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Abstract

Hypofractionated stereotactic body radiotherapy treatments (SBRT) have demonstrated impressive 

results for the treatment of a variety of solid tumors. The role of tumor supporting vasculature 

damage in treatment outcome for SBRT has been intensely debated and studied. Fast, non-

invasive, longitudinal assessments of tumor vasculature would allow for thorough investigations of 

vascular changes correlated with SBRT treatment response. In this paper, we present a novel 

theranostic system which incorporates a fluorescence molecular imager into a commercial, 

preclinical, microCT-guided, irradiator and was designed to quantify tumor vascular response 

(TVR) to targeted radiotherapy. This system overcomes the limitations of single-timepoint 

imaging modalities by longitudinally assessing spatiotemporal differences in intravenously-

injected ICG kinetics in tumors before and after high-dose radiation. Changes in ICG kinetics 

were rapidly quantified by principle component (PC) analysis before and two days after 10 Gy 

targeted tumor irradiation. A classifier algorithm based on PC data clustering identified pixels with 

TVR. Results show that two days after treatment, a significant delay in ICG clearance as measured 

by exponential decay (40.5±16.1% P=0.0405 Paired t-test n=4) was observed. Changes in the 

mean normalized first and second PC feature pixel values (PC1 & PC2) were found (P=0.0559, 

0.0432 paired t-test), suggesting PC based analysis accurately detects changes in ICG kinetics. 

The PC based classification algorithm yielded spatially-resolved TVR maps. Our first-of-its-kind 

theranostic system, allowing automated assessment of TVR to SBRT, will be used to better 

understand the role of tumor perfusion in metastasis and local control.
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I. INTRODUCTION

The tumor vasculature is a critical component of the tumor microenvironment and is 

responsible for nutrition and oxygen supply to regions of malignant growth [1]. In addition 

to oxygen and nutrient supply, the tumor vasculature plays a direct role in supporting 

metastasis by allowing tumor cells to enter the blood and circulate to different regions of the 

body [2]. During tumor development, vasculature becomes spatially heterogeneous due to 

the uncontrolled growth of tumor cells and angiogenic signaling [3]. The heterogeneous 

distribution of tumor blood vessels and physical changes of tumor vasculature result in 

abnormal blood perfusion compared to non-malignant vasculature [4]. How the tumor 

vasculature contributes to disease progression and how vascular changes during treatment 

affect treatment outcomes are areas of intense study.

Stereotactic body radiotherapy treatment (SBRT) uses a reduced number of treatment 

fractions at higher doses (hypofractionation), typically 10-20 Gy/fraction to treat solid 

tumors. Compared to conventional fractionation, hypofractionation has significantly 

decreased the relative risk of local tumor progression for patients with squamous, non-small 

cell lung cancer resulting in a 27% reduction in relative risk of local progression [5]. 

Additionally, SBRT has been shown to be tolerable and effective in patients for a variety of 

solid tumor cancers [6]. There has recently been much debate over whether the traditional 

linear quadratic model, which assumes cell death arises from ionizing radiation based DNA 

damage, adequately accounts for the success of SBRT or whether tumor vascular damage 

contributes to indirect tumor cell death through a loss of blood supply to the tumor [7]–[10]. 

Histological evaluations have provided evidence for extensive vascular damage following 

SBRT treatment, however histology is unable to perform non-invasive longitudinal 

assessments directly measuring blood perfusion. Since tumor recurrence with SBRT is still a 

common problem, longitudinal assessments of blood perfusion would be desirable because 

they would allow for direct correlation between tumor vascular response (TVR) and 

treatment outcome over time. Additionally, while the evaluation of the whole tumor is 

needed due to vascular heterogeneity, it is time consuming when analyzed by histology. Fast, 

low-cost, non-invasive techniques that allow for whole tumor measurements of vascular 

function would be able to correlate TVR to treatment response. This would enable TVR to 

be investigated as a prognostic factor for treatment outcome in SBRT and enable a better 

understanding of the role of TVR in SBRT tumor control.

One such technique that is well suited to obtain measurements of tumor blood perfusion is 

near-infrared fluorescence imaging [11], [12], which is able to image the vascular system in 

vivo and estimate its functional perfusion [13]–[15]. In particular, dynamic fluorescence 

imaging (DynFI), which is based on time-series analysis of a given fluorescent probe’s 

pharmacokinetics, can be used to accurately and quantitatively measure functional 
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parameters such as perfusion rate and vascular permeability for many clinical and preclinical 

applications [16]–[21]. A fluorescent agent commonly used for DynFI is indocyanine green 

(ICG). After injection, ICG rapidly binds to albumin making the kinetics of ICG fully 

governed by the temporal dynamics of albumin in vivo [22]. Using the FDA approved near-

Infrared fluorescent agent ICG, DynFI has been used to characterize perfusion and vascular 

permeability in solid tumors making it suitable for monitoring TVR in SBRT tumor 

treatments [23], [24].

Acquiring spatiotemporal DynFI data using CCD camera-based systems typically yields 

extremely large data sets (i.e., number of pixels x dynamic time points) that require time 

consuming analysis. This hampers the practical application of this technique [25]. Analysis 

time can often be shortened by temporal or spatial dimension reduction. Typically, temporal 

dimension reduction is achieved through extraction of important temporal features (blood 

flow index, perfusion rate, mean transit time, etc.) that characterize pharmacokinetics [19]. 

However, the use of these temporal features is limited by their susceptibility to noise and 

motion artifacts [21]. Spatial dimension reduction of DynFI data is usually achieved by 

averaging DynFI signals within the tumor region, discarding any spatial information. A 

more elegant way to assess the entire DynFI spatiotemporal data is to extract pixel-specific 

pharmacokinetic signatures by using principle component analysis (PCA) [21], [25]–[29]. 

Analysis using PCA can be performed using pharmacokinetics of a wide variety of imaging 

agents in many tissues. PCA enables a rapid automated analysis of longitudinal data to 

quantitatively measure TVR, while still preserving spatial information.

In this paper, we describe a first-of-its-kind theranostic CCD-based DynFI/microCT-guided 

targeted irradiator that longitudinally assesses TVR to SBRT treatments in tumor bearing 

mice. A rapid, automated data analysis method using PCA of the spatiotemporal data is used 

to extract pharmacokinetic information of ICG. Differences in the first and second principle 

component feature (PC1 & PC2) of ICG pharmacokinetics were found in tumors 

immediately before and two days after 10 Gy SBRT. The dose of 10 Gy was chosen as early 

changes in tumor vasculature have been seen at a wide range of doses (5-20 Gy/fraction) 

[30], [31]. Pretreatment and posttreatment data were plotted as a scatterplot in PC1-PC2 

space and a classification algorithm based on a 99.9% confidence covariance ellipse was 

used to identify responding (TVRpos) and non-responding (TVRneg) tumor pixels for rapid 

spatial mapping of tumor heterogeneity. Results demonstrate the ability of the theranostic 

system to both observe changes in ICG pharmacokinetics and perform fast, automated 

assessments of vascular response to SBRT.

II. MATERIALS AND METHODS

A. ANIMAL AND TUMOR MODEL

Four 10-15 week old C57/B6 mice (Strain 000664, The Jackson Laboratory) were 

subcutaneously injected in the right thigh muscle with aggressive murine oral cavity cancer, 

MOC2 cells (1 × 105 cells) [32] suspended in phosphate buffered saline (100 μl). Mice were 

injected 21 days before the start of imaging and treatment. Before imaging, the hair on the 

thighs and backs of the mice was removed using hair depilatory cream (Church & Dwight 

Company). During the treatment and imaging sessions, mice were anesthetized initially with 
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3% isoflurane mixed with O2 at a flow rate of 2 L/min, then maintained with 1.5% 

isoflurane at an O2 flow rate of 1.5 L/min. For imaging, an intravenous catheter was inserted 

into the tail vein to administer ICG (4.7 μg, approximately 0.19 mg/kg) suspended in saline 

(75 μ l) during image acquisition. Pretreatment imaging was acquired just prior to radiation 

treatments. All mice fully recovered after the imaging procedure. Tumors volumes were 

measured before and two days after treatment by calipers. Tumor volume was calculated 

using the formula volume = length *width2/2. All animal experiments were performed 

according to City of Hope guidelines and approved by the Institutional Animal Care and Use 

Committee.

B. INSTRUMENTATION AND DynFI DATA ACQUISITION

The theranostic system was built by incorporating a CCD-based fluorescence molecular 

imaging (FMI) system [33] into a commercial preclinical X-ray CT image-guided radiation 

therapy platform (X-RAD SmART, Precision X-Ray, Inc.). The FMI system uses a 785 nm 

laser diode (75 mW, Thorlabs) for ICG excitation. The laser diode mounts and drivers were 

integrated into the system gantry (Fig. 1). The drivers were operated in constant power mode 

to ensure output stability during the experiments. The laser output was collimated then sent 

towards an illumination point below the mouse using a galvano-mirror scanner. A cooled 

CCD camera (Perkin Elmer, Cold Blue) was positioned directly above the mouse to perform 

transillumination data acquisition. A sigma MACRO 50 mm F2.8 lens was coupled to the 

CCD camera, providing 2280 pixels × 1528 pixels images. The pixels were binned during 

acquisition using a factor of 4, resulting in 570 pixels × 382 pixels images with a pixel size 

of 0.2 mm × 0.2 mm. A computer-controlled filter-wheel (Tofra, Inc.) was installed between 

the CCD camera body and the lens. Two 830 nm band-pass filters (MK Photonics) were 

stacked and used to eliminate excitation light at 785 nm. This filter combination was used to 

minimize the strong excitation leakage with a maximum transmission rate at the fluorophore 

emission wavelength (830 nm).

A DynFI series of 46 images was acquired with an integration time of 10 seconds per frame. 

ICG was injected at the start of acquisition of the 5th frame. The four frames acquired before 

ICG injection were averaged and used as baseline, which was subtracted from the remaining 

42 DynFI images. This was used to correct for both the residual fluorescence signals and the 

excitation light leakage through the rejection filters [34].

C. MicroCT IMAGE ACQUISITION AND SBRT TREATMENT

The X-ray irradiation was performed using the preclinical X-ray microCT image-guided 

radiation therapy platform (X-RAD SmART). MicroCT images were acquired (0.1 mm × 

0.1 mm) using a low-dose of radiation (⪡10 Gy). After CT images were acquired, a Monte 

Carlo-based planning treatment simulation tool was used to establish and deliver the optimal 

image-guided 10 Gy treatment to the tumor region of interest (ROI).

D. KINETICS FEATURES EXTRACTION AND VISUALIZATION

PCA was performed using the “pca” Matlab® function, on the DynFI fluorescence signals 

within the tumor ROI and kidney ROI. Before quantifying the induced PC variation, the 

pretreatment and posttreatment pixel PC feature values were normalized by subtracting their 
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corresponding mean pretreatment PC feature value. An RGB image was made by assigning 

the normalized PC1 and PC2 feature values to the red channel and blue channels, 

respectively [25]. The green channel was set to zero. Each of the channels was individually 

converted to gray scale using the “mat2gray” Matlab® function then normalized to 255. 

Finally, the ROIs of the resulting PC-RGB image were superimposed on the corresponding 

gray scale ambient-light images.

E. DATA REPRESENTATION AND STATISTICS

The 99.9% confidence covariance ellipse is defined based on the covariance of data. Its two 

major axes are calculated from the two-dominant data eigenvectors, while their magnitude 

corresponds to data eigenvalues. The orientation of the ellipse is given by the angle between 

the major eigenvector and the x-axis.

Significance measurements were calculated using Prism (V.7.01, GraphPad). A p-value of 

0.05 or lower was considered significant. For box and whisker plots, boxes represent the 25th 

and 75th percentile, and error bars indicate the min and max of the data. All paired t-tests are 

performed using two-sided difference based statistical testing.

III. RESULTS

A. SBRT-INDUCED CHANGES IN PHARMACOKINETICS OF ICG

To monitor and quantify TVR after high-dose irradiation, we acquired a series of 46 DynFI 

images before and 48 h post-irradiation of the tumor. The DynFI fluorescence images were 

presented in logarithmic scale because of their large gray-level dynamic range (Fig. 2a,c). 

We first analyzed the DynFI images simply using mean dynamic fluorescence signals 

obtained over the tumor ROI. Tumor ROI’s from pre and two days posttreatment imaging 

were automatically segmented on the respective pre and posttreatment microCT images. The 

multimodal system is fully integrated enabling fast, accurate and automated co-registration 

of DynFI and microCT ROIs.

A delay in both tumor uptake and tumor clearance of ICG two days after SBRT treatment 

can be observed (Fig. 2b), while no such delays are observed in the kidney (Fig. 2d). 

Additionally, the size of tumors did not change during treatment (336.1±152.7 and 

320.9±155.7 mm2, P = 0.5971 Paired t-test) suggesting any changes in ICG kinetics were 

related to tumor biology rather than tumor geometry changes. Post-irradiation tumor ICG 

kinetics showed a slight delay during the ICG uptake compared to the pre-irradiation 

kinetics. However, a considerable delay was seen in the ICG clearance from the tumor. 

Significant increases in averaged ICG retention was observed in tumors, resulting in a 

40.5±16.1% decrease in the exponential decay parameter of ICG after it had reached peak 

concentration (P = 0.0405 Paired t-test n = 4). As control, we analyzed the DynFI signal 

from the left kidney. The kidney ROI was determined by comparison to an open source 

mouse atlas [35]. No significant variation in the half-life of ICG decay was seen for the 

kidney ROI (Fig. 2d). This suggests that changes in ICG dynamics of the tumor after 

treatment are due to vascular damage with SBRT therapy [36].
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B. SBRT-INDUCED CHANGES IN THE PRINCIPLE COMPONENTS

Taking DynFI pixel data (Fig. 3a,c), we obtained a simplified spatiotemporal feature 

representation by PCA analysis. Only the first two projected PC features (PC1 and PC2) 

were evaluated, as they were shown to be proportional to the area under the kinetic curve 

and to the exponential decay parameter of ICG, respectively [21]. Additional PC features 

were discarded since they were sensitive to image noise and have not been shown to directly 

represent ICG kinetics [21]. Spatial mapping of the DynFI spatiotemporal pharmacokinetics 

of ICG using PC space mapping allowed for a straight-forward observation of SBRT-

induced TVR (Fig. 3b,d). A clear change in normalized PC1 and PC2 feature values for the 

tumor are seen after SBRT treatment, while no change is observed for kidney (Fig. 3e,f).

Nearly significant and significant differences in mean normalized whole-tumor PC feature 

values were observed for PC1 (P = 0.0559 Paired t-test n = 4) and PC2 (P = 0.0432 Paired t-

test n = 4) respectively (Fig. 4a-d).

C. AUTOMATED ASSESSMENT OF SBRT TVR RESPONSE

After observing distinctions between PC feature values before and after SBRT tumor 

treatments, we sought to create an automatic analysis process to quantify the degree of 

SBRT-induced TVR. To do this, pretreatment and posttreatment scatter plots of normalized 

PC1 and PC2 feature values were generated.

Tumor pixels were classified as non-responding, partially responding, or fully responding 

based on their pretreatment and posttreatment normalized PC1 and PC2 feature values 

unlikelihood. To perform this classification, a 99.9% confidence covariance ellipse was 

calculated for the pretreatment tumor pixels [37]. Posttreatment tumor pixels were identified 

as tumor vascular response positive (TVRpos) if they were outside of the confidence ellipse 

or tumor vascular response negative (TVRneg) if they were inside the confidence ellipse.

The classification algorithm identified mouse two as a partial-responder with 86.5% of 

pixels being TVRpos (Fig. 5a) and mouse three was as a complete responder with 100% 

TVRpos pixels (Fig. 5c). The spatial location of TVRpos and TVRneg pixels were displayed 

for rapid identification of TVR spatial heterogeneity (Fig. 5b,d). Results demonstrate the 

ability of the classification algorithm to effectively measure TVR caused by SBRT.

IV DISCUSSION AND CONCLUSION

In this work we have demonstrated the effects of SBRT on ICG tumor perfusion using 

longitudinal in vivo imaging and shown that SBRT leads to delayed clearance of tumor 

bound ICG. To our knowledge this is the first preclinical report using a multimodal 

theranostic system combined with automated analysis to monitor spatiotemporal TVR to 

SBRT. The effects of SBRT were quantified using principle component analysis in order to 

assess TVR heterogeneity. Significant increases in PC1 and decreases in PC2 feature values 

were seen in treated mice. Principle component analysis was used to identify tumor pixels as 

TVRpos and TVRneg. Data acquisition and principle component analysis could be performed 

right after treatment and allows for rapid treatment and imaging without moving the animal. 

Rapid data acquisition and analysis of early TVR will help determine whether additional 

Nouizi et al. Page 6

IEEE Access. Author manuscript; available in PMC 2020 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



treatments are needed for tumor control. The developed system will enable correlation of 

TVR to metastatic and local tumor control during radiation therapy.

Dynamic Fluorescence imaging of ICG can detect changes in vascular perfusion. This is 

crucial in solid tumors where the efficiency of blood transport through the tumor likely 

contributes to the number of circulating tumor cells (CTCs) in the blood, potentially 

contributing to metastasis. The presence of functional tumor vasculature plays an integral 

role in the mobilization of CTCs [2]. The number of CTC’s after radiation therapy are 

elevated, but significantly less in patients with hypofractionated radiation therapy compared 

to conventional radiation therapy [38], [39]. However the degree to which radiation therapy 

contributes to metastasis through the migration of irradiated tumor cells is of some debate, 

as irradiation has been shown to promote the growth of previously dormant metastatic clones 

through cellular signaling [40], [41]. Longitudinal observation of tumor vascular perfusion 

correlated to both CTCs and metastatic occurrence after SBRT will give further insight into 

this area.

The impact of vascular function on local tumor control post SBRT has recently been of 

much debate. Vascular damage with high-dose SBRT contributes to hypoxia and nutrient 

deprivation, but the degree to which this contributes to local tumor control has not been fully 

explored. It has been shown that high-dose single fraction SBRT has led to indirect cell 

death in multiple preclinical tumor types. Poor oxygen and nutrient perfusion as well as 

reperfusion injury have been proposed as causes of indirect cell death [9], [42]. However, 

other studies have observed that endothelial/stromal cell radiosensitivity had no influence on 

the amount of radiation needed to induce local tumor control of xenografted human tumors, 

but affected the regrowth rate of relapsed tumors [43]. Other studies have observed similar 

findings, but also found that increased tumor cell radiosensitivity resulted in increased tumor 

control [44], [45]. These studies demonstrate the importance of accurate measurements of 

vascular perfusion for radiation therapy related studies. Direct correlation between vascular 

perfusion and tumor control should be performed in multiple tumor types to understand the 

effects of radiation-induced TVR.

Current imaging modalities used to assess TVR in preclinical studies have some limitations 

[30]. For example, dynamic contrast-enhanced (DCE)-MRI [46] and Nuclear Imaging [47] 

are expensive and require constraining scheduling for longitudinal preclinical imaging 

studies. Although already integrated into the irradiator, CT is limited by its low sensitivity 

and raises dose accumulation concerns [48]. Ultrasound, is user dependent, requires direct 

tissue contact and dedicated instrumentation [49]. As an alternative, we have presented a 

simple, low-cost optical technique as an add-on to a commercial CT-guided preclinical 

irradiator for in vivo monitoring of the spatiotemporal TVR, filling the need for non-invasive 

imaging tools to assess vascular changes longitudinally and spatially across the tumor in 

response to SBRT.

In conclusion, DynFI imaging will allow for observations of early TVR and tumor perfusion. 

This will enable a better understanding of how tumor vasculature affects metastasis, tumor 

growth, and local tumor control. Our recent study revealed radiation-induced vascular 

alterations may modulate hypoxia, adversely affecting tumor control probability in 
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successive fractionated treatments [50]. This system will provide a novel tool to observe the 

complex dynamics of tumor perfusion and its impact on tumor control for conventional and 

hypofractionated radiation therapy.
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Fig. 1. 
Diagram of the theranostic system. The X-ray source is used to both perform CT imaging 

and high-dose irradiation. For DynFI, a CCD camera is positioned above the mouse while it 

is illuminated from below using a 785 nm laser and an XY Galvano-mirror scanner. A 

temperature control unit is used to maintain the laser operating temperature. NI USB DAQ: 

National Instrument USB data acquisition card. The dashed lines indicate USB connections.
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Fig. 2. 
Representative ICG Kinetics pretreatment (a) and posttreatment (c) gray scale ambient-light 

images (left) and DynFI images acquired at 40 s, 60 s, 130 s, 350 s, and 450 s superimposed 

onto gray scale ambient-light images (right). DynFI images are presented using a 

logarithmic-scale for better visualization. Ambient-light images (left) show the locations of 

the tumor ROI (solid-line) and the kidney ROI (dashed-line) used for analysis. The red dot 

represents the position of the transilluminated laser excitation source. The plotted mean 

fluorescence intensity values of DynFI data for the tumor ROI (b) and the kidney ROI (d) for 

pretreatment (blue) and two days posttreatment(red). Error bars represent standard deviation.
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Fig. 3. 
PC feature-based analysis of the DynFI data obtained from the mouse shown in Fig. 2. 

Normalized time-series of ICG fluorescence intensity for all individual pixels in the 

pretreatment tumor ROI (2838 pixels) (a) and the two days posttreatment tumor ROI (2853 

pixels) (c). PC-RGB images of normalized PC1 and PC2 feature values superimposed on 

ambient-light images are shown before (b) and two days after (c) 10Gy SBRT treatment. 

The normalized PC1 and PC2 feature values were assigned to the red and blue channels, 

respectively. Green intensities were set to zero. A clear change from blue to red can be seen 

from pretreatment to two days posttreatment, showing TVR. Box and whisker plots of 

normalized PC feature values for PC1 (e) and PC2 (f) tumor and kidney ROIs from the 

corresponding pretreatment and two days posttreatment DynFI data. An increase in 

normalized PC1 feature values and a decrease in normalized PC2 feature values are seen in 

the tumor posttreatment, while no change is seen for kidney.
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Fig. 4. 
Box and whisker plots comparing the pre and two days posttreatment normalized PC1 (a) 

and PC2 (b) feature values for all four mice. The mean whole-tumor normalized PC1 (c) and 

PC2 (d) tissue values are shown along with the corresponding paired t-test.
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Fig. 5. 
Automated classification of TVR using a confidence covariance Ellipse algorithm. Scatter 

plots of normalized PC1 and PC2 feature values for mouse two (a) and mouse three (c) are 

shown. The normalized PC feature values from pretreatment images (PRE) are shown as 

black dots. The classification algorithm calculated a 99.9% confidence covariance ellipse 

(dashed line) from pretreatment data, which was used to classify the posttreatment pixels as 

TVRpos (blue) and TVRneg (red). Ambient-light posttreatment images of mouse two (b) and 

mouse three (d) with the overlaid tumor ROI pixels classified as TVRpos (blue) and TVRneg 

(red) are shown.
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