
ambient pressure information to the onboard pressure sensor, we build the top of the shell
with a 1mm-thick latex membrane. As the latex membrane is highly flexible, it equalizes
the air pressure in the shell to ambient water pressure. As a result, we are able to directly
measure surrounding water pressure from inside the shell.

5.6 Experimental validation
To assess the ability of the mini UAUV to operate in water, air, as well as the transition

regime, an experiment was conducted of the mini UAUV breaching the water surface in
calm water. In doing so, the mini UAUV demonstrates the ability to transition between
underwater and air operation autonomously.

Physical parameters

The physical parameters of the mini UAUV are listed in Table 5.1.
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Table 5.1: Mini UAUV Physical Parameters

Parameter Value
vehicle mass m = 0.202 kg

vehicle volume V = 186× 10−6m3

moment of inertia along body x axis Jxx = 112× 10−6 kgm2

moment of inertia along body z axis Jzz = 187× 10−6 kgm2

maximum thrust per propeller fPi,max = 1.1N
vehicle arm length ||ri||2 = 0.065m

propeller torque constant κ = 808× 10−5m

Experiment setup and the test trajectory

The experiment is designed to verify the water breaching strategy proposed in Section
5.4. We command the mini UAUV to accelerate towards the free surface, breach the surface
and then keep flying in air to a desired height.

We carry out the breaching strategy by programming the mini UAUV to follow a two
phase trajectory. Initially, the vehicle is placed 0.15m below water surface, on the bottom
of a water tank. When the program starts, the controller first commands the mini UAUV
to track a trajectory with an initial desired vertical velocity of 1m/s and a desired vertical
acceleration of 2m/s2. This phase lasts for 1.3s and the trajectory is used to ensure that the
mini UAUV smoothly rises through the water to the free surface. After 1.3s, the controller
will check if the mini UAUV is successfully detected by the motion capture system. If yes,
the trajectory enters phase two and the offboard controller commands a desired vertical
position of 1m above water surface, with zero desired velocity and acceleration. Otherwise,
an emergency stop of the mini UAUV is triggered.

The test is carried out in a lab space equipped with motion capture system and an off
board controller sends radio commands to the mini UAUV at a rate of 50Hz.

When tracking the aforementioned trajectory, the mini UAUV breaches the water with a
velocity of about 0.5m/s. Using an initial estimate from Eq. (5.14) and subsequent tuning,
we program the controller to switch command-thrust mapping 0.08s after the mini UAUV
detects that it reaches the transition region. Last, it is worth noting that we disable mini
UAUV’s yaw control and only control its roll and pitch during phase 1, because we don’t
have a reliable yaw measurement underwater. After the vehicle is detected by the motion
capture system and enters phase 2, we re-enable the full attitude control.

Result and analysis

Fig. 5.8 shows the estimated vertical position of the mini UAUV during the test. We
define zero datum at the water surface. The blue curve shows the estimate provided by mini
UAUV’s underwater depth estimator, whereas the red curve shows the estimate provided by
the motion capture system. Due to the nature of these estimates, their accuracy depends
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Figure 5.8: Estimated vertical position of the mini UAUV during the water breaching test.

on the medium in which the UAUV operates. In particular, when the UAUV is outside
of water the pressure-based depth estimator is unable to differentiate changes in position.
Furthermore, due to signal attenuation of the motion capture infrared signal, the motion
capture system is unable to provide accurate estimates underwater. With this in mind,
when position estimates cannot be trusted, the readout is plotted as dotted curve. The red
vertical line shows when the vehicle enters phase 2 of the trajectory and the green vertical
line denotes when the mini UAUV switches from underwater mode to air mode.

The mini UAUV reaches the transition region at about t = 0.5s. Instead of continuing
to rise, the mini UAUV loses its initial momentum and stays on top of the free surface for
about 0.2 seconds. During the staling time, 0.08s is spent switching the control mode, and
multiple reasons can contribute to the remaining 0.12s. Potential causes for the delay are
the time needed for the propellers to spin up and the generation of turbulence on the water
surface from propeller-fluid interaction. Particularly, once the UAUV switches to air mode,
the resulting increase in rotational speed induces significant water-air mixing in the fluid
surrounding the propellers. Since the control strategy produces a command signal based
on expected rotational speed and thrust, an unsteady operating medium would prevent the
desired thrust from being generated. This phenomena is also captured for a single propeller
in Fig. 5.3, which shows an increased variability in rotational speed during the transition
regime.
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Figure 5.9: Estimate of the mini UAUV’s vertical position, velocity and acceleration, both
underwater and during the transition phase.
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In addition to the above challenges, from Fig. 5.8 we can observe that the vertical
position grows linearly, instead of quadratically to time when the mini UAUV implements
the underwater acceleration trajectory, showing a notable tracking error. This indicates a
discrepancy between our model and reality, which can be contributed to under-estimation of
the drag effects underwater and not considering the added mass effect.

Fig. 5.9 illustrates in detail the estimated state of the mini UAUV’s motion underwater
and during the water-air transition phase. The estimate of vertical position and velocity is
provided by the depth estimator described in Section 5.4 and is based on both barometer and
IMU readings. The horizontal red dotted line marks the beginning of the transition region
and the vertical green dotted line denotes where the mini UAUV switches from underwater
mode to air mode. We observe that the switch to air mode occurs when the velocity of the
UAUV is about 0m/s. This shows that the spin up of the propellers takes place when the
mini UAUV is about to lose all its vertical momentum and starts dropping back to water.
At about 0.7s, the velocity turns positive and the mini UAUV starts to climb, marking the
successful propeller spin-up and the end of the breaching phase. The UAUV then follows
the command to 1m above water surface.

① ②

③ ④

Figure 5.10: Image sequence showing the mini UAUV breaching the water surface.

Fig. 5.10 showcases an image sequence of the mini UAUV’s water breach. In image 1,
the vehicle accelerates towards water surface with underwater command-thrust mapping. In
image 2, the top of the vehicle breaches water surface. In image 3, all propellers leave water
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surface and the vehicle switches to air command-thrust mapping. In image 4, the vehicle
fully leaves water and starts flying in the air. The experiment demonstrates that the mini
UAUV is capable of transitioning from still water to air. Meanwhile, the tracking error
during the experiment also points out that our model can be further improved by a better
estimate of the drag effect when the mini UAUV is underwater and during transition phase.

The video of the experiment can be viewed at youtu.be/y4-ZcgsTGAQ.

5.7 Conclusion
In this chapter, we present a mechanically simple miniature UAUV that can autonomously

breach a calm water surface without additional mechanical supports. It features an onboard
Kalman Filter that provides information about the vehicle depth and its rate of change. With
the waterproof design and a control strategy of accelerating towards water surface and then
switching command-thrust mapping, the mini UAUV expands the operational environments
of UAVs to multi-domain spaces with its amphibious mobility.

https://youtu.be/y4-ZcgsTGAQ
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Chapter 6

Conclusion and future work

6.1 Conclusion
This dissertation explores the enhancement of UAVs’ capabilities and operational envi-

ronments through the integration of design, control, and planning algorithms. Specifically,
we introduce two unique UAV designs capable of operating in cluttered and multi-domain
environments, and a planning algorithm including collisions into its framework.

In Chapter 3, we introduce the collision-resilient tensegrity aerial vehicle. This UAV
features an icosahedron tensegrity shell composed of rods suspended in a tension network of
strings. This unique shell allows the vehicle to withstand high-speed impacts, thus opening
up opportunities for UAV operations in cluttered environments without the need for complex
collision avoidance algorithms. Additionally, we propose an autonomous re-orientation con-
troller to enable post-collision flight resumption. With collision resilience and re-orientation
control, the tensegrity aerial vehicles can operate safely in challenging, cluttered environ-
ments. We validate this concept through an experiment of the tensegrity vehicle navigating
autonomously in a forest environment with tree obstacles previously unknown to the vehicle.

In the following chapter, we expand upon the concept of collision resilience by integrating
collision directly into motion planning. By adapting the RRT* algorithm to accommodate
collision, the planner gains two advantages. First, the feasible state space is expanded, allow-
ing the planner to consider new trajectory candidates that were originally deemed infeasible,
such as those exploiting collisions to quickly change movement directions. Second, sampled
states are no longer discarded due to infeasibility caused by collisions, potentially increasing
the rate of adding samples to the exploration tree and shortening the computation time.
We illustrate these advantages with an example demonstrating the benefit of planning with
collisions in a narrow tunnel environment. In addition, we experimentally track trajectories
generated by our planner, showcasing how collisions can enhance the operation of aerial
vehicles by using collisions to replace aggressive maneuvers.

In Chapter 5, we extend UAV operation to multi-domain environments. The UAUV we
propose in this chapter has a simple mechanical structure similar to a traditional quadcopter.
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It can operate both in air and water, and breach the still water surface with the assistance of
a barometer-based depth estimator and a water-breaching strategy. This strategy leverages
the additional vertical acceleration the vehicle can attain underwater due to buoyancy and
determines an optimal time to switch the control mode from underwater to aerial operation.

In conclusion, the designs, the control strategies, and the planning algorithm presented
in this dissertation extend the operational environments of UAVs to cluttered regions and
multi-domain spaces. While some limitations persist, the groundwork laid in this dissertation
opens avenues for future research, which we outline in the following section.

6.2 Future work
This dissertation has proposed and validated methods to enhance the operational capa-

bilities of UAVs in complex environments. Nevertheless, there remains considerable scope
for extending this line of research to address unexplored or partially addressed problems.

Firstly, in relation to the tensegrity aerial vehicle, there is significant potential for explor-
ing new forms of aerial vehicles that utilize tensegrity structures. An avenue worth pursuing
is the incorporation of the idea of modular robotic units, where actuators and batteries are
integrated directly into the rigid rods of the tensegrity structures. By interconnecting these
integrated rods in various string patterns, we can potentially create aerial robots with unique
tensegrity structures. This can lead to modular aerial vehicles that can be assembled or dis-
assembled for varying mission requirements, thus offering great versatility in UAV designs
and applications.

A second research direction is related to the collision-inclusive motion planning algorithm,
specifically addressing its dependence on collision models. Given the wide variety of surface
materials in real-world environments, the planner may encounter significant difficulty in
predicting the collision dynamics. Two strategies could potentially help with this problem.
Firstly, for UAVs with cameras and strong onboard computational power, vision can be used
to predict the characteristics of different surfaces and their corresponding collision dynamics.
Secondly, it would be useful to design motion primitives that assist vehicles in recovering
from collisions and reaching specific post-collision states. Despite the unpredictability of the
collisions, such primitives help make the states tractable after collision-recoveries, and thus
make the planning algorithm robust against collision model mismatches.

The UAUV design and water-breaching strategy also invite further study. Detailed anal-
yses could help find the optimal breaching windows for vehicles across different scales. In
parallel, the development of design tools to help select appropriate motors and propellers
that support multi-media operation could significantly expedite the development process,
ultimately leading to more efficient and versatile UAUV designs.

Developing UAVs capable of matching the abilities of natural fliers in complex envi-
ronments presents a significant and ongoing challenge. This dissertation has demonstrated
that an integrated approach, which combines design, control, and motion planning, can of-
fer viable solutions for extending the operational environments of UAVs. These synergistic
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methods may unlock new possibilities that would be unattainable through advancements in
individual methods alone. That being said, the potential to enhance UAV performance in
complex environments remains largely unexplored, and the work presented in this disserta-
tion represents only an early step in this exciting direction.
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