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Transcranial Doppler (TCD) ultrasound has been demonstrated to be a valuable tool

for assessing cerebral hemodynamics via measurement of cerebral blood flow velocity

(CBFV), with a number of established clinical indications. However, CBFV waveform

analysis depends on reliable pulse onset detection, an inherently difficult task for CBFV

signals acquired via TCD. We study the application of a new algorithm for CBFV pulse

segmentation, which locates pulse onsets in a sequential manner using a moving

difference filter and adaptive thresholding. The test data set used in this study consists

of 92,012 annotated CBFV pulses, whose quality is representative of real world data. On

this test set, the algorithm achieves a true positive rate of 99.998% (2 false negatives),

positive predictive value of 99.998% (2 false positives), and mean temporal offset error

of 6.10 ± 4.75 ms. We do note that in this context, the way in which true positives,

false positives, and false negatives are defined caries some nuance, so care should be

taken when drawing comparisons to other algorithms. Additionally, we find that 97.8%

and 99.5% of onsets are detected within 10 and 30 ms, respectively, of the true onsets.

The algorithm’s performance in spite of the large degree of variation in signal quality and

waveform morphology present in the test data suggests that it may serve as a valuable

tool for the accurate and reliable identification of CBFV pulse onsets in neurocritical care

settings.

Keywords: transcranial doppler, ultrasound, cerebral blood flow velocity, pulse heuristic algorithms, biomedical

signal processing

1. INTRODUCTION

Assessment of cerebrovascular function is imperative in the diagnosis and management of
numerous conditions common in neurological care. Transcranial Doppler (TCD) ultrasound has
been used since the 1980s to measure cerebral blood flow velocity (CBFV), which can serve
as a means of assessing cerebral hemodynamics (1, 2). TCD has established clinical indications
for subarachnoid hemorrhage, cerebral vasospasm, acute ischemic stroke, stenosed or occluded
intracranial vessels, and sickle cell disease (3–5). In addition, monitoring of CBFVmay be useful as
a tool for noninvasive intracranial pressure monitoring and the assessment of mild traumatic brain
injury (6–10).
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CBFV waveform analysis often utilizes individual CBFV
pulse morphology and thus depends heavily on reliable pulse
onset detection. Accurate pulse delineation in CBFV waveforms
presents a significant challenge for a number of reasons. There
is an inherent difficulty in TCD measurement due to the
scatter and attenuation of the signal by the skull, resulting in a
relatively low signal to noise ratio (11, 12). Additionally, TCD
is highly operator dependent and relies on the operator’s ability
to locate the acoustic window and insonate the appropriate
vessel within a cerebrovasculature which may vary widely from
patient to patient. Furthermore, CBFV signals are particularly
prone to noise artifacts as a result of motion of the (not
uncommonly handheld) probe or subject. Finally, the wide range
of possible waveform morphologies that can occur in CBFV
signals, particularly in pathological populations, presents yet
another challenge, as it may be difficult to rely on the presence of
any one uniform and consistent feature to aid in onset detection.

Despite these difficulties, TCD remains a compelling
diagnostic tool due to being relatively inexpensive, noninvasive,
fast, and portable. A solution to the problem of extracting
individual CBFV pulses coupled with a reliable and accessible
method of CBFV monitoring could open up numerous
opportunities for improved neurocritical care. In this study,
we focus on the former problem of accurate beat-to-beat
segmentation. The problem can be reduced to locating the
starting point of each beat or pulse, the so-called pulse onset, as
we will refer to it, or pulse foot (13).

Though a number of methods have been developed for
pulse onset detection for other physiological signals, including
arterial blood pressure (ABP) and photoplethysmogram (PPG)
(14–18), relatively few methods have been applied to CBFV
signals. Those that do often require information from another
complementary signal, such as electrocardiogram (ECG) (19).
Several promising methods of CBFV onset detection that require
no other complementary signals have been compared, with
reported true positive rate (TPR) and positive predictive values
(PPV) that can range between around 65% and 98% for
both metrics, depending on the choice of error threshold and
algorithm parameter selection Asgari et al. (20, 21).

In this paper, we present a new algorithm for pulse onset
detection in CBFV waveforms that does not require any
additional complementary signals and seeks to improve on the
performance of previous methods. This algorithm incorporates
a moving difference filter (MDF) and adaptive thresholding
to identify windows in which onsets are likely to occur. The
algorithm then performs a local search within each window to
determine the most probable position for the onset. Finally, the
algorithm seeks to identify and correct errors by applying outlier
detection strategies. The result of this method is a substantial
improvement over existing pulse onset detection algorithms.

We begin by describing the data set that was used to test
the performance of the algorithm. We then present a detailed
description of the process of defining search windows, locating
likely pulse onsets within those windows, and handling onset
detection errors. We then move on to a presentation of the
performance of the algorithm on the test data set, including an
analysis of the impact of free parameters. Finally, we conclude

by summarizing these results and offer some commentary on the
potential use cases and robustness of the algorithm.

2. DATA SET

The data set used in this work is identical to the one used in
Asgari et al. (20, 21) and consists of 92,794 annotated CBFV
pulses collected by a trained sonographer from subarachnoid

hemorrhage patients admitted to the UCLAMedical Center. The

subject group consisted of 108 patients (42 female), aged 30–
64, with an average age of 48. However, due to unusable or

unrecognizable CBFV signals resulting from extreme aliasing and
other user errors, six total scans were excluded from this analysis,
resulting in a total of 92,012 annotated pulses. Electrocardiogram
(ECG) signals were also collected, and, being a simpler waveform
for pulse detection, were used for the purpose of facilitating the
process of annotating pulse onsets. All patients were consented
under the protocol approved by the UCLA Internal Review Board
(#10-001331) prior to analyzing any of their data.

The ground truth for onset locations was determined using
the following process. Onset locations were first found using
the R peak of the QRS complex in the ECG signal as discussed
in Kazanavicius et al. (13) and Asgari et al. (20). The resulting
annotations were then manually inspected for accuracy and
corrected where necessary. These annotations are treated as the
ground truth when evaluating the performance of the algorithm.
In order to guard against systematic bias in the onset annotation
process, the data set was split in half and a different, independent
annotator was assigned to each half. This combination of using
a complementary ECG signal along with two independent
annotators should provide protection against possible bias within
the annotated onsets, and any bias that is present should be
detectable as an observable systematic difference between the
two halves of the data, none of which was observed. We note
that the ECG signal was only used to assist in verification
of onset locations, and is not required by the onset detection
algorithm itself.

A potential feature of the data set is that it does not represent
an idealized scenario, as a significant portion of the data would
be considered relatively poor quality. This, coupled with a
broad range of different waveform morphologies, provides a
very robust test of the performance of the algorithm. In real
world applications, poor quality data and high morphological
variance are common due to the inherent challenges in TCD
measurement outlined previously. As such, strong performance
on perfect data is not necessarily informative as to how well
an algorithm will perform in the field, so testing on data that
realistically spans the spectrum of possible signals is imperative
to properly evaluate performance. Figure 1 illustrates a number
of examples pulled directly from the test data set, which are
meant to provide a representative survey of the range of signals
encountered, both in terms of inherent signal quality and
morphological variation.

For reference, Figure 1A shows an example of a relatively
good quality signal exhibiting what we would consider a normal,
healthy waveform. Several common morphological landmarks
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FIGURE 1 | Shown are samples taken from the data set. (A) Shows a good

quality, healthy waveform for reference. (B) Demonstrates a common

measurement error that results in signal with a digitized appearance. (C)

Shows a signal with a significant high frequency noise component. (D) shows

an example of a blunted waveform. (E) Shows a waveform with an elevated

P2. (F) Shows a potentially stenotic waveform. (G) Demonstrates a signal with

extremely poor quality. And finally, (H) illustrates a signal with a sharp noise

spike.

have also been labeled for reference: the diastolic valley, dicrotic
notch, first peak (P1), and second peak (P2). Figures 1B,C

illustrate two very common types of noise found in the data
set. Figure 1B may be the result of sampling error causing
a digitized appearance, and Figure 1C contains a significant
high frequency noise component. Figures 1D–F represents what
one might consider to be “pathological” signal morphologies.
While it is not clear that these signals represent a definitive
underlying hemodynamic pathology, they nevertheless diverge
in important ways from what would be considered a standard,
healthy waveform and serve to demonstrate the importance of
robustness to morphological variation for any onset detection
algorithm. Figure 1D shows a typical blunted waveform as
described and classified in Demchuk et al. (22), in which
independent P1 and P2 are not clearly identifiable. Figure 1E
shows another not uncommonly seen morphological variant in

FIGURE 2 | The flowchart showing a high level overview of the steps involved

in identifying beat onsets.

which the second peak (P2) is consistently higher than the first
peak (P1). Figure 1F depicts a signal where the dicrotic notch
and diastolic valley of each beat are nearly equal, resulting in two
clearly distinct peaks of different amplitudes, a characteristic that
may be associated with stenotic waveforms defined in Demchuk
et al. (22). Figure 1G is meant to be illustrative of the types
of extremely poor quality signals encountered in the data, and
Figure 1H exhibits a signal with a sharp noise spike, another
common feature that might “trick” an algorithm into incorrectly
identifying the start of a new beat.

Frontiers in Neurology | www.frontiersin.org 3 October 2019 | Volume 10 | Article 1072

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Canac et al. Pulse Detection in CBFV Signals

The example segments in Figure 1 are meant to be
illustrative of the types of noise, signal morphologies, and
quality that are present in the data set that inhibit accurate
onset detection. However, these examples should not be taken
to be fully representative of the entire data set. In general,
the signals span a range, from relatively good signals with
normal morphologies to very poor signals with pathological
morphologies. This is one reason why this data set offers
a very robust test of the performance of the algorithm. If
the same algorithm can perform well for a wide range of
signal qualities and signal morphologies, then we can be
more confident that it may perform well in a real world or
clinical setting where differences resulting from sonographers,
patients, or equipment can all contribute to increased scan to
scan variance.

3. METHOD

The algorithm consists of six primary steps. First, the signal is
pass-band filtered to remove noise. Then, a moving difference
filter (MDF), defined in Equation (1), is applied to the signal.
Afterwards, theMDF signal is used to help define search windows
on the CBFV signal in which to look for candidate onset
locations. The beat onsets are then located within these search
windows. Once all candidate onsets have been identified in this
manner, a beat length analysis step is performed to identify and
handle possible errors. Finally, a beat alignment step is performed
to fine tune the precise locations of the onsets. An overview of
this general process is illustrated in Figure 2. Each of these steps
is described in more detail in the subsections below.

3.1. Band-Pass Filter
The signal is band-pass filtered using a fourth-order Butterworth
filter with a passband range of 0.5–10 Hz. This filtering is
done primarily to remove high frequency noise, which can
complicate the matter of finding local extrema, as well as low
frequency motion or breathing artifacts. We feel that this choice
of passband range preserves all of the physiologically relevant
features for onset detection. This filtered signal is passed along
to the subsequent steps to be used for locating onsets.

3.2. Moving Difference Filter
Amoving difference filter (MDF) is applied to the signal in order
to enhance the sharp upslope that defines the start of a typical
CBFV pulse. The MDF is defined as follows:

zi = yi − yi−w (1)

wherew is the length of the analyzing window and y is the filtered
CBFV signal. The MDF serves a similar purpose as the slope
sum function used in Zong et al. (14), but we find that the MDF
performs better in terms of filtering noise and preventing false
detections. The size of the analyzing window should be roughly
equal to the length of the initial upslope of a typical CBFV pulse
in order tomaximally enhance the upslope and be less sensitive to
noise artifacts. In this work, the analyzing window is taken to be
150 ms, though the performance of the algorithm is fairly robust

to slight changes around this value as discussed in more detail
in section 4.2. An example of a CBFV waveform with a detected
pulse is shown in Figure 3a with its corresponding MDF signal
displayed in Figure 3b.

3.3. Window Locations
Using the MDF signal, windows in which a pulse onset are
likely to occur are identified. This is accomplished by adaptively
thresholding on the MDF signal. The threshold is established at
60% of the average of the preceding 20 detected peaks in the
MDF signal, where a peak is defined to be the local maximum
immediately following the identification of a threshold crossing
point. Near the beginning of a scan prior to finding 20 peaks,
the threshold value is simply calculated from all the peaks that
have been found so far. The justification for using a finite number
of peaks (as opposed to a single peak or all peaks) is that the
properties of the signal which affect the threshold value can
vary on longer time scales, so thresholds should be based on
peaks in the local region preceding a particular peak. However,
enough peaks should be used to guard against the possibility
of overweighting transient anomalies in the signal. In practice,
varying this number does not have a significant impact on the
algorithm’s performance, as discussed in section 4.2. For the
initialization step, before any peaks have been found, all peaks
above 2.5 times the average of the MDF signal over the first 10 s
of data are identified, and the initial threshold is set to 60% of the
median value of these peaks. We find that this process generates
a reasonably accurate and robust estimate of the initial threshold.

Once a threshold value has been determined, a threshold line
is propagated from the previous threshold crossing point until it
crosses the MDF signal, as shown in Figure 3b by the horizontal
dotted line. The point where this line crosses the MDF signal
is referred to as a threshold crossing point and is also labeled
in Figure 3b. In order to avoid detecting multiple threshold
crossing points associated with the same MDF peak, a refractory
period τ is enforced immediately following the detection of a
threshold crossing point, during which no new threshold crossing
points can be found. The refractory period τ is also labeled in
Figure 3b. The value of τ is taken to be 200 ms, though the
precise value, once again, does not have a major impact on the
algorithm’s performance (refer to section 4.2 for more details)
so long as it is longer than the typical pulse upslope time but
significantly shorter than an entire pulse, defined as the time
between successive onsets.

A search window, shown in Figure 3c between the dashed
vertical lines, is then defined as the region between the location
of this threshold crossing point and the peak of the last detected
pulse immediately preceding each new search window. In the
case of the very first onset, for which there is no preceding peak,
the search window is extended to the very beginning of the signal.
The peaks of each beat should occur very close to the threshold
crossing point, and are determined by finding the maximum
value which occurs within the refractory interval τ . We note here
that the algorithm does not explicitly set out to accurately identify
systolic peaks, and the finding of peaks is only performed in order
to facilitate defining onset search windows. Thus, no claims are
made regarding the accuracy of the systolic peaks.
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FIGURE 3 | Shown are the major steps in the algorithm, from an initial seed onset to detection of the next onset. The x (time) and y (CBFV/MDF amplitude) axes have

been normalized to dimensionless quantities for ease of viewing. The algorithm proceeds from onset to onset in this manner until the end of the scan is reached. (a)

Shows the initial onset in the CBFV signal, which consists of the onset point itself and its associated peak. (b) Displays the MDF signal associated with this same

segment of data and shows how the search window is established after enforcing the refractory period and locating the threshold crossing point. (c) Shows the CBFV

signal with the search window overlaid. (d) Shows a zoom-in of the search window and the location of all valleys, with the new onset labeled. Finally, (e) shows the

original CBFV signal with the new onset identified.

3.4. Onset Identification
Once a search window has been identified, all valleys (identified
by finding local minima) in the CBFV signal that occur within
this window are located. The latest, i.e., closest to the threshold
crossing point, occurring valley for which the condition:

CBFVpeak − CBFVvalley ≥ 0.75 ·MDFpeak (2)

is satisfied is marked as the pulse onset. Here, CBFVpeak is the
value of the peak for the CBFV pulse (the amplitude of the point
labeled “new peak” in Figure 3e), CBFVvalley is the candidate
onset (the points marked in Figure 3d with dots), and MDFpeak
is the amplitude of the peak value of the MDF signal for this
window (the value of the local maximum immediately following
the threshold crossing point in Figure 3b). This condition
(Equation 2) ensures that the algorithm avoids mistakenly
identifying valleys that appear in the upslope due to noise
artifacts or pathological morphologies as onsets. The constant

scale factor in front of MDFpeak is set to 0.75, though onset
identification is fairly robust to changes in this factor (refer to
section 4.2). In theory, CBFVpeak−CBFVvalley should very nearly
equalMDFpeak since the MDF signal measures the net change in
the CBFV pulse waveform over some small time window. Thus,
any factor close to but slightly<1 is reasonable, e.g., 0.5−0.95. A
lower value generally provides less protection against misaligned
onset detections, while too high of a value risks missing the onset
altogether. The candidate onset closest to the threshold crossing
point that meets the required condition is circled and labeled as
“onset” in Figure 3d.

3.5. Beat Length Analysis
After the signal has been scanned through in its entirety and all
initial guesses at pulse onsets have been established, the final step
is to deal with outlier beats. The motivation for this is based on
the fact that the initial pass tends to result in two primary kinds
of mistakes.
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FIGURE 4 | Shown above is a long beat resulting from a missed onset due to

a suppressed upslope. The x (time) and y (CBFV/MDF amplitude) axes have

been normalized to dimensionless quantities. The CBFV signal is displayed in

(A), while the MDF signal is shown in (B). Also shown in (B) are the threshold

values used for onset detection, which are incrementally relaxed until either an

onset is found or until some minimum threshold value is reached. The search

window for the new onset is indicated by the vertical dashed lines once the

refractory period τ has been enforced.

• Long beats typically occur when the algorithm misses a beat,
which would normally result in a false negative (FN). This
most commonly occurs because of some abnormality in the
upslope of a beat, either because it is not very steep and fails
to cross the threshold line or because it contains some sort of
noise artifact that suppresses the MDF signal. An example of
such a beat is shown in Figure 4A, where the amplitude of a
beat is suppressed such that it fails to cross the threshold line.

• Short beats typically occur when noise in the signal results in
a sharp upslope which is erroneously identified as a new beat
onset resulting in a false positive (FP). The effect of this is to
divide what should be a single beat into multiple short beats.

We posit that errors of these varieties can be effectively identified
by examining the distribution of beat lengths, i.e., the distance
between successive onsets, resulting from the first pass of
onset detection. Before proceeding however, it is worthwhile to
describe a few general principles that guide a number of the
choices that we make regarding the algorithm. The first principle
is that we weight false negatives (failing to detect a beat onset)
more severely than false positives (detecting extra beat onsets).
Said another way, we believe it is better to find as many beat
onsets as possible even if that means a few extra onsets are falsely
identified. The motivation for this belief is influenced by the
second principle, which is that the output of the algorithm should
allow any downstream applications (anything using the output of
the algorithm) to make the majority of the decisions about how
to handle the beats once they have been segmented.

For example, in the case of short beats, these usually result
from mistakenly dividing a beat into two beats, so the solution
may be to just delete the onset associated with the short beat.

However, this can always be done as a post-processing step.
Furthermore, such post-processing can be tailored to suit the
specific needs of the downstream analysis being performed,
information which is not known by the beat segmentation
algorithm at runtime. Thus, as a general purpose onset detection
tool, we believe it is best to be as conservative as possible, and only
perform very simple post-processing steps to identify and handle
the most egregious errors. This philosophy will be referenced as
motivation for a number of the design decisions made in the
following discussion.

3.5.1. Outlier Detection
In order to flag beats as outliers, we usemedian absolute deviation
(MAD) due to its robustness to outliers, which was also used in
Zong et al. (14).MAD is computed according to the following:

MAD = med(|X −med(X)|), (3)

for some univariate data set X (the set of beat lengths in
this case), composed of N elements x1, x2,..., xN , where med
denotes the median value. To useMAD as a consistent estimator
of the standard deviation, a scale factor of 1.4826 is needed,
which is related to the assumed normality of the distribution
after excluding outliers. Thus, the estimator σ̂ for X becomes
1.4826 · MAD.

Finally, we define rejection criteria based on this estimator
by choosing a threshold value. Setting this threshold value is
a necessarily subjective choice that depends on the nature of
the data and on the degree of caution deemed appropriate by
the researchers. A threshold value of 3.5 has been suggested by
Iglewicz and Hoaglin (23); however, a threshold value of 3.0
is also commonly suggested as a fairly conservative threshold
as in Leys et al. (24). In this study, we opt to use the more
conservative value of 3.5 to identify short beats and a value
of 3.0 to identify long beats. We believe this to be in line
with the general philosophy of performing the least amount
of post-processing as possible, and to deal with only the most
extreme outlier cases. The choice of an asymmetric threshold
represents the goal of minimizing FN. Since long beats are
generally indicative of a missed onset detection, we use a slightly
less conservative threshold when identifying long beats. These
choices are examined in more detail in section 4.2. Concretely,
the inclusion criteria then becomes:

med(X)− 3.5 · σ̂ < xi < med(X)+ 3.0 · σ̂ . (4)

So long as xi satisfies (Equation 4), it is not an outlier. We can
now formalize the concept of a short beat and a long beat. For
a given scan for which N total beats have been detected with
median length lmed, for a given beat with length li and estimator
σ̂ , the beat is short if it satisfies (Equation 5) and long if it satisfies
(Equation 6).

li < lmed − 3.5 · σ̂ (5)

li > lmed + 3.0 · σ̂ (6)
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3.5.2. Long Beats
Long beats are dealt with first. The method for dealing with long
beats is to apply the global onset detection algorithm to a local
section of the signal, with a progressively lowered threshold line
if needed. This process is detailed in the steps below. For each
long beat detected:

1. The search window is defined from the beginning of the peak
for the long beat until the next detected onset, as shown in
Figure 4A and denoted by the vertical dashed lines.

2. The MDF is computed for this segment of data, as shown in
Figure 4B.

3. A threshold line is set at 60% of the median of all the peak
heights that were located in the original global MDF signal
during the first pass.

4. After enforcing the refractory period, this threshold line is
propagated until it either crosses the MDF signal or reaches
the end of the data segment. If it crosses theMDF signal, then a
search window is defined and new candidate onsets are located
in exactly the same manner as described in the global onset
detection algorithm.

5. If new onsets are found, these locations are saved and the
algorithm proceeds to the next long beat in the scan or, if
there are no more remaining long beats, the next step in the
algorithm. However, if no new onsets are found, the threshold
value is lowered by 0.05 and steps (3) and (4) are repeated
with the lower value. The algorithm continues to lower the
threshold value in this manner until either a new onset is
found or some minimum threshold value is reached. A high
minimum threshold value may result in more missed onsets,
whereas a lower value may cause an increased number of false
positives. We chose a relatively low minimum threshold value
of 0.35 based on the view that false positives are preferable to
false negatives (refer to section 4.2 for discussion). Figure 4B
shows this process of new threshold lines being drawn until
the missed peak is finally detected.

3.5.3. Short Beats
Short beats are dealt with last. This step looks at each short
beat along with each of its immediate neighbors and makes a
decision as to whether the short beat should be combined with
either of its neighboring beats. A number of methods can be
used to determine whether a merger should occur. A simple
method which we find to work effectively and which is also
conservative is to simply look at whether a merger of beats would
produce a new beat with a length closer to the median beat length
than the original neighboring beat. If so, then the short beat is
examined to determine whether it looks sufficiently “different”
(as defined in the following steps) from an average beat in the
scan. If both conditions are met, then a merger is performed;
otherwise, no merger occurs. The process for determining this
is described below.

1. Four lengths are determined: lbefore, lshort , lafter , and lmedian,
shown in Figure 5. These are defined as follows: lbefore is the
length of the beat occurring before the short beat, lshort is the
length of the short beat, lafter is the length of the beat occurring
after the short beat, and lmedian is the median beat length of

all beats that have been found in the CBFV signal for a given
scan. The length of a beat is defined to be the time between
successive onsets.

2. The mean beat is calculated, shown in the subfigure of
Figure 5. This is done by first finding the median beat length.
All detected beats are then either truncated by removing the
end or padded by repeating the last value in the beat such that
all the beats have the same length, resulting in a set of length
normalized vectors. Themean beat is then calculated by taking
the mean of this set of vectors.

3. The algorithm checks to see if combining the short beat with
the beat occurring immediately after it, resulting in a new beat
length lshort + lafter , would produce a beat with a length closer
to themedian beat length than lafter alone. If it would, then one
final comparison is made: the beats are combined only if the
correlation distance between the short beat and the mean beat
is >0.2. The correlation distance is computed by truncating
the longer of the two beats such that its length is equal to that
of the shorter beat, and then applying (Equation 7), where
u and v are vectors representing each of the two beats being
compared after length equalization.

xcorr = 1−
(u− u) · (v− v)

||(u− u)|| · ||(v− v)||
(7)

The reason for this comparison is again based on the view
that false negatives are worse than false positives, and so the
deletion of onsets should be done very conservatively. The
motivation for enforcing this check is the idea that beats which
result from noise in the signal should not look like an average
beat, whereas beats that are actually just physiologically
shorter will still retain the general morphological structure
of a typical beat and thus should have a small correlation
distance from themean beat. If after this comparison, the beats
are merged, then the algorithm moves on to the next short
beat if there are any. If the beats are not merged, then the
same comparison ismade with the beat occurring immediately
before the short beat. If nomerge is performed there either, the
algorithm proceeds to the next step.

4. One final step occurs in which the short beat is deleted if
it is determined to be extremely different morphologically
than the mean beat. In this context, “extremely” different
is defined quantitatively by a correlation distance >0.7. The
choice of this threshold and others is explored in more detail
in section 4.2.

3.5.4. Iterating
It is possible for a single pass to not find all the new beats
or delete all the short beats due to the fact that as beats are
added/subtracted, the statisticsmay change very slightly. Another
way to miss a beat is due to the fact that when parsing a long
beat, the algorithm will exit upon finding the first new beat. If a
long beat contains more than two beats, then this means a single
pass will not be enough to locate all the new beats. To deal with
this, the beat length analysis is performed repeatedly until no new
beats are added/subtracted during a single iteration. In very rare
instances (this never occurs in the data set used in this work), it

Frontiers in Neurology | www.frontiersin.org 7 October 2019 | Volume 10 | Article 1072

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Canac et al. Pulse Detection in CBFV Signals

FIGURE 5 | Shown above is an example of the detection of a short beat. The short beat is shown in the main figure between the dashed vertical lines between its two

neighboring beats. Detected onsets are marked by blue dots. The lengths lbefore, lshort, and lafter are also labeled. The mean beat calculated for this scan is also

displayed in the subfigure shown in the upper right corner (not to scale), and its length lmedian is displayed correctly to scale alongside the other distances in the main

figure. The x (time) and y (CBFV/MDF amplitude) axes have been normalized to dimensionless quantities.

may be possible to reach an oscillating solution, so a maximum
number of iterations of 10 is enforced, whereby the loop will
exit regardless.

3.6. Beat Alignment
The final step is to fine tune the alignment of the onsets. While
not strictly necessary, we find that including this step provides
a significant benefit for onsets which have a large degree of
misalignment relative to their annotated locations. In qualitative
terms, the alignment is performed by computing a scalar value
for each onset. This value represents the estimated amount by
which the onset should be shifted forward or backward in time
in order to better align with the actual foot position of the beat.
If this estimated amount is larger than some threshold, then the
shift is applied to the onset. The reason for imposing a threshold
is that for large estimated shifts, we find that the shift generally
moves the onset closer to its actual position. However, for small
estimated shifts, corresponding to cases where the algorithm has
already closely identified the actual onset, the benefit to trying
to apply further realignment is questionable and in general,
seems to result in slightly worse performance for very small
misalignments. As a result, if the estimated amount is less than
the threshold, the shift is not applied.

In order to compute the actual shift amount, the mean beat
is first computed in the same way as described in section 3.5.3.
The beginning portion of the beat is extracted by taking the first
N samples of the mean beat, where N is equal to the number of
samples in the refractory period τ . This segment will be referred
to as the mean beat upslope. The motivation for focusing on
the beginning portion of the beat is the assumption that the
relevant morphological feature to align on in a CBFV pulse is
the initial sharp upslope. Using an extraction window equal to
τ works well as a general rule of thumb method for capturing
the initial upslope along with some of the systolic peak. Next,
a set of new potential onset positions are generated by taking
a window of the CBFV signal and sliding it one sample at a
time, starting a time τ before the detected onset and ending
a time τ after the onset. After normalizing each vector, a dot
product is then calculated between each of these new shifted
onset positions and the normalized mean beat upslope. The

temporal separation between the detected onset and the shifted
onset which maximizes the dot product is the estimated shift. If
this shift is above 30 ms, then the shift is applied; otherwise, no
action is performed. This threshold can be set by the researcher
based on their individual misalignment tolerance.

As mentioned, this step has no effect on the number of FN
or FP and serves only to better align the beats in cases of
large misalignments. An exploration of alternative methods for
performing this alignment could be the subject of future work.

4. RESULTS

4.1. Performance Metrics
We report on a number of metrics to evaluate the performance
of the algorithm. These metrics are based on the number of true
positives (TP), the number of false positives, the number of false
negatives, and the temporal separation between the annotated
beat and the detected beat or temporal offset error (1t). For
our purposes, metrics involving true negatives (TN) are not
particularly meaningful since (1) almost every point is a TN
and (2) the meaning of a TN becomes ambiguous in the region
immediately surrounding a true onset.

Even defining what it means to be a TP, FP, and FN can
prove problematic. A common convention in the literature is
to define some arbitrary threshold value 1tmax. If an onset is
detected such that the distance between the detected onset and
the nearest true onset is less than 1tmax and there are no other
closer detected onsets, then the detected onset is a TP. If no
true onset exists within the threshold window or there is another
detected onset closer to the true onset, then the detected onset is
a FP. Similarly, for a true onset, if no detected onset exists within
the threshold window, then this results in a FN. Where this can
become problematic is in the case where an onset is detected in
association with a true onset, but their temporal offset error 1t
is greater than 1tmax. This situation is represented in Figure 6C

for 1t > 1tmax. What is intuitively either a single mistake or
potentially no mistake at all is counted as two mistakes, both a
FP, because no true onset exists “near” the detected onset, and
a FN, because no detected onset exists “near” the true onset. In
these situations, it may be necessary to make a subjective decision
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FIGURE 6 | Shown are the different types of classification errors. These are

shown for illustrative purposes and are not actual output of the algorithm. The

dotted vertical line indicates the correct position of the beat onset. (A) Shows

the typical situation in which a false negative arises: the algorithm fails to mark

an onset for an obvious beat in between two neighboring detected beats. (B)

Shows an example of a false positive, in which an extra onset unassociated

with any true onset has been detected. (C) Illustrates a misaligned beat in

which a true onset has been found, but its placement is offset from the true

location.

about whether to classify these types of mistakes as FP or FN. This
situation is not uncommon in signals with high amounts of noise
or poor signal quality or for signals whose morphology diverges
significantly from what would typically constitute a normal,
healthy waveform. In these cases, there may be large amounts
of uncertainty when manually labeling the location of the onset,
but this uncertainty is ignored when enforcing a uniform and
universal classification threshold.

For these reasons, we adopt what we believe to be a more
intuitive approach to error classification in the context of beat
segmentation. We avoid enforcing an arbitrary threshold value
and instead focus on mapping true onsets to their associated
detected onsets and then quantify the temporal offset error as a
separate measure. As long as a detected onset can be associated
with a true onset straightforwardly in a one-to-one manner,
then the pair is labeled a TP and the temporal offset error is
measured. Concretely, this is done by starting with the true
onsets and locating the closest detected onset, being careful
to avoid double counting by ensuring that a detected onset is
paired uniquely with only its closest true onset (though we note
that while this situation of multiple pairings was checked for,
it was never actually encountered in the results presented in
this work). Any true onsets left without an associated detected
onset are labeled FN. Any detected onsets left over after this

TABLE 1 | Shown are the relevant performance metrics of the algorithm on the

entire data set.

TP FN FP TPR PPV 1t (ms)

92010 2 2 0.99998 0.99998 6.098 ± 4.749

process are labeled FP. A comprehensive set of unit tests were
designed, and all TP pairs with large separations (>100 ms),
of which there were 44 cases, as well as all FN and FP
cases, were manually inspected to confirm correct behavior of
the procedure.

This classification framework naturally lends itself to three
types of nominal errors: FN, FP, and a new error type we will refer
to as misaligned. Examples of each of these error types are shown
in Figure 6. By classifying errors in this way, we get the following
intuitive interpretations for the various types of errors: FN can be
thought of as missing onsets, FP as extra onsets, and misaligned
as onsets that are detected but which are offset from where they
should be. The degree to which misalignment occurs is encoded
by the distribution of 1t for all annotated-detected onset pairs.

Algorithm performance is reported in Table 1, which shows
the total number of TP, FP, and FN, as well as the true positive rate
(TPR) or recall defined in Equation (8), and positive predictive
value (PPV) or precision defined in Equation (9). The mean
temporal offset error 1t is also shown.

TPR =
TP

TP + FN
(8)

PPV =
TP

TP + FP
(9)

For the data set considered in this work, the algorithm was able
to detect an onset associated with nearly every annotated beat
onset (2 FN) while managing to only detect two false onsets
(2 FP), again given a total of 92,012 annotated onsets, for a TPR
and PPV both approaching 99.998%. This represents a significant
improvement over previous work using the same data set, which
reported a TPR of 93.1% and a PPV of 93.3% (20). It should
be noted that prior work classified TP, FP, and FN using a
different convention and as a result these numbers should not
be compared directly; however, the gap in performance is still
sizable. Using the same 30 ms value for 1tmax as was used in
Asgari et al. (20), we would obtain a TPR of 99.5% using the same
error classification method as used in Asgari et al. (20).

An analysis of the failure modes of the algorithm can prove
instructive into understanding the ways in which it can fail,
and the combination of factors that must occur in unison to
cause failures. The FP are shown in Figure 7. These serve to
illustrate the main way in which the algorithm can falsely detect
beats as both cases involve a sudden upslope in the signal
likely caused by noise. Normally, these would be dealt with
during the beat length analysis step, as the false detections result
in short beats that would normally get merged. However, in
Figure 7A, the FP occurs in the middle of what is an unusually
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FIGURE 7 | Shown in (A,B) are the false positives detected by the algorithm in the data set. The correctly identified manually annotated beat onsets are marked by

filled-in blue dots. The false positives have been aligned on the dotted line and are marked by empty circles.

FIGURE 8 | Shown in (A,B) are the false negatives detected by the algorithm in the data set. The correctly identified manually annotated beat onsets are marked by

filled-in blue dots. The locations in which an annotated onset was indicated but no onset detected are marked by the dotted line.

long beat for this scan (the local heart rate was very low
relative to the overall heart rate of this scan), and so splitting
it resulted in two beats that are only slightly short and thus fail
to register as short beats during outlier detection. In Figure 7B,
the beat is identified as a short beat, but because it looks
morphologically similar to a typical beat, its correlation distance
from the mean beat is very low and it does not meet the criteria
for merging.

The FN are shown in Figure 8. In Figure 8A, the onset
is actually detected initially, but it just happens to be very
short (perhaps indicative of a sudden, momentary increase in
heartrate) and also just morphologically different enough from
themean beat that it registers for deletion. In Figure 8B, the onset
is not detected during the initial pass due to the abnormally small
difference between the beat’s systolic peak and diastolic valley,
resulting in a suppressed MDF peak. The two beats which occur
here locally (the missed beat and the beat immediately preceding
it) are again very short, and evenwhen combined, fail to approach

the long beat threshold. It can be seen that the length of these two
beats together is indeed very similar to the adjacent beats.

Though each of the four observed errors involved local
irregularities in heart rate, the algorithm on the whole proved
to be very robust to irregular heart rhythm due primarily to
two key factors: the relatively short refractory period and the
conservative nature of the beat length analysis procedure. The
refractory period being short—which at around 200ms, is likely
shorter than any physiologically reasonable beat—means that the
onset search procedure should never miss a potential onset due
solely to beat length. Outlier detection with regard to beat length
is inherently sensitive to heart rate irregularities; however, the
conservative nature of the outlier detection appears to help guard
against misidentifying excessive numbers of beats as outliers
and combined with the enforced morphological criteria appears
to prevent the erroneous deletion of short beats, except in the
few unique cases described. Indeed, instances of irregular heart
rate are both expected and commonly observed in the patient
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FIGURE 9 | Shown here is the relationship between the number of true

positives and their temporal offset error.

population studied in this data set, and yet only four errors were
identified in a sample of over 90,000 waveforms.

For three out of the four errors (Figures 7B, 8) described
above, a case can be made that the true label is ambiguous based
on manual inspection of the CBFV signal alone, and that perhaps
one could reasonably conclude that these should not have been
classified as errors. Indeed, based solely on the CBFV waveform,
it is not clear why, according to the annotations, Figure 7B is not
a true onset while Figures 8A,B are. However, in order to remain
as objective as possible, we report only results which assume that
the independently annotated labels are in fact the ground truth.
Nevertheless, based on these results, it may appear that the cases
in which the algorithm might fail are likely to lie at the very
boundary of what would be differentiable to a human expert.

Figure 9 shows the distribution of the temporal offset error
between annotated-detected onset pairs. As expected, the vast
majority of separations are <10 ms with a steep dropoff
thereafter. Separations on the higher side, around 50 ms or more,
tend to be the result of poor quality or pathological signals, in
which there is no obvious exact point of onset, but instead a
region, anywhere in which an onset could reasonably be marked
based on the CBFVwaveform alone. Effectively, the signal quality
is such that there exists a high degree of uncertainty in the start
of the beat as would be judged by an expert human. Table 2 gives
the proportion of onset pairs whose temporal offset error is less
than the given threshold. Already, within 10 ms, 97.8% of onsets
are detected, and by 50ms, 99.9% are detected. This table can also
be interpreted as the TPR for a given 1tmax when attempting to
compare results with other methods using the more conventional
error classification scheme.

4.2. Free Parameters
A central claim in this paper is that the performance of the
algorithm is not highly dependent on a large set of arbitrary and
highly tuned free parameters. A case can be made that the sheer
size and heterogeneity of the data set precludes the possibility of

TABLE 2 | Shown are the proportion of annotated-detected onset pairs detected

at each threshold value.

1tmax (ms) Proportion

5 0.5731

10 0.9778

20 0.9897

30 0.9951

50 0.9986

100 0.9995

150 0.9999

This can be thought of as a discretized representation of the cumulative distribution

function.

TABLE 3 | Shown below are summary descriptions of the free parameters.

Parameter Description

Threshold

normalization

Normalization factor for threshold line on MDF signal

Refractory period Time to wait before a new onset can be detected

MDF window Window size for computing MDF function

Peaks number Number of peaks to include in MDF threshold line

calculation

Distance threshold 1 Correlation distance threshold for merging beats

Distance threshold 2 Absolute correlation distance cutoff for deleting

short beats

Minimum threshold

norm

Minimum normalization factor to use for threshold

line when processing long beats

Short outlier Threshold factor to use when identifying short beats

Long outlier Threshold factor to use when identifying long beats

Onset threshold Minimum difference between amplitude of peak and

candidate onset during onset identification

fine tuning; nevertheless, we examine here the effect of varying
the free parameters on the performance of the algorithm. Though
there are a sizable number of parameters, the algorithm appears
to be very robust to changes in these parameters as long as
they remain within reasonable ranges. These ranges are generally
physiologically or mathematically motivated, though in some
cases may need to be determined empirically. A summary of the
free parameters along with a brief description of each parameter
is presented in Table 3, and the recommended range for each
parameter as determined in this work is presented in Table 4.

In order to demonstrate the algorithm’s robustness, we present
the magnitude of the effect of varying each parameter on the
performance of the algorithm. For each parameter, a range of
values are tested, and the resulting performance is recorded.
Due to the low number of FN and FP relative to the total
number of annotated onsets, the performance will be reported
in terms of the absolute number of FN and FP, as opposed
to TPR and PPV, which both remain ≥0.999 throughout the
entire range of each parameter. Due to the high dimensionality
of the parameter space, an exhaustive search would be difficult,
so only one parameter is varied at a time, with the rest fixed
to their values given in Table 4. We feel that this is sufficient
to provide a general sense of the sensitivity of the algorithm
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TABLE 4 | Shown below are recommended ranges for each free parameter used

in the algorithm along with the actual values that were used in this work.

Parameter Recommended range Value used

Threshold normalization [0.5, 0.65] 0.6

Refractory period (ms) [150, 300] 200

MDF window (ms) [125, 200] 150

Peaks number [3, 30] 20

Distance threshold 1 [0.05, 0.6] 0.2

Distance threshold 2 [0.6, 0.8] 0.7

Minimum threshold norm [0.3, 0.4] 0.35

Short outlier [2.5, 3.5] 3.5

Long outlier [2.5, 3.5] 3.0

Onset threshold [0.5, 0.9] 0.75

TABLE 5 | Shown below are the values tested for each parameter and the

resulting performance in terms of the number of FN and FP.

Threshold norm. Refractory period MDF window

Value FN FP Val. (ms) FN FP Val. (ms) FN FP

0.5 1 11 100 2 9 110 3 8

0.55 2 4 150 2 8 130 3 3

0.6 2 2 200 2 2 150 2 2

0.65 4 2 250 3 3 170 5 4

0.7 7 3 300 4 2 190 5 3

Dist. thresh. 1 Dist. thresh. 2 Min. thresh. norm.

Value FN FP Value FN FP Value FN FP

0.05 4 1 0.5 3 2 0.25 2 6

0.15 3 1 0.6 2 2 0.3 2 3

0.2 2 2 0.7 2 2 0.35 2 2

0.45 2 2 0.8 2 2 0.4 6 2

0.6 1 3 0.9 2 5 0.45 9 2

Short outlier Long outlier Onset threshold

Value FN FP Value FN FP Value FN FP

2.0 4 1 2.0 2 6 0.55 2 3

2.5 3 1 2.5 2 4 0.65 2 2

3.0 3 1 3.0 2 2 0.75 2 2

3.5 2 2 3.5 4 2 0.85 3 2

4.0 2 5 4.0 5 2 0.95 3 2

The values that were actually used when reporting results are indicated by bold font.

to the precise value of each parameter. The results of this
procedure for nine out of the ten parameters are shown in
Table 5. The only parameter not listed is the peaks number,
which showed no impact on the algorithm’s performance over
the recommended range [3, 30] given the data set used in this
study. It should be noted that using fewer than three peaks did
negatively impact the algorithm’s performance and is therefore
not recommended.

Based on these results, we conclude that the values of the free
parameters primarily impact the edge cases, which by definition
represent a small percentage of the total number of beats. This
result was expected given the fact that many of the parameters
are only involved during the beat length analysis and alignment
steps, which by design were intended to catch outliers. Despite

rather large changes in some parameter values, the impact
was generally negligible on overall performance. The three
parameters to which the algorithm appears to be most sensitive
are the threshold normalization factor, the refractory period,
and the MDF window. However, the fact that a single value
can perform extremely well across the wide range of subjects,
waveform morphologies, and signal qualities represented in this
study suggests that the parameter values established in this work
may generalize well despite individual variation from scan to scan
or patient to patient, without the need to perform any kind of
parameter tuning.

5. CONCLUSION

The results presented in Tables 1, 2 are especially promising
when considering the nature of the data set. The scans were
performed on patients experiencing subarachnoid hemorrhage,
and the overall quality of the data generally ranges from very
poor to acceptable. Numerous examples of the types of noise
that may commonly be present in CBFV waveforms acquired
via TCD are represented in abundance as well as a host of
morphological “archetypes.” Taking into account the generally
poor data quality and diverse signal morphology, we feel this
data set serves as a broad collection of heterogeneous signals
that may be representative of the types of data collected in real
world scenarios.

Nevertheless, using our error classification framework, the
algorithm presented here was able to identify all but two of
the 92,012 onsets present in the data set with only two false
detections. Of the correctly identified onsets, over 99.5% were
detected within 30 ms of the annotated onset. These performance
metrics mark a significant improvement over prior attempts
at CBFV pulse onset detection and, importantly, requires no
complementary signals. Additionally, the nature of the data set
provides confidence that the algorithm may generalize well in a
wide range of possible scenarios or deployment environments,
and that it may prove useful in any signal whose pulse onsets
are marked by the presence of a sharp upslope feature, as
is the case in CBFV signals. More work may be warranted
to show the reliability of the algorithm across all of these
potential scenarios.

The algorithm’s robustness to noise and varied waveform
morphologies is encouraging for its potential use in neurocritical
care, where such conditions may be likely to arise during
acquisition of CBFV signals. Such conditions are also likely
to reduce the effectiveness of many existing onset detection
algorithms, so it is important to measure the performance of any
algorithm on data which exhibits these pathological qualities. It
should also be noted that, while we stress the importance of the
algorithm’s performance on poor quality data, the performance
is expected to improve on better quality data. Indeed, none of the
errors on the test set occurred in high quality signals with normal
waveform morphology.

Another important consideration is the potential application
of such an algorithm in real time systems. Integral to such systems
is the computational complexity of the algorithm. We find that
the algorithm described in this paper implemented in Python
2.7.14 is easily able to run on the entire data set in under
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8 min (∼5 ms per pulse) on a 2017 model Dell Precision 5520
laptop computer. Given this fact, it should be capable of running
in real time on any relatively modern computer hardware with
very little overhead. The only major caveat is that there are a
number of steps that involve future knowledge of the signal,
which would need to be modified to only use past knowledge.
Given that these steps are only involved in the outlier detection
steps, the impact of such changes are not likely to be significant.
Quantitatively evaluating this performance impact could be the
subject of future work.
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