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Abstract

A generalization of the von Mises distribution, which is broad enough to cover unimodality as well as
multimodality, symmetry as well as asymmetry of circular data, is discussed here. We study this distribution
in some detail and discuss its many features, some inferential and computational aspects, and provide some
important results including characterization properties for this distribution.
c© 2006 Elsevier B.V. All rights reserved.

Keywords: Circular distribution; Entropy; Exponential family; Fourier expansion; Maximum likelihood; Normal
distribution; Offset distribution; Symmetry and asymmetry; Trigonometric moment; Unimodality and multimodality

1. Introduction and significance of the model

Maksimov [11] discusses a wide class of absolutely continuous circular distributions with
continuous densities of the form

g(θ) ∝ exp

{
k∑

j=1

a j cos jθ + b j sin jθ

}
, (1)

for θ ∈ [0, 2π) and for some constants a1, a2, . . . , b1, b2, . . . ∈ R. In this paper we will analyze
this class paying particular attention to the case where k = 2, which leads to an important
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extension of the Circular Normal or von Mises (vM) density, and which we re-express as

f (θ | µ1, µ2, κ1, κ2) =
1

2πG0(δ, κ1, κ2)
exp{κ1 cos(θ − µ1) + κ2 cos 2(θ − µ2)}, (2)

for θ ∈ [0, 2π), µ1 ∈ [0, 2π), µ2 ∈ [0, π), δ = (µ1 − µ2) mod π , κ1, κ2 > 0 and where the
normalizing constant is given by

G0(δ, κ1, κ2) =
1

2π

∫ 2π

0
exp{κ1 cos θ + κ2 cos 2(θ + δ)}dθ. (3)

We will call (2) the “Generalized von Mises” (GvM) density and will denote any circular random
variable θ with this density by θ ∼ GvM(µ1, µ2, κ1, κ2). Besides Maksimov [11], there have
been brief mentions of this distribution in Yfantis and Borgman [16], who focus on numerical
aspects, and in Kato and Shimizu [9], who consider a particular distribution on the cylinder for
which the conditional density of the angular component given the height in the cylinder turns out
to have the GvM form (2).

The well-known von Mises density is obtained by taking the sum in the exponent of (1) just
for k = 1, which yields

f (θ | µ, κ) =
1

2π I0(κ)
exp{κ cos(θ − µ)}, (4)

for θ ∈ [0, 2π), µ ∈ [0, 2π), κ > 0 and where Ir (z) = (2π)−1
∫ 2π

0 cos rθ exp{z cos θ}dθ ,
z ∈ C, is the modified Bessel function I of integer order r (see e.g. [1]). The GvM allows for
greater flexibility in terms of asymmetry and bimodality, compared to the vM distribution, this
latter being always circularly symmetric and unimodal with density dropping exponentially on
either side from the center.

Another wide and important class of absolutely continuous distributions for circular data is
the wrapped α-stable (WαS) class, which derives from the characteristic function of α-stable
distributions in the real line. The WαSdensity admits the Fourier series

g(θ) =
1

2π
+

1
π

∞∑
j=1

exp{−τα jα} cos
{

j (θ − µ) − τα jαβ tan
απ

2

}
,

for θ ∈ [0, 2π), α ∈ (0, 1) ∪ (1, 2], µ ∈ [0, 2π), β ∈ [−1, 1] and τ > 0. These
densities are unimodal and have different tail behaviors, according to the value of α, and can be
circularly symmetric, left- or right-skewed, according to the value of β. For more details about
WαSdistributions and inference, refer to [5,6]. However, in comparison with GvM densities,
WαSdensities cannot be bimodal and do not share the theoretical properties given in Section 2.

As previously stated, the GvM densities can be symmetric, asymmetric, unimodal or bimodal.
We now give some basic results in relation to the possible shapes of the densities together
with some graphical illustrations. Let us first consider the hypothesis H0 : µ2 = µ1 mod π ,
i.e. H0 : δ = 0, with κ1, κ2 > 0 implicitly assumed. The density is now circularly symmetric
around µ1, which can be assumed equal to 0 without loss of generality. By differentiation, we
obtain that the critical points of the density satisfy

κ1

4κ2
sin θ + sin θ cos θ = 0.
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Table 1
Critical points of the GvM density under H0 : µ2 = µ1 mod π and for κ1 < 4κ2

Argument values Type Density values

µ1 − π Maximum {2πG0(0, κ1, κ2)}−1 exp{−κ1 + κ2}

µ1 − arccos(− κ1
4κ2

) Minimum {2πG0(0, κ1, κ2)}−1 exp{−κ2 −
κ2

1
8κ2

}

µ1 Maximum {2πG0(0, κ1, κ2)}−1 exp{κ1 + κ2}

µ1 + arccos(− κ1
4κ2

) Minimum {2πG0(0, κ1, κ2)}−1 exp{−κ2 −
κ2

1
8κ2

}

Fig. 1. Some symmetric GvM densities with µ1 = 0.

If κ1 < 4κ2, then there are two trivial and two non-trivial critical points in [−π, π). All these
critical points are displayed in Table 1 for a general µ1, together with their natures and the
corresponding values of the GvM density. (As usually, arccos : [−1, 1] → [0, π].) If the above
inequality is not satisfied, then there remain only the two trivial critical points. In Fig. 1 we can
see various symmetric GvM densities for µ1 = 0. The dotted density with κ1 = 1 and κ2 = 0
is a vM one and has one maximum at 0 and one minimum at π , and the three other densities are
bimodal. The dashed–dotted density with κ1 = 1 and κ2 = 0.3 resembles a unimodal heavy-
tailed one, although there are two minima in the tails (as 1 < 4 · 0.3).

Consider now a general δ and, again without loss of generality, take µ1 = 0. It is
straightforward to see that the extrema are the solutions in θ ∈ [−π, π) of the equation

(1 − 2 sin2 δ) sin θ cos θ − 2 sin δ cos δ sin2 θ + ρ sin θ + sin δ cos δ = 0, (5)

where ρ = κ1/(4κ2). In terms of x = sin θ , these extrema can be obtained by the solutions in
x ∈ [−1, 1] of the equations

±

(
1 − 2 sin2 δ

)
x
√

1 − x2 − 2 sin δ cos δx2
+ ρx + sin δ cos δ = 0.

Alternatively, these extrema can be found by computing the roots in x ∈ [−1, 1] of the fourth-
degree polynomial

x4
− 4ρ sin δ cos δx3

+ (ρ2
− 1)x2

+ 2ρ sin δ cos δx + sin2 δ cos2 δ.
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Fig. 2. Some GvM densities.

Consequently the density cannot have more than two modes. This last computation is easy to do
with e.g. Matlab’s routine roots, which re-expresses the problem in the search of the eigenvalues
of the companion matrix. Then we transform these roots back to θ = arcsin x , π − arcsin x and
retain only the values θ which satisfy (5). (As usual, arcsin : [−1, 1] → [−π/2, π/2].) In the
general case, we add µ1 to the results and we obtain extrema in [µ1 −π, µ1 +π). If for example
µ1 = 0, δ = 0, and ρ < 1, we find the solutions θ = 0, π, π − arcsin ±

√
1 − ρ2, which (by

noting that ± arccos −ρ = π −arcsin ±

√
1 − ρ2, when 0 < ρ < 1) satisfy (5), and the solutions

θ = arcsin ±

√
1 − ρ2, which do not satisfy (5). The solutions which satisfy (5) are indeed the

ones of Table 1. In Fig. 2 we can see some typical asymmetric GvM densities. The dashed density
with κ1 = 0 is a kind of vM density with double frequency, the solid density has a minor bump
in the left tail, the dashed–dotted density has two modes with light tails, and the dotted density is
left-skewed and heavy-tailed.

In order to compute a GvM density we must evaluate the constant G0 (= G(2)
0 ) in (3). This

can be done with the expansion

G0(δ, κ1, κ2) = I0(κ1)I0(κ2) + 2
∞∑
j=1

I2 j (κ1)I j (κ2) cos 2 jδ, (6)

where δ ∈ [0, π) and κ1, κ2 > 0. It can be justified by applying twice the Fourier expansion

eκ cos θ
= I0(κ) + 2

∞∑
j=1

I j (κ) cos jθ

to the integrand of G0 in (3), thus giving

G0(δ, κ1, κ2) = I0(κ1)I0(κ2) +
2
π

∞∑
j=1

∞∑
k=1

I j (κ1)Ik(κ2)

∫ 2π

0
cos jθ cos 2k(θ + δ) dθ.

Then (6) follows directly by noting that∫ 2π

0
cos jθ cos 2k(θ + δ) dθ =

{
0, if j 6= 2k,

π cos 2kδ, if j = 2k.

One may check that G0(δ, κ1, 0) = I0(κ1), ∀δ ∈ [0, π).
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In fact, the Maksimov distribution (1) can also be re-expressed as

f (θ | µ1, . . . , µk, κ1, . . . , κk)

=
1

2πG(k)
0 (δ1, . . . , δk−1, κ1, . . . , κk)

exp

{
k∑

j=1

κ j cos j (θ − µ j )

}
, (7)

where κ1, . . . , κk > 0, µ1 ∈ [0, 2π), µ2 ∈ [0, π), . . . , µk ∈ [0, 2π/k),

G(k)
0 (δ1, . . . , δk−1, κ1, . . . , κk) =

1
2π

∫ 2π

0
exp{κ1 cos θ + κ2 cos 2(θ + δ1)

+ · · · + κk cos k(θ + δk−1)}dθ,

and where δ1 = (µ1 − µ2) mod π, δ2 = (µ1 − µ3) mod (2π/3), . . . , δk−1 = (µ1 −

µk) mod (2π/k). The density (7) could be called a “Generalized von Mises density of
order k” (GvMk) and a circular random variable θ with this density could be denoted as
θ ∼ GvMk(µ1, . . . , µk, κ1, . . . , κk). However cases of k > 2 lead to some practical difficulties,
e.g. in the computation of the normalizing constants G(k)

0 and in the computation of the
estimators. Moreover, the GvM2 distribution, which we will continue to denote as GvM, is
flexible enough for many practical situations. For these reasons, we will mainly focus on the
GvM2 distribution.

In Section 2 we provide some important properties and characterizations of the GvMk
distributions in connection with the exponential family of distributions, with the entropy and,
for the case k = 2, with the bivariate normal distribution. We also analyze maximum likelihood
estimators (MLE) for the parameters paying special attention to the GvM (i.e. GvM2) model
and to its submodels. In Section 3 we provide a numerical illustration with recent data from
meteorology in order to show the practical importance and the effectiveness of the GvM model.

2. Important results and characterization properties

In Section 2.1 we emphasize that the GvMk distribution admits the canonical exponential
family form. In Section 2.2 we give an important characterization property relating a GvMk
distribution to a maximum of the entropy, and in Section 2.3 we give another important
characterization property relating a GvM2 distribution to a conditional offset normal distribution.
Finally in Section 2.4 we discuss in general the MLE under the canonical exponential family
form, and in some greater detail for some submodels.

2.1. Member of the exponential family

We consider the re-parameterization of the GvMk density (7)

λ1 = κ1 cos µ1, λ2 = κ1 sin µ1, λ3 = κ2 cos 2µ2 and λ4 = κ2 sin 2µ2, . . . ,

λ2k−1 = κk cos kµk, λ2k = κk sin kµk . (8)

By expanding the cosines in (7) and by defining λ = (λ1, . . . , λ2k)
T

∈ R2k and T (θ) =

(cos θ, sin θ, cos 2θ, sin 2θ, . . . , cos kθ, sin kθ)T, we can re-express the GvMk density as

f ∗(θ | λ) = exp{λTT (θ) − K (λ)}. (9)

This re-parameterization of the GvMk density corresponds to the 2k-parameters canonical
exponential family. T (θ) is a sufficient and complete statistic for λ and the normalizing
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constant is

K (λ) = log(2π) + log G(k)
0 (δ1, . . . , δk−1, ‖λ

(1)
‖, . . . , ‖λ(k)

‖),

where ‖ · ‖ is the Euclidean norm, λ(1)
= (λ1, λ2)

T, λ(2)
= (λ3, λ4)

T, . . . , λ(k)
= (λ2k−1, λ2k)

T,
and δ1 = (arg λ(1)

− arg λ(2)/2) mod π , δ2 = (arg λ(1)
− arg λ(3)/3) mod (2π/3), . . . , δk−1 =

(arg λ(1)
− arg λ(k)/k) mod (2π/k). For the practical case of k = 2, this constant can be

evaluated with (6).
As pointed out by a referee, it is also directly seen that the original Maksimov distribution

with k summands (1) belongs to the 2k-parameters canonical exponential family: it has the form
(9) with

λ = (λ1, . . . , λk, λk+1, . . . , λ2k) = (a1, . . . , ak, b1, . . . , bk)

and

T (θ) = (cos θ, . . . , cos kθ, sin θ, . . . , sin kθ).

However, the canonical re-parameterization (9) is not as intuitive as e.g. the GvM form (2).
For example, the hypothesis H0 : δ = 0 can be directly seen under the GvM parameterization as
circular symmetry in both frequency components of order 1 and 2.

2.2. Maximum of entropy

The concept of entropy arose with the work of Shannon [14] in attempting to create a
theoretical model for the transmission of information. The (differential) entropy of a circular
distribution with density g > 0 over [0, 2π) is given by

H(g) = −

∫ 2π

0
log g(θ)g(θ)dθ, (10)

and it is an appropriate measure of the uncertainty carried by g. For a recent introduction to this
concept see e.g. [7]. Distributions which maximize the entropy often have important properties.
The exponential maximizes the entropy among distributions with positive domain and a given
mean, and it is memoryless. The normal maximizes the entropy among distributions with a
given variance, and covariance 0 is equivalent to independence. It is known (see e.g. [6], p. 39)
that the vM density (4) maximizes the entropy (10) among all densities g having a fixed first
trigonometric moment ϕ1 = γ1 + iσ1, i.e. among all g satisfying∫ 2π

0
eiθ g(θ)dθ = ϕ1 ⇔

∫ 2π

0
cos θg(θ)dθ + i

∫ 2π

0
sin θg(θ)dθ = γ1 + iσ1,

for ϕ1 fixed, i.e. for γ1 and σ1 fixed. Obviously |ϕ1| ≤ 1 and −1 ≤ γ1, σ1 ≤ 1. In this case, the
parameters µ and κ are the solutions of the equations

cos µA(κ) = γ1, and sin µA(κ) = σ1,

where A(κ) = I1(κ)/I0(κ). As other maximum entropy distributions, the vM distribution has
several important properties; see e.g. Section 2.3.

If, in addition to this, we fix the second trigonometric moment as well, then we obtain an
analogue characterization for the GvM distribution. If, in general, we fix the k first trigonometric
moments, then we have a characterization for the GvMk distribution.
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Characterization 1. The circular density g > 0 over [0, 2π) which maximizes the entropy H(g)

subject to∫ 2π

0
eirθ g(θ)dθ = ϕr ⇔

∫ 2π

0
cos rθg(θ)dθ + i

∫ 2π

0
sin rθg(θ)dθ = γr + iσr , (11)

for some determined γr , σr ∈ [−1, 1], r = 1, . . . , k, is the GvMk(µ1, . . . , µk, κ1, . . . , κk)

density (7).

Proof. It follows from Kagan et al. [8, Theorem 13.2.1, p. 409] that the maximum of the entropy
subject to the constraints (11) is attained by densities of the form of

g(θ) ∝ exp{λ1 cos θ + λ2 sin θ + λ3 cos 2θ + λ4 sin 2θ

+ · · · + λ2k−1 cos kθ + λ2k sin kθ},

provided that the parameters λ1, . . . , λ2k satisfying (11) exist. But this form can be re-expressed
in the GvMk form (7). Let us define

G(k)
r (δ1, . . . , δk−1, κ1, . . . , κk) =

1
2π

∫ 2π

0
cos rθ exp{κ1 cos θ + κ2 cos 2(θ + δ1)

+ · · · + κk cos k(θ + δk−1)} dθ,

H (k)
r (δ1, . . . , δk−1, κ1, . . . , κk) =

1
2π

∫ 2π

0
sin rθ exp{κ1 cos θ + κ2 cos 2(θ + δ1)

+ · · · + κk cos k(θ + δk−1)} dθ,

A(k)
r (δ1, . . . , δk−1, κ1, . . . , κk) =

G(k)
r (δ1, . . . , δk−1, κ1, . . . , κk)

G(k)
0 (δ1, . . . , δk−1, κ1, . . . , κk)

(12)

and

B(k)
r (δ1, . . . , δk−1, κ1, . . . , κk) =

H (k)
r (δ1, . . . , δk−1, κ1, . . . , κk)

G(k)
0 (δ1, . . . , δk−1, κ1, . . . , κk)

(13)

for r = 1, . . . , k, where δ1 ∈ [0, π), δ2 ∈ [0, 2π/3), . . . , δk−1 ∈ [0, 2π/k), and κ1, . . . , κk > 0.
Then we have that µ1, µ2 = (µ1 − δ1) mod π, . . . , µk = (µ1 − δk−1) mod (2π/k) and
κ1, . . . , κk are the simultaneous solutions of

eirµ1{A(k)
r (δ1, . . . , δk−1, κ1, . . . , κk) + iB(k)

r (δ1, . . . , δk−1, κ1, . . . , κk)} = ϕr ,

for r = 1, . . . , k. Equivalently, they are the simultaneous solutions of

cos rµ1 A(k)
r (δ1, . . . , δk−1, κ1, . . . , κk) − sin rµ1 B(k)

r (δ1, . . . , δk−1, κ1, . . . , κk) = γr

and

cos rµ1 B(k)
r (δ1, . . . , δk−1, κ1, . . . , κk) + sin rµ1 A(k)

r (δ1, . . . , δk−1, κ1, . . . , κk) = σr ,

for r = 1, . . . , k. •

This characterization is highly relevant in e.g. Bayesian statistics. Sometimes partial prior
information is available and it is desired to determine the most noninformative prior distribution
which satisfies the known partial prior information. An optimal prior is the solution of the
constrained maximization of the entropy (see e.g. [3]). When the k first trigonometric moments
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represent this partial prior information, and when amongst prior distributions having these k
trigonometric moments the most noninformative is sought, then the distribution maximizing
the entropy under these trigonometric moment conditions turns out to be the GvMk one. Other
information theoretic properties of the GvMk distribution can be found in [4].

2.3. Conditional offset distribution

An offset distribution is the marginal distribution of the directional component of a
multivariate distribution. Equivalently, it is the radial projection of a p-variate distribution, so it
is also called a projected distribution on S p−1. A conditional offset distribution is the conditional
distribution of this directional component given a fixed length from the origin. In what follows,
we show that the GvM distribution is the conditional offset distribution of the bivariate normal
distribution.

Consider first a p-variate normal random vector X with expectation ν and covariance matrix
σ 2 I , i.e. X ∼ N (ν, σ 2 I ), I denoting the identity matrix of order p. The density of X | ‖X‖ = 1
is

Np(ν, σ ) exp
{
−

1

2σ 2 (x − ν)T(x − ν)

}
= C p(κ) exp{κν̄Tx},

∀x such that ‖x‖ = 1, ν̄ = ν/‖ν‖, κ = ‖ν‖/σ 2 > 0, and for some normalizing constants Np(σ )

and C p(κ) > 0, depending on σ and κ only, respectively. This directional density takes values
on S p−1 and was introduced by Langevin [10]. For p = 2 and expressed in terms of the angular
difference between x and ν, it is the vM density C2(κ) exp{κ cos(θ − µ)}, where θ = arg{x},
µ = arg{ν} ∈ [0, 2π) and C2(κ) = {2π I0(κ)}−1. Still for k = 2 but now allowing for a general
covariance matrix Σ = var(X), we have the following result.

Characterization 2. If X is a bivariate normal vector with expectation ν = (ν1, ν2)
T and

covariance matrix Σ =

(
σ2

1 ρσ1σ2
ρσ1σ2 σ2

2

)
, then the density of arg{X} | ‖X‖ = 1 is given by

f (θ | µ1, µ2, κ1, κ2) =
1

2πG0(δ, κ1, κ2)
exp{κ1 cos(θ − µ1) + κ2 cos 2(θ − µ2)},

where δ = (µ1 − µ2) mod π , and where µ1 ∈ [0, 2π), µ2 ∈ [0, π) and κ1, κ2 > 0 are the
solutions of

κ1 cos µ1 = −
1

1 − ρ2

(
ρν2

σ1σ2
−

ν1

σ 2
1

)
, κ1 sin µ1 = −

1

1 − ρ2

(
ρν1

σ1σ2
−

ν2

σ 2
2

)
,

κ2 cos 2µ2 = −
1

4(1 − ρ2)

(
1

σ 2
1

−
1

σ 2
2

)
, and κ2 sin 2µ2 =

ρ

2(1 − ρ2)σ1σ2
.

Proof. The logarithm of the density of X is

c1 −
1
2
(x − ν)TΣ−1(x − ν)

= c1 −
1
2

1

1 − ρ2

{
(x1 − ν1)

2

σ 2
1

+
(x2 − ν2)

2

σ 2
2

− 2ρ
x1 − ν1

σ1

x2 − ν2

σ2

}
,
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for some constant c1 depending on σ1, σ2 and ρ only. With the change of variables r cos θ = x1
and r sin θ = x2 (and by noting that cos2 θ = (1 + cos 2θ)/2, sin2 θ = (1 − cos 2θ)/2 and
cos θ sin θ = (sin 2θ)/2), this logarithmic density becomes

c2 −
1
2

r

1 − ρ2

{
2

(
ρν2

σ1σ2
−

ν1

σ 2
1

)
cos θ + 2

(
ρν1

σ1σ2
−

ν2

σ 2
2

)
sin θ

+
r

2

(
1

σ 2
1

−
1

σ 2
2

)
cos 2θ − r

ρ

σ1σ2
sin 2θ

}
,

for some other constant c2 depending on ν1, ν2, σ1, σ2 and ρ only. This last expression evaluated
at r = 1, together with the re-parameterization (8), shows that the GvM density f (θ |

µ1, µ2, κ1, κ2) is indeed the density of arg{X} | ‖X‖ = 1. •

Applying this result to ρ = 0, σ1 = σ2 leads to κ2 = 0, µ1 = arg{ν} and κ1 = ‖ν‖/σ 2
1 , in

accordance with the discussion preceding Characterization 2.
Hence, in two dimensions, the conditional offset normal distribution is the GvM distribution,

and it has a substantially simpler form than the offset normal, given e.g. in [12, p. 52]. For
p > 2 dimensions, the offset normal distribution was given in the form of an infinite series by
Bingham. It is given e.g. in Watson [15, pp. 226–231]. It is interesting to ask whether there are
other distributions on R2 whose offset or conditional offset distributions are GvMk distributions
with k > 2. Clearly, a GvMk does not come by conditioning a k-dimensional multivariate normal
distribution for ‖X‖ = 1, since this would lead to a distribution on Sk−1.

2.4. Maximum likelihood inference

In this subsection we give several important facts regarding maximum likelihood estimation
and inference for the GvMk model, and with emphasis on the GvM2 and its submodels.

As seen in Section 2.1, the GvMk density re-parameterized by (8) takes the canonical
exponential family form (9). Under this parameterization, a sample of independent angles
θ1, . . . , θn from the GvMk distribution has the logarithmic likelihood function

l(λ | θ1, . . . , θn) =

n∑
i=1

log f ∗(θi | λ) = λT
n∑

i=1

T (θi ) − nK (λ).

From the classical literature on the exponential family (cf. e.g. [2]) we obtain the following
properties:

• l(λ | θ1, . . . , θn) is strictly concave in λ, ∀θ1, . . . , θn ∈ [0, 2π);
• ∂/(∂λ)K (λ) = E[T (θ1)];
• ∂2/(∂λT∂λ)K (λ) = var(T (θ1));
• if the MLE λ̂ of λ exists then it is unique;
• with probability 1, ∃n0 such that ∀n ≥ n0, λ̂ exists;
• the MLE exists iff n−1∑n

i=1 T (θi ) ∈ int conv{T (θ) | θ ∈ [0, 2π)}, where conv{S} denotes
the convex hull of S;

• the MLE exists iff E[T (θ1)] = n−1∑n
i=1 T (θi ) has a solution in λ, and when there is one it

is the unique MLE; and

•
√

n(λ̂ − λ)
D

−→ N (0, I −1(λ)), where I (λ) = ∂2/(∂λT∂λ)K (λ) is the Fisher information
matrix.
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In the above points, all expectations and covariances are taken with respect to the GvMk
distribution.

From transformation invariance, the MLE of µ1, . . . , µk and κ1, . . . , κk under the original
GvMk parameterization (7) are the transformation of λ̂, the MLE under the canonical exponential
family.

Suppose we want to test the null hypothesis H0 : λ ∈ Λ0 against H1 : λ 6∈ Λ0, where Λ0 is a
subset of R2k . Then, the scaled likelihood ratio test statistic for this problem is

Qn = 2

{
l(λ̂ | θ1, . . . , θn) − sup

λ∈Λ0

l(λ | θ1, . . . , θn)

}
.

When Λ0 is determined by q ≤ 2k restrictions of the type r1(λ) = 0, . . . , rq(λ) = 0, then large

sample testing is based on Qn
D

−→ χ2
q (as n → ∞).

Next we study the MLE for some important submodels of the GvM model and use the
following notation: C1n =

∑n
i=1 cos θi , S1n =

∑n
i=1 sin θi , R1n = (C2

1n + S2
1n)1/2, θ̄1 =

arg{C1n, S1n}, C2n =
∑n

i=1 cos 2θi , S2n =
∑n

i=1 sin 2θi , R2n = (C2
2n + S2

2n)1/2, and θ̄2 =

arg{C2n, S2n}, where θ1, . . . , θn is a sample from a common GvM distribution.
The first submodel we consider is the GvM(µ1, µ2, κ1, κ2) under the hypothesis H0 : κ2 = 0,

which is the well-known vM(µ1, κ1) model with κ1 > 0 implicitely assumed. In this case the
MLE of µ1 and κ1 satisfy the two equations

n∑
i=1

sin(θi − µ1) = 0 and

n∑
i=1

{cos(θi − µ1) − A(κ1)} = 0,

where A(κ) = I1(κ)/I0(κ). The first equation leads to S1n cos µ1 = C1n sin µ1, and the only
solution with negative second derivative in µ1 of the log-likelihood is

µ̂1 = θ̄1.

With this the second equation yields

κ̂1 = A(−1)

(
R1n

n

)
;

see e.g. [6, pp. 85–88] or Mardia and Jupp [13, pp. 85–86] for more details. Note that because R1n
is a measure of concentration and A is a monotone increasing function, κ̂1 is indeed a measure
of concentration.

The second submodel we consider is the GvM(µ1, µ2, κ1, κ2) under the hypothesis H0 : κ1 =

0. Now we have a bimodal density with two points of symmetry, one at µ2 and the other at µ2+π .
The MLE has the same form as before, under the vM model, provided that we replace θi by 2θi ,
i = 1, . . . , n, and µ1 by 2µ2. That is, the previous estimating equations lead to the MLE of µ2
and κ2:

µ̂2 =
θ̄2

2
and

κ̂2 = A(−1)

(
R2n

n

)
.
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Finally we consider the circular symmetric submodel with both frequency components,
i.e. under H0 : µ2 = µ1 mod π , which can be re-expressed as H0 : δ = 0, with
δ = (µ1 − µ2) mod π , where κ1, κ2 > 0 are implicitly meant. As seen in Table 1 in the
introduction, this model can have up to four critical points, and exactly four when κ1 < 4κ2. An
interesting situation arises when κ1 and κ2 are known. Then the MLE of µ1, denoted µ̂1, satisfies

n∑
i=1

κ1 sin(θi − µ̂1) + 2κ2 sin 2(θi − µ̂1) = 0.

This equation can be compactly re-expressed as

κ1 R1n sin(θ̄1 − µ̂1) + 2κ2 R2n sin 2(θ̄2 − µ̂1) = 0, (14)

which has two solutions, or also in terms of x = cos µ̂1 and y = sin µ̂1 ∈ [−1, 1] as

4κ2 R2n sin θ̄2 cos θ̄2 + κ1 R1n sin θ̄1x − κ1 R1n cos θ̄1 y − 8κ2 R2n sin θ̄2 cos θ̄2 y2

− 4κ2 R2n(1 − 2 sin2 θ̄2)xy = 0.

From (14) we can see that in general, even for fixed κ1 and κ2, there is no explicit solution for
the MLE of µ1, and this MLE is neither θ̄1 nor θ̄2.

3. Numerical illustration

The following example shows the effectiveness of the GvM model when applied to some
data sets from a real and recent problem. The data sets are taken from ArcticRIMS (A Regional,
Integrated Hydrological Monitoring System for the Pan Arctic Land Mass) at the WWW address
http://rims.unh.edu. The main goal is to provide a regular monitoring of Pan Arctic water budgets
and river discharge to the Arctic Ocean. The geography and dynamics of water across this region
are important elements of the larger Earth system. This study is important given the growing
evidence of the vulnerability of the Arctic climate and terrestrial biosphere to global change.
Wind directions measured at several locations are among the important variables of this project.
For our illustration, we selected the wind directions measured on four different sites at continental
level: the Pan Arctic, the Europe, the Greenland and the North America basins. At each of these
locations, wind directions were measured daily from January to December 2005. We fit the GvM
model to these four data sets, of the four locations during 2005, by computing the MLE. This
can be efficiently done with the help of Matlab’s routine fminsearch. We minimize minus the
logarithmic likelihood. To avoid boundary problems, we minimize with respect to the logarithms
of the concentrations. The default options of fminsearch are used and the starting values for
all parameters are simply taken equal to zero. The selected data sets and the related Matlab
programs are available at http://www.stat.unibe.ch/˜gatto). The MLE for the four data sets are
the following. For the Pan Arctic basins we have

µ̂1 = 4.5055, µ̂2 = 0.9822, κ̂1 = 0.8110 and κ̂2 = 1.9897.

For the Europe basins we have

µ̂1 = 4.2330, µ̂2 = 0.8530, κ̂1 = 0.2781 and κ̂2 = 1.6028.

For the Greenland basins we have

µ̂1 = 4.7875, µ̂2 = 0.9523, κ̂1 = 3.7756 · 10−5 and κ̂2 = 1.2119.

http://rims.unh.edu
http://www.stat.unibe.ch/~gatto
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Fig. 3. Daily wind directions in four Arctic basins in the year 2005.

For the North America basins we have

µ̂1 = 4.9710, µ̂2 = 1.0082, κ̂1 = 0.3440 and κ̂2 = 1.8601.

To assess the fit of the GvM model, for each data set we superpose the histogram of the 365 wind
directions onto the GvM density with the parameters estimated by MLE. Fig. 3 shows that the
GvM model provides very good summaries of these four real data sets. Obviously a simple vM
density would not lead to accurate fits. Even if a mixture of two vM may also lead to good fits,
such a mixture does not have the nice theoretical properties of the GvM and the estimation is
presumably more complicated than with our GvM model. It is known that the likelihood of the
mixture of vM(µ1, κ1) and vM(µ2, κ2) is unbounded: if for example µ1 is equal to one of the
observations and if κ1 tends to infinity, then the likelihood will tend to infinity.

4. Conclusion

In this article we formally introduce the Generalized von Mises distribution which allows for
much greater flexibility than the currently used von Mises or Circular Normal distribution, while
retaining several important properties such as belonging to the exponential family, a relationship
with the normal distribution, and while having maximum entropy. We study several important
features of this distribution and establish some important properties and characterizations. We
finally show the effectiveness of this model with recent data from meteorology.
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(2003) 333–355.
[6] S.R. Jammalamadaka, A. SenGupta, Topics in Circular Statistics, World Scientific Press, 2001.
[7] O. Johnson, Information Theory and the Central Limit Theorem, Imperial College Press, 2004.
[8] A.M. Kagan, Y.V. Linnik, C.R. Rao, Characterization Problems in Mathematical Statistics, Wiley, 1973 (Translation

of Russian original text).
[9] S. Kato, K. Shimizu, Dependent models on two tori, cylinders and unit discs, Technical Report, Keio University,

Japan, 2004.
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