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Article

Genome-wide prediction of synthetic rescue
mediators of resistance to targeted
and immunotherapy
Avinash Das Sahu1,2,3,*,† , Joo S Lee3,4,†,‡ , ZhiyongWang5, Gao Zhang6,7, Ramiro Iglesias-

Bartolome8,‡ , Tian Tian9 , Zhi Wei9, BenchunMiao2, Nishanth Ulhas Nair3,4,‡, Olga Ponomarova10,

Adam A Friedman2, Arnaud Amzallag2, Tabea Moll2, Gyulnara Kasumova2, Patricia Greninger2, Regina K

Egan2, Leah J Damon2, Dennie T Frederick2, Livnat Jerby-Arnon11, AllonWagner12, Kuoyuan Cheng3,

Seung Gu Park1, Welles Robinson3, Kevin Gardner4,‡, Genevieve Boland2, Sridhar Hannenhalli3,

Meenhard Herlyn6, Cyril Benes2, Keith Flaherty2, Ji Luo8,‡, J Silvio Gutkind5 & Eytan Ruppin3,4,11,**,‡

Abstract

Most patients with advanced cancer eventually acquire resistance
to targeted therapies, spurring extensive efforts to identify molec-
ular events mediating therapy resistance. Many of these events
involve synthetic rescue (SR) interactions, where the reduction in
cancer cell viability caused by targeted gene inactivation is
rescued by an adaptive alteration of another gene (the rescuer).
Here, we perform a genome-wide in silico prediction of SR rescuer
genes by analyzing tumor transcriptomics and survival data of
10,000 TCGA cancer patients. Predicted SR interactions are vali-
dated in new experimental screens. We show that SR interactions
can successfully predict cancer patients’ response and emerging
resistance. Inhibiting predicted rescuer genes sensitizes resistant
cancer cells to therapies synergistically, providing initial leads for
developing combinatorial approaches to overcome resistance
proactively. Finally, we show that the SR analysis of melanoma
patients successfully identifies known mediators of resistance to
immunotherapy and predicts novel rescuers.
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Introduction

Despite major advances in cancer therapies, many patients eventu-

ally succumb to emerging resistance. Recent experimental and clini-

cal studies have successfully characterized tumor-specific molecular

signatures of resistance to targeted therapies through DNA and RNA

sequencing (Jones et al, 2012; MacArthur et al, 2014; Bertotti et al,

2015; Fong et al, 2015; Miyamoto et al, 2015; Rathert et al, 2015;

Wilson et al, 2015; Raphael et al, 2017). However, these studies

require an arduous collection and molecular profiling of paired pre-

and post-treatment tumor biopsies (Beltran et al, 2016) and cannot

be conducted for drugs at early stages of their development. Thus,

the development of a computational approach that can expedite the

identification of resistance determinants from existing large-scale

cancer cohorts’ data is warranted.

To this end, we have set out to predict synthetic rescue (SR) inter-

actions (Motter et al, 2008; Fong et al, 2015; Miyamoto et al, 2015;

Rathert et al, 2015; van Leeuwen et al, 2016), which are a
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generalization of suppressor interactions (Szappanos et al, 2011a).

Suppressor interactions, recently identified in yeast genome-wide

(van Leeuwen et al, 2016), denote a functional interaction where

following the inactivation of specific genes, cells suppress additional

genes to escape from harmful alterations (Bouwman et al, 2010; Xu

et al, 2015; Forment et al, 2017). SR interactions denote a functional

interaction where a fitness reducing alteration due to inactivation of

one gene (termed the vulnerable gene) is compensated by altered

activity (downregulation or upregulation) of another, rescuer gene

(Papp et al, 2003; Kafri et al, 2005, 2009; Beltran et al, 2016)

(Fig 1A). As rescue events are required to compensate for fitness

reducing alterations occurring during the natural evolution of cancer

(Szamecz et al, 2014), one may expect to detect the SR interactions

forged in evolving tumors, even untreated ones (Landau et al, 2013;

Taylor-Weiner et al, 2016; Carter et al, 2017). When a vulnerable

gene is targeted by an anti-cancer drug (Hart et al, 2015), such SR

interactions may manifest by changes in the activity of its interacting

rescuer gene(s), thus mediating drug resistance. Both primary and

adaptive resistance could be mediated by SR mechanisms.

We have recently developed a data mining approach, ISLE (Lee

et al, 2018), that mines TCGA and published in vitro screens to

identify clinically relevant synthetic lethal (SL) interactions. An SL

gene pair when co-inactive exhibits negative selection as it

decreases tumor fitness. ISLE harnesses this principle to identify

gene pairs whose co-inactivation is depleted in in vitro and patient

tumors. As this fitness reduction is expected to result in better

patient survival, ISLE further refines SL prediction by integrating

patients’ clinical information. While SL interactions (Kelley &

Ideker, 2005; Zhong & Sternberg, 2006; Szappanos et al, 2011b;

Jerby-Arnon et al, 2014; Srivas et al, 2016; Wang et al, 2017a; Lee

et al, 2018) pinpoint molecular vulnerabilities in tumors that can be

targeted (the SL partners of genes that are inactivated in a specific

tumor) (Weidle et al, 2011; Szczurek et al, 2013), SR interactions

can rescue the cells from such vulnerabilities by actively modifying

the interacting rescuers, leading to therapy resistance. The SR inter-

action thus defines an asymmetric relationship between paired

genes and, conversely to an SL interaction, undergoes positive

selection in patient tumors as it increases tumor fitness, thus lead-

ing to adverse effects on patient survival. Accordingly, we develop

an in silico approach to identify SR interactions by tailoring the

basic ISLE pipeline presented earlier to capture these specific SR

features.

Results

The INCISOR pipeline and the resulting cancer SR networks

As drugs mainly inhibit target genes, we focus here on two types

of SR interactions (Fig 1A): (i) DD-SR (suppressor) interactions,

where the Downregulation of a vulnerable gene is rescued by the

Downregulation of a rescuer gene (James et al, 1989; Nonet &

Young, 1989; Motter et al, 2008; Szamecz et al, 2014; van

Leeuwen et al, 2016); and (ii) DU-SR interactions, where the

Downregulation of a vulnerable gene is rescued by the Upregula-

tion of a rescuer gene (Sun et al, 2014; Bertotti et al, 2015; Fong

et al, 2015; Hugo et al, 2015; Miyamoto et al, 2015; Rathert et al,

2015; Stuhlmiller et al, 2015).

To predict SR interactions, we tailored the statistical tests used in

ISLE (Lee et al, 2018) to devise an in silico approach termed “IdeNti-

fication of ClinIcal Synthetic Rescues in cancer” (INCISOR), which is

specifically geared to identify SR interactions. Broadly, INCISOR

combines multiple lines of evidence—experimental, tumor transcrip-

tomics, survival information, and gene phylogeny—to ascertain

whether a gene pair is likely to be SR. Here, we describe the specific

steps of INCISOR for predicting DU-SR interactions, where the rescue

event is mediated by over-expression (DD-SR prediction follows an

analogous approach, Materials and Methods, and Appendix 2 and

Fig S1G). INCISOR analyzes in vitro screens and evaluates the extent

to which gene phylogeny, molecular, and survival data of patient

tumor support the screens. It selects the clinically relevant SR pairs

that are supported by all four lines of evidence outlined below. The

specific order in which the following four steps are applied sequen-

tially in INCISOR was chosen to minimize the computational cost

(Fig 1B, see Materials and Methods for details), as follows:

1 In vitro essentiality screens: This step tailors a recent approach

(Wang et al, 2017a) to mine in vitro genome-wide shRNA (Cheung

et al, 2011; Marcotte et al, 2012, 2016; Cowley et al, 2014) and

drug response screens (Barretina et al, 2012; Iorio et al, 2016)

composed of 2.3 million measurements in 720 cancer cell lines.

INCISOR analyzes candidate SR pairs in cell lines with a given gene

knockdown and identifies the genes whose upregulation is associ-

ated with increased cell growth. We term the first gene a vulnera-

ble (V) gene and the second a (DU) rescuer (R) gene. To determine

this association between V and R while controlling for cancer types

of cell lines used in the screens, INCISOR uses a linear mixed-

effects (preprint: Bates et al, 2014) model (see Materials and Meth-

ods for details). P-values of association were determined using

ANOVA and corrected for multiple hypotheses tested.

2 Molecular survival of the fittest (SoF): By analyzing TCGA gene

expression and somatic copy number alterations (SCNA) of

8,749 patients across 28 cancer types, INCISOR selects candidate

SR pairs from step 1 that are observed in their rescued state (gene

R is specifically upregulated when gene V is inactive) signifi-

cantly more than expected. This enrichment testifies to a positive

selection of samples in the rescued state, a key property of SR

interactions. P-value of enrichment was corrected for multiple

hypotheses tested.

3 Patient survival screening: Analogous to ISLE, this step further

selects those candidate SRs whose rescued state in TCGA tumor

samples exhibits worse patient’s survival, as the reduced

survival can serve as an indicator of increased tumor fitness.

INCISOR uses a stratified Cox proportional hazard model to

establish this relationship. We systematically control for

confounding factors including cancer type, sex, age, genomic

instability, tumor purity (Aran et al, 2015), and ethnicity in the

Cox model (Materials and Methods).

4 Phylogenetic screening: Because functionally interacting genes

are known to co-evolve (Srivas et al, 2016) in a species, we

select SR pairs composed of genes with high phylogenetic simi-

larity. The top 5% of phylogenetically similar pairs among the

ones passing the previous steps are chosen as the final set of

putative SR pairs.

The resulting DU-SR network, which is composed of all the pair-

wise interactions that pass all four steps described above, is scale-

free (Fig 1C, Dataset Table EV2 and EV3) and consists of 1,109
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genes and 1,033 interactions (see Appendix 2.1 for DD-SR; interac-

tive networks available online, Materials and Methods; Dataset

Table EV4 and EV5). Gene enrichment analysis revealed that the

network nodes are enriched in cancer and resistance pathways

(Appendix 3.5–3.7). We also find that the activation of predicted

rescuers increases with advanced cancer stages (Appendix 3.9 and

Fig S2G and H). Because cancer type is a major confounder in

in vitro and patient data, we adopted a statistically rigorous

approach to control for cancer type. Age, sex, race, tumor purity,

and genomic instability are known to affect patient survival; there-

fore, we also control for those factors in INCISOR clinical screen in

addition to cancer type. We also showed the SR pairs identified are

robust to parameter choice in INCISOR (Appendix 2.4). To further

check the robustness, we applied INCISOR to breast cancer in vitro

screens and breast invasive carcinoma (BRCA) patient data from

TCGA to identify the breast cancer-specific DU- and DD-SR interac-

tions. The resultant breast cancer SR network is shown to be

predictive of breast cancer patients’ survival and to a lesser extent,

to be predictive of patients’ drug response across different cancer

types (details in Appendix 3.11).

Benchmarking INCISOR against a collection of published
DU-SR interactions

We first benchmarked the DU-SR predictions via a comparison to

genes whose over-expression rescues cancer cells, using a set of

genes that were previously shown to mediate cancer drug resistance

(Mills et al, 2013; Sun et al, 2014; Fong et al, 2015; Lin et al, 2015;

Rathert et al, 2015; Stuhlmiller et al, 2015; Falkenberg et al, 2016;

Yamaguchi et al, 2016; Zhang et al, 2016; Dataset Table EV9, See

Materials and Methods, Appendix 4.1). INCISOR successfully identi-

fied these published rescuer genes with AUCs of 70–85% (mean

precision of 46% at 50% recall; Appendix Fig S3O, Materials and

Methods). Using a multivariate analysis, we also showed that each

A

B

C

Figure 1. The INCISOR pipeline and the resulting SR network.

A The phenotypic effects of altering interacting gene partners in SL, DD-SR, and DU-SR interactions.
B The four inference steps of INCISOR and the datasets analyzed (Materials and Methods, SoF stands for the survival of the fittest). The SR property tested (in red) and

rationale (in brown) of each step are also displayed.
C The resulting DU-SR network (purple nodes denote vulnerable genes and green rescuer genes; the size of nodes is proportional to the number of interactions they

have). The complete network is provided in Appendix Fig S1F.
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screening step of INCISOR contributes to the overall predictive

power (Fig S3P and Appendix 4.1). We additionally tested and

successfully validated predicted SR interactions using published

data of patient-derived in vitro (Crystal et al, 2014) and mouse

xenograft models (Gao et al, 2015; Appendix 4.4 and 4.5). As large

cohorts of published rescue interactions are still quite scarce, we

conducted four new in vitro experiments to further test emerging

rescue predictions of INCISOR of interest.

Experimental testing of predicted DD-SR interactions of mTOR in
head and neck cancer cell lines

Our first experiment tested DD-SR interactions involving mTOR, a

key growth regulating kinase in head and neck cancer. To test the

predicted rescue interactions involving mTOR, we knocked down

(KD) genes in an experimental screen in a head and neck cancer cell

line (HN12) and experimentally identified the (DD) rescue events

occurring due to a subsequent mTOR inhibition by rapamycin treat-

ment (which is known to specifically targets mTOR in its complex 1;

Laplante & Sabatini, 2012). Because kinases are the most frequent

intracellular drug targets, we used a kinase and phosphatase

targeted library for performing knockdowns of 2,214 genes bearing

their translational relevance. Forty-five of these KDs, about 2.1%,

were rescued by mTOR inhibition in the screen (Dataset

Table EV10, Materials and Methods). Independently, we applied

INCISOR to identify genes that are predicted to be rescued by mTOR

inhibition in a statistically significant manner (FDR = 0.05,).

INCISOR predicted 17 such DD rescuer genes (Materials and Meth-

ods), 11 of which indeed overlapped with the 45 interactions identi-

fied experimentally (Appendix Fig S5b). This yields a precision level

of ~65% and recall of ~25% (Fig 2A, false positive rate < 0.003), a

31-fold increase over the 2.1% precision expected by chance.

INCISOR exhibits a reasonable precision also at high recall rates,

e.g., at a threshold INCISOR predicts 75 genes as positive (recall of

about 70%), it achieves a precision level of 30% (vs. 2.1% that is

expected by random). The validated rescuers were enriched with

transcription factors, FoxO signaling and stress response genes

(Dataset Table EV30). We further validated the predicted DD-SR

interactions of mTOR via multiple published in vitro shRNA

(Cheung et al, 2011; Marcotte et al, 2012, 2016; Cowley et al, 2014)

and drug response screens (Barretina et al, 2012; Iorio et al, 2016)

(Appendix 4.2 and 4.3). In sum, this analysis shows that INCISOR

A B

Figure 2. Large-scale in vitro experiments testing predicted SR interactions in head and neck cancer.

A Evaluation of predicted SR (DD) interactions in a large-scale shRNA H&N HN12 cell line screen. The y-axis displays the precision and recall of INCISOR-predicted SRs
in identifying the 45 experimentally determined DD-SR rescuers of mTOR. The vertical dashed line denotes a threshold of FDR = 0.05 over the predicted INCISOR
interaction scores. The stars indicate precision and recall at a threshold level where INCISOR identifies 75 genes as DD-SR rescuers. The horizontal line (in gray) shows
the precision expected by the random chance. The inset displays top 10 predicted genes whose knockdowns are rescued by mTOR inhibition. Significance was
quantified using a one-sided Wilcoxon rank-sum test over three technical replicates with at least two independent shRNAs knockdowns per each gene. For 8 of these
KDs, at least two shRNA individually show the rescue effect. The black horizontal line indicates the median effect of Rapamycin treatment in controls as a reference
point. Box plot limits (Q1, Q3) and whiskers (�1.5 * inter quartile range from hinge) follow a standard definition.

B Experimental validation of predicted synergistic SR-based combinational therapies in head and neck cancer: A table summarizing the experimentally observed
synergism between primary drugs and their predicted rescuer-targeting treatments in 5 HNSC cell lines, based on drug treatment experiments. Synergism was
estimated using standard Fa-CI analysis. The table displays the average combination index (CI; synergism CI < 1, additivity effect CI = 1, antagonism CI > 1, NAN
indeterminate CI) at 50% growth inhibition (fraction affected). Combinations that are synergistic are colored blue (black otherwise) for each cell lines tested. The inset
shows an example of CI calculation for BYL719 and dasatinib combination in HN12 cell lines based on the corresponding dose matrix (number indicates % cell
viability at 48 h, n = 3) and Fa-CI curve.
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successfully predicts genetic interactions (of mTOR) whose func-

tional activation in cancer cells increases cellular fitness.

Experimental testing of predicted DU-SR rescuers via drug
combinations and siRNA in head and neck cancer

In the second experimental validation, we tested the ability of

predicted DU-SRs to guide new synergistic drug combinations,

where the combination of drugs hits both a primary cancer drug

target and its predicted DU rescuer (Materials and Methods). We

tested seven such predicted combinational therapies across five dif-

ferent head and neck cancer cell lines. We find that 5 out of 7

combinations are indeed synergistic (Fig 2b, Appendix 4.7, refer to

Appendix Fig S6 and S7 for results of all 7 combinations tested).

One validated pair involves PI3KCA and mTOR, which are impor-

tant genes in the PI3K/AKT/mTOR pathway. PIK3CA activates AKT

by converting PIP2 to PIP3 (Myers & Cantley, 2010), promoting cell

growth and survival. mTOR also promotes cell growth and mTORC2

is known to regulate AKT independent of PIK3CA (Laplante & Saba-

tini, 2012; Populo et al, 2012), thus might compensate for PIK3CA

inhibition and explain their synergism.

In the third experiment, we conducted siRNA experiments to show

that observations of Fig 2b are consistent. Targeting mTOR by siRNA

exhibited enhanced sensitivity to BYL719 in 4 of these cell lines

(Appendix 4.7 and Fig S8). Similarly, siRNA targeting of PIK3CA

exhibited enhanced dasatinib sensitivity (Appendix 4.7 and Fig S8).

Because many of these drugs tested above are known to target

multiple genes, we conducted additional experiments in NSCLC to

confirm the relationship between synergism and predicted SRs.

Targeting predicted DU-SR rescuers of DNMT1 sensitizes
resistant NSCLC cell lines to DNMT1 inhibitor

In the fourth and final in vitro experiment, we tested whether target-

ing predicted DU rescuers could sensitize therapy-resistant tumor

cells. We picked DNMT1 to test this hypothesis as it is a major hub

in the DU-SR network (Fig 1c) and a key cancer gene in non-small-

cell lung cancers (NSCLCs). We studied 18 NSCLC cell lines (Materi-

als and Methods) that are insensitive to Decitabine (a DNMT1 inhi-

bitor). In each of these cell lines, we pharmacologically inhibited the

13 top predicted DU rescuers of DNMT1. A Bliss (Bliss, 1939; Lehar

et al, 2007; Friedman et al, 2015) independence model was used to

estimate synergism, and its significance was determined by compar-

ing expected vs. observed drug response of drug combinations

across all doses tested (Materials and Methods). Targeting the

predicted rescuers synergistically sensitized these cell lines to Deci-

tabine in 71% of the 234 (13 rescuers × 18 cell lines) conditions

tested. In contrast, pharmacologically inhibition of two top predicted

DD rescuers of DNMT1 showed the opposite, antagonistic effects, in

64% of the 36 conditions tested, with no synergistic effects, as

expected (Fig 3A). Both the observed synergistic and antagonistic

effects across cell lines were significantly compared to control drug

tested (P < 2.2E-16). We further confirmed the ability of predicted

SR interactions to predict resistant tumor sensitization in a large

published patient-derived cell line collection (Friedman et al, 2015)

and mice xenograft (Gao et al, 2015; Appendix 5.3 and 5.4).

The effects of some of the SR interactions validated in drug

combination screen described above can be explained by their

known biology. For example, (i) first, DNMT1 epigenetically

silences E-cadherin (Robert et al, 2003). The silencing results in B-

catenin accumulation in cell nucleus (Hayashida et al, 2005) that is

necessary for maintaining cancer cell stemness. WNT signaling,

however, was shown to regulate B-catenin (Colletti et al, 2009)

independently, explains why WNT1 activation rescues DNMT1 inhi-

bition (Fig 3B). (ii) Second, DNMT1 also silences RASSFA1, which

in turns stabilizes the proto-oncogene MDM2 (Zhang et al, 2013).

Thus, concomitant over-expression of MDM2 could compensate for

the loss of RASSFA1 due to DNMT1 inhibition. (iii) Third, CDK1

over-expression may compensate DNMT1 inhibition because CDK1

is known to stabilize DNMT1 by phosphorylating it (Liu et al,

2016). (iv) Finally, PAK1 may compensate for DNMT1 inhibition

because it independently regulates cell adhesion and motility. These

results testify that some rescue interactions may be explained by

molecular interactions between genes proximally located on signal-

ing pathways (Kafri et al, 2005, 2009; Fig 3B). However, many of

the emerging rescue interactions are not, either due to our limited

knowledge of signaling pathways or due to functional interactions

that go beyond the scope of the signaling pathways.

Rescuer and vulnerable genes share functional annotations

Our observation that signaling architecture may explain a subset of

SR interactions led to the hypothesis that rescuer and vulnerable

genes of SR networks may share functional similarities. Several lines

of evidence support this hypothesis. First, in the DU-SR network,

gene ontology (GO) annotations of rescuers are similar to GO anno-

tations of their partners (Fig 3C). The GO similarity observed in the

DU-SR network is significantly higher compared to (i) GO similarity

in a random network (P < 1E-34) with similar degree distribution as

the DU-SR network, and (ii) GO similarity in a network generated by

randomly shuffling the interactions between gene pairs of the DU-SR

network (P < 1E-10). Second, DU-SR rescuer genes are significantly

closer (P < 1E-46 and P < 3E-10 compared to the random network

and the shuffled network) to their predicted partners in the human

protein interaction (PPI) network (Schaefer et al, 2012; Fig 3D).

Notably, DU-SR interactions mediated by direct (physical) protein

interactions are enriched in cancer drivers (Fisher’s exact test

P < 6.5E-8, Appendix 3.4). Third, using the STRING database (Szk-

larczyk et al, 2015), which integrates multiple resources of direct

and indirect associations of protein interactions, we find that partner

genes of the DU-SR network are more likely to be functionally related

(Fig 3E): Rescuer genes are significantly closer (P < 5E-72 and

P < 7E-13 compared to the random network and the shuffled

network) to their predicted partner gene in the STRING network.

Moreover, the observed functional similarities between DU-SR pairs

are not merely due to co-expression between gene partners; shuffled

DU-SR gene pairs with similar co-expression levels as those of

predicted DU-SR pairs exhibit significantly less GO similarity

(P < 5E-05). An analogous functional similarity was also observed

for gene pairs in the DD-SR network (Appendix 3.8 and Fig S2E).

SR interactions predict drug response in patients

We next evaluated INCISOR’s ability to predict response of patients

to cancer drug treatments (Ein-Dor et al, 2005; Domany, 2014) by

analyzing the transcriptomics of their pre-treated tumor samples. To
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this end, we applied INCISOR to identify the rescuers of (the

targets of) 28 FDA-approved cancer drugs (for which treatment

response data are available in the TCGA collection). To remove

any potential circularity, during the identification of SR

interactions of targets of a given drug, we removed from TCGA

patients who were administered with that drug (Materials and

Methods, Appendix Fig S10e). To predict the response of an indi-

vidual patient’s to a given drug, we defined the drug-tumor SR
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score as the number of upregulated rescuers of the drug’s targets

in that patient’s tumor (Materials and Methods). We reasoned that

a drug is expected to be less effective in tumors where many of its

DU rescuers are upregulated. Using a Cox model to control for

confounding variables (Materials and Methods), we find that the

SR scores predict the patients’ survival after treatment in a statisti-

cally significant manner for 22 of the 28 drugs tested (Fig 4A

shows the result for the 26 drugs tested with hazard ratios > 1,

Materials and Methods). Evaluating the patients’ response in terms

of tumor size (based on the RECIST criteria), we find that the non-

responders exhibit significantly higher drug-SR rescue scores than

the responders for 14 out of 19 drugs for which tumor size infor-

mation was available (Fig 4B, Materials and Methods). An analysis

of independent (non-TCGA) ovarian (Patch et al, 2015) and breast

cancer datasets (Hatzis et al, 2011) further shows that SRs

successfully predict both primary and acquired therapy resistance

(Appendix 5.2). In contrast, a randomly shuffled network (gener-

ated by randomly shuffling rescuer genes for each drug target,

maintaining the original SR node degree) fails to predict patients’

response to any of the drugs tested, both in the survival-based and

response-based analyses. Drug-SLs inferred from DAISY (Jerby-

Arnon et al, 2014) also showed no predictive signal here (log rank

P = 0.49). Please note that INCISOR can only predict response to

drugs whose gene targets are known.

Comparative evaluation of INCISOR’s performance in predicting
drug response vs. other recent large-scale genomic methods

We compared the performance of INCISOR with other existing

methods for predicting cancer drug response. Iorio et al (2016)

◀ Figure 3. Large-scale experiments testing predicted SRs in NSCLC and studying their functional similarity.

A Experimental testing of the predicted SR (DU) rescuers of DNMT1 via drug combination experiments in 18 NSCLC cell lines insensitive to Decitabine. The matrix
displays drug interactions between Decitabine, a DNMT1 inhibitor, and inhibitors of its predicted rescuer genes (x-axis) across 18 NSCLC cell lines (y-axis) that are
insensitive to Decitabine. Row labels present rescuer genes and their inhibitors. Colors in the matrix show whether the interactions found are significantly
synergistic (red), antagonistic (green), or non-significant (in gray). Values in the matrix show average synergism (< 1 synergism and > 1 antagonism, Materials and
Methods). Thirteen predicted DU-SR rescuers (red lines), two predicted DD-SR rescuers (green lines) of DNMT1, and one random control (JAK3i) were tested.

B Some SR interactions of DNMT1 occur between genes proximally located on the signaling pathway. DU rescuer genes of DNMT1 are colored blue.
C–E Functional similarities between gene pairs in the DU-SR network. Comparison of functional similarities between interactions in (i) the DU-SR network (ii) random

pairs (the network is generated by random pairing between protein-coding genes, having a degree distribution similar to that of the DU-SR network) (iii) shuffled
pairs (the network is generated by shuffling pairing of the DU-SR network). Functional similarities of genes in each pair were evaluated in terms of their (C) GO
similarity. Box plots follow standard limits (Q1, Q3) and whiskers (�1.5 * inter quartile range from hinge) follow a standard definition. (D) distances in the human
PPI network (Schaefer et al, 2012), and (E) distances in the STRING network (Szklarczyk et al, 2015). The distances denote the number of interactions on the
shortest path between the paired genes. The histogram of network distances between gene pairs is displayed for the PPI and STRING networks. One-sided
Wilcoxon rank-sum test was used for significance.

A
B

Figure 4. SR networks predict cancer drug response in patients.

A Prediction of drug response in terms of survival: The y-axis displays the hazard ratio of patients as a function of upregulation of predicted rescuers (Materials and
Methods).

B Analyzing drug response in terms of tumor size reduction (RECIST criteria): The predicted DU-SR rescuers of drugs are differentially over-expressed in non-responding
tumors. The y-axis denotes the fraction of the predicted drug-specific rescuers that are over-expressed (out of all predicted rescuers of that drug) in tumors of
responders (red) and non-responders (blue). Significant results are marked by stars (Wilcoxon rank sum P < 0.05, aggregate Wilcoxon rank sum is P < 2.2E-16,
Materials and Methods). Box plots follow standard limits (Q1, Q3) and whiskers (�1.5 * inter quartile range from hinge) follow a standard definition.

ª 2019 The Authors Molecular Systems Biology 15: e8323 | 2019 7 of 21

Avinash Das Sahu et al Mediators of cancer therapy resistance Molecular Systems Biology



identified cancer functional events (CFEs) and demonstrated that

they could be used to predict drug response of 265 drugs in vitro.

Similarly, Mina et al (2017) identified genetic interactions involving

these CFEs and demonstrated they predict drug response in cell

lines. To systematically evaluate whether these could also determine

drug response in patients, we used the occurrence of CFEs and CFE

interactions in patients’ tumor as features to build supervised

models (Materials and Methods) predicting the response for each

drug in TCGA. We analyzed 22 FDA-approved cancer drugs in

TCGA, including 19 targeted drugs shown in Fig 4B and three drugs

without known gene targets (Carboplatin, Cisplatin, and Oxali-

platin). We also ran the ISLE pipeline (Lee et al, 2018) to predict the

response to these drugs for further comparison. As shown in Fig 5,

while ISLE predicts response for four drugs more accurately

compared to INCISOR, INCISOR exhibits better predictive power for

15 drugs as compared to ISLE. The CFEs (of Iorio et al, 2016) signifi-

cantly predict drug response for eight of the drugs (which also

includes two non-targeted therapies drugs). However, the CFE-

related genetic interactions identified by Mina et al do not have a

predictive signal for any of these drugs in the TCGA cohort.

INCISOR, in turn, outperforms these other methods for 14 FDA

drugs (Fig 5). This superiority of INCISOR performance versus that

of the CFE-based classifiers is especially notable as it is not based on

any supervised training on specific drug response training data and

is based on the interactions inferred solely from pre-treated samples.

Indeed, ISLE predictive performance can be further increased by

about 10% more by building supervised predictors based on

INCISOR-predicted rescuers (Appendix Fig S10J).

SR interactions determine efficacy of immune checkpoint
blockades in patients

Finally, we hypothesized that SR-mediated transcriptomic changes

mediate resistance to immune checkpoint blockade (ICB; Taylor-

Weiner et al, 2016). Accordingly, we evaluated INCISOR’s ability to

predict SRs that can account for key transcriptomic changes occur-

ring in patients’ tumors following checkpoint immunotherapy. We

also studied the match between the rescuers predicted and key resis-

tance modulators identified in mouse studies. To predict the SR

rescuers of the checkpoint genes, we removed in vitro essentiality

screens (step 1) from the INCISOR pipeline as they are conducted in

in vitro systems lacking an immune component (Materials and

Methods). We find that the pre-treatment expression levels of

rescuers of PD1 successfully predict resistance to PD1 blockade in

melanoma patients (Fig 6A; Hugo et al 2016 and Prat et al, 2017,

and Appendix 5.5). Similarly, the pre-treatment expression of the

INCISOR-predicted rescuers of CTLA4 successfully predicts patients’

resistance to CTLA4 blockade in melanoma patients (Fig 6A, Van

Allen et al, 2015).

To further study the role of SRs in immunotherapy, we

consented 40 patients with metastatic melanoma in ongoing clini-

cal trials for treatment with different ICB therapies and carried
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Figure 5. Comparative analysis of INCISOR.

A comparative study of INCISOR’s performance (red bars) in predicting patients drug response (TCGA) compared to ISLE- and CFE-based approaches (other colors). The area
under the curve (y-axis) displays the predictive performance of different methods for 22 FDA-approved drugs in TCGA. Predictions of CFE (cancer functional events) identified
by Iorio et al (2016) are displayed separately for CFEs inferred from mutation, methylation, and SCNA data.
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out whole transcriptomics profiling of their 90 matched pre-, on-, and

post-treatment tumor biopsies (Materials and Methods, Data

available online). Forty biopsies were taken from patients treated

with anti-PD1/anti-PDL1 (collated together in the analysis

and referred as anti-PD1), forty-three biopsies with anti-CTLA4,

and seventeen with a combination of anti-CTLA4 and anti-PD1

(patients who sequentially underwent from first ICB regiment to

another were also considered for individual analysis of the first

ICB). Notably, post-treatment biopsies were performed when the

patients stopped responding to the ICB, denoting the emergence

of resistance.

We find that the predicted DU (DD) rescuers of anti-PD1 ther-

apy (Materials and Methods) are upregulated (downregulated) in

anti-PD1 post-treatment tumor biopsies (paired Wilcoxon P < 4E-

14; Fig 6B top and bottom panels, their pathway enrichment is

provided in Dataset Table EV28). Notably, the knockdown of 7 of

the 17 predicted upregulated DU rescuers of anti-PD1 therapy has

been recently found to promote melanoma’s sensitivity to anti-PD1

blockade in mice models (hypergeometric enrichment of P < 8E-

17; colored red in Fig 6B) (Manguso et al, 2017). Three of 21 of

the predicted DD rescuers have also been identified in that study

as enhancing resistance, as expected (hypergeometric enrichment

of P < 5.5E-7). More specifically, our results provide evidence in

humans that support the mice findings, that gene inactivation of

IFNGR1, RABEPK, and MIF induces tumors resistant to PD1 block-

ade and gene inactivation of PDIA3, STUB1, CDC7, UBQLN1,

NCSTN, GNG12, and GPI co-simulates immune response to PD1

blockade in melanoma. Interestingly, we identify CTLA4 as a DU

rescuer of anti-PD1 therapy, supporting the rationale of their

combination. Other notable upregulated DU rescuers of PD1 are

the immune checkpoint genes VTCN1 and TOP2A. The latter

suggest combinations involving DNA topoisomerase inhibitors

such as Doxorubicin and Epirubicin with anti-PD1 as a potential

combination therapy. Analogously, top predicted DU (DD) rescuers

of anti-CTLA4 therapy were upregulated (downregulated) in post-

treatment tumor biopsies derived from patients treated with anti-

CTLA4 therapy (paired Wilcoxon P < 5E-11, Fig 6C; see Dataset

Table EV29 for pathways enrichment). Notably, we find that anti-

CTLA4 blockade can be DU-rescued by a class of inhibitory check-

points—Killer-cell immunoglobulin-like receptors (KIR2DL2 &

KIR3DL3), which are known to interact with MHC1 and facilitate

cell death (Bashirova et al, 2006), putting forward the potential

benefits of combinations targeting these genes. Analyzing samples

of post-treatment combination therapy involving both anti-PD1

and anti-CTLA4, we find that many DU/DD rescuers respond as

predicted but their individual response is evidently weaker

(Fig 6D).

Discussion

In summary, INCISOR prioritizes clinically relevant SRs by analyz-

ing functional genomic and clinical survival data in an integrated

manner. Due to the scarcity of published gold standards of SR inter-

actions, we conducted new large-scale in vitro experiments to vali-

date our predictions. The paucity of known rescue interactions in

the literature further underscores the importance of developing tools

like INCISOR. Overall, INCISOR attained precision levels of an aver-

age 48% (at 50% recall) in the identification of true SR interaction

across all published and new experiments. Finally, we show that SR

mediates both primary and adaptive resistance in patients: e.g., we

show that the pre-treatment expression data of TCGA tumors are

predictive of their response to drug treatments (primary resistance,

Fig 4), and on the other hand, SRs can predict the post-treatment

alterations following checkpoint inhibitors (adaptive resistance,

Fig 6B–D).

Like many genome-wide approaches, INCISOR has several limita-

tions, including pitfalls arising from gene co-expression and from

correlations in the copy number alterations of proximal genes,

which may lead to the inference of false positive SRs. We have veri-

fied that the SR interactions are not biased toward genes lying on

the same chromosome (Appendix 2.3). We aimed to mitigate false

positives in the design of INCISOR by selecting candidate SR pairs

only when they are additionally supported by the shRNA and phylo-

genetic data that testify to causal rescue effects. Although INCISOR

explains molecular mechanism of resistance to targeted therapies, it

fails to capture resistance mechanism of untargeted therapies.

Further, for many drugs, resistance can emerge via mechanisms

independent of SRs, e.g., resistance due to alteration in drug efflux.

We experimentally validated many of predicted SR interactions

using gene inhibition by shRNA and drug treatment screens. To vali-

date the rescue effect due to mTOR inhibition, we used rapamycin

that blocks preferentially mTOR in its mTORC1 complex. To

discount the possibility that observed synergism is not due to non-

specific targeting of drugs, we conducted a large-scale drug combi-

nation screen. However, these findings must be further confirmed

by CRISPR experiments to completely eliminate the possibility of

off-target effects as confounders. Using a multivariate logistic regres-

sion, we also show that each screening step of INCISOR contributes

to its overall predictive power. These contributions vary across dif-

ferent datasets, testifying that combining the screens is a good strat-

egy and with the growing availability of validated SR interactions,

the performance of INCISOR could be improved in the future by

adopting a supervised strategy. We expect a higher false positive

rate from INCISOR when predicting SRs of ICB treatments because

the first screening step cannot be performed. Finally, as this is the

◀ Figure 6. SR predicts resistance to PD1/PDL1 and CTLA4 blockade in patients.

A Cross-validation accuracy of SR-based supervised predictors in predicting resistance to PD1 (Hugo et al, 2016; Prat et al, 2017) and CTLA4 blockade (Van Allen et al,
2015), reported in terms of the corresponding receiver operating characteristic (ROC) curves. Expression of the predicted rescuer genes of PD1 (CTLA4) was used to
train an SVM supervised predictor of PD1 (CTLA4) blockade. For comparison, we also display the ROC curves of supervised predictors trained on the expression of
all genes (shown as “All”) and on the expression of genes selected randomly and controlled for the number of rescuers predicted (shown as “Random”).

B–D The transcriptomic alterations of rescuer genes post-PD1/PDL1 and CTLA4 blockade in patient tumor biopsies: Their post (vs. pre-)-treatment expression changes of
DU/DD rescuers after anti-PD1 (B), anti-CTLA4 (C), and PD1 + CTLA4 combination therapies (D). Each panel displays the expression fold change of each predicted
rescuer gene (rows) for different tumor samples (columns) and the P-value of overall paired Wilcoxon test of the expression changes observed in paired samples.
Significantly altered up/downregulated genes are marked by (*). Genes marked in red are those whose CRISPR knockdown enhances melanoma sensitivity to anti-
PD1 blockade in mice models.
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first genome-wide study of cancer SR interactions, we focused on

identifying SRs that are common across many cancer types.

INCISOR identifies the same interactions for all drugs targeting the

same gene(s). Future studies, however, will further identify cancer-

type-specific or context-specific SR networks as more data accumu-

late.

Multiple rescuer genes could rescue and cause resistance to a

given cancer drug. Three different strategies could be adapted to

prioritize gene target among such multiple rescuers to maximize

their clinical benefit: First, INCISOR quantifies that extent of the

rescue for each rescuer based on its clinical significance observed

in patients. This could be used for prioritization. Second, post-

treatment transcriptomic data from a patient’s tumor, if available,

could be used to narrow down rescuer alterations specific to that

tumor. Finally, combining experimental testing in a patient’s

tumor material using organoids or PDXs with INCISOR predic-

tions would be a powerful approach to systematically identify

true clinically relevant rescuer among the multiple predicted SR

rescuers.

This study has focused on the genome-wide prediction of SR

interactions. Evidently, different signaling functional and physical

interactions may be manifested in these rescue interactions

(Fig 3B–E). SRs are much less known and studied compared to

another type of genetic interactions, known as synthetic lethal (SL)

interactions. The difference between SL interactions and DD-SR

interactions is obvious, by definition. Their difference from DU-SR

interactions is more intricate: It manifests itself in cells where a

given gene is in its wild-type state and its partner interacting gene

is knocked down; if the two genes SL interact, there will be no

reduction in cellular fitness in that case, but if they DU-SR interact,

then the knockdown will reduce cellular fitness (as the rescuer is

not upregulated). Consequently, our results demonstrate that a

given cancer drug may be effective in cells where its predicted

rescuer is in its wild-type state but may become resistant as it is

over-expressed. As expected, as SL interactions predict patient-

specific primary vulnerabilities, while SR interactions predict a

therapy resistance overcoming such vulnerabilities, we found no

overlap between predicted DU-SR interactions and SL interactions,

predicted by a similar data mining approach ISLE (Lee et al, 2018;

Appendix 2.2). In general, INCISOR identifies fewer genetic inter-

actions as compared to ISLE (Materials and Methods). Importantly,

because ISLE and INCISOR capture complimentary landscape of

tumor fitness, predictions from both approaches could be

combined in future studies. To demonstrate the potential of such

an approach, we present, for instance, the results of such a

combining SL and SR in predicting patient survival in breast

cancer (Appendix Fig S2I and J).

In conclusion, we present a comprehensive approach to tackle

resistance to targeted and immune cancer therapy by mining thou-

sands of tumors available in TCGA to infer cancer-specific SR inter-

actions. We conducted in vitro experiments demonstrating that

targeting predicted DU-SRs could sensitize therapy-resistant tumor

cells, identifying synergistic drug combinations. As SR interactions

are derived directly from analyzing the patients’ clinical samples,

they are more likely to be clinically relevant (Raphael et al, 2017)

than findings based on cell screens and mouse models solely. Our

results lay a basis for the development of new combination thera-

pies based on the molecular characteristics of an individual patient’s

tumor to proactively overcome resistance in a precision based

manner.

Materials and Methods

The INCISOR pipeline for identifying SR interactions

INCISOR identifies candidate SR interactions employing four inde-

pendent statistical screens (Fig 1B), each tailored to test a distinct

property of SR pairs. We describe here the identification process for

the DU-type SR interactions (Down–Up interactions), where the up-

regulation of rescuer genes compensates for the downregulation of a

vulnerable gene (e.g., by an inhibitor compound, Appendix Fig

S1A). Then, we discuss how to modify DU-INCISOR to detect the

other SR types (DD, UD, and UU). We identify pan-cancer SRs (that

are common across many cancer types) analyzing gene expression,

somatic copy number alteration (SCNA), and patient survival data

of TCGA (Weinstein et al, 2013) from 8,749 patients in 28 different

cancer types. INCISOR also integrates predictions from TCGA data

with genome-wide shRNA (Cheung et al, 2011; Marcotte et al,

2012, 2016) and drug response (Barretina et al, 2012; Iorio et al,

2016) screens in around 720 cell lines composing in the total of 2.3

million shRNA measurements. The same approach can be used to

identify cancer-type-specific SRs, in an analogous manner. INCISOR

is composed of four sequential steps (an FDR threshold was set 0.05

for each step):

1 In vitro screening (using in vitro cancer data): Mining large-scale

in vitro shRNA and drug response datasets, INCISOR examines

all possible gene pairs to identify putative SR. The screen adopts

an analogous approach (Wang et al, 2017a) to mine shRNA

screen in a reference collection of cell line to identify pairs where

vulnerable genes V and rescuer genes R fulfill the following two

conditions: (i) Knockdown of V exhibits an increase in cell

growth in cell lines with R upregulated (relative to cell line with

R downregulated), and (ii) knockdown of the R is lethal in cell

lines where V downregulated. We use both gene expression and

SCNA data to identify such putative SR.

To determine this association between V and R while controlling

for cancer types of cell lines used in the screens, INCISOR uses

a linear mixed-effects (46) model. P-values of association were

determined using ANOVA and corrected for multiple hypotheses

tested. For each input screen, we model cancer types of cell

lines as a random effect in the linear mixed-effects model (46).

Specifically, we model the effect of a vulnerable gene knock-

down (y) on cell proliferation as a linear mixed-effects model of

its rescuer expression (g) and cancer type, where g is modeled

as fixed effect and cancer type is modeled as random effect as

follows:

y� g þ ð1jcancer typeÞ

Here, we follow the standard notation (1|cancer_type) to repre-

sent the random effect of the confounding cancer type. In the

case of shRNA screens, y represents gene essentiality of the

vulnerable and in the case of drug screens y represents the IC50

of a drug that inhibits the vulnerable gene. y is quantile normal-

ized to N(0,1) and parameter is estimated using the lme4
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software (46). The P-value of the fixed effect was estimated using

ANOVA. P-values were adjusted for multiple hypotheses by

calculating the false discovery rate considering the number of

hypotheses (pairs) tested in each screen.

SCNA-based conditional essentiality is determined analogously.

Putative SR pairs significant either in shRNA screen or in drug

response screen either using gene expression or SCNA are

referred as putative SR. We apply the standard FDR correction

(Benjamini & Hochberg, 1995) in this step. Specifically, to

combine P-values from multiple datasets of shRNA and drug

screens that were processed, we tested two alternatives: (i) We

first calculated the adjusted P-value within each dataset and then

applied multiple hypothesis correction on the adjusted P-value

for each pair tested. (ii) We also tried the Fisher’s method (Poole

et al, 2016) to rigorously combine P-values across all datasets in

step 1 and then applied FDR on Fisher-combined P-values. The

results from both alternative approaches were identical. Pairs

significant either using gene expression or SCNA are referred as

putative SR and are passed on to the next screen.

2 Molecular survival of the fittest (SoF, analyzing tumor molecular

data): This screen mines gene expression and SCNA data of the

input tumor samples to identify vulnerable gene (V) and rescuer

gene (R) pairs having the property that tumor samples in the non-

rescued state (that is, samples with underactive gene V and non-

overactive gene R, activity states 1 and 2 in Appendix Fig S1A) are

significantly less frequent than expected, whereas samples in the

rescued state (that is, samples with underactive gene V but overac-

tive gene R) appear significantly more than anticipated (testifying

to the positive selection of rescued state of the pairwise interaction).

The significance of the enrichment/depletion of rescued/non-

rescued state is determined via a hypergeometric test followed by

standard false discovery rate correction. A gene is defined as inac-

tive (respectively, overactive) if its expression level is less (greater)

than the 33rd percentile (67th percentile) across samples for each

cancer type (to control for cancer type). Otherwise, it is considered

to have a normal activation level. Out of total N tumor samples, if

n1 (n2) is the number of samples in the rescued/non-rescued state

using specific activation level of gene R (V) independently, k is the

number of samples in the activity state using both genes R and V,

the significance of enrichment/depletion of the observed number

of samples in the rescued/non-rescued state is determined using

hypergeometric test: hypergeometricðk;n1;N;n2Þ . Enrichment/de-

pletion of the activity state using SCNA is set analogously. Pairs

significant (FDR < 0.05) in both SCNA and mRNA are passed on

to the next screen.

3 Clinical screening (using patient survival data): This step selects

a gene pair as SR if it has the property that tumor samples in

rescued state (that is, samples with underactive gene V and over-

active gene R) exhibit significantly poorer patient’s survival and

samples in non-rescued state tumors exhibit better survival than

rest of the other samples. Specifically, INCISOR uses a stratified

Cox proportional hazard model to check such observed associa-

tions of SR rescued/non-rescued state are significantly larger

compared to the expected additive survival effect of their individ-

ual genes, while controlling for confounding factors including

cancer type, sex, age, genomic instability, tumor purity, and race

(shown here for expression analysis for an activity state A and a

similar model is used to analyze SCNA data):

hgðt; patientÞ�h0gðtÞ expðb1IðV;RÞ þ b2gðVÞ þ b3gðRÞ
þ b4ageþ b5GIIþ b6TPÞ

; (1)

where g is a variable over all possible combinations of patients’

stratifications based on cancer type, race, and sex. hg is the

hazard function (defined as the risk of death of patients per unit

time), and h0gðtÞ is the baseline hazard function at time t of the

gth stratification. The model contains six covariates: (i) IðV;RÞ:
indicator variable representing if the patient’s tumor is in the

activity state A, (ii) g(V) and (iii) g(R): gene expression of V

and R, (iv) age: age of the patient, (v) GII: genomic instability

index of the patient, and (vi) TP: tumor purity. The bs are the

unknown regression coefficient parameters of the covariates,

which quantify the effect of covariates on the survival.

All covariates are quantile normalized to Nð0; 1Þ. The bs are

determined by standard likelihood maximization (Andersen &

Gill, 1982; Therneau & Grambsch, 2013) of the model using the

R-package “Survival”. The significance of b1, which is the coeffi-

cient for the SR interaction term, is determined by comparing the

likelihood of the model with the NULL model without the inter-

action indicator IðA;BÞ followed by a likelihood ratio test and

Wald’s test (Andersen & Gill, 1982; Therneau & Grambsch,

2013), i.e.,

hnull; gðt, patientÞ�h0gðtÞ expðb2gðVÞ þ b3gðRÞ
þ b4ageþ b5GIIþ b6TPÞ

: (2)

The P-values obtained are corrected for multiple hypothesis test-

ing. We pass a putative SR pair to the next screen if its rescued

state exhibits significantly poorer survival and the non-rescued

state exhibits better survival regarding both mRNA and SCNA

(all FDR < 0.05).

Tumor purity is obtained for each TCGA sample from Aran et al

(2015). They combined following four methods to estimate an

aggregate estimate of tumor purity: (i) ESTIMATE (Yoshihara

et al, 2013), (ii) ABSOLUTE (Carter et al, 2012), (iii) LUMP, and

(iv) IHC. We control for tumor purity estimated from each of

these four methods in addition to the combined tumor purity

values by (Aran et al, 2015) in the survival analysis.

The above modeling of survival as stratified Cox regression

allows to account for systematic differences in survival in dif-

ferent cancer types. INCISOR assumes a different baseline hazard

for each cancer type to compute likelihoods. The estimated likeli-

hoods are then combined to estimate the effects of gene interac-

tions on survival.

4 Phylogenetic profiling screening: We further filter and select

SR pairs composed of genes having high phylogenetic similar-

ity, motivated by the findings of Srivas et al (2016). This is

done by comparing the phylogenetic profiles of the SR-paired

genes across a diverse set of 87 divergent eukaryotic species

adopting the method of Tabach et al (2013a,b). The resulting

matrix of the phylogenetic scores of all candidate genes is

clustered using a non-negative matrix factorization (NMF;

Kim & Park, 2007), and the Euclidian distance between the

cluster membership pattern of each gene in given candidate

pair is computed. The significant (empirical-FDR < 0.05)

phylogenetically similar pairs are predicted as the final set of

SR pairs.
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Please note SR pairs significant either using gene expression or

SCNA are referred as putative SR in step 1. Applying the stringent

“AND” condition in step 1, that is, requiring that the putative SR

pair must be significant in both SCNA and gene expression in

in vitro datasets, results in the removal of many SR pairs that have

been actually reported in the literature. This is likely to be an arti-

fact arising since many in vitro datasets are simply missing SCNA

information for many of the genes. In difference, the “AND” condi-

tion could be applied consistently in steps 2 and 3 because the

TCGA collection does have SCNA information on all genes for all

the patient samples analyzed.

Dataset Table EV31 provides the number of pairs filtered after

each screening step. The first step of INCISOR uses both shRNA and

drug response screens to compile putative in vitro SRs, which tests

15,486 × 19,001 (shRNA KD) hypotheses. We have adjusted the P-

value using Benjamini–Hochberg and apply FDR < 0.2 accordingly,

to identify 2878319 putative (DU) shRNA screen-derived interac-

tions. In the case of drug response, the hypothesis space is smaller,

with 221(number of drugs) × 19001 KDs. We again applied a

FDR < 0.2 threshold and identified 354K putative drug-SR interac-

tions. The first step ends up identifying 3 million (DU) SR candi-

dates; the second step identified 1.2 million pairs; and the third step

reduced selected 9,021 pairs, followed by 1,033 interactions in the

final step.

To process half a billion gene pairs for around 9,000 patient tumor

samples in a reasonable time, the most computationally intensive

parts of INCISOR are coded in C++ and ported to R. Further, INCISOR

uses open Multiprocessing (OpenMP) programming in C++ to use

multiprocessor in large clusters. Also, INCISOR performs coarse-

grained parallelization using R-packages “parallel” and “foreach”.

Finally, INCISOR uses Terascale Open-source Resource and QUEue

Manager (TORQUE) to uses more than 1,000 cores in the large cluster

to efficiently infer genome-wide SR interactions.

Applying INCISOR to construct the DD-SR network

Constructing the DD-SR network

We modified INCISOR in the DD-SR network inference to account

for the fact that rescuer gene downregulation leads to synthetic

rescues. In DD, the rescued state is defined as co-inactivation of

vulnerable (V) and rescuer gene (R); and non-rescued state is

defined as underactive gene V and active gene R (Appendix Fig

S1B). Accordingly, the four screens of INCISOR, described above for

DU identification, were modified as follows: (i) SoF and Survival

screening: The statistical tests (i.e., hypergeometric test and Cox

regression) are modified so as to account for DD interactions that

have different activity states (i.e., rescued and not-rescued states,

Appendix Fig S1B). (ii) shRNA screening: Similarly, the conditional

knockdown of a DD rescuer gene now increases the cell prolifera-

tion due to activation of DD synthetic rescue. The significance of the

increase in the cell proliferation due to a rescuer downregulation is

quantified in an analogous manner using Wilcoxon rank sum test.

(iii) Phylogenetic screen: It remains the same as the case of DU iden-

tification (refer to Appendix 2 for additional details).

Interactive SR networks

The four types of SR networks for pan-cancer were created using

Cytoscape (Kraskov et al, 2005) and are accessible online in an

interactive manner at http://www.umiacs.umd.edu/~vinash85/pri

vate/SR/ (with username: “sr” and password: “sr123”).

Genomic instability index

Genomic instability index measures the relative amplification or

deletion of genes in a tumor based on the SCNA. Given si be the

absolute of log ratio of SCNA of gene i in a sample relative to

normal control, GII of the sample is given as (Bilal et al, 2013):

GII ¼ 1=N
XN
1

Iðsi [ 1Þ:

Calculation of INCISOR interaction score

INCISOR evaluates each of the candidate SR gene pairs based on the

strength of their SR interactions. We define INCISOR interaction-

score, which combines the significance levels of the four statistical

tests in the INCISOR pipeline. First, for each screen, the statistical

significance levels of all gene pairs tested were rank-normalized to a

value between 0 and 1 (with 0 representing a pair with the highest

significance and 1 with the lowest). The final INCISOR interaction-

score for a gene pair i is given as:

Interaction score ¼ rið1Þ þ rið2Þ þ rið3Þ þ rið4Þ; (3)

where riðkÞ represents the rank normalized value of the kth screen

of INCISOR.

Mapping of drugs to their gene targets

The drugs were mapped to their targets based on the mapping

reported in CCLE, CTRP, and DrugBank (Knox et al, 2011; Garnett

et al, 2012; Iorio et al, 2016) with exception of target genes whose

mechanism of action is explicitly denoted as an agonist in DrugBank.

Effect size via Cohen’s d

Throughout the manuscript, whenever applicable, to quantify a

difference between two groups, we use an effect-size measure

called Cohen’s d (Cohen, 1992). It is defined as the difference of

means divided by pooled standard deviation. Given s1 and s2 as

standard deviations of two groups and n1 and n2 are a number of

samples in each group, the pooled standard deviation is defined

as:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 � 1ð Þs21 þ n2 � 1ð Þs22

n1 þ n2 � 2

s
: (4)

Pathway enrichment

GO and KEGG enrichment analyses were conducted using

R-packages clusterprofiler and GOFunction using default settings.

Precision and recall

Using standard definitions, we define INCISOR’s precision as the

fraction of true SR interaction among the predicted SR interaction by

INCISOR. The INCISOR’s recall is defined as the fraction of true SR
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interactions that are retrieved by INCISOR among all true SR interac-

tions.

Benchmarking DU-SR networks using literature compiled
SR interactions

The seven datasets of the published SR interactions were compiled

using extensive literature survey of large clinical and experimental

studies (Datasets, dataset pairs, and associated publications are listed

in Dataset Table EV9). Each dataset consists of a drug and experien-

tially and/or clinically validated genes whose over-expression causes

resistance to the drug treatment in patient samples/cell lines. In each

study, the pairings between the drug targets (vulnerable genes) and

the corresponding resistance-causing genes (rescuer genes) form the

positive set; and the pairings between the targets and all other genes

tested, which do not exhibit resistance, form the negative set. Using

the INCISOR interaction score of individual SR pairs as the prediction

for the strength of SR interaction, we performed standard ROC and

precision-recall analysis (Appendix 4.1).

Constructing the drug-DU-SR network

To remove any potential circularity in drug response prediction, for

each drug analyzed, we excluded from TCGA dataset the samples of

the patients who were treated with that drug. Next, we applied

INCISOR to the remaining TCGA samples to identify rescuers of the

targets of the drug. The resultant drug-DU-SR network applied for

28 targeted drugs constitutes 182 rescuer genes of 24 drug targets

(Appendix 5.1).

Predicting pan-cancer drug response in patients

Prediction of drug response using patient survival

Using the drug-DU-SR network, we analyzed 4,328 TCGA samples,

which is the collection of samples of patients who were treated with

the drugs that were administered to at least 30 patients in TCGA.

We predicted that patient tumors would be resistant to drug treat-

ment if multiple DU rescuer genes of the drug targets are upregu-

lated in their tumor. Therefore, the number of rescuer gene over-

expressed will be predictive of patients’ drug response. Accordingly,

for a drug tested D and each patient administering D, we estimate

the fraction (C) of DU rescuer genes upregulated of its drug targets

(deduced from their gene expression and SCNA values in the pre-

treatment tumor sample) in the patient sample. To predict the

response of TCGA patients treated, we evaluated the association of

C with the patients’ survival using stratified Cox model, which also

controls for confounding factors (cancer type, age, sex, and race) as

follows:

hgðt, patientÞ�h0gðt, patientÞ expðb1Cþ b2ageþ b3GIIÞ; (5)

where hg, h0g, bs age, and GII are defined as in the equation (1).

Covariates C, age, and GII are quantiles normalized to Nð0; 1Þ. The
significance of b1, which is the coefficient of C, is determined by

comparing the likelihood of the model with the NULL Cox model,

which is similar to (3) but without the covariates C, followed by

likelihood ratio and Wald’s tests (Andersen & Gill, 1982; Therneau

& Grambsch, 2013). As evident, SRs can be successfully used to

predict drug response in an unsupervised manner (which is hence

less prone to over-fitting).

Prediction of patient drug response based on post-treatment patient

tumor size

We evaluated the performance of our prediction vs. TCGA drug

response based on patient tumor size following the treatment.

Based on RECIST drug response profile of 3,872 patients in TCGA,

which were annotated into complete response (CR), partial

response (PR), stable disease (SD), and progressive disease (PD),

we divided the samples into responders (CR and PR) vs. non-

responders (PD and SD). To determine the ability of SR to predict

drug response of each drug, we compared the fraction of the DU

rescuers (of the drug’s targets) upregulated in patients’ tumors

(C), and their significance is determined using Wilcoxon rank sum

test.

Comparative performance of INCISOR in predicting
drug response

DU-SR-based unsupervised predictor

To predict the response of a drug in an unsupervised manner, we

first identified responders and non-responders in TCGA dataset. The

fraction of over-expressed rescuers of targets of the drug in each

patient was used to estimate the area under the curve (AUC). If

AUC > 0.5 and mean fraction of over-expressed rescuers was higher

in responders compared to non-responders (1-AUC) was used as the

final estimate of AUC.

Supervised prediction of patient response using CFE (Iorio et al, 2016)

The list of CFEs was collected from Iorio et al (2016). It provides

three distinct types of CFEs: (i) mutation, (ii) methylation, and (iii)

somatic copy number alteration (SCNA). Predictive performance of

each type of CFEs was evaluated individually. Using TCGA data, we

generated a matrix of CFE occurrence across all TCGA patients. The

CFE occurrence matrix was used as features to train supervised

models for predicting patients’ response for each of 22 FDA-

approved drugs as follows.

To predict the response of a drug in a supervised manner, we

first identified responders and non-responders in TCGA dataset.

Given the CFE occurrence matrix as features described above, we

built a random forest-based supervised predictor that discriminates

responders from non-responders. The random forest was preferred

over SVM because its performance was superior as compared to

SVM for this prediction task. Twofold cross-validation was used to

estimate AUC.

Supervised prediction of patient response using CFE interaction

Mina et al (2017)

The list of CFEs was collected from Mina et al (2017). ANOVA P-

value < 0.05 was used to filter out non-significant drug and CFE

pairs, resulting in 1,444 drug CFE pairs with significant association.

CFE occurrence in TCGA patients was downloaded from www.ciriel

lolab.org/select/select.html and was used to identify whether CFE

pairs co-occur in the patient’s tumor, which is represented as an

indicator variable. To predict the response of a drug, we used CFE

pairs reported to significantly associate with the drug by Mina et al

as features. The corresponding matrix of CFE pairs co-occurrence in
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patients was used to train a supervised model in an analogous

manner described above for Iorio et al.

Experimental testing of INCISOR-predicted SR interactions
involving mTOR

We used rapamycin because it is a mTOR inhibitor and hence

enables targeting of a predicted rescuer gene by a specific drug,

combined with the ability to knock down predicted vulnerable genes

in a clinically relevant laboratory setting. Rapamycin is known to

specifically targets mTOR in its complex 1 (Laplante & Sabatini,

2012). Its selectivity stems from the need to act on a protein FKBP12,

which binds to the FKBP12-binding region (FRB) in mTOR (Huang

et al, 2003). This was confirmed in our earlier work (Amornphi-

moltham et al, 2008) (particularly in the HN12 cell line, which we

used in our experiment) by expressing an FRB mutant mTOR that

cannot bind to the rapamycin-FKBP12 complex, which rescued these

cells from the anti-tumor effect of rapamycin in vitro. Further, long-

term treatment with rapamycin has been shown to inhibit mTORC2

in various cellular systems (Laplante & Sabatini, 2012). Indeed, we

have previously shown this to be the case in HNSCC, in which we

see evidence of mTORC2 inhibition after 2 days of treatment with

rapamycin in numerous HNSCC experimental models (Amornphi-

moltham et al, 2008; Iglesias-Bartolome et al, 2012; Martin et al,

2014) and after short-term treatment of HNSCC patients with rapa-

mycin (Wang et al, 2017b). This retro-inhibition approach further

supported the specificity of rapamycin for mTOR, in a biologically

relevant context. Therefore, we choose HN12 to conduct this experi-

ment. Kinases are the most frequent intracellular drug targets; there-

fore, we used a kinase and phosphatase targeted library for

knockdown 2,214 kinases. Knockdown efficiency of the kinase

shRNA library was validated in our prior studies (Lee et al, 2014).

Appendix Fig S5A provides an overview of overall experimental

procedure (Appendix 4.6). We performed the shRNA knockout and

mTOR inhibition in the following steps. 2,214 gene kinases (Dataset

Table EV10) were knocked down in HN12 cell lines. HN12 cells were

infected with a library of retroviral barcoded shRNAs at a representa-

tion of ~1,000 and a multiplicity of infection (MOI) of ~0.3, including

at least two independent shRNAs for each gene of interest and

controls. At day three post-infection, cells were selected with puro-

mycin for 3 days (1 lg/ml) to remove the minority of uninfected cells.

After that, cells were expanded in culture for 3 days, and then, an

initial population-doubling 0 (PD0) sample was taken. For in vitro

testing, the cells were divided into six populations, three were kept as

a control and three were treated with rapamycin (100 nM). Cells were

propagated in the presence or not of a drug for an additional 12

doublings before the final PD13 sample was taken. shRNA barcode

was PCR-recovered from genomic samples and samples sequenced to

calculate the abundance of the different shRNA probes. From these

shRNA experiments, we obtained cell counts for each gene knock-

down at the following two time points: (i) post-shRNA infection (PD0,

referred as initial count), and (ii) shRNA treatment followed by either

rapamycin treatment (PD13, referred as treated count, three repli-

cates) or control (PD13, referred as untreated count, three replicates).

Significant experimental (DD) rescue event was determined by

using Mageck (Li et al, 2014) as follows. The difference of treated

and untreated count was modeled as a negative binomial distribu-

tion and was used to test whether the difference is significant for

each gene tested in pooled shRNA (Li et al, 2014). Mageck provides

significance and effect size (as log fold change) between treated and

untreated conditions for each gene. Forty-five gene knockdowns

showed significant rescue effect (P < 0.05) after adjusting for multi-

ple hypothesis. Next, we applied INCISOR to TCGA to specifically

predict DD-SR interactions between 2,214 genes tested and mTOR

as DD rescuer. Each gene pairing (between 2,214 genes and mTOR)

was quantified using INCISOR interaction score. The score was used

to estimate precision and recall.

Inset in Fig 2A was generated as follows: To obtain normalized

counts at each time point, cell counts of each shRNA at each time

point were divided by corresponding total number of cell count. To

quantify the lethality of vulnerable knockdown in the experiment,

we performed a one-sided Wilcoxon rank sum test between initial

normalized count with untreated normalized count.

To estimate cell growth rate for each shRNA X, normalized

counts were divided by initial normalized count as follows:

growth rateðXÞ ¼ normalized countðXÞ
initial normalized countðXÞ

Effect of rapamycin treatment on cell growth on knockdown of

gene X was calculated as:

rapamycin effectðXÞ ¼ treated growth rateðXÞ
untreated growth rateðXÞ

Experimental testing of SR-predicted synergistic drug
combinations in head and neck cancer cell lines

Seven drug combinations tested in this experiment were chosen as

follows. Among the important cancer genes captured by the DU-SR

network, we focused on testing SR interactions between five impor-

tant HNSC oncogenes (mTOR, PIK3CA, KIT, AKT, and PTK2).

INCISOR predicted 5 DU-SR interactions between these oncogenes.

Two different inhibitors (rapamycin and INK128) were included for

mTOR, and one inhibitor each for PIK3CA, KIT/SRC, AKT, and

PTK2 was included in the experiment. This resulted in seven combi-

nations tested (Fig 2B).

Rapamycin was purchased from LC Laboratories (Woburn, MA).

Dasatinib, Erlotinib, BYL719, and INK128 were purchased from Sell-

eckchem (Houston, TX). Vita-Blue Cell Viability Reagent was

purchased from Biotools (Jupiter, FL). CAL33, HN12, Detroit 562,

and SCC47 cell lines were cultured in 96-well plate and then treated

with drugs for 48 hours (Raw Data in Dataset Tables EV11–EV17).

Assays were performed according to the manufacturer’s instruc-

tions. Combination index for quantitation of drug synergy was

analyzed by CompuSyn software (Chou, 2006, 2010). CI values

represent synergism (CI < 1), additivity (CI = 1), and antagonism

(CI > 1), respectively (Appendix 4.7).

Experimental testing of SR-predicted rescuers via siRNA

siRNAs for non-targeting control and PIK3CA were purchased from

GE Healthcare (two ON-TARGETplus PIK3CA siRNAs 50-GCGA
AAUUCUCACACUAUU, and 50-GACCCUAGCCUUAGAUAAA, Lafay-
ette, CO). siRNAs for mTOR were purchased from Sigma (two
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MISSION� siRNA human mTOR SASI_Hs02_00338641 and

SASI_Hs01_00203144). Cells were cultured in 96-well plate, trans-

fected with Lipofectamine RNAiMAX reagent (Life Technologies,

Carlsbad, CA) for 24 h; then, cells were treated with drugs for

another 48 h (Raw Data in Dataset Tables EV18 and EV19). Viability

assays were completed as previously described (Appendix 4.7). We

also validated the knockdown efficiency of PI3K and mTOR siRNA

via a Western blot analysis (Appendix Fig S11H) as follows. Cells

were transfected with negative control or the corresponding PIK3CA,

mTOR (FRAP1) siRNAs. Cells were lysed in lysis buffer (50 mM Tris–

HCl pH 7.6, 150 mM NaCl, 1 mM EDTA, 1% Nonidet P-40) supple-

mented with HaltTM Protease Inhibitor Cocktail (Thermo Fisher Scien-

tific) and phosphatase inhibitors (1 mM Na3VO4 and 1 mM NaF).

Equal amounts of total proteins were subjected to SDS–polyacry-

lamide gel electrophoresis. Primary antibodies used were from Cell

Signaling Technology (Danvers, MA), PI3KCA (catalog number

4255), pAKT (catalog number 2965), AKT (catalog number 9272),

pmTOR (catalog number 5536), mTOR (catalog number 2983), pS6

(catalog number 2211), S6 (catalog number 2217), and GAPDH (cata-

log number 2118), the latter as a protein loading control.

To test whether the KD of INCISOR-predicted rescuers acts as

sensitizers, we checked the sensitivity of cells to the primary drug

increases upon the KD of the rescuer. The efficacy of the rescuer KD

to sensitize cancer cells to a primary drug was estimated as the

percentage increase in the sensitivity to the drug following the

rescuer KD relative to the sensitivity of the primary drug alone with-

out rescuer KD. Specifically, we used a targeted siRNA to knock

down the specific rescuer gene, while an untargeted non-specific

siRNA was used as a control. Cell counts were measured for the

untargeted/targeted siRNA after primary drug treatments. The

normalized response of (targeted/untargeted) siRNA-treated cells to

drug treatment was quantified as a change in cell counts relative to

the cell counts following the respective siRNA inhibition alone.

Next, using this normalized response, DRC was estimated for both

targeted and untargeted siRNAs using DRC R-package. Percentage

increase in sensitivity of the primary therapy (y-axis, Appendix Fig

S8I) due to the rescuer siRNA-KD was estimated as the percentage

decrease in IC50 of the combination of primary drug treatment and

siRNA inhibition relative to the primary therapy in untargeted

siRNA combination. The significance of the increase in drug

response was estimated using a standard ANOVA test.

Drug combination testing of SR interaction involving DNMT1

Drug combination screen

Drug screening was performed using automated liquid handling in a

1536-well plate format (Friedman et al, 2015). The drug doses used

were chosen based on previous single agent screening at the Center

for Molecular Therapeutics of the Massachusetts General Hospital

Center for Cancer Research (Dataset Table EV24).

The screen of two drugs A and B was performed in a 1 × 5

format with one dose of drug A combined to five doses of drug B

and compared to the effects of the five doses of drug B alone. The

five doses of drug B followed a fourfold dilution series (Dataset

Table EV24 and EV25).

Cells were seeded at densities optimized for proliferation based

on the pre-screen experimental determination in 1536-well plate

format. Cells were seeded, placed overnight at 37°C, and drugs

added the next day using a pin tool. After 5 days in drug, cells were

fixed permeabilized and nuclei stained in a single step by adding a

PBS Triton X-100/Formaldehyde/Hoechst-33342 solution directly to

the culture medium. Final concentrations: 0.05% Triton X-100/1%

Formaldehyde/1 lg/ml Hoechst-33342. Plates were covered and

placed at 4°C until imaging.

Imaging was performed on an ImageXpress Micro XL (Molecular

Devices) using a 4× objective. Cell nuclei enumeration was performed

using the MetaXpress software, and count accuracy was routinely

checked visually during acquisition. The screening was conducted in

two replicates (two separate 1536-well plates, Dataset Table EV25).

Calculation of drug combination synergy score

Due to a limited number of dose combination used in the experi-

ments per each drug pair (one concentration of Decitabine (five

replicates) and five concentrations of each rescuer inhibitor (two

replicates)), Fa-CI analysis is not feasible. The drug dose tested is

provided in Dataset Table EV24.

We used Bliss independence model (Bliss, 1939; Lehar et al,

2007; Friedman et al, 2015) to determine synergistic drug combina-

tion which is suitable per such experimental setting. More specifi-

cally, to determine Decitabine synergism with a rescuer inhibitor

(R) tested in a cell line, we compared following two ratios of experi-

mentally determined cell counts for each dose (C) of rescuer inhi-

bitor (Dataset Table EV25):

RatioðXÞ ¼ Cell countðDectabineþ RðCÞÞ
Cell countðDecitabineÞ

RatioðYÞ ¼ Cell countðRðCÞÞ
Cell countðUntreatedÞ

where CellcountðXÞ denotes cell count following the treatment of

X. R(C) denotes rescuer inhibitor at dose C. The effect size of

synergism at dose C of rescuer inhibitor was estimated as

SynergismðR, CÞ ¼ RatioðYÞ=RatioðXÞ. This calculation is separately

done for each of two replicates of R dose, generating 10 data points

(5 dose × 2 replicate) for each rescuer inhibitor.

The final synergism of rescuer inhibitor R was estimated as the

median of synergism of the 10 data points, i.e., SynergismðRÞ ¼
median RatioðYÞ RatioðXÞð Þ. Significance of synergism of R was esti-

mated by a Wilcoxon rank sum test comparing Ratio(Y) and Ratio(X)

of the 10 data points of R. Finally, R was estimated to be significantly

synergistic with Decitabine, if SynergismðRÞ[ 1:25 and P-value

adjusted for multiple hypothesis corrections is < 0.05 (i.e., FDR < 0.05,

Dataset Table EV26).

Analogously, R was considered to be significantly antagonistic

with Decitabine, if SynergismðRÞ\0:75 and P-value adjusted for

multiple hypothesis corrections is < 0.05 (i.e., FDR < 0.05, Dataset

Table EV26).

Functional similarity of SR

Gene ontology similarity

Gene ontology semantic similarity (Yu et al, 2010) was used to

quantify the similarity of GO terms between a gene pair. When

multiple GO terms were associated with a gene, similarity between
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all combinations of rescuer GO terms, and vulnerable GO terms

were calculated, and the maximum of these scores was taken as

final similarity score (average of scores as final similarity gives simi-

lar result qualitatively). Distribution of GO similarity of DU-SR pairs

was compared with two sets of controls: (i) shuffled network: inter-

actions between rescuer and vulnerable genes of the DU-SR network

randomly shuffled, and (ii) random network: gene pairs selected

randomly from all protein-coding genes and controlled for similar

degree distribution as the original DU-SR network. For each set of

control, we determined the similarity measure in an analogous

manner as described above for the DU-SR network. Wilcoxon rank

sum test was used to calculate the significance of GO similarity of

the DU-SR network relative to each control.

PPI distance

IGraph was used to estimate the distance between two genes in

human protein–protein interactions (PPI) network compiled from

(Goel et al, 2012; Schaefer et al, 2012). The PPI distance between

gene pairs was compared with two controls, the random network

and shuffled network as described above.

STRING database distance

The STRING network version 10 was downloaded using R-package

STRINGdb. STRING database is composed of gene pairs that are

likely to share functional similarities. The functional similarity

scores provided in the database were estimated using various

sources including direct (physical) and indirect (functional) associa-

tions. The comparison control networks were made analogous

manner as in case of GO similarity described above.

For the DD-SR network, GO similarity, PPI distance, and STRING

database distance were estimated analogously (Appendix 3.8).

PPI-specific DU-SR interactions

To identify DU-SR interactions likely to be mediated by PPI interac-

tions, we applied INCISOR on the human PPI network compiled

from (Goel et al, 2012; Schaefer et al, 2012). The details of the anal-

ysis and resultant network are provided in Appendix 3.4. The

enrichment of cancer driver genes in the PPI-SR network was calcu-

lated using Fisher’s exact test.

Identification of DU and DD rescuers of immune checkpoints

To identify rescuers of immune checkpoints, we removed filtering

step 1 (in vitro essentiality screens) from INCISOR because the

dataset used in step 1 was conducted in in vitro models that are defi-

cient of the immune system. Next, we applied the INCISOR to the

TCGA to identify the DU and DD rescuers of PD1/PDL1 and CTLA4

downregulation. We call an SR identified by INCISOR as clinically

significant if the interaction shows association with survival either

in pan-cancer or melanoma cohort in TCGA patient dataset.

Immunotherapy samples patient samples collection
and processing

Patient samples

A cohort of patients with metastatic melanoma treated was enrolled

in clinical trials ongoing at Massachusetts General Hospital for

treatment with three immune checkpoint blockades: (i) anti-PD1 or

anti-PDL1 (collated together in the analysis and referred as anti-

PD1), (ii) anti-CTLA-4, and (iii) combination of anti-PD1 and

anti-CTLA-4. Patients were consented for tissue acquisition per

Institutional Review Board (IRB)-approved protocol (Kwong et al,

2015). These studies were conducted according to the Declaration of

Helsinki following informed consent (DF/HCC protocol 11-181) was

obtained from all patients.

RNA sequencing (RNA-seq)

Tumors were biopsied or surgically removed from the consented

patients and snap frozen in liquid nitrogen or fixed in formalin.

Qiagen AllPrep DNA/RNA Mini or AllPrep DNA/RNA FFPE Kit was

used to purify RNA from the frozen or fixed tumor biopsies. RNA

libraries were prepared from 250 ng RNA per sample using standard

Illumina protocols. Samples were treated with ribo-zero, and then,

Epicentre’s ScriptSeq Complete Gold Kit was used for library prepa-

ration. The quality check was done on the Bioanalyzer using the

High Sensitivity DNA Kit, and quantification was carried out using

KAPA Quantification Kit. RNA sequencing was performed at Broad

Institute (Illumina HiSeq 2000) and The Wistar Institute (Illumina

NextSeq 500). BAM files of raw RNA-seq data were used to summa-

rize read counts by featureCounts (Liao et al, 2014) with parameters

that only paired-ended, not chimeric, and well-mapped (mapping

quality ≥ 20) reads are counted (Data available online).

Differential expression analysis was conducted by the general-

ized linear model implementation (McCarthy et al, 2012) of R-

package “edgeR” and following a standard pre-processing of read

count analysis (Zhou et al, 2014). Transcript per million (TPM) was

used to estimate fold change.

If a patient is treated sequentially with ICBs, A and B and the

biopsies are available pre-treatment, post-A-treatment, and post-

A + B-treatment. Comparison of pre-treatment vs. post-A-treatment

of the patient was considered in the analysis for the resistance of

therapy A. In case of multiple biopsies for pre-, on-, or post-treat-

ment are available per patient, all biopsies were considered in the

analysis as follows. For the analysis of differential expression using

edgeR, an indicator variable per patient was introduced in the

design matrix as recommended in the reference manual of edgeR,

which controls for individual-specific transcriptome. To calculate

the fold change displayed in Fig 6, mean of TPM was taken in case

of multiple pre-treatment biopsies per patients; and in case of multi-

ple post- or on-treatment, each biopsy was displayed in the figure

(subscripted by “.X[biopsises number]”).

Data availability

We have included the code as Code EV1 (for DU-SR identification).

All the data used in INCISOR inference along with code are hosted

in homepage at (http://www.umiacs.umd.edu/~vinash85/public/

incisor.tar.gz). The more extended version of the code is available

on GitHub (https://github.com/vinash85/INCISOR).

Expanded View for this article is available online.
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