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Abstract— Efficient and complete data collection is one of the
most important tasks in wireless ad-hoc sensor networks. Addi-
tionally, the collection of the full data set should be performed
in the most resource efficient way, thus prolonging the battery
lifetime of the network. We introduce a new approach for energy
efficient data collection through the use of staggered sampling.
Staggered sampling means that at each sampling moment (epoch)
only a small percentage of sensors collect (sample) data. The
proposed approach leverages on statistical relationships between
samples taken from different sensors and/or at different epochs
for the prediction of the non-sampled sensor data.

The main goal of the approach is to ensure complete collection
of data during a periodic cycle while minimizing the number of
sensor readings collected at any point in time. Complete data
collection is confirmed by ensuring that each sensor is either
sampled at each epoch or the data sample can be accurately
recovered though model prediction of the sampled sensors. The
proposed approach consists of two main phases. First, efficient
modeling of the prediction relationship between two sensors using
kernel smoothing over different time lags is performed. Second,
the selection of epochs at which each sensor is to sample the data
is determined. A 0-1 integer linear programming formulation is
used to address this NP-complete assignment problem optimally
on relatively large instances. We demonstrate the effectiveness
of the approach on traces from actually deployed networks for
sensor of two modalities: temperature and humidity.

I. INTRODUCTION

One driver application for wireless ad-hoc sensor networks
is environment and event monitoring. A primary requirement
of this type of application is accurate and complete observ-
ability of the environment by the sensors. Simultaneously, all
the observation should be collected while minimizing network
resources, and therefore prolonging the overall lifetime of the
system. The lifetime of the network and each individual sensor
is mainly dependent on the amount of sampling and therefore
generated communication traffic at the node [1], [2]. In order
words, the objective is to sample sensor data at each node as
rarely as possible while being able to calculate any missing
samples from measurements taken at other nodes. Until now,
all of the previous proposed sampling schemes [3], [4], [5]
for sensor networks assumed simultaneous sampling (identical
epochs) at all nodes. Our goal is to demonstrate that by
relaxing this requirement and utilizing time shifted data for
data recovery significant improvement in the lifetime of the
network can be achieved while maintaining a user specified
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level of accuracy.

In order to create efficient protocols for staggered sampling,
we have developed a two-phase approach for minimizing
energy consumption by reducing the required amount of
data communication and maximizing the available time for
applying sleep methodologies [6], [7]. If we assume that the
user specifies that data has to be collected periodically every W
time units with precision accuracy of L; error < p%, staggered
sampling schedules data collection for each sensor in such a
way that that missing data at each sensor at each epoch can
be calculated using statistical models and data collected at
the same or other sensors in recent epochs. Hence, there are
two main technical challenges for the effective application of
staggered sampling: (i) the development of accurate prediction
models; and (ii) the creation of a schedule as to when each
node will sample in order to maintain the specified fidelity for
all data streams.

In the first phase of our approach, the initial set of data
samples at each sensor is collected in order to form a training
set. This training set is used to build smooth and monotonic
prediction models of the sensor data between pairs of sensors
using non-parametric kernel smoothing. The prediction models
are created not only for prediction at the same epoch, but
also for phased (time-shifted) prediction of the data at one
sensor from another sensor or itself. In the second phase,
the prediction models are used to determine the maximum
phase difference between all pairs of sensors while maintaining
accurate predictions. An integer linear programming (ILP)
formulation is generated in order to find the epochs for
sampling each sensor while ensuring all sensor data can be
predicted from the sampled data with the specified accuracy.

II. RELATED WORK

Before we start the technical exposition, we briefly survey
the most directly related work. Akyildiz et al. [8] provides an
introductory survey on sensor networks research. A number
of techniques have been proposed to address one of the
key issues, power conservation, at all levels of the design
process from communication protocols [6] to digital signal
processing [9]. Willet et al. introduced backcasting in [4]
where adaptive sampling is applied for efficient field esti-
mation. In [3], an adaptive sampling approach is proposed
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which varies the sampling rate at each sensor and therefore
adapting to the streaming-data characteristics of the sensor.
The use of mobile sensor nodes are used to determine sampling
density required in various environmental regions in [5]. Their
Fidelity Driven Sampling actively seeks to minimize error
without prior knowledge of the variable field. All of the
proposed sampling schemes assumed simultaneous sampling
at all nodes. Our goal is to demonstrate that by relaxing
this requirement and using time-shifted data for data recovery
we can improve the lifetime of the network by more than
an order of magnitude while maintaining the user specified
level of accuracy. The proposed approach utilizes a 0-1 ILP
formulation [10] which is often used for addressing NP-
complete optimization problems. A number research problems
in sensor networks have been addressed using integer linear
programming formulations including broadcast trees [11] and
routing [12].

III. STAGGERED SENSOR SAMPLING

In this work a standard model of sensor data flow, where
all data collected in the network is processed at the data
sink (aka gateway or fusion center), is assumed. The data
sink has unlimited energy constraints and sufficient processing
resources. Additionally, the community standard, where the
main component of energy consumption is communication, is
also assumed. In accordance with proposed sleep mechanisms,
the assumption is made that is a sensor node is not sam-
pling data, it is in the minimal energy consumption state, ie.
sleeping. Finally, the staggered sampling approach presented
in this work is sensor data-driven. This means that it has to be
conducted on data collected from actual deployed networks,
and this data must be at least partially cross-correlated and
predictable. The analysis in this work was performed using
the sensor network and sensor data collected at Intel Berkeley
Labs, which is a dataset which satisfies these conditions.

The staggered sampling approach is divided in two phases.
First, efficient modeling of the prediction relationship between
pairs of sensors using kernel smoothing over different time
lags is performed. We assume that a data training set is
collected and processed off-line in order to build the phase
prediction models (see Section IV). The maximum phase
delay for each sensor prediction pair is determined by
examining the error in each phased prediction model, the
model with the largest phase which still satisfies the specified
user accuracy (p%) for prediction is then selected as the
maximum delay. In the second phase, the staggered sampling
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problem is formulated and addressed as an ILP problem (see
Section V). Formally, the staggered sampling problem is
defined as follows.

Problem: Staggered Sampling Problem

Instance: An ixj integer matrix R of “maximum rephasing”, a positive
integer W for “window size”, and a positive integer S of “maximum
samples”.

Question: Is there an assignment of each sensor i to at most S time steps
in W s.t. each sensor i at each time step t; in W is assigned to t; or at least
one sensor j at ty where (t; —1t;)%W < R;;?

The staggered sampling problem is an NP-complete prob-
lem. The Domatic Number Problem [13] is a special case of
the staggered sensor sampling problem.

IV. MODELING

In order to evaluate the suitability of the data traces for
staggered sampling, we first conducted exploratory statistical
analysis to evaluate the potential for time-shifted accurate
statistical modeling. Figure 1 shows linear cross-correlation for
readings at a typical pair of sensors. In the first figure, we can
observe the diurnal trends of temperature data. Similar cross
correlations were obtained for humidity. The last subfigure
indicates that cross-correlations often changes at a very slow
rate as the time shift increases.

For time-shifted prediction we used an interleaved appli-
cation of kernel smoothing and monotonicity. Smoothing is
important in order to improve the accuracy of the model and
to compensate for otherwise insufficient amounts of data for
some ranges of sensor values. Monotonicity is important in
order to enforce the natural requirements that sensors that
are predicting each other well and are, therefore, exposed to
the same set of stimuli simultaneously increase or decrease
their values as the intensity of the stimuli changes. In order
to simultaneously achieve both smoothness and monotonicity
we iteratively and interchangeably applied kernel smoothing
regression tools and monotonic regression tool.

For kernel smoothing we tried several variants of Nadaraya-
Watson kernel-weighted average with Epanicechnikov, tri-
cube, and Gaussian kernels [14] and selected the one with the
smallest Akaike criterion [14]. For monotonic smoothing we
used Stout’s version [15] of Ayer et al. “pair adjacent violators
(PAV)” algorithm that iteratively replaces each pair of adjacent
segments that violate monotonicity constraint by a new single
horizontal segment that is optimal with respect to the selected
L, norm and removes the violation. We used an L; norm.
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Fig. 2. Interleaved Nadaraya-Watson/PAV modeling for temperature readings
of Sensor 6 predicting Sensor 1 with Delay 3 and 40.
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Fig. 3. L, Prediction Error using interleaved Nadaraya-Watson/PAV modeling
for Sensor 6 predicting Sensor 1.

The procedure is terminated once the PAV algorithm does not
induce any changes.

Figure 2 shows typical resulting smooth and monotonic
models. Figure 3 shows prediction errors for sensors of three
modalities obtained using our modeling approach. We see that
one can predict accurately all three modalities, but humidity
and temperature models are significantly more accurate and
less sensitive to time shifts.

V. INTEGER LINEAR PROGRAMMING APPROACH

In this section we present the integer linear programming
(ILP) problem formulation for addressing the staggered sen-
sor sampling for energy efficiency problem. The problem is
addressed in the scenario where the size of the periodicity
window is known, along with the maximum number of al-
lowable samples per sensor in the window. In addition to this
information, it is assumed that the prediction ability of all
pairs of samples is known with consideration for the delay
between the predictor and predicted sensor sample. The goal
is to assign the minimum number of samples per sensor in
the window such that all sensor readings for all sensors at
each epoch are either measured or predictable from measured
samples.

ILP uses several sets of known constants. The first set of
constant values, R;j, defines the duration (delay) for which
of one sensor has the ability to predict another sensor. The
second constant value indicates the length of the considered
periodicity window, W.

Rij
w

max re-phasing for sensor j to predict i
size of periodicity window
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We use two sets of variables and a single variable. The first
set, xjx, denotes the assignment of sensor i to measure a sensor
reading at epoch k. We define a set of variables which specify
if a sensor reading i is predictable by any sensor at epoch k.
In order for sensor i to be predictable, at least one sensor j
which can predict i (ie. R;; > 0) must be sampled within R;; of
epoch k. The final variable, /, is used to represent the largest
number of samples taken by any sensor in the window.

Our ILP formulation uses three sets of constraints. The first
set enforces a necessary constraint to calculate the maximum
number of samples taken by each sensor for the objective
function. Therefore, Eq. (1) ensures that variable / is at least
the sum of samples taken by each sensor. Additionally, at each
epoch in the window W each sensor must be either sampled
or predictable from another sensor. This constraint is specified

by Eq. (2).

for all i : ink <l (D)
for all i,k : x —:pik >1 2)
Ri;
for all i,k : Z%xj[(k,)%w] > pik (3)
" Y =MIN(I) 4

The final constraint ensures that the predictability variable
for each sensor at each epoch is assigned properly (ie. pj =1
if and only if at least one sensor j can predict sensor i within
the re-phasing value R;;). For each sensor i at each possible
epoch k the predictability variable, pjy., is calculated. In the
on-line case, which we are considering, the value is predicted
from previously sampled sensor readings. Therefore, for each
possible predictor sensor j if j is sampled at any epoch
between kK —R;; and k then pj is predictable. To formulate
this constraint we calculate the sum of all sampled sensors x;
which occur within the time period t=(k —R;;),... k. If there
is no sensor reading which can be used to predict sensor i at
epoch k (ie. summation is zero), then p; must be assigned
to zero. However, if the summation is one or more, then pj;
can be assigned to zero or one. This is acceptable because Eq.
(2) will ensure that sensor i is sampled at time k or that it is
predictable, and therefore forcing pj to one if necessary.

Note that in Eq. (3) we denote the calculation of the
time period for predictability of each sensor using modulus
W. Since W is the duration of the periodicity window, it
is acceptable for a sensor to be predicted from a previous
window under the assumption that the epoch it is within the
specified re-phasing. Therefore, the modulus of time position
of the sampled sensor reading is taken into account for the
re-phasing.

The main goal of the problem is to determine which
sensor(s) to sample at each of the epochs in the periodicity
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window such that the maximum number of samples taken
by any sensor is minimized. Therefore, the objective function
for the problem is to minimize the largest number of sensor
readings for any sensor, /. By optimizing the problem in this
form, we ensure that no sensor is overly energy drained by
the staggered sampling approach, and prolong the lifetime
of all nodes in the network by distributing the sampling and
prediction as equally as possible over the nodes.

There are three potential scenarios for defining the re-
phasing relationship. Our ILP formulation addresses the on-
line case. When considering prediction from future data sam-
ples only, the only modification to Eq. (3) which is to change
the subscript of X yaw] 1O Xjjir%w] on the left side of
the equation. This modification specifies that the prediction
come from a sample in the future (after the current time
k). In the off-line case, where all data samples are known,
the constraint is the combination of the on-line and future
only case. Specifically, the constraint becomes the double

summation of (X jjx—naw) +Xj{(k+1)%W))-

VI. EXPERIMENTAL RESULTS

In our experimentation of the staggered sampling technique
we used temperature and humidity samples taken from the
Intel Berkeley dataset [16]. Our analysis was performed with
comparison to a base case where each sample can only be
predicted from other samples taken in the same time moment.
All of the ILP formulations were solved using the CPLEX
solver with a maximum runtime of 5 minutes, but almost
all instance running within seconds. Three sets of L; errors
were considered 2%, 3%, and 5%. In addition, three instances
of the dataset were examined: all sensor nodes, a set of
approximately two-thirds of the nodes, and a set of nodes from
one third of the area according to the layout.

In Table I we present the staggered sampling results for
temperature. In the first column we show the number of nodes,
followed by the amount of L; prediction error considered. The
next two columns show the improvement for the base case
where all sensors are used only for prediction of other sensors
in the same epoch. The fifth column shows the amount of
improvement for the staggered sampling approach over the
base case. We see that as the amount of error allowable is
increasing, the savings decreases. This is due to the fact that
with increased model prediction error a higher number of
sensors can predict other sensors over long time-shifts. The
most important result is that even for very low error, 2%,
the staggered sampling approach is capable of performing 20
times better than the standard base case sleeping strategy,
translating into 20 times longer lifetimes for the network.
Analogous results are shown for humidity in the second half
of Table I. For humidity we see the same patterns, occurring
as we increase the allowable error. Humidity overall has
lower improvement over the base case, because humidity
shows a more complex statistical relationship. Nevertheless,
the staggered sampling approach still was able to achieve 12
times more energy savings over the base case.
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# Ly Temperature Humidity

Nodes | Error || Base | SSamp | Ratio || Base | SSamp | Ratio
51 0.02 1 21 21.0 2 22 11.0
34 0.02 2 34 17.0 2 22 11.0
17 0.02 6 120 20.0 4 44 11.0
51 0.03 2 44 22.0 2 22 11.0
33 0.03 4 44 11.0 4 34 8.5
17 0.03 8 42 53 4 34 8.5
51 0.05 24 60 2.5 10 60 6.0
34 0.05 40 200 5.0 10 120 12.0
17 0.05 16 160 10.0 4 44 11.0

TABLE 1

EXPERIMENTAL RESULTS FOR TEMPERATURE AND HUMIDITY.
VII. CONCLUSION

We introduced a staggered sampling approach for energy
efficient data sampling and collection in wireless ad-hoc sensor
networks. It schedules sampling of each sensor in potentially
different moments in such a way that it enables energy
conservation by minimizing the amount of data traffic required
by each sensor node and by enabling periods for entering a
low power sleep state. The two-phase approach first builds
smooth and monotonic prediction models for sensor prediction
for various time lags using a training set of sampled data.
Secondly, the models are used to build an ILP formulation that
optimally determines the staggered sampling assignments for
a time period and maximum number of samples per node such
that each data point is obtainable within a specified accuracy
level. The effectiveness of the model and approach for energy
savings are evaluated on real-life data traces.
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