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Abstract

A Microlocal Study of Étale Sheaves in Positive Characteristic

by

Tong Zhou

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor David Nadler, Chair

Mikio Sato’s fundamental idea of viewing objects, a priori defined on a space, as living on
the cotangent bundle of that space led to the birth of the subject of microlocal analysis
and spread to other fields of mathematics. It has been applied to and greatly enriched the
theories of D-modules and constructible sheaves in the real or complex analytic context,
with important applications to geometric representation theory and much more. In this
dissertation, we study étale sheaves in positive characteristic from the microlocal point of
view. The main results are: i) generically on a smooth surface, the vanishing cycle form a
local system with respect to the variation of transverse test functions in high enough order
terms; ii) the vanishing cycle of a tame simple normal crossing sheaf has the same stability as
in the complex constructible case; iii) for a monodromic sheaf on a finite dimensional vector
space, its characteristic cycle is canonically identified with that of the Fourier transform of
the sheaf. In the Introduction, we also discuss the implications of these results in a broader
context and an application of iii) to the study of character sheaves in positive characteristic.
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Chapter 1

Introduction

This dissertation is a combination of two research works finished during my PhD:

• Chapter 2: On the stability of vanishing cycles of étale sheaves in positive characteristic
(arXiv:2307.00416)

• Chapter 3: The Fourier transform and characteristic cycles of monodromic ℓ-adic
sheaves (arXiv:2404.01621)

Each chapter is self-contained. In this introduction, we provide background for these two
works and summarise their contents.

In the 1960s, Mikio Sato introduced the microlocal point of view of viewing objects, a
priori defined on a space, as living on the cotangent bundle of that space. This fundamental
idea was initially used to study singularities of solutions of partial differential equations, it
then led to the birth of the subject of microlocal analysis and spread to many other fields.

The theory of D-modules grew directly out of this in the 1970s. In the context of an-
alytic geometry over C, the microlocal point of view is concretised by constructions such
as the vanishing cycle, singular support (SS), characteristic cycle (CC), the sheaf E of mi-
crodifferential operators, and microlocalisation. In the 1980s, Masaki Kashiwara and Pierre
Schapira developed a parallel theory for constructible sheaves on real and complex manifolds
(c.f. [KS90]). All the above constructions have their counterparts in the constructible world.
Note that, strictly speaking, there is no analogue of the sheaf E . Instead, it is the stack of
E-modules that has an exact analogue. We denote this analogue by µsh.

On the other hand, again during the 1970s, a strong analogy was observed between D-
modules (over C) and ℓ-adic sheaves (in positive characteristic) (c.f. [DMR07]). We list
the analogies in the following table, also including the context of constructible sheaves on
complex manifolds (see the appendix to Chapter 2 for more details):
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D-modules ℓ-adic C-constructible
6-functor formalism 6-functor formalism 6-functor formalism

nearby/vanishing cycles nearby/vanishing cycles nearby/vanishing cycles
regular/irregular singularities tame/wild ramifications all tame

Fourier transform Fourier transform Fourier transform
SS, CC, index formulae ? SS, CC, index formulae
E-modules, microlocalisation ? µsh, microlocalisation

Table 1.1: Analogies

Naturally, we have the following

Question 1.0.1. Is there a microlocal sheaf theory in the ℓ-adic context?

Around 2015, Alexander Beilinson made a breakthrough by successfully defining the sin-
gular support of a Z/ℓr-sheaf ([Bei16]), subsequently Takeshi Saito defined the characteristic
cycle, and index formulae were also proved ([Sai17b]). Their work was then extended to
rational coefficients in [UYZ20; Bar23]. At this moment, we still do not know what is the
correct analogue of E-modules and microlocalisation in the ℓ-adic context.

We now summarise the content of each chapter. We refer to individual chapters for more
detailed introduction, as well as precise definitions of terms used in the following.

Chapter 2 is devoted to studying a simpler question around the microlocalisation of a
Z/ℓr-sheaf: instead of asking what is the microlocalisation, we ask what should be the stalk
of the microlocalisation (the microstalk). In the C-constructible context, the answer is the
vanishing cycle. More precisely: for a complex analytic manifold X, F a C-constructible
sheaf on X, (x, ξ) a smooth point of SSF , the microstalk of F at (x, ξ) is defined to be
the vanishing cycle ϕf (F)x, where f is any transverse test function for F at (x, ξ). This is
well-defined by a crucial stability theorem of Kashiwara and Schapira: for a family {fs}s∈T
of transverse test functions, ϕfs(F)x form a local system as s varies in T . In the positive
characteristic context, we first observe that the analogous stability statement is false, due
to wild ramifications. This leads to two expectations: i) the analogous statement should be
true for tame sheaves constructible with respect to a “tame” stratification, ii) in general, the
vanishing cycle should form a local system if {fs}s∈T is a family of transverse test functions
such that fs ≡ fs′ modmN

x for any s, s′ in T and N large enough. The main theorems of
Chapter 2 consist of the affirmation of i) in the case of tame simple normal crossing sheaves,
and ii) in the case of a surface (generically), with an explicit bound on N (and we conjec-
ture that the same holds in higher dimensions). Furthermore, we study those sheaves (still
in positive characteristic) whose vanishing cycles have the strongest stability (i.e., for which
the analogue of Kashiwara and Schapira’s stability theorem holds for each smooth pullback,)
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(tame simple normal crossing sheaves are an example). We show that this class of sheaves
has certain functorialities, most notably, they are preserved under the Radon transform. At
the end of Chapter 2, we record some explicit computations involving the singular support,
which highlight new phenomena in positive characteristic compared to the C-constructible
case.

The study in Chapter 2 suggests that, in contrast to the C-constructible case, the mi-
crostalks in positive characteristic more naturally live in a higher jet bundle (instead of the
cotangent bundle), and that one possible path for microlocalising ℓ-adic sheaves might be to
work in higher jet bundles.

Chapter 3 is devoted to studying a specific question concerning the Fourier transform
and characteristic cycles. The main theorem is that the characteristic cycle of a monodromic
ℓ-adic sheaf on a finite dimensional vector space over an algebraically closed field of posi-
tive characteristic is canonically identified with that of the Fourier transform of the sheaf.
The exact analogue of this theorem in the D-module case is a result of Jean-Luc Brylinski
and Bernard Malgrange in 1986. In studying this question, apart from its own interest, we
have in mind an application to geometric representation theory. Namely, in a subsequent
paper ([Zho24]), this result will be applied to give the following microlocal characterisation
of character (or admissible) sheaves on a reductive Lie algebra in (sufficiently large) positive
characteristic: a perverse irreducible G-equivariant Qℓ sheaf on g is a character sheaf if and
only if it has nilpotent singular support and is quasi-admissible. This is the analogue of
[MV88; Mir04; Psa23].

From another perspective, Chapter 3 is an initial step in understanding how the char-
acteristic cycle changes under the Fourier transform. In the case of a curve, this has been
thoroughly studied by Gérard Laumon in his beautiful work [Lau87]. It is very interesting
and challenging to understand the higher dimensional situation.
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Chapter 2

On the stability of vanishing cycles of
étale sheaves in positive characteristic

2.1 Introduction
The microlocal point of view of viewing objects as living on the cotangent bundle rather
than the base space was introduced by Sato in the field of partial differential equations. This
idea led to the birth of microlocal analysis and spread out to other fields of mathematics. In
[KS90] Kashiwara and Schapira systematically developed the theory of sheaves on real and
complex analytic manifolds from this point of view.

Question: what does the theory look like for ℓ-adic sheaves on schemes in positive char-
acteristic? Among many other works, we point out: in [Ver83] Verdier defined the speciali-
sation1, in [AS07] Abbes and Saito defined the characteristic class, and in [KS08] Kato and
Saito defined the Swan class. A recent breakthrough is from Beilinson ([Bei16]) who defined
singular supports (SS), and based on that Saito ([Sai17b]) defined characteristic cycles (CC).

The starting point of this paper is the following line of thought: apart from SS and CC,
another key notion in microlocal sheaf theory is the microstalk, which is to microlocal sheaves
as the stalk is to sheaves. In the complex analytic context2, one definition of the microstalk
is via the vanishing cycle functor: for (x, ξ) a smooth point of SSF , the microstalk of F
at (x, ξ) is defined to be ϕf (F)x, where f is any transverse test function at (x, ξ). Here,
transverse test function means:

Definition 2.1.1 (transverse test function3). A transverse test function (ttfun) of F at a
smooth point (x, ξ) of SSF is a complex analytic function f defined on an open neighbour-

1which, however, kills wild ramifications.
2We will focus on the complex case in this discussion. The same is true in the real case.
3This definition has its obvious analogue in the algebraic context: replace “complex analytic function”

by “regular function”, and “neighbourhood” means Zariski neighbourhood.
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hood U of x such that
i) f(x) = 0;
ii) Γdf (the graph of the differential of f) intersects SS(F|U) at (x, ξ) transversely.

The microstalk is well-defined because of the crucial fact that, in the complex analytic
context, vanishing cycles have strong stability with respect to the variation of the ttfun.
More precisely:

Definition 2.1.2 (transverse test family4). A transverse test family (ttfam) of F at a smooth
point (x, ξ) of SSF , denoted by (T, U, V, f), is the following data (here A1 = C viewed as a
complex manifold):

U × T V xT := x× T

A1
T := A1 × T

f

where:
i) T is a connected complex manifold, serving as the parameter space of the family. We will
often identify T with 0× T ⊆ A1 × T , and occasionally with xT ;
ii) U is an open neighbourhood of x, V is an open of U × T containing xT ;
iii) f is a complex analytic map such that, for all s ∈ T , the s-slice fs : Vs(:= V ×A1

T
A1

s)→ A1
s

is a ttfun with respect to F at (x, ξ) (in particular, fs is SSF-transversal except at x).

Theorem 2.1.3. ([KS85, 7.2.4], Theorem 2.2.1) Let X be a complex analytic manifold,
F ∈ D(X), (x, ξ) a smooth point of SSF . Then:
i) For two ttfun’s f, g of F at (x, ξ), there exists a (noncanonical) isomorphism ϕf (F)x ∼=
ϕg(F)x in Db

c(C[Z]).
ii) For any ttfam (T, U, V, f) of F at (x, ξ), ϕpf (FV ) is a local system on xT ∼= T , with stalks
at s canonically isomorphic to ϕfs(F)x, for all s ∈ T . Here p is the projection A1×T → A1,
FV is the pullback of F to V .

i) says that the vanishing cycles, as vector spaces with monodromy actions, are indepen-
dent of the choice of the ttfun. ii) is a (stronger) family version of i).

This totally fails in the (positive characteristic) algebraic context because of wild rami-
fications. Here is an example (see §2.2 for details): consider A2 over an algebraically closed
field of characteristic p > 3. Let D be the y-axis and U be the complement. Let F be the
!-extension to A2 of the Artin-Schreier sheaf on U determined by the equation tp− t = y/xp.

4For the definition of the ttfam in the algebraic context, see Definition 2.3.4.
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One can show SSF = T ∗XX ∪ ⟨dy⟩D, where ⟨dy⟩D denotes the subspace of D ×X T ∗X con-
sisting of covectors proportional to dy. Consider the vanishing cycles with respect to the
following two functions: f0(x, y) = y

1+x
, f1(x, y) = y

1+x
+ x3. It is easily checked that f0 and

f1 are ttfun’s at (a, dy), where a is the origin. However, using a theorem of Deligne-Laumon
(Theorem 2.2.5), one can compute: dim(ϕf0(F)a) = −(p− 1), while dim(ϕf1(F)a) = −2.

Question 2.1.4. What stability do vanishing cycles have in the algebraic context?

One expects that simple normal crossing tame sheaves have similar stability as in the
complex analytic context. This turns out to be true (see the second theorem below). In
general, one expects the dependence of vanishing cycles on the ttfun to be only up to a finite
jet (as is suggested by a computation similar to the above with f1 = y

1+x
+ xN for a big N).

In the first part of this paper, we show that this is generically true on a smooth surface.
This result is inspired by a result of Saito [Sai15, 2.14]. To state it precisely, we introduce
the following notion:

Definition 2.1.5 (depth of F). Let (x, ξ) be a smooth point of SSF . The depth of F at (x, ξ)
is the smallest N ≥ 2 such that ϕf (F) is a local system for all ttfam (T, U, V, f) at (x, ξ)
satisfying the following condition: fs ≡ fs′ mod mN

x , for all closed points s, s′ of T . If such
an N does not exist, we say the depth is ∞.

Here ϕf (F) is the analogue of ϕpf (FV ) as in the previous theorem. Its precise definition
involves vanishing cycle over general bases, and we refer to Definition 2.3.5 for details. Our
main theorem in the first part of the paper is:

Theorem 2.1.6 (Theorems 2.3.10, 2.3.19). Let X be a smooth surface over an algebraically
closed field k of characteristic p > 2, F ∈ Dctf (X). Then, there exists a Zariski open dense
V = X−{finitely many closed points} and a Zariski open dense S ⊆ SS(F|V ) such that for
any closed point (x, ξ) ∈ S, there exists an integer N ≥ 2 such that the depth of F at (x, ξ)
is ≤ N . Moreover, we have an upper bound: if F is locally constant in some punctured
neighbourhood of x, then N = 2; if x lies in a ramification divisor of F (still assuming
(x, ξ) ∈ S), then N ≤ 2M−1.ix.|G| + (2p + 1)M .maxσ ̸=id∈G{ep(Iσ,X)}.ix.|G|. The terms are
explained below.

We briefly explain the notions in this theorem. See §2.3 for details. Let U → U be
the minimal étale Galois covering trivialising F , with Galois group G. Let X → X be the
normalisation of X in U . Then, Iσ,X is the ideal corresponding to the subscheme of fixed
points of σ acting on X; ep(Iσ,X) is the smallest a ∈ N such that (

√
Iσ,X)

a ⊆ Iσ,X ; ix is the
intersection number at x of the zero locus of a ttfun at (x, ξ) with the ramification divisor of
F (which is either 1 or 2 for a general (x, ξ) ∈ SSF); M is a uniform bound for the number
of blowups needed to resolve the singularities of the curve f−1(0) ×X X ↪→ X, as f ranges
through all ttfun’s at (x, ξ). It is part of the claim that this bound exists, and it can be
made explicit (see Proposition 2.3.18).
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We outline the proof. By dévissage one reduces to the case of a local system !-extended
along a divisor. Using a distinguished triangle of Saito, one can rephrase the local con-
stancy of ϕf (F) as the pair (fT : VT → T,FT ) being universally locally acyclic (ULA),
where VT → T is the family of zero loci of this ttfam, and FT is the pullback of F to VT .
Applying the theorem of Deligne-Laumon, we further translate the ULA condition to the
Swan conductor on each fibre being constant along the family. This reduces the question to
the stability of Swan conductors of restrictions to curves. Next, we recall the computation
of Swan in terms of intersection numbers and representation-theoretic data and reduce the
question to a purely geometric one. We analyse the geometric question by studying how
various invariants change under blowups. The question is then reduced to bounding the
blowup number with respect to the curve. Finally, an argument of Bernd Ulrich utilising
Dedekind codifferents shows that this number is indeed bounded.

We conjecture that the theorem holds in greater generality:

Conjecture 2.1.7 (Conjectures 2.3.22, 2.3.23). Let X be a smooth variety over an alge-
braically closed field k of characteristic p ̸= 2. Then F ∈ D(X) has finite depth at all
smooth points of SSF .

The second part of this paper studies the class of sheaves whose vanishing cycles have the
strongest stability, as well as certain functorialities of the depth. We call a sheaf µc if it has
depth 2 at all smooth points in its SS, and µcs if its smooth pullbacks are all µc (Definition
2.4.1). The stability of vanishing cycles for µc, µcs sheaves is similar to that in the complex
analytic context. More precisely, among other things, we show:

Theorem 2.1.8 (Proposition 2.4.7, Lemma 2.4.3 ii), Corollary 2.4.14).
i) Let X be a smooth variety over an algebraically closed field of characteristic p > 2, D ↪→ X
be a simple normal crossing divisor (allowed to be empty), j : U ↪→ X be its complement, F
be a local system on U . Then j!F is µcs.
ii) Let X be a smooth variety over an algebraically closed field of characteristic p > 2, F
be a µc sheaf on X, and (x, ξ) be a smooth point in SSF . Then for any two ttfun’s f, g at
(x, ξ), there exists a (noncanonical) isomorphism ϕf (F)x ∼= ϕg(F)x as objects in Db

c(Z/ℓn).
We call this the microstalk of F at (x, ξ).
iii) µcs sheaves are preserved under the Radon transform. Moreover, their microstalks are
invariant under the Radon transform.

We outline the proofs. For i), as for the previous theorem, we first rephrase the question
as showing (fT : VT → T,FT ) being ULA. We then need to understand the singularities
of the intersections of the zero loci of ttfun’s and the simple normal crossing divisors. We
give explicit resolutions of such singularities. Then, FT can be written as the pushforward
of its pullback via the resolution map π. The map fTπ will be transversal to SS(π∗FT ),
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from which the ULA statement follows easily. ii) follows from the definition of µc sheaves
plus the lemma that any two ttfun’s can be connected by some ttfam. For iii), the argument
is similar to the complex analytic case and essentially reduces to a detailed understanding
of the geometry of the Radon transform. Actually, one can show the stability of µc and
µcs sheaves for any proper pushforward which shares similar geometric properties as (the
pushforward part of) the Radon transform (Proposition 2.4.13).

In the appendix, we list some analogies and contrasts among several sheaf theories from
the microlocal point of view.

Conventions for Chapter 2

All derived categories are in the triangulated sense. All functors are derived. A “sheaf”
means an object of D(X) (see below). A “local system” means an object of D(X) whose
cohomology sheaves are locally constant constructible.

In the complex analytic context, D(X) denotes Db
C−c(X,C) in the sense of [KS90, 8.5].

We fix a generator of π1(C×, 1) and identify it with Z.

In the algebraic context, we work with varieties (finite type reduced separated schemes
over k) over an algebraically closed field k of characteristic p ≥ 0. D(X) denotes Db

c(X,Z/ℓn)
for a fixed prime l ̸= p. Dctf (X) ⊆ D(X) denotes the full subcategory of objects of finite
tor-dimension. A “geometric point” means a map from the Spec of a separably closed field.
Gη denotes π1(A1

k,(0) − {0}, η), where A1
k,(0) is the strict henselisation of A1

k at the origin, η
is a fixed geometric point over its generic point.

Db
c(C) (resp. Db

c(C[Z])) denotes the triangulated category of bounded complexes of
C-vector spaces (resp. C[Z]-modules) with finite dimensional cohomologies. Similarly for
Db

c(Z/ℓn), Db
c(Z/ℓn[Gη]). For M ∈ Db

ctf (Z/ℓn[Gη]), swan (resp. dim) means the swan con-
ductor (resp. the dimension) over Fℓ, after −⊗Z/ℓn Fℓ (derived tensor).

For f a complex analytic (resp. regular) function on a complex analytic manifold (resp.
smooth scheme over k) X, df denotes its differential, Γdf denotes the graph of df in the cotan-
gent bundle T ∗X (resp. T ∗X := T ∗(X/k)). For f : X → Y a map of complex analytic mani-
folds (resp. smooth schemes over k), we have the correspondence T ∗X ← X×Y T

∗Y → T ∗Y .
df denotes the first map. We refer to [Bei16] for the meaning of f◦C, f ◦C and C-transversality
for a closed conical subset C ⊆ T ∗X, and related terminologies. When speaking about points
in C, we always mean closed points.

For two subvarieties C,D intersecting at finitely many points in some ambient variety,
by (C.D) we mean the intersection (a subscheme), or the intersection number, depending on
the context.
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2.2 Review
In this section, we review basic microlocal-sheaf-theoretic constructions in both complex
analytic and algebraic contexts, and compare them. Except for the definitions of the ttfun
and the Radon setup, §2.2 is logically independent of the rest of the paper, but serves as a
motivation.

Complex analytic context

The basic reference is [KS90]. Let X be a complex analytic manifold, and D(X) be the
triangulated category of bounded C-constructible complexes of sheaves of C-vector spaces.
The notion of the singular support (or the microsupport) SSF is defined for F ∈ D(X). It is
a half-dimensional C×-conic closed Lagrangian subset in T ∗X which records the codirections
in which F is not locally constant. More precisely, it equals the closure of all (x, ξ) ∈ T ∗X
such that there exists some complex analytic function f on some open neighbourhood of x
such that the vanishing cycle ϕf (F)x is nonzero. SSF is the 0-th order invariant (the locus)
of the “singularities” of F . Clearly, the vanishing cycle, viewed as an object in Db

c(C[Z])
(bounded complexes of C[Z]-modules with finite dimensional cohomologies), is a much finer
measurement. However, it depends on the choice of the test function f . It is a crucial fact
that, when restricted to transverse test functions, ϕf (F)x is essentially independent of f , in
the precise sense below.

Theorem 2.2.1. Let X be a complex analytic manifold, F ∈ D(X), (x, ξ) a smooth point
of SSF . Then:
i) For a ttfun f of F at (x, ξ), ϕf (F)x ∈ Db

c(C[Z]) is abstractly independent of f , i.e. for
any other ttfun g, there exists a (noncanonical) isomorphism ϕf (F)x ∼= ϕg(F)x in Db

c(C[Z]).
ii) For any ttfam (T, U, V, f) of F at (x, ξ), ϕpf (FV ) is a local system on xT ∼= T , with stalks
at s canonically isomorphic to ϕfs(F)x, for all s ∈ T . Here p is the projection A1×T → A1,
FV is the pullback of F to V .

We refer to Definitions 2.1.1, 2.1.2 for the definitions of ttfun and ttfam. In the following
discussion, we will need a variant of ttfam: in Definition 2.1.2, as s varies, instead of requir-
ing fs to be ttfun’s at a fixed ν0 = (x, ξ), we allow fs to be ttfun’s at ν(s) = (x(s), ξ(s)) for
varying smooth points ν(s) on SSF , and require ν(s0) = ν0 for some s0. We will call such
families weak transverse test families (wttfam) at (x, ξ).

The real analytic counterpart of this result is contained in the statement and proof of
[KS85, 7.2.4]. The complex case can be easily deduced from it. We include a proof for
completeness.

We refer to [KS90] for details of this paragraph and the paragraph after the next propo-
sition. For a real analytic manifold X, D(X) denotes the triangulated category of bounded
R-constructible sheaves of C-vector spaces. For f a real analytic function and F ∈ D(X),
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the vanishing cycle is defined as ϕf (F) = RΓ{f≥0}(F)|H , where H = {f = 0}. If H is
smooth, it is also equal to d∗fµY (F),5 where µY is the microlocalisation along Y , df is the
map Y → T ∗YX, y 7→ (y, df). The notions of ttfun, ttfam and wttfam have obvious analogues
in the real analytic context.

Proposition 2.2.2. [KS85, 7.2.4] Let X be a real analytic manifold, F ∈ D(X), (x, ξ) a
smooth point of SSF . Then for any wttfam (T, U, V, f) of F at (x, ξ), ϕpf (FV ) is a local
system on xT ∼= T , with stalks at s canonically isomorphic to ϕfs(F)x, for all s ∈ T . Here p
is the projection A1 × T → A1, FV is the pullback of F to V .

Proof. The proof in [KS85, 7.2.4] works for ξ ̸= 0. We sketch the argument. Let H =
{pf = 0}, Hs = {fs = 0}. We have ϕpf (FV ) = d∗pfµH(FV ), ϕfs(F) = d∗fsµHs(F). Let
W = SSFV ∩ T ∗HV = R>0{(s, x, d(fs))}s∈T ,Ws = SSF ∩ T ∗Hs

Vs = R>0{(s, x, d(fs))}. By
the estimate of SS of microlocalisations ([KS85, 5.2.1 ii)]), one checks that SS(µH(FV )) ⊆
T ∗WT

∗
HX. This implies µH(FV )|W is locally constant. The first statement follows. By func-

toriality of the microlocalisation under noncharacteristic pullbacks ([KS85, 5.4.2]), we get
µH(FV )|Ws

∼= µHs(F). The second statement follows.

For ξ = 0. Consider the embedding i : X = X × {0} ↪→ X × R. Let z be the standard
coordinate on R. One checks that the family of functions {z− fs}s∈T gives a wttfam for i∗F
at (x, ξ′), where ξ′ is any nonzero conormal vector at x of X in X × R. Then the previous
case applies, and the compatibility of vanishing cycles and proper pushforwards implies this
case.

For a complex analytic manifold Y , denote by Y R the underlying real analytic manifold,
there is a canonical identification (T ∗Y )R = T ∗Y R (see, e.g., [KS90, 11.1]). For a complex
analytic function h, (Γdh)

R = ΓRe(h) under this identification. In particular, if h is a ttfun for
some F then so is Re(h). Furthermore, by [KS90, 13], for a general h we have a canonical
isomorphism ϕh

∼= ϕRe(h)|H in D(H), where H = {Re(h) = 0}.

Proof of Theorem 2.2.1. ii) is immediate from the above paragraph and Proposition 2.2.2:
a ttfam on X induces a ttfam on XR whose vanishing cycle is a local system with stalks
isomorphic to the vanishing cycles on the slices. Transfer back to complex vanishing cycles,
we get the result.

i) follows from the following observation: given any ttfam (T, U, V, f) on X, consider
the family ((T × C×)R, UR, (V × C×)R, g) on XR, which on each slice (s, λ) ∈ (T × C×)R is
given by g(s,λ) = Re(λfs). One checks this is a wttfam. By Proposition 2.2.2, ϕpg(F(V×C×)R)
is a local system on (T × C×)R with stalks at (s, λ) isomorphic to ϕRe(λfs)(F)x. Moreover,
ϕRe(λfs)(F)x viewed as a local system with respect to λ (i.e. ϕpg(F(V×C×)R)|s×C×) is exactly
ϕfs(F)x viewed as a local system on C×. This implies ϕfs(F)x ∼= ϕf ′

s
(F)x (noncanonically)

5We use the notation “∗” instead of “−1” (as in [KS90]) for the sheaf pullback.
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for any s, s′ ∈ T .

So, to show i), it suffices to show that any two ttfun’s can be connected by a ttfam. This
is a simple exercise: fix a coordinate, expand a ttfun in power series, cut off degree ≥ 3 terms
with a ttfam6, then observe that the space of all quadratic terms which makes the function a
ttfun is a connected complex manifold. (See proof of Lemma 2.4.3 i) for a detailed argument
in the algebraic context.)

As mentioned in the introduction, Theorem 2.2.1 is a fundamental fact underlying many
microlocal-sheaf-theoretic constructions. In particular, to any smooth point (x, ξ) in SSF ,
this allows us to define the microstalk(µstalk) of F at (x, ξ): take ϕf (F)x for any ttfun f at
(x, ξ). It is an object in Db

c(C[Z]), independent of f in the sense above.

Another (related) fundamental feature of real and complex analytic microlocal sheaf the-
ory is its invariance under contact transformations, of which the Radon transform is the
prototypical case. We will not discuss the full invariance, but focus on one aspect of it: how
microstalks change under the Radon transform.

Radon setup 2.2.3 (for both complex analytic and algebraic contexts).

Q

P P∨

p q

Here P is the abbreviation for Pn (over the base field), P∨ is its dual, Q is the universal
incidence variety. Let F ∈ D(P). Its Radon transform is defined as RF = q!p

∗F [n − 1].
Denote by P (...) the projectivisation of (...) after removing the zero section. We have the
following facts (see, e.g., [Bry86; Bei16, 1.6, 3.3]):
i) P (T ∗P) ∼= Q ∼= P (T ∗P∨);
ii) If z is a point in Q, x = p(z), a = q(z), let ξ, α be nonzero covectors at x, a which are
conormal to the hyperplanes represented by a, x, respectively. Then z is the codirection rep-
resented by ξ, α under the identifications in i). Furthermore, T ∗zQ equals the pushout of T ∗xP
and T ∗aP∨ along ⟨ξ⟩ and ⟨α⟩ (via dpx and dqa). We say (x, ξ) and (a, α) correspond to each
other;
iii) SS+(RF) = q◦SS

+(p∗F) = q◦p
◦SS+F , where + means adding the zero section. PSSF =

PSSRF as subvarieties of Q.

Proposition 2.2.4. Let ν be a smooth point in PSSF = PSSRF . Then, µstalk(RF)ν ∼=
µstalk(F)ν if n is odd, and µstalk(RF)ν ∼= µstalk(F)ν⊗K2 if n is even. Here K2 ∈ Db

c(C[Z])
is the vector space C concentrated in degree 0, with 1 ∈ Z acting by multiplication by −1.

6Note that being a ttfun only depends on degree ≤ 2 terms.
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In particular, as vector spaces (i.e. as objects in Db
c(C)), microstalks are invariant for all

n.

Proof. We will prove a similar result in the algebraic context (Proposition 2.3.2). The same
proof plus Theorem 2.2.1 imply the statement here. For Thom-Sebastiani in the complex
analytic context, see, e.g., [Sch03, Theorem 1.0.1].

Algebraic context

We now consider the algebraic context: let X be a smooth variety over a field k algebraically
closed of characteristic p ≥ 0, and D(X) be the triangulated category of bounded con-
structible complexes of étale sheaves of Z/ℓn-modules. The notion of the singular support
SSF is defined for F ∈ D(X) ([Bei16]). It is a half-dimensional conic closed subset in T ∗X.
As in the analytic case, it records the non-locally-acyclic codirections of F , and has a similar
description in terms of test functions and vanishing cycles. The definition of the ttfun has
its obvious analogue in this context (see the footnote to Definition 2.1.1). (For the ttfam,
which is not used in this section, see Definition 2.3.4.)

In the positive characteristic world, in contrast to the above, singular supports need not
be Lagrangian7. We will later record more new phenomena (§2.4). In this section, we discuss
the failure of the analogue of Theorem 2.2.1.

We will use the following result of Deligne-Laumon to compute the dimensions of van-
ishing cycles ([Lau81, 2.1, 5.1], see [Sai17b, 2.12] for a more general version):

Theorem 2.2.5. Let S be a Noetherian excellent scheme, f : X → S a separated smooth
morphism of relative dimension 1, Z a closed subscheme of X finite flat over S with a single
point in each fibre. Let F ∈ D(X) be a !-extension of a tor-finite locally constant sheaf
concentrated in degree 0 on U = X − Z. Define an N-valued function as on the points of S:

as := dimtot((F|Xs
)ηz) (2.1)

where s is a geometric point over s with residue field an algebraic closure of the residue field
of s, z is a geometric point of Z above s, ηz is a geometric point over the generic point of
the strict henselisation of Xs at z, dimtot means swan + dim (see Conventions).
Then:
i) as is constructible, and as ≤ aη if η specialises to s.
ii) (f ,F) is universally locally acyclic (ULA) if and only if as is locally constant.
iii) If S is an excellent strict henselian trait, denote its closed and generic points by s, η
respectively, then

as − aη = dim(ϕf (Fz)). (2.2)
7Actually, Deligne ([Del15]) showed that on a smooth surface X, any half-dimensional conic closed subset

in T ∗X can be generically realised as a component of some SSF .
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We now come to examples showing the failure of the analogue of Theorem 2.2.1.

Example 2.2.6. (p > 2, n = 1 in Z/ℓn) Let X = A2 = Spec(k[x, y]). Fix a nontrivial
character ψ : Fp → (Z/ℓ)×.8 Let F be the Artin-Schreier sheaf determined by the equation
tp − t = y/xp, !-extended along D = {x = 0}.9 One can show SSF = T ∗XX ∪ ⟨dy⟩D, where
⟨dy⟩D denotes the subspace of D ×X T ∗X consisting of covectors proportional to dy (see,
e.g., [Saito17, 3.6]). Consider the following family of ttfun’s at ν = ((0, 0), dy): fs(x, y) :=
y

1+x
+ sxN , where N is some integer ≥ 3, s ∈ k. It is simple to check that for each fixed s,

fs (restricted to some Zariski neighbourhood of (0, 0)) is indeed a ttfun.

For a fixed s, apply Deligne-Laumon to fs : U → A1, where U is some Zariski open
neighbourhood of (0, 0) on which fs is defined. Let ρ be the standard coordinate on A1. The
fibre f−1s (ρ) is locally isomorphic to A1 with x as a coordinate. F|f−1

s (ρ) is the Artin-Schreier
sheaf determined by tp − t = (ρ − sxN)(1 + x)/xp (!-extended at x = 0). In formula (2.1),
dim(Fz) = 0, dimtot((F|Xs

)ηz) = 1 + sw((F|Xs
)ηz). The Swan conductors are easily com-

puted:

sw(ρ, s) s=0 s generic
ρ=0 0 p-N
ρ generic p-1 p-1

3 ≤ N < p

sw(ρ, s) s=0 s generic
ρ=0 0 0
ρ generic p-1 p-1

N ≥ p

By formula (2.2), the dimensions of ϕfs(F) are as follows:

dim(ϕfs(F)) s=0 s generic
3 ≤ N < p -(p-1) -(N-1)
N ≥ p -(p-1) -(p-1)

We see that if p > 3 and 3 ≤ N < p, then dim(ϕfs(F)) depends on the parameter s.
So the analogue of Theorem 2.2.1 is false. Nevertheless, if N ≥ p, then dim(ϕfs(F)) does
not depend on s (for s in a small neighbourhood of 0 ∈ A1). This is a first indication that
vanishing cycles depend on the ttfun only up to a finite jet. We will come back to this in §2.3.

In this example, SSF is not Lagrangian. Does the analogue of Theorem 2.2.1 hold if
restricted to sheaves whose SS’s are Lagrangian? The answer is no, as the next example
shows:

8assuming it exists, i.e., p|(l − 1).
9This equation determines a finite étale Galois covering of U = X − {x = 0}, with Galois group Fp,

corresponding to a surjection π(U, ηU ) ↠ Fp. Compose with ψ gives a representation of π(U, ηU ), which is
the same thing as a local system on U .
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Example 2.2.7. Same setup and notations as above, but consider the Artin-Schreier sheaf
determined by tp − t = y/xp−1. One can show SSF = T ∗XX ∪ T ∗(0,0)X ∪ ⟨dx⟩D. Consider the
same ν and the same family of ttfun’s as above.

The computation is similar, the results are as follows:

sw(ρ, s) s=0 s generic
ρ=0 0 p-N-1
ρ generic p-1 p-1

3 ≤ N < p− 1

sw(ρ, s) s=0 s generic
ρ=0 0 0
ρ generic p-1 p-1

N ≥ p− 1

dim(ϕfs(F)) s=0 s generic
3 ≤ N < p− 1 -(p-1) -N
N ≥ p− 1 -(p-1) -(p-1)

We remark that the simplicity of π1 (in particular, that it splits locally, and that all ram-
ifications are tame) is one fundamental reason why in the analytic context vanishing cycles
have strong stability, strong enough that they “live” on the cotangent bundle, leading to
fundamental constructions in the microlocal sheaf theory. In the positive characteristic alge-
braic context, due to the complexity of π1 (or wild ramifications), the (micro)local data of a
sheaf is huge. This is analogous to the distinction between regular holonomic D-modules and
general holonomic D-modules. In the appendix, we list some more analogies and distinctions.

2.3 The stability of vanishing cycles
This section is devoted to discussing the stability of vanishing cycles in the positive char-
acteristic algebraic context. In §2.3 we discuss the independence of dimtot(ϕ) with respect
to the ttfun. In §2.3 we discuss the independence of ϕ of high jets of the ttfun. We fix the
following setup:

X is a smooth variety over a field k algebraically closed of characteristic p > 2, F ∈ D(X),
(x, ξ) ∈ SSF a smooth (closed) point. Note that in this setup ttfun’s at (x, ξ) always exist
([Bei16, 4.12]).

The stability of dimtot(ϕ)

Proposition 2.3.1. [Sai17b] With the above setup, assume further F ∈ Dctf (X), then for
a ttfun f , dimtot(ϕf (F)x) is independent of f .
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To see this is true, just apply the Milnor formula ([Sai17b, 5.9]): for a ttfun f , dimtot(ϕf (F)x)
is equal to minus the coefficient of CCF at x. But logically, this proposition comes before the
Milnor formula. Indeed, the very fact that dimtot of vanishing cycles “live” on the cotangent
bundle allows one to define the characteristic cycle. See Remark 2.4.4 for a logically direct
proof of this proposition.

Proposition 2.3.2. [Sai17b] dimtot(ϕ) is invariant under the Radon transform. More pre-
cisely, in the Radon setup 2.2.3, assume further F ∈ Dctf (P), let (x, ξ) be a smooth point of
SSF with ξ ̸= 0. Denote by ν the image of (x, ξ) in PSSF . Let (a, α) be any representative
of ν in T ∗P∨. Let f (resp. g) be any ttfun for F (resp. RF) at (x, ξ) (resp. (a, α)). Then
dimtot(ϕf (F)x) = dimtot(ϕg(RF)a).

This is a consequence of [Sai17b, 6.4, 6.5]. For later purposes, we record a direct proof
in our setting.

Proof. By the compatibility of vanishing cycles with proper pushforwards, ϕg(q!p
∗F)a ∼=

q∗ϕgq(p
∗F). By the following Lemma 2.3.3, gq is a ttfun for p∗F at (z, ζ), where z =

(x, a), ζ = dq(α). Moreover, z is the only point in q−1(a) where d(gq) and SS(p∗F) intersects.
So q∗ϕgq(p

∗F) ∼= ϕgq(p
∗F)z as objects in Db

c(Z/ℓn[Gη]) (see Conventions for notations). By
Proposition 2.3.1, dimtotϕgq(p

∗F)z can be computed by any ttfun for p∗F at (z, ζ). Use
f + h where h is a quadratic function in the fibre direction of p (in a local coordinate). It is
an exercise to check that this is a ttfun. Apply Thom-Sebastiani [Ill17; Fu14], the assertion
follows. Note the shift is computed as (n − 1) + (−(n − 2)) + (−1), where the first term
comes from the definition of the Radon transform, the second and third terms come from
Thom-Sebastiani.

Lemma 2.3.3. In the Radon setup 2.2.3, let F ∈ D(P), (a, α) a smooth point in SSRF ,
α ̸= 0, g a ttfun for RF at (a, α). Then
i) on q−1(a), Γd(gq) intersects SS(p∗F) only at (z, ζ) ∈ T ∗Q, where z is the point in Q ∼=
PT ∗P∨ corresponding to (a, α), and ζ = dq(α);
ii) the intersection of Γd(gq) and SS(p∗F) at (z, ζ) is transverse.
In particular, gq is a ttfun for p∗F at (z, ζ).

Proof. i) If (z′, ζ ′) is in the intersection and z′ ∈ q−1(a), because SS+(RF) = q◦SS
+(p∗F) =

q◦p
◦SS+F , there must exist an (x′, ξ′) ∈ T ∗P such that a) it lies in SS+F ; b) it corresponds

to (a, α). But a) forces x′ = p(z′), ξ′ = the unique covector at x′ which pulls back under
dpx′ to ζ ′; b) forces (z′, ζ ′) = (z, ζ).

Note, actually more is true: if we restrict to a small Zariski neighbourhood V of a on
which Γdg intersects SS+(RF) only at (a, α), then (z, ζ) is the only point of intersection of
Γd(gq) and SS(p∗F) on q−1(V ).
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ii) Let V be a neighbourhood as above. Consider the correspondence:

Q×V T
∗V

T ∗Q T ∗V

u v

Abbreviate SS(p∗F) as C. Abuse notation, denote the restriction of Γdg,Γd(gq) to over
V by Γdg,Γd(gq) again. Let u∗, v∗ denote the intersection theoretic pushforward and pull-
back. We claim Γd(gq) = uv−1Γdg = u∗v

∗Γdg (i.e. no > 1 multiplicities are introduced in
the intersection theoretic pull and push). Assume this for now. Note Γd(gq) intersects C at
the single point (z, ζ). We want to compute the intersection number. Since u is a closed
immersion and v is proper smooth, u∗C and v∗Γdg also intersect at a single point and, by
the projection formula from intersection theory, C.u∗v∗Γdg = (u∗C).(v∗Γdg) = (v∗u

∗C).Γdg.
We claim that v∗u∗C = vu−1C. Assuming this, then vu−1C+ = q◦C

+ = SS+(RF), so
C.u∗v

∗Γdg = SSRF .Γd(gq) = 1.

It remains to show the two claims. The first claim follows from v being smooth and u
being a closed immersion. For the second claim, we show separately below u∗ and v∗ intro-
duce no > 1 multiplicities:

u∗: This is intersecting C with Q×V T
∗V . Since (a, α) is a smooth point, C is also smooth

near (z, ζ). By counting dimensions, it suffices to find n− 1 tangent vectors of C which are
not tangent to Q×V T

∗V . One verifies that the tangents of C in the p fibre direction work.

v∗: After removing the zero section, u∗C lies in the “diagonal” of Q×V T
∗V , so is mapped

isomorphically to its image. More precisely, consider Q×P∨T ∗P∨ → T ∗P∨ (Q×V T
∗V → T ∗V

is then its base change to V ). Note Q ×P∨ (T ∗P∨ − T ∗P∨P∨) → (T ∗P∨ − T ∗P∨P∨) admits a
natural Gm action. Take the quotient (which does not change multiplicity computations),
we get Q ×P∨ Q → Q (identifying (T ∗P∨ − T ∗P∨P∨)/Gm with Q), where the map is just the
projection to the second factor. Then, by C = p◦SSF and the description of T ∗z′Q in the
Radon setup 2.2.3, one checks that (u∗C − zero section)/Gm lies in the diagonal of Q×P∨ Q,
so is mapped isomorphically to its image.

The high-jet stability of ϕ

Return to Examples 2.2.6, 2.2.7: we noticed that when N is large enough, the Swan conduc-
tors are independent of s (for s in a small neighbourhood of 0 ∈ A1), consequently dim(ϕ)’s
are independent of s. This suggests that the dependence of vanishing cycles on the ttfun is
only up to a high enough jet. In this section, we formulate precisely the notion of vanishing
cycles being stable with respect to the variation of the ttfun in order ≥ N -terms and prove
such a result in a special case. At the end, we discuss the relation between our result and a
result of Saito (whose formulation and proof inspired ours). We are in the setup of §2.3.
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Transverse test families

The definition of ttfam in the algebraic context is as follows:

Definition 2.3.4 (transverse test family). A transverse test family (ttfam) of F at a smooth
point (x, ξ) of SSF , denoted by (T, U, V, f), is the following data (here A1 = A1

k):

U × T V xT := x× T

A1
T := A1 × T

f

where:
i) T is a connected smooth finite type scheme over k. We will often identify T with 0× T ⊆
A1 × T , and occasionally with xT ;
ii) U is an étale neighbourhood of x (x is implicitly viewed as a point of U), V is a Zariski
open of U × T containing xT ;
iii) f is a morphism such that, for all closed points s of T, the s-slice fs : Vs(:= V ×A1

T
A1

s)→
A1

s is a ttfun with respect to F at (x, ξ) (base changed to over s) (in particular, fs is SSF-
transversal except at x).

Definition 2.3.5 (the vanishing cycle associated to a ttfam). Let F ∈ D(X) and (T, U, V, f)
be a ttfam for SSF at (x, ξ). The vanishing cycle associated to this ttfam is the following
sheaf on

←−
T T := xT

←−×S(S − T ):

ϕf (F) := Φf (FV )|←−T T

Here FV is F pulled back to V , ←−× is the oriented product, Φ is the vanishing cycle over
general bases for f : V → S.10

Remark 2.3.6. i) In a ttfam, the condition on f implies that f is SSF-transversal outside
xT (essentially because for s ↪→ T the conormal bundle of Vs ↪→ V is isomorphic to the
pullback of conormal bundle of A1

s ↪→ A1
T , see [Sai17b, 2.9.1] for a proof). This implies it is

ULA with respect to F outside xT .

ii) Directly from the definition of being SSF-transversal, f is smooth in a neighbourhood
of the base of SSFV except possibly at points in xT . If ξ ̸= 0, then f is also smooth on xT ;
if ξ = 0, then f is not smooth on xT , nevertheless it is still flat on xT because V → A1

T is
always a family of hypersurfaces in a neighbourhood of xT , hence flat there.

10We refer to [Org06; Ill17] for basics of oriented products and vanishing cycle over general bases.
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iii) Apply [Org06, 6.1] and [Ill17, comments after 1.6.1] we see: Φf (FV ) is constructible
and commutes with any base change. In particular, it is supported on xT

←−×A1
T
A1

T and its
restriction to each slice equals the usual vanishing cycle, i.e. for any closed point s of T,
Φf (FV )|Vs

←−×A1
T
A1
s

is supported on x
←−×A1

s
(A1

s − 0) ∼= A1
s,(0) − {0} and canonically isomorphic to

ϕfs(F)x.

iv) Apply [Sai17b, 2.8] to geometric points x of xT , t of T (identified with 0 × T ⊆ A1
T )

and u of A1
T − T , we get a distinguished triangle:

Ψf (FV )x←t → Ψf (FV )x←u → Φf (FV )t←u →

where the first map is the cospecialisation and the second is the composition of Ψf (FV )x←u →
Φf (FV )x←u and the cospecialisation Φf (FV )x←u → Φf (FV )t←u. Compose this with

Fx Fx 0

and take the cone ([BBDG, 1.1.11]) we get

Fx Fx 0

Ψf (FV )x←t Ψf (FV )x←u Φf (FV )t←u

Φf (FV )x←t Φf (FV )x←u Φf (FV )t←u

where the two maps in the third row are cospecialisations.

v) Later we will often consider the condition of Φf (FV )|←−T T
being a local system. Com-

bine iii) and iv), we see: Φf (FV )|←−T T
is a local system if and only if in the following diagram,

(fT ,FT ) (FT is the base change of F to VT ) is ULA, which is equivalent to ΦfT (FT ) = 0
since Φ commutes with base change by iii) (c.f. [Ill17, Example 1.7 (b)]):

VT := V ×A1
T
T

T

fT
(2.3)

If this is satisfied, Φf (FV ) is automatically supported on
←−
T T .
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Generic finite depth

We are in the setup of §2.3. Recall the following definition in the introduction, which makes
precise the notion of the vanishing cycle being dependent on the ttfun up to the N -th jet.

Definition 2.3.7 (depth of F). Let (x, ξ) be a smooth point of SSF . The depth of F at (x, ξ)
is the smallest N ≥ 2 ∈ N such that ϕf (F) is a local system for all ttfam (T, U, V, f) at (x, ξ)
satisfying the following condition: fs ≡ fs′ mod mN

x , for all closed points s, s′ of T . If such
an N does not exist, we say the depth is ∞.

Remark 2.3.8. i) In the definition, one cannot allow for all functions having an isolated
intersection with the SS at (x, ξ). Because the latter can have arbitrary intersection multi-
plicities11, and the depth thus defined would be infinity in general.
ii) depth is étale local.
iii) In the next section, we will study functorialities of the depth as well as sheaves with depth
2.

We record a basic question which we do not know how to answer yet:

Question 2.3.9. How does depth change under smooth pullbacks?

Here is the first version of our main result.

Theorem 2.3.10. Let X be a smooth surface over an algebraically closed field k of charac-
teristic p > 2, x ∈ D be a smooth point of a prime divisor, U = X−D, F = j!FU , where FU

is a tor-finite local system on U concentrated in degree 0, (x, ξ) be a smooth point of SSF
with ξ ̸= 0. Then F has finite depth at (x, ξ) if both of the following conditions are satisfied:

i) (x, ξ) ∈ SSF is nonexceptional, in the sense that either it is not conormal to D, or the
component of SSF it lies in is the conormal of D.

ii) Let U → U be the minimal12 étale Galois covering trivialising F , X be the normalisation
of X in U , D = D ×X X. We require that X and Dred are smooth at points above x.

The proof will give an explicit bound for the depth. Before giving the proof, we need to
introduce some preliminary notions.

Terminology 2.3.11. (blowup stages) We say a blowup sequence at closed points has r
blowup stages if the longest sequence of successive blowups at points in new exceptional di-
visors has length r.

11e.g. fs : A1 → A1, x 7→ (1− s)xn + sxm.
12i.e., the covering corresponding to the quotient π1(X, ηX) ↠ G, where G is the image of π1(X, ηX) in

AutZ/ℓn(FηX ).
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This is to be distinguished from the number of blowups. For example, the following
blowup sequence has 2 blowup stages, while its number of blowups is 3.

Figure 2.1: A 2-stage blowup sequence on a surface

Definition 2.3.12 (ep(I)13). Let A be a Noetherian ring, I be an ideal. ep(I) := the smallest
r ∈ N such that (

√
I)r ⊆ I. Note ep(I) exists because A is Noetherian.

Lemma 2.3.13. i) ep(I)= supx(ep(Ix)), where x ranges through all closed points of Spec(A),
and Ix denotes the localisation of I at x.
ii) Assume A is Noetherian local excellent, then ep(I) = ep(Î), where Î is the completion of
I with respect to the maximal ideal.

ep(I) measures of the “thickness” of I. Effectively, the lemma says ep(I) can be computed
locally, in the completion.

Proof. i) Follows from two standard commutative algebra facts: a) localisation commutes
with taking radicals; b) inclusion relations of ideals can be checked by localisations at all
closed points.

ii) First note that Â is Noetherian ([Mat80, 23.K]), and A injects into Â because its
topology is Hausdorff ((11.D) in loc. cit.). A/

√
I being reduced implies, by excellence of

A, Â/ ˆ√I = ÷A/√I is reduced, so ˆ√I is radical. But ˆ√I is contained in
√
Î, because if

x∞ ∈ ˆ√I, let {xi} ⊆
√
I converge to it, then {xep(I)i } ⊆ I converges to xep(I)∞ , so xep(I)∞ lies

in Î. So ˆ√I =
√
Î. This argument also shows ep(Î) ≤ ep(I). For the converse, notice

√
I
ep(Î) ⊆ ( ˆ√I)ep(Î) =

√
Î
ep(Î)

⊆ Î, so
√
I
ep(Î) ⊆ Î ∩ A = I, where the last step is because

Î ∩ A is the closure of I in A and ideals of A are closed in A ((24.A) in loc. cit.).

Proof of Theorem 2.3.10. By Remark 2.3.6 v), ϕf (F) being a local system is equivalent to
Diagram 2.3 being ULA. By Deligne-Laumon (Theorem 2.2.5), this is equivalent to the func-
tion as (Formula 2.1) being constant. By the constructibility of as, this is further equivalent
to being constant for closed s. It is elementary to check that assumption i) ensures Deligne-
Laumon is applicable in our situation, and as is just the Swan conductor of F restricted to

13ep stands for épaisseur.
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the curve Cs := {fs = 0} ⊆ Vs at x. So it suffices to show:

In the setup of the theorem, there exists some N ∈ N such that for any test curves C ≡ C ′

mod mN
x on a same étale open neighbourhood of x,14 we have sw(C) = sw(C ′), where sw

means the Swan conductor at x of the restriction of F .

We digress to recall a few facts about Swan conductors. For details, see, e.g., [Lau81,
1.1]. The notations here are independent of the rest of the proof. Let C be a strict henselian
trait, F a tor-finite sheaf at its generic point η, concentrated in degree 0, given by the Galois
representation Gη ↠ G ↪→ AutZ/ℓn(Fη). Let C ′ → C be the normalisation of C in the Galois
cover of η corresponding to G. C ′ is a trait. To compute the Swan conductor of F , one first
form the filtration G = G0 ⊇ G1 ⊇ ... induced by iG : G → N ∪ {∞}, σ 7→ v′(σ(π′) − π′) if
σ ̸= id; ∞ if σ = id, where π′ is any uniformiser of C ′, v′ is the discrete valuation on C ′, and
Gi = {σ ∈ G| iG(σ) ≥ i+ 1}. Then

sw(F) =
∑
i≥1

dim(Fη/FGi
η )

[G : Gi]

Important for us is the following geometric interpretation of iG (see, e.g., [Ser79, VI.4]).
Consider the G-action on C ′. Then for σ ̸= id, iG(σ) = (Γσ.∆C′), where the latter is the
intersection number of the graph of σ and the diagonal. Denote by Iσ,C′ the ideal on C ′

corresponding to this intersection, then (Γσ.∆C′) = λOC′ (OC′/Iσ,C′) (λ denotes the length).

Back to the proof of the theorem. We first fix C ↪→ W for W some étale open neigh-
bourhood of x and find NC such that for any other test curve C ′ ↪→ W , satisfying C ≡ C ′

mod mNC
x , we have sw(C) = sw(C ′). Then we show NC is bounded uniformly as C varies.

Let W → W be the base change of X → X via W → X. Consider the following diagram:

C̃ + E W̃

C W

C W

⌟

⌟

where W̃ is obtained from W by successive blowups at closed points until C is resolved, C̃ is
the strict transform of C, E is the collection of exceptional divisors (with multiplicities). Note
C̃ is smooth and equals to the normalisation of C.15 We require that we blowup each time

14i.e., C,C ′ arise as zero loci of ttfun’s on the étale open.
15e.g. by Zariski’s Main Theorem.
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simultaneously at all points above x in the strict transforms of C, so that the G-action always
extends. Let M1 = maximum of the multiplicities in E. Let M2 = maxσ ̸=id∈G{ep(Iσ̃,W̃ )},
where σ̃ is the extension (by the universal property of normalisations) of σ to W̃ .

Claim: NC := M1 +M2.(D.C)x.|G| satisfies our purpose. Here (D.C)x is the intersection
number of D and C at x. A simple computation shows that in the nonexceptional situation,
if ξ is not conormal to D, then (D.C)x = 1; if ξ is conormal to D, then (D.C)x = 2.

Proof of the claim: if C ′ ↪→ W is another test curve, let C ′ be its normalisation. By the
above recollection on Swan conductors, to show sw(C) = sw(C ′), it suffices to show there
exists a bijection of points {x̃} ↔ {x′} of points of C̃, C ′ above x and for corresponding
points the quantities λOC̃,x̃

(OC̃,x̃/Iσ̃,C̃ .OC̃,x̃), λO
C ′,x′

(O
C ′,x′

/I
σ′,C ′

.O
C ′,x′

) equal for each

σ ̸= id in G. But if C ≡ C ′ mod mNC
x , then C̃ ≡ C̃ ′ mod INC−M1

Ered
, which implies: a)

{x̃} := C̃ ∩Ered = C̃ ′ ∩Ered; b) a fortiori C̃ ≡ C̃ ′ mod mNC−M1

x̃ so C̃ ′ is also smooth (hence
equal to C ′). From now on we abbreviate OC̃,x̃ (resp. OC̃′,x̃) by O (resp. O′) and drop the
subscripts on "λ". Consider λOC̃,x̃

(OC̃,x̃/Iσ̃,C̃ .OC̃,x̃). We have the following estimations:

λ(O/Iσ̃,C̃ .O) = λ(O/Iσ̃,W̃ .O) ≤M2.λ(O/
»
Iσ̃,W̃ .O)

≤M2.λ(O/
√
ID̃.O) ≤M2.λ(O/ID̃.O) =M2.(D̃.C̃)x̃ ≤M2.(D̃.C̃) =M2.(D.C)x.|G|

where ID̃ is the ideal corresponding to D̃ in W̃ . For the last equality, we used the pro-
jection formula from intersection theory in the form of [Liu02, 9.2.13]. Since C̃ ≡ C̃ ′

mod m
M2.(D.C)x.|G|
x̃ , λ(O/Iσ̃,C̃ .O) and λ(O′/Iσ̃,C̃′ .O′) must equal because C̃ and C̃ ′ are equal

in the (M2.(D.C)x.|G|)-th infinitesimal neighbourhood of x̃ ∈ W̃ . This proves the claim.

It remains to show NC =M1+M2.(D.C)x.|G| is bounded with respect to C. By Lemma
2.3.14 below, M1 ≤ 2MC−1.maxx{multx(C)}, where MC is the smallest number of blowup
stages needed to resolve C. By Lemma 2.3.15, M2 ≤ (2p + 1)MC .maxσ ̸=id∈G{ep(Iσ,X)}. By
Proposition 2.3.18, MC is bounded independent of C. Finally, multx(C) ≤ |G|.(C.D)x. In
fact, denote π : X → X, then multx(C) ≤ π∗(C.π

∗D) = |G|.(C.D)x, where the first in-
equality follows from the fact that at an intersction point of two curves with no common
components, the intersection number is greater than or equal to the product of their mul-
tiplicities at that point, and the second equality follows from the projection formula in loc.
cit.

Lemma 2.3.14. Let C be a curve on a smooth surface X. Suppose C is singular at a closed
point x. Let multx(C) be the multiplicity of C at x. Then, after M stages of blowups at
closed points (Terminology 2.3.11), the largest multiplicity of the inverse image of C at its
singularities is ≤ 2M−1.multx(C).
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Here the "inverse image of C" means X ×X C (X being the result after blowups), which
includes the exceptional divisors together with their multiplicities.

Proof. After the first blowup, C1 := the strict transform of C has multx(C1) ≤ multx(C) at
each point x above x, and the exceptional divisor E1 has multiplicity = multx(C) ([Kol07,
1.38, 1.40]). In the second blowup (at a closed point in E1), C2 still has multiplicities
≤ multx(C), and mult(E2) ≤ max{x}{multx(C1)}+mult(E1) ≤ 2.multx(C). Iterate.

Lemma 2.3.15. Let X be a smooth surface, σ ̸= id be an automorphism of X, Xσ
red be the

fixed locus, x0 ∈ Xσ
red be a closed point. Assume Xσ

red is a prime divisor smooth at x0. Then,
after M stages of blowups at closed points which are fixed by (extensions of) σ, we have
ep(Iσ̃) ≤ (2p+ 1)M .ep(Iσ), where σ̃ denotes the last extension of σ.

In the statement and proof of this lemma, we suppress the space in the notation for the
ideal of fixed points. For example, Iσ̃,W̃ as in the proof above would have been abbreviated
by Iσ̃. We will implicitly use Lemma 2.3.13 in the proof.

Proof. Clearly, it suffices to consider M successive blowups, each time at a closed point in
the new exceptional divisors. σ induces an automorphism of the Zariski localisation of X at
x0. So we may assume X = Spec(A) is local. We need to analyse all possible configurations
of fixed points in the successive blowups.

The configuration we start with is Xσ
red = a smooth curve. The blowup replaces x0 by an

exceptional divisor isomorphic to P1 (after reduction). Denote the extension of σ by σ. Then
σ acts linearly on P1 (which is just the derivative of σ at x0). There are three possibilities:
a) σ|P1 fixes P1; b) σ|P1 fixes two points, each with multiplicity 1; c) σ|P1 fixes a single point
with multiplicity 2. Then perform the second blowup, and so on. In Figure 2.2, we draw all
possible local configuration changes under blowups. Solid lines and points represent fixed
points. The dotted arrows represent the point of blowup. Each crossing is a simple normal
crossing. One can analyse the change of ep(Iσ) in all cases and find the desired estimate.
We illustrate with two cases, the others are similar.

Figure 2.2: Possible configuration changes of fixed points
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To separate notations, in the following we will use W,w, σ, etc. to denote the starting
space, point, action, etc. and W,w, σ, etc. to denote those after one blowup. We abbreviate
ep(Iσ), ep(Iσ) as ep, ep. Let π be the projection W → W .

General setup and observations: choose local coordinates (x, y) at w, use coordinates
((x, y), [u : v]) on W . If W = Spec(A) then W is Spec(A[x

y
]) in the (y, u)-chart and

is Spec(A[ y
x
]) in the (x, v)-chart. Denote σ∗ the corresponding action on A. Then, es-

sentially by definition, Iσ = (σ∗(a) − a) where a ranges through elements in A. Let
σ∗(x) = x+ f, σ∗(y) = y + f , so f, g ∈ Iσ. Note π∗(Iσ) ⊆ Iσ.16

Case i). Line to cross (left column top): we may assume W σ
red = {x = 0}. We have√

Iσ = (x) and xep ∈ Iσ. We look at (y, u)-chart, the other chart is similar. Denote by Iσ,(y,u)
the restriction of Iσ to the (y, u)-chart. Then

√
Iσ,(y,u) = (yu). Since π∗(Iσ) ⊆ Iσ, xep lies in

Iσ,(y,u). But in the (y, u)-chart x = yu, so (yu)ep ∈ Iσ, hence ep(y,u) ≤ ep.

Case ii). Point to point (right column bottom): we have
√
Iσ = (x, y) and (x, y)ep ⊆ Iσ.

Without loss of generality, assume that the new fixed point w lies in the (y, u)-chart, with
coordinate (0, u1). Consider the completion of W at w. Denote by Iσ,ŵ the completion of Iσ
at w. Then

√
Iσ,ŵ = (y, u− u1).

We now exhibit some elements in Iσ,ŵ, which will be sufficient for estimating ep. Since
σ∗(u) = σ∗(x/y) = x+f

y+g
= u+f/y

1+g/y
, we have σ∗(u)− u = f/y−ug/y

1+g/y
∈ Iσ,(y,u). Upon localising to

w, 1 + g/y becomes a unit, so f/y − ug/y ∈ Iσ,ŵ. On the other hand, we know (x, y)ep ⊆ Iσ
and π∗(Iσ) ⊆ Iσ. This implies yep ∈ Iσ,ŵ.

Expand f, g in power series in y and u′ = u − u1, the terms in f/y − ug/y which do
not involve y are precisely the terms in the quadratic equation on P1 for the fixed point w.
So f/y − ug/y ∈ k[[y, u′]] is of the form au′2 or au′2 + y(...) with (...) ̸= 0, for some a ̸= 0
in k. It is an exercise to see that in the former case ep ≤ ep + 2, and in the latter case
ep ≤ (2p+ 1).ep.17

Before stating Proposition 2.3.18 which bounds the number of blowup stages, we fix the
following setup. Let X be a smooth surface over an algebraically closed field k, D a prime
divisor, U := X − D, U ′ → U be a Galois cover with Galois group G, π : X ′ → X be the
normalisation of X in U ′, D′ := X ′ ×X D, x ∈ D be a closed point. Note π is finite. The
following lemma is standard, we include a proof for completeness.

Lemma 2.3.16. With the above setup, let Xx̂ be the completion of X at x, X ′x̂ := X ′×XXx̂.
Then X ′x̂

∼=
⊔

x′∈π−1(x)X
′
x̂′, where X ′x̂′ is the completion of X ′ at x′. Moreover, for each x′,

16This is one precise sense how the blowup “improves the situation”.
17Proof in the latter case: ∀pm ∈ N, (au′2+y(...))p

m

= ap
m

u′2p
m

+yp
m

(...)p
m ∈ Iσ,ŵ. If pm is the smallest

integer ≥ ep (which is clearly < p.ep), then, using yep ∈ Iσ,ŵ, we get u′2p
m ∈ Iσ,ŵ, so ep ≤ ep+ 2.pm.
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X ′x̂′ → Xx̂ is the normalisation of Xx̂ in the function field K(X ′x̂′), which is a finite separable
extension of K(Xx̂).

Proof. Let Xx = Spec(A), Xx̂ = Spec(Â). Then X ′ ×X Xx = Spec(A′L), where A′L is the
normalisation of A in the finite separable extension L = K(X ′) of K(X) = Q(A) (Q denotes
the total ring of fractions). As A is Japanese, A′L is a finite A-module, so A′L ⊗A Â ∼= Â′L
by [Mat80, 23.L, Theorem 55], where Â′L is the completion of A′L as an A-algebra at mA.
Â′L, being finite over a local ring, is semi-local, and its maximal ideals are in bijection with
π−1(x). Apply (24.C) in loc. cit., we get Â′L ∼= Πx′∈π−1(x)(Â

′
L)x̂′ (the product of completions

of Â′L at x′).18 This proves the first statement.

For the second statement, note we have the inclusions Â ⊆ Â′L ⊆ Q(Â′L). It suffices to
show Â′L is normal. In fact, Â′L is finite hence integral over Â, if it is normal, then it is the
integral closure of Â in Q(Â′L). Further, Q(Â′L) ∼= Πx′∈π−1(x)Q((Â

′
L)x̂′), so for each x′, (Â′L)x̂′

is the integral closure of Â in Q((Â′L)x̂′), which is a finite extension of Q(Â). The separability
follows from the separability of U ′ over U and base change. To see Â′L is normal, consider

A′L Â′L

A Â

⌟

The formal fibres of A′L are base changes of formal fibres of A under finite field extensions.
Since A is excellent, its formal fibres are geometrically regular, so the formal fibres of A′L are
also geometrically regular. So the normality of A′L implies the normality of Â′L by (21.E) in
loc. cit.

Now consider X ′x̂′ → Xx̂ for a fixed x′. Suppose further that X ′ is smooth at x′. Denote
the function rings of Xx̂ and X ′x̂′ by A and R, respectively (note the notations are different
from those in the above proof). Let C = V (h), h ∈ mA be a smooth curve in Xx̂, with no
common components with Dx̂, where Dx̂ := D ×X Xx̂ = V (g), for some g ∈ mA. Denote
A′ = A/hA,R′ = R/hR. Let C(R/A) be the Dedekind codifferent. We refer to [Stacks,
0BW0 and related tags] for generalities on Dedekind codifferents. We summarise what we
need in the following:

Facts 2.3.17 (about Dedekind codifferents). Notations here are separate from the above. Let
A→ B be a map between Noetherian rings. Assume the map is finite, any nonzerodivisor in
A maps to a nonzerodivisor in B, and K → L is étale, where K := Q(A), L := Q(A)⊗A B.
Under these assumptions, C(B/A) is defined to be {x ∈ L|TrL/K(xb) ∈ A,∀b ∈ B}. Assume
further A→ B is flat. We have:
a) C(B/A) is a finite A-module (being the inverse of an ideal of a Noetherian ring ([0BW1])).

18Note V (mÂ′
L
) = V (mÂÂ

′
L), so Â′

L is already complete with respect to mÂ′
L
.
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b) If A→ B is a local complete intersection map, then C(B/A) equals the inverse of the Käh-
ler different ([0BWG, 0BW5]). Note, with our assumptions, the Kähler different is the same
as the Jacobian ideal (see [SH06, 4.4] for generalities on Jacobian ideals). Both equal the
ideal generated by (the image in B of) ∆ := det(∂fi/∂xj), where B ∼= A[x1, ..., xn]/(f1, ..., fn)
is any presentation of B as an A-algebra.

Proposition 2.3.18. With the above setup, let MC be the number of blowup stages needed
to resolve C ′ := X ′x̂′ ×Xx̂

C ↪→ X ′x̂′. Then MC ≤ r.s.(C.Dx̂), where r is the smallest integer
such that grA ⊆ AnnA(C(R/A)/R), and s is the smallest number of generators of C(R/A)/R
as an A-module.

The proof is due to Bernd Ulrich19.

Proof. First note MC ≤ dimk(R
′
/R′), where R′ is the normalisation of R′, i.e., the inte-

gral closure of R′ in Q(R′). This follows from a simple application of [Nor57, Theorem 4,
Theorem 5] and the well-known fact that finitely many blowups resolve R′. Now consider
the inclusions in Q(R′): R′ ⊆ R

′ ⊆ C(R
′
/A′) ⊆ C(R′/A′). We get MC ≤ dimk(R

′
/R′) =

λA(R
′
/R′) ≤ λA(C(R

′/A′)/R′). Claim: C(R′/A′) = C(R/A)′(:= C(R/A) ⊗A A
′). Conse-

quently C(R′/A′)/R′ = C(R/A)′/R′ = (C(R/A)/R)′(:= (C(R/A)/R)⊗AA
′). Assume this for

now, we prove the proposition.

It remains to bound λA(C(R/A)/R)
′). Denote N = C(R/A)/R. N is a finite A-module,

supported in Dx̂ (because the A → R is étale elsewhere). Let r and s be as in the state-
ment of the proposition. Then N is naturally an A/grA-module, N ′ = N ⊗A/grA A/(g

r, h).
We have (A/grA)s ↠ N , hence (A/(gr, h)s ↠ N ′ after tensoring with A/(gr, h). So
λA(N

′) ≤ λA((A/(g
r, h))s) = r.s.(C.Dx̂).

Finally, we prove the claim. By assumption, A and R are regular, so R is a local com-
plete intersection over A. Choose any presentation R ∼= A[x1, ..., xn]/(f1, ..., fn), where
(f1, ..., fn) is a regular sequence in A[x1, ..., xn]. Then, by Fact b) above, C(R/A) = R∆−1,
where ∆ denotes the image of det(∂fi/∂xj) in R. Base change to over A′, we get R′ ∼=
A′[x1, ..., xn]/(f̃1, ..., f̃n), where f̃i denotes the image of fi in A′[x1, ..., xn]. Since Spec(R′)(=
C ′) is of codimension 1 in Spec(R)(= X ′x̂′), (f̃1, ..., f̃n) is still a regular sequence inA′[x1, ..., xn].
So, by Fact b) again, C(R′/A′) = R′∆̃−1, where ∆̃ denotes the image of det(∂f̃i/∂xj) in R′.
We conclude that C(R′/A′) = (C(R/A))′.

19Ulrich’s original argument in fact also applies to the case without the assumption of X ′
x̂′ being smooth.

We present this special case for the sake of simplicity. In that generality, the last paragraph needs to
be modified: instead of Fact b), one applies [KW88, 3.5] to compute C(R/A) (resp. C(R′/A′)), and get
∆−1((f1, ..., fn) : I) (resp. ∆̃−1((f̃1, ..., f̃n) : Ĩ)), where R ∼= A[x1, ..., xn]/I is a presentation and (f1, ..., fn)
is a regular sequence in I (which exists because R is Cohen-Macaulay, being normal of dimension 2).
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This completes the proof of Theorem 2.3.10. The version of our main result as stated
in the Introduction now follows easily from it (plus three lemmas to be proved in the next
section).

Theorem 2.3.19 (Generic finite depth). Let X be a smooth surface over an algebraically
closed field k of characteristic p > 2, F ∈ D(X). Then, there exists a Zariski open dense
V = X−{finitely many closed points} and a Zariski open dense S ⊆ SS(F|V ) such that for
any (x, ξ) ∈ S, there exists an integer N ≥ 2 such that the depth of F at (x, ξ) is ≤ N .
Moreover, we have an upper bound: if F is locally constant in some punctured neighbourhood
of x, then N = 2; if x lies in a ramification divisor D of F (still assuming (x, ξ) ∈ S), then
N ≤ 2M−1.ix.|G|+(2p+1)M .maxσ ̸=id∈G{ep(Iσ,X)}.ix.|G|, where ix = 1 for (x, ξ) not conormal
to D, ix = 2 if the component of SSF (x, ξ) lies in is the conormal of D, M = r.s.ix, and
r, s are as in Proposition 2.3.18 (applied to X x̂′ → Xx̂ for any x′ above x).

Note r and s do not depend on the choice of x′, as the Galois action acts transitively on
{x′}.

Proof. It is clear that away from finitely many closed points and by standard dévissage
(recollement and induction on amplitudes) (the dévissage works because of Lemma 2.4.16),
we are reduced to three cases: 1) F is locally constant on a punctured neighbourhood of x;
2) F = i∗L where i is the closed immersion of a smooth curve D on X, and L is a local
system on D; 3) the situation of Theorem 2.3.10. Case 1) follows from Lemma 2.4.17 and
Lemma 2.4.16, case 2) follows from Proposition 2.4.6 and Proposition 2.4.10, case 3) follows
from Theorem 2.3.10.

Example 2.3.20. Consider the sheaf in Example 2.2.6. (x, ξ) = ((0, 0), dy). One checks that
the normalisation of k[x, y] in k(x, y)[t]/(tp − t− y/xp) is k[x, y, xt]/((xt)p − xp−1(xt)− y).
Let τ = xt, then X = Spec(k[x, τ ]). There is a single point x = {x = τ = 0} above
x. One checks that ix = 1; G = Z/p; σ ∈ Z/p acts on X by (x, τ) 7→ (x, τ + σx), so
∀σ ̸= 0, Iσ,X = (x) hence ep(Iσ,X) = 1; finally, using the notations of Proposition 2.3.18,
∆ = −xp−1, C(R/A)/R = R 1

xp−1/R, r = p−1, s = p. So our bound gives depth(F)((0,0),dy) ≤
2p(p−1)−1.p+ (2p+ 1)p(p−1).p.

We comment that, in the above example, by directly computing the Swan of test curves
using explicit equations, one can show depth(F) = p at every point ((0, y), ξ) ∈ SSF with
ξ ̸= 0 (see Example 2.4.19 for an illustration in a simpler case). So our estimate is by no
means sharp.

We now discuss Saito’s result and its relation with ours.

Theorem 2.3.21. [Sai15, 2.14] Let X be a smooth surface over a field k which is alge-
braically closed of characteristic p > 0, Λ be a finite field of characteristic ℓ ̸= p, F ∈ D(X,Λ)
be of the form F = j!FU , where U is an open dense subscheme of X and FU is a local system
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on it concentrated in degree 0. Let Z = X − U . Let (x, ξ) ∈ SSF be a smooth point, x
closed. Let f : X → A1 be a morphism such that (x, ξ) is an isolated characteristic point of
f with respect to F . Assume f is flat and its restriction to Z − x is étale. Then there exists
a positive integer N such that for any g : X → A1 satisfying f ≡ g mod mN

x , there exists
an isomorphism ϕf (F)x ∼−→ ϕg(F)x as objects in Db

c(Λ[Gη]).

i) Saito’s result fixes a test function f which has an isolated characteristic point (not
necessarily transverse), while our result is a uniform bound for transverse test functions.

ii) The isomorphism of vanishing cycles in Saito’s result is an isomorphism of Gη- repre-
sentations. In our result, although ϕf (F) being a local system certainly implies ϕfs(F)’s are
isomorphic as (complexes of) vector spaces for all closed points s in T , it is not clear what
representation-theoretic data is contained in our notion of stability. On the other hand, our
loss in representation-theoretic data gained us more functoriality. For example, one has a
version of the 2-out-of-3 property for the depth, see Lemma 2.4.16.

We end this section with two conjectures.

Conjecture 2.3.22. Let X be a smooth variety over an algebraically closed field k of char-
acteristic p ̸= 2.20 Then F ∈ D(X) has finite depth at all smooth points of SSF .

Conjecture 2.3.23. Let X be a smooth variety over an algebraically closed field k of charac-
teristic p ̸= 2, F ∈ D(X), (x, ξ) be a smooth point of SSF . Then there exists a positive inte-
ger N (depending on (x, ξ)) such that for any étale neighbourhood U of x and f, g : U → A1

satisfying a) f and g are ttfun’s at (x, ξ); b) f ≡ g mod mN
x , there exists an isomorphism

ϕf (F)x ∼−→ ϕg(F)x as objects in Db
c(Z/ℓn[Gη]).

2.4 µc sheaves
We maintain the same setup in §2.3. As mentioned in the introduction, our motivation is
to build a microlocal sheaf theory in this setting. A microlocal sheaf theory “lives” on the
cotangent bundle, but as discussed in §2.2, due to the complexity of π1 (or wild ramification),
microlocal data is huge, reflected in the fact that vanishing cycles depend on higher jets of
the ttfun. This suggests at least two directions to go: i) work on a space larger than T ∗X
(e.g., higher jet bundles), ii) restrict the class of sheaves. The previous section is a step in
i): we showed that on a surface, generically, the vanishing cycles “live” on some finite jet
bundle. In this section, we explore the second route.

An immediate thought is to restrict to tame sheaves. However, this is not satisfactory,
as tameness is not even preserved under the Radon transform (see Example 2.4.21), while

20We need p ̸= 2 so that there are enough ttfun’s and the depth makes sense.
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as mentioned in §2.2, a fundamental feature of microlocal sheaf theory is contact invariance,
of which the Radon transform is the prototypical case. Inspired by the situation in complex
analytic context, we instead consider the class of sheaves with the strongest stability.

Definition 2.4.1 (µc, µcs sheaves). F ∈ D(X) is µc at a smooth point (x, ξ) ∈ SSF if for
all ttfam’s of F at (x, ξ), ϕf (F) is a local system. F is µc if it is µc at all smooth points of
SSF .

F ∈ D(X) is µcs at a smooth point (x, ξ) ∈ SSF if for all smooth morphism p : Y → X
and (y, η) ∈ T ∗Y with y 7→ x, η = dp(ξ), and all ttfam’s of p∗F at (y, η), ϕf (F) is a local
system. F is µcs if it is µcs at all smooth points of SSF .

We record a question we do not know how to answer yet, it is a special case of Question
2.3.9.

Question 2.4.2. Is µc equivalent to µcs?

A µc sheaf is just a sheaf of depth 2 at all smooth points of its SS. We give them a
special name as they are closest to the complex analytic case and are good candidates for
microlocal constructions. Actually, we have the analogues of Propositions 2.2.1, 2.2.4. (Note
we have no control on the representation structure, see item ii) after Theorem 2.3.21.)

Lemma 2.4.3. i) Let F ∈ D(X) be µc and (x, ξ) be a smooth point in SSF . Then for
any two ttfun’s f, g at (x, ξ), there exists a (noncanonical) isomorphism ϕf (F)x ∼= ϕg(F)x
as objects in Db

c(Z/ℓn). We call this the microstalk of F at (x, ξ).

ii) For µcs sheaves, the microstalks are invariant under the Radon transform: let F ∈ D(P)
be µcs, and (x, ξ) be a smooth point of SSF with ξ ̸= 0. Let (a, α) be a point in SSRF
corresponding to (x, ξ). Let f, g be ttfun’s for F , RF at (x, ξ), (a, α) respectively. Then there
exists an isomorphism ϕg(F)a ∼= ϕf (F)x as objects in Db

c(Z/ℓn).

Proof. i) F being µc implies that in a ttfam (T, U, V, g), the stalks of ϕg(F) are all iso-
morphic. So it suffices to show that any two ttfun’s can be connected by a ttfam. Fix
an étale coordinate {x1, ..., xn} at x. Let f be a ttfun on some étale neighbourhood U
of x. The restriction of f to the strict localisation X(x)

∼= Spec(k{x, y}) is of the form
f |X(x)

=
∑
ξixi +

∑
aijxixj + H, where ξi are components of ξ and H means higher order

terms. Consider the A1 = Spec(k[s])-family: fs := f + (s − 1)(f − (
∑
ξixi +

∑
aijxixj)),

then fs|X(x)
=

∑
ξixi +

∑
aijxixj + sH. Note these are also defined on U , and since we

have not changed ≤ second order terms, ν is still a transverse intersection point of Γdfs and
SSF . fs is a ttfun on some Zariski open neighbourhood Vs of x ∈ U . Put them together,
we get a ttfam (A1, U, V, f), connecting f1 = f to f0 =

∑
ξixi +

∑
aijxixj. Now consider

Q = the space of all quadratic forms {bij} such that
∑
ξixi +

∑
bijxixj is a ttfun on some

Zariski open neighbourhood of x ∈ X. It is an open dense subspace of an affine space. Let
f{bij} =

∑
ξixi +

∑
bijxixj. This defines a ttfam (Q,U ′, V ′, f{bij}) for some Zariski open U ′
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of X, connecting all ttfun’s parametrised by Q.

ii) By Corollary 2.4.14, RF is also µcs, so its microstalks are well-defined. The same
computation as in the proof of Proposition 2.3.2 then gives the result.

Remark 2.4.4. Here is a direct proof of Proposition 2.3.1: by the proof of the above Lemma
i), all ttfun’s can be connected via ttfam’s. By [Sai17b, 1.16], dimtot is constant in a ttfam
(note that by the definition of the ttfam, the nonacyclicity locus is mapped isomorphically to
the base A1

T , so being flat implies being locally constant in the terminology of [Sai17b, 1.16]).

The rest of this section is devoted to:

i) showing some basic sheaves are µc (µcs). In particular, tame simple normal crossing
sheaves are µcs;
ii) showing some functorialities of the µc condition. In particular, µcs sheaves are preserved
under the Radon transform;
iii) examples.

Basic objects

Recall definitions and remarks in §2.3.

Lemma 2.4.5. If X is a smooth curve, then any F ∈ D(X) is µc.

Proof. Let (x, ξ) be a smooth point of SSF . Notice that for any ttfam at (x, ξ), in Diagram
2.3, fT is an isomorphism and FT is a constant sheaf, so (fT ,FT ) is ULA.

Proposition 2.4.6. Local systems are µcs.

Proof. It suffices to show they are µc because pullback of local systems are local systems.
The problem being étale local, we may assume the sheaf is constant. Let F ∈ D(X) be
a constant sheaf, x ∈ X. Let (T, U, V, f) be a ttfam for F at (x, ξ = 0). On each slice
Vs

fs−→ A1
s, fs being a ttfun implies it has a nondegenerate quadratic singularity at x over

0 ∈ A1
s (in the sense of [SGA7, Exp. XV, 1.2.1]). We want to show Diagram 2.3 is ULA.

Consider the following diagram:

VT V V − VT

VT V V − VT

T

fT

i

h

π

j

∼=

j
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where h is the composition of f and the projection A1
T → T , π : V → V is the blowup of

V along xT . Note VT ↪→ V is a simple normal crossing divisor over T . By the distinguished
triangle j!j∗F → F → i∗FT → and the fact that (h,F) is ULA, to show (fT ,FT ) is ULA,
it suffices to show (h, j!j

∗F) is ULA. But j!j∗F ∼= π∗j!G, where G is the pullback of j∗F
to V − VT . By [Sai17b, 4.11], SS(j!G) = T ∗

V
V ∪ T ∗

V T
V ,21 so V → T is SS(j!G)-transversal,

so (hπ, j!G) is ULA. By the compatibility of vanishing cycles and proper pushforwards,
Φh(π∗j!G) ∼=←−π∗Φhπ(j!G) = 0.

Proposition 2.4.7. Let D ⊆ X be a simple normal crossing divisor (sncd), j : U → X be
its complement. If F ∈ D(X) is of the form F = j!FU for FU a local system tame along D,
then F is µc (hence µcs because its smooth pullbacks are of the same form).

Recall that in this situation SSF = T ∗XX ∪ T ∗DX by [Sai17b, 4.11] (see Footnote 21 for
the notation).

Proof. The question being étale local, we may assume that we are in the situation D =
∪ri=1Di ↪→ X = An

k , where 0 < r ≤ n, Di = {xi = 0}, with {x1, ..., xn} the standard coordi-
nates on An

k . The locally constant locus has been dealt with in the previous proposition. It
suffices to show F is µc at (x, ξ) for x = origin, ξ = dx1 + ...+ dxr.

Let (T, U, V, f) be a ttfam for F at (x, ξ). We want to show ΦfT (FT ) = 0 in Diagram
2.3. For this, we need to understand the geometry of DT := (D × T ) ∩ VT ↪→ VT near xT .
First look at each slice D = D × {s} ↪→ Vs.

Claim: the embedded singularity D∩Hs ↪→ Hs can be resolved in two steps: first blow up
at x, then blow up along the intersection of the exceptional divisor with the strict transform
of D1 ∩ ... ∩Dr−1 ∩Hs. (For r = 1, there is only one blowup.)22

The claim is shown in the next two lemmas. We first assume this and finish the proof.
It follows from the claim that the embedded singularity DT ↪→ VT can be resolved by first
blowing up along xT , then blowing up along the intersection of the exceptional divisor with
the strict transform of D1,T ∩ ...∩Dr−1,T , where Di,T := (Di×T )∩VT . We get the following
diagram:

VT VT

T

π

fT
gT

where π is proper and induces an isomorphism over VT −DT , and π−1(DT ) ↪→ VT is a sncd
relative to T . Note FT = π∗π

∗FT (because FT is a !-extension from the open), and π∗FT is
21We use the following notation: for D = ∪ri=1Di ↪→ X a sncd, T ∗

DX := ∪IT ∗
DI
X, where I ranges through

nonempty subsets of {1, 2, ..., r}, and DI := ∩i∈IDi.
22Of course the choice {1, 2, ..., r − 1} is unimportant: one can choose any r − 1 elements in {1, 2, ..., r}.
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still a sncd tame sheaf (by [KS10, 4.4]). So ΦfT (FT ) =
←−π ∗ΦgT (π

∗FT ) = 0, where the last
equality comes from the fact that SS of a sncd tame sheaf is conormal.

Lemma 2.4.8. Let D = ∪ri=1Di ↪→ X = An
k , where 0 < r ≤ n, Di = {xi = 0}, with

{x1, ..., xn} the standard coordinates on An
k . Denote D = D1∩...∩Dr. Let f be a ttfun of T ∗DX

at (x, ξ) where x = origin, ξ = dx1+...+dxr.23 Denote H = f−1(0). Then D1∩H, ..., Dr−1∩H
form a sncd on H and xr|H is a ttfun of T ∗D1∩...∩Dr−1∩HH at (x,−(dx1+ ...+ dxr−1)|H). (For
r = 1, T ∗D1∩...∩Dr−1∩HH := T ∗HH.)

Proof. It follows easily from f being a ttfun that:
i) D1, ..., Dr−1 indeed form a sncd on H;
ii) Γdxr|H intersects T ∗D1∩...∩Dr−1∩HH precisely at (x,−(dx1 + ...+ dxr−1)|H).

We want to show the intersection is transverse. By the “⇒” part of the proof of Proposi-
tion 2.4.10, it suffices to show this in the ambient spaceX, i.e., that Γdxr .⟨dx1, ..., dxr−1, df⟩ =
1.(x, dxr), where ⟨dx1, ..., dxr−1, df⟩ denotes the pushforward of T ∗D1∩...∩Dr−1∩HH into X. The
r = n case is easy. We assume r ≤ n− 1 in the following. Note Γdxr and ⟨dx1, ..., dxr−1, df⟩
intersect precisely at (x, dxr), so it suffices to show that their tangents at (x, dxr) are linearly
independent. The computation is straightforward, here are the results:

Use coordinates {x1, ..., xn; p1, ..., pn} on T ∗X.
Γdxr : tangent space at (x, dxr) is spanned by {∂x1 , ..., ∂xn}.
⟨dx1, ..., dxr−1, df⟩: tangent space at (x, dxr) is spanned by {∂p1 , ..., ∂pr−1 ,

∑n
i=1 ∂pi ,

(∂xr+1 +
∑n

i=1 fi,r+1∂pi), ..., (∂xn +
∑n

i=1 fi,n∂pi)}, where fi,j denotes the derivative of f in xi
followed by in xj.

These are linearly independent if and only if the matrix {fi,j}i,j∈{r+1,...,n} is nondegenerate.
But this follows exactly from the assumption that f is a ttfun for T ∗DX.

Lemma 2.4.9. Same set up as in the previous lemma. Then the embedded singularity
D ∩ H ↪→ H can be resolved in two steps: first blow up at x, then blow up along the
intersection of the exceptional divisor with the strict transform of D1 ∩ ... ∩Dr−1 ∩H. (For
r = 1, there is only one blowup.).

Proof. As everything happens onH, for convenience, we make the following notation changes
in this proof (new L99 old): X L99 H, Di L99 Di∩H (for i = 1, 2, ..., r−1), D L99 ∪r−1i=1Di∩H,
D L99 ∩r−1i=1Di ∩H, H L99 Dr ∩H, f L99 xr|H . We also rename n and r such that our new
X is of dimension n, and new D has r components. In this new notation, the statement
becomes: the embedded singularity D ∪ H ↪→ X can be resolved by first blowing up at x,
then blowing up along the intersection of the exceptional divisor with the strict transform

23For C a conic closed subset of T ∗X and (x, ξ) a smooth point of C, we say f is a ttfun of C at (x, ξ) if
f satisfies the same conditions as in Definition 2.1.1, with “SSF” replaced by “C”.
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of D.

The problem being étale local, we may assume X = An
k , with the standard coordinates

{x1, ..., xn}, and x is the origin. The r = n case is simple. We check the r ≤ n − 1 cases.
The condition on f implies that f is of the form x1 + ...+ xr +Q+Q′ + P + (...) where Q
is a nondegenerate quadratic form in {xr+1, ..., xn}, Q′ is a quadratic form in {x1, ..., xr}, P
is a linear combination of monomials of the form xaxα for a ∈ {1, ..., r}, α ∈ {r + 1, ..., n},
and (...) means higher degree terms. In the rest of the proof, a, b... always mean an index
in {1, ..., r}; α, β... always mean an index in {r + 1, ..., n}; i, j... always mean an index in
{1, ..., n};

∑
means over all allowed indices unless specified. By a linear change of coordi-

nates in {xα}, we may assume Q =
∑
x2α.

Blow up at x. Use new coordinates ((x1, ..., xn), [p1 : ... : pn]) with relations {xipj =
xjpi}all i,j. We look at pn = 1 piece, the others can be checked by the same method. On this
piece, we may use coordinates {xn, p1, ..., pn−1}, and we have xi = xnpi for i = 1, ..., n − 1.
The exceptional divisor is E = {xn = 0}. We list the strict transforms of relevant things:
Da: D′a = {pa = 0};
D: D′ = {p1 = ... = pr = 0};
H: H ′ = {f (1) =

∑
pa + (xn +

∑n−1
α=r+1 xnp

2
α) +Q′/xn + P/xn + (...) = 0}. Here Q′/xn con-

sists of (linear combinations of) terms of the form xnpapb, and P/xn of the forms xnpapα, xnpa.

The conormals of D′a, D
′ are spanned by dpa, {dp1, ..., dpr} respectively. We compute:

df (1)|E =
∑
dpa + (1 +

∑n−1
α=r+1 p

2
α)dxn + A, where A consists terms of the form papbdxn,

papαdxn, padxn. It is an exercise to deduce from these that:
i) {D′1, ..., D′r, H ′, E} form a sncd except along D′ ∩H ′ ∩ E = D′ ∩ E;
ii) along D′ ∩ E: outside the conic C := {xn = p1 = ... = pr = 0, 1 +

∑n−1
α=r+1 p

2
α = 0}, any

r − 1 members of {D′1, ..., D′r, H ′, E} form a sncd; on C, {D′1, ..., D′r, E} form a sncd, and
df (1) =

∑
dpa.

It remains to resolve the singularity along D′ ∩ E. Blow up along D′ ∩ E. It is another
exercise to see, using ii), that the singularity outside C is resolved. We check that the sin-
gularity is also resolved over C.

Use new coordinates ((xn, p1, ..., pn−1), [qn : q1 : ... : qr]) with relations {xnqi = qnpi, piqj =
qipj}all i,j. We look at qn = 1 piece, the others can be checked by the same method. On
this piece, we may use coordinates {xn, q1, ..., qr, pr+1, ..., pn−1}, and we have pa = xnqa for
a = 1, ..., r. The exceptional divisor is F = {xn = 0}. We list the strict transform of relevant
things:
E: E ′ lies at infinity and is irrelevant on this piece;
D′a: D′′a = {qa = 0};
D′: D′′ = {q1 = ... = qr = 0};
H ′: H ′′ = {f (2) =

∑
qa + (1 +

∑n−1
α=r+1 p

2
α) +Q′/x2n + P/x2n + (...) = 0}. Here Q′/x2n consists
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of terms of the form x2nqaqb, and P/x2n of the form xnqapα, xnqa.

We compute: df (2)|xn=0 =
∑
dqa + (

∑n−1
α=r+1 2pαdpα) + A, where A consists of terms

of the form qapαdxn, qadxn. Recall that we want to show {D′′1 , ..., D′′r , H ′′, F, E ′} form a
sncd. E ′ is irrelevant here, and it suffices to check over C, i.e., on the locus {xn = 0, 1 +∑n−1

α=r+1 p
2
α = 0}. But along this locus, {pr+1, ..., pn−1} are not all 0, so df (2)|xn=0 contains

some dpα component and is thus not contained in the span of {dxn, dq1, ..., dqr}, consequently
{D′′1 , ..., D′′r , H ′′, F, E ′} form a sncd.

Properties

Proposition 2.4.10 (closed immersion). Let i : Z ↪→ X be a closed immersion of smooth
varieties, F ∈ D(Z). Then
i) F is µc if and only if i∗F is µc;
ii) Same for µcs;
i′) More generally, if (z, ζ) is a smooth point in SSF and (x, ξ) is in SS(i∗F) such that
x = i(z), di(ξ) = ζ, then depth(F)(z,ζ) = depth(i∗F)(x,ξ).

Proof. i) Let (z, ζ) be a point in SSF , and (x, ξ) be a point in SS(i∗F) = i◦SSF such
that x = i(z), di(ξ) = ζ. First note that (x, ξ) is a smooth point of SS(i∗F) if and only
if (z, ζ) is a smooth point of SSF . This follows from the observation that in the following
correspondence u is smooth and v is a closed immersion.

Z ×X T ∗X

T ∗Z T ∗X

u v

F µc⇒ i∗F µc: Let (T, U, V, f) be a ttfam at (x, ξ) for i∗F , we want to show ϕf (i∗F) is
locally constant. Consider the restriction of (T, U, V, f) to Z:

Z × T UZ × T VZ zT

X × T U × T V xT

A1
T

i ∼i′

f

⌟ ⌟

By the compatibility of vanishing cycles (over general bases) with proper pushforwards,
Φf ((i∗F)V ) ∼=

←−
i′ ∗Φfi′(FVZ

). But Φf ((i∗F)V ) is supported on zT
←−×A1

T
A1

T and
←−
i′ restricted to

zT
←−×A1

T
A1

T is an isomorphism, so ϕf (i∗F) = Φf (i∗FV )|←−T T
∼= Φfi′(FVZ

)|←−
T T

= ϕfi′(F). So, F
being µc, it suffices to show the restriction of (T, U, V, f) to Z is a ttfam for F at (z, ζ). In
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the definition of the ttfam i), ii) are clear. We check iii):

The computation being local, we may assume Vs = X. Consider the correspondence
above. Abbreviate SSF as C. We want to compute C.Γd(fs|Z) = C.uv−1Γdfs . First note
(vu−1C).Γdfs(= (i◦SSF).Γdfs = 1.(x, ξ)), (u−1C).v−1Γdfs , C.uv−1Γdfs are all supported at a
single point because fs is a ttfun, u is smooth and v is a closed immersion. Then com-
pute: (vu−1C).Γdfs = (v∗u

−1C).Γdfs = (u−1C).v∗Γdfs , where the second equality comes from
v being a closed immersion, third equality comes from the projection formula in intersection
theory. A simple computation in a local coordinate shows that the intersection of Γdfs and
Z ×X T

∗X is transverse. So v−1Γdfs is also smooth and (u−1C).v∗Γdfs = (u−1C).v−1Γdfs , i.e.
u−1C and v−1Γdfs intersect transversely at a single point. So C and uv−1Γdfs also intersect
transversely at a single point.

F µc⇐ i∗F µc: Let (T, Z ′, V, f) be a ttfam at (z, ζ) for F . If ζ = 0, then F is locally
constant near z and the assertion is clear. Assume ζ ̸= 0. By [EGAIV, 18.1.2], we can
extend Z ′ to an étale neighbourhood X ′ of x in X. By the following Lemma 2.4.11, after
possibly shrinking Z ′ and X ′, there exists an étale neighbourhood X̃ ′

β−→ X ′ of x in X and
maps α, r satisfying the following diagram:

Z ′ X̃ ′ X ′α β

r

where α is a closed immersion, β is étale, r is a retraction, and βα coincides with the closed
immersion Z ′ ↪→ X ′. Consider the pullback of (T, Z ′, V, f) via r:

X̃ ′ × T Ṽ zT

Z ′ × T V zT

A1
T

r×id

f

⌟

f̃

On each slice, f̃s = fsr is an extension of fs. A similar intersection theoretic computa-
tion as above shows that (T, X̃ ′, Ṽ , f̃) is a ttfam at (z, (df̃s)z) for i∗F . Then again by the
compatibility of vanishing cycles with proper pushforwards, ϕf (F) ∼= ϕf̃ (i∗F), and the latter
is a local system by assumption.

ii) “⇒” is clear. For “⇐”: The question being étale local, we may reduce to showing that
the pullback of µc a sheaf F along Am×Z → Z is µc. But it equals the restriction to Am×Z
of the pullback of F along Am ×X → X, which is µc by i).
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i′) This follows from the same method as for i) plus Lemma 2.4.12.

The following lemma is well-known. We learned it from Owen Barrett.

Lemma 2.4.11. Let i : Z ↪→ X be a closed immersion of smooth schemes over a field k,
z ∈ Z be a point. Then in some Zariski open neighbourhood X ′ of z in X, there exists an
étale neighbourhood X̃ ′ β−→ X ′ of z in X ′ and maps α, r satisfying the following diagram:

Z ′ X̃ ′ X ′α β

r

where Z ′ = Z ×X X ′, α is a closed immersion, β is étale, r is a retraction, and βα = i.
Moreover, the retraction r is smooth along Z ′.

Proof. Z being smooth, there exists an étale map Z ′ → Am
k for some Zariski open neigh-

bourhood Z ′ of z in Z. Extend Z ′ to a Zariski open X ′ in X. By further shrinking, we may
assume Z ′, X ′ are affine. Consider the following pushout, and choose a retraction r′:

Z ′ X ′

Am
k X ′′

f

⌟

r′

(If X ′′ = SpecA,Am
k = Spec(k[x1, ..., xm]), choosing an r′ amounts to choosing a lift for each

xi of A↠ k[x1, ..., xm].) We construct X̃ ′ etc. using the following two pullback diagrams:

Z ′ Z ′ ×Am
k
X ′ Z ′ ×Am

k
Z ′ Z ′ ×Am

k
X ′

Am
k X ′ Z ′ X ′

pr2

i

pr2

i′

⌟
∆

r′f

pr2

pr1

⌟

In the right diagram, note Z ′ ×Am
k
Z ′ is a disjoint union of several copies of Z ′ because

pr2 is étale. ∆ is an isomorphism to the diagonal copy. Let X̃ ′ = Z ′ ×Am
k
X ′ − (Z ′ ×Am

k
Z ′ −

∆(Z ′)), α = i′∆, β = pr2, r = pr1. It is an exercise to see that these satisfy the requirement.
Note the smoothness of r along Z ′ follows from the smoothness of Z ′, X̃ ′ and the injectivity
of dr on cotangent spaces (see, e.g., [Liu02, 6.2.10]).

Lemma 2.4.12. Let f : X → Y be a morphism of schemes, y ∈ Y . If g, h ∈ Oy,Y are such
that f ≡ g mod mN

y,Y for some N ∈ N, then g ◦ f ≡ h ◦ f mod mN
x,X for any x ∈ f−1(y).

Proof. Let φ : Ox,X ← Oy,Y be the induced local ring map. g ≡ h mod mN
y,Y ⇒ g◦f ≡ h◦f

mod φ(mN
y,Y ) = φ(my,Y )

N , a fortiori g ◦ f ≡ h ◦ f mod mN
x,X .
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Like tame sheaves, µc sheaves are not stable under general proper pushforwards, however
they are stable under pushforwards which resemble (the pushforward part of) an integral
transform.

Proposition 2.4.13 (special pushforward). Let f : Y → X be a morphism of smooth vari-
eties, F be a µc sheaf on Y .
i) If f is special with respect to F , then f∗F is µc;
ii) Same for µcs;
i′) More generally, if f is special with respect to F , then for any pair (x, ξ), (y, η) (see nota-
tions below), we have depth(f∗F)(x,ξ) ≤ depth(F)(y,η).

Here we say f : Y → X is special with respect to F if
a) it is smooth and proper;
b) for any smooth point (x, ξ) ∈ SS(f∗F) with ξ ̸= 0, there exists a unique point (y, η) ∈
(SSF)|f−1(x) such that df(ξ) = η. Furthermore, (y, η) is a smooth point of SSF ; c)
f+SSF = f◦SS

+F . Here f+ is the map from cycles on T ∗Y to cycles on T ∗X de-
fined as follows: take the intersection theoretic pull and push under the correspondence
T ∗Y ← Y ×X T ∗X → T ∗X, then set the coefficient of the zero section to be 1. We will
use a similar notation for pullbacks.

Note, being special implies that the pull back of any ttfun for f∗F at (x, ξ) with ξ ̸= 0 is
a ttfun for F at (y, η) (c.f. the proof of Lemma 2.3.3).

Proof. i) Let (x, ξ) be a smooth point of SS(f∗F) with ξ ̸= 0, (y, η) be the point in SSF
corresponding to it. Let (T, U, V, g) be a ttfam for f∗F at (x, ξ). Consider the pullback of
this ttfam along f :

Y × T Ũ × T Ṽ yT

X × T U × T V xT

A1
T

f×id ∼

g

⌟ ⌟

h

f being special with respect to F implies that, for any closed point s ∈ T , the slice
Ṽs

hs−→ A1
s, satisfies condition iii) in the definition of a ttfam for F at (y, η). Conditions i),

ii) are clearly satisfied, so (T, Ũ , Ṽ , h) is a ttfam for F at (y, η). Since F is µc, ϕh(F) is
a local system. By the compatibility of vanishing cycles (over general bases) with proper
pushforwards, we conclude that ϕg(f∗F) is also a local system.

ii) For the same statement for µcs, it suffices to check that being special with respect to
a sheaf is preserved under smooth pullback.
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Let g : W → X be a smooth map. We have the following diagram:

Y YW

X Wg

f f ′

g′

⌟

We want to show f ′ is special with respect to g′∗F .

a): Clear;

b): We need to know the intersection (away from the zero section) of f ′◦SS(f ′∗g′∗F) =
f ′◦SS(g∗f∗F) = f ′◦g◦SS(f∗F) = g′◦f ◦SS(f∗F) and SS(g′∗F) = g′◦SSF . Clearly, on the
fibre f ′−1(x′), for any x′ ∈ W , the intersection is none empty if and only if, on f−1(g(x′)),
the intersection of f ◦SS(f∗F) and SSF is nonempty, and if so the intersection is a single
smooth point of SS(g′∗F);

c): f ′+SS(g′∗F) = f ′+g
′+SSF = g+f+SSF = g◦f◦SS

+F = f ′◦g
′◦SS+F = f ′◦SS

+(g′∗F),
where the second equality comes from the base change formula in intersection theory.

i′) This follows from the same method as for i) plus Lemma 2.4.12.

Recall the notations in Radon setup 2.2.3 for the next corollary and remark.

Corollary 2.4.14 (Radon transform). The Radon transform preserves µcs sheaves: if F ∈
D(P) is µcs, then RF ∈ D(P∨) is µcs.

Proof. It suffices to observe that, by the proof of Lemma 2.3.3, q is special with respect to
p∗F for any F ∈ D(P).

Remark 2.4.15. Note that we actually proved a pointwise statement: if F ∈ D(P) is µcs
at (x, ξ), ξ ̸= 0, then RF ∈ D(P∨) is µcs at (a, α), where (a, α) is any point corresponding
to (x, ξ).

Lemma 2.4.16 (distinguished triangle). Being µc is compatible with distinguished triangles:
let F → G → H → be a distinguished triangle, assume SSG = SSF ∪ SSH, then
i) F and H µc implies G µc;
ii) Same for µcs;
i′) More generally, for any smooth point ν ∈ SSG, depth(G)ν ≤ max{depth(F)ν , depth(H)ν}.
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Proof. These all follow from applying Remark 2.3.6 v), and using the distinguished triangle

ΦfTFT ΦfTGT ΦfTHT

Note that we need the assumption SSG = SSF ∪ SSH because otherwise SSF and SSH
may cancel each other and a smooth point of SSG may be a nonsmooth point of SSF or
SSH (see, e.g., Example 2.4.20).

Item i) in the following lemma is well-known, we include a proof for completeness.

Lemma 2.4.17 (purity). Let Z be a smooth closed subvariety of X of codim ≥ 2, j : U ↪→ X
be the complement. Let F = j!FU with FU a local system. Then
i) SSF = T ∗ZX ∪ T ∗XX;
ii) F is µcs.

Proof. i) By induction on amplitudes and the compatibility of µc with distinguished trian-
gles, it suffices to deal with the case where FU is concentrated in a single degree. By Theorem
of Purity (e.g. [SGA1, Exp. X]), FU extends to some local system (concentrated in a single
degree) F on X. Consider the exact sequence 0 → F → F → i∗FZ → 0. The second and
third terms have SS = T ∗ZX ∪ T ∗XX, so the first term has SS ⊆ T ∗ZX ∪ T ∗XX. But F is not
locally constant on Z so SSF ̸= T ∗XX, so the inclusion is an equality by dimensional reasons.

ii) By induction on amplitudes, we reduce to the case FU is concentrated in a single
degree. Then it follows from the same exact sequence above and Lemma 2.4.16, proposition
2.4.10, and Lemma 2.4.6.

Corollary 2.4.18. Let Z be a smooth closed subvariety of X of codim ≥ 2, j : U ↪→ X be
the complement. Let F ∈ D(X), assume it is not a local system. Then
i) SSF = T ∗ZX ∪ T ∗XX if and only if F is a local system on U and Z;
ii) If so, F is µcs.

In real and complex analytic contexts, statement i) is true without assumptions on the
codimension ([KS90, 8.4.1]). In the positive characteristic algebraic context, it is false for
codim = 1, see Example 2.4.20.

Proof. By the previous lemma, ii) and “⇐” in i) are clear. For “⇒” in i): suppose SSF =
T ∗ZX∪T ∗XX. Consider the distinguished triangle j!FU → F → i∗FZ →. The first and second
terms both have SS = T ∗ZX ∪ T ∗XX, so the third has SS ⊆ T ∗ZX. But SS(i∗FZ) = i◦SSFZ ,
these force SS(i∗FZ) = T ∗ZX and SSFZ = T ∗ZZ, hence FZ is a local system.

Examples

Example 2.4.19. The sheaves in Examples 2.2.6, 2.2.7 are not µc (for p > 3) by the com-
putations there and Lemma 2.4.3. Example 2.2.7 shows that SS being Lagrangian does not
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imply being µc. We do not know if being µc implies SS being Lagrangian. Furthermore,
similar computations at other points show that Example 2.2.6 is not µc anywhere. On the
other hand, as we show now, Example 2.2.7 is µc everywhere (along the smooth locus of
SSF) except above the origin.

Consider ((0, 1), dx) ∈ SSF , the other points are similar. Change coordinates, we may
assume the sheaf is given by tp − t = (y + 1)/xp−1 and the point in question is (x0, ξ) =
((0, 0), dx). By the same reasoning as in the first paragraph of the proof of Theorem 2.3.10,
it suffices to show: for any smooth curves on an étale open neighbourhood of x0 passing
through x0 with conormal at x0 proportional to dx, sw(C) is independent of the curve. By
Implicit Function Theorem, any such curve is of the form {x = c2y

2+c3y
3+c4y

4+ ...}, c2 ̸= 0
in the formal neighbourhood of x0. The restriction of the sheaf is given by Artin-Schreier
equation

tp − t = y + 1

(c2y2 + c3y3 + c4y4 + ...)p−1
=

y + 1

y2p−2(c2 + c3y + c4y2 + ...)p−1

which has Swan conductor 2p− 1, independent of C.

In the following, we will use coordinates [x : y : z] on P2 and [a : b : c] on its dual.

Example 2.4.20. (p > 2) Consider the Artin-Schreier sheaf on P2 determined by the equa-
tion tp − t = yzp−2/xp−1, !-extended along {x = 0}. Note on the affine {[x : y : 1]},
this is just Example 2.2.7. One can compute: SSF = T ∗PP ∪ T ∗{x=0}P ∪ T ∗[0:0:1]P ∪ T ∗[0:1:0]P,
SSRF = T ∗P∨P∨ ∪ T ∗{b=0}P∨ ∪ T ∗{c=0}P∨ ∪ T ∗[1:0:0]P∨. Focus on a neighbourhood of the point
[0 : 1 : 0] ∈ P∨. Claim: although SSRF is the zero section union the conormal to a smooth
divisor near this point, RF is not locally constant on the divisor near this point. Indeed,
as a varies, the points [a : 1 : 0] correspond to the lines {aX + Y = 0} on P and the stalks
(RF)[a:1:0] ∼= RΓ({aX + Y = 0},F) has a jump at a = 0.24

This shows that the same statement as in Corollary i) 2.4.18 for codim = 1 is false. This
is in steep contrast with the real and complex analytic cases.

Example 2.4.21. (p > 2) Let Z ↪→ P2 be the closed subscheme with equation zp−1y = xp.
Let F be the constant sheaf on Z, ∗-extended to P. One can compute: SSF = T ∗ZP,
SSRF = T ∗{b=0}P∨ ∪ Λ, where Λ is described as follows: on the affine {[x : y : 1]},
Λ|{c=1} = {((0, b), ⟨ 1

b1/p
da + 1

b
db⟩)} (for b = 0 this means ((0, 0), ⟨db⟩)), Λ is the closure

of Λ|{c=1} in T ∗P∨. By Remark 2.4.6, Proposition 2.4.10 and Remark 2.4.15, RF is µcs
except possibly along {b = 0}. Its SS shows that it has wild ramification along {a = 0}.

This tells us: a) being tame is not stable under proper pushforwards; b) µc, µcs sheaves
can have wildly ramifications.

24This can be seen, e.g., by computing the Euler-Poincaré characteristics using Grothendieck-Ogg-
Shafarevich.
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2.5 Appendix to Chapter 2: analogies and contrasts
among sheaf theories

We list some analogies and contrasts among the following contexts from the microlocal per-
spective (well-known to experts):

i) Ét.: bounded constructible complexes of étale Z/ℓn-sheaves on smooth algebraic vari-
eties over algebraically closed fields of positive characteristic p ̸= l;
ii) Dist.: complex valued tempered distributions on Rn;
iii) D-modh: bounded holonomic complexes of algebraic D-modules on smooth complex al-
gebraic varieties;
iv) C-ana.: bounded C-constructible complexes of C-sheaves on complex analytic manifolds.
By Riemann-Hilbert this is equivalent to bounded regular holonomic complexes of analytic
D-modules.

6-functor formalisms All except Dist. have 6-functor formalisms. Special features:
Ét.: the subclass of tame sheaves is not preserved under (proper) pushforward;
Dist.: having polynomial growth is not preserved under integrations;
D-modh: subclass of regular holonomic D-modules is stable under 6-functors.

Singular supports (SS) and characteristic cycles (CC): SS and CC are defined for Ét., D-
modh and C-ana.. CC’s satisfy index formulas. SS is also defined for Dist. (which are called
wavefronts instead). SS’s are closed conic subsets in T ∗X. Special features:
Ét.: SS’s are half-dimensional;
Dist.: no special feature;
D-modh: SS’s are Lagrangian; for general coherent (not necessarily holonomic) D-modules
SS’s are coisotropic;
C-ana.: SS’s are Lagrangian.

Fourier transforms: All of them have Fourier transforms (on X = An). Special features:
Ét., Dist., D-modh: equivalence on the whole category;
C-ana.: not an equivalence on the whole category but becomes an equivalence after restric-
tion to conic sheaves.

Microlocal data:
Ét.: large data contained in wild ramifications (in dimension one: representation of local
Galois groups);
Dist.: large data contained in (essential) singularities25;
D-modh: large data contained in irregular singularities (in dimension one: Stokes data); for

25e.g., Great Picard’s Theorem: at an essential singularity x of a complex analytic function f , in any
punctured neighbourhood of x, f takes all complex values infinitely many times, with at most one exception.
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general analytic D-modules, microlocalisation can be carried out and is the content of the
theory of algebraic analysis (microfunctions, microdifferential operators...);
C-ana.: relatively small data, microlocalisation can be carried out.

Extension properties:
Ét.: fix A1

k,(0) − {0} → Gm,k ↪→ A1
k ↪→ P1

k. Given a local system on A1
k,(0) − {0}, there are in

general many ways to extend it to a local system on Gm,k. However, there exists a unique
extension (up to isomophism) which is special ([Kat86]);
Dist.: given a smooth function on a small punctured disk at the origin of R, there are many
ways to extend to a smooth function on R− {0};
D-modh: fix D◦ → Gm,C ↪→ A1

C ↪→ P1
C, where D◦ is the punctured formal disk at the origin.

Given a vector bundle with a flat connection on D◦, there are in general many ways to
extend it to a vector bundle with a flat connection on Gm,C. However, there exists a unique
extension (up to isomophism) which is special ([Kat87, II.2.4]);
C-ana.: there is a unique way to extend a local system on a punctured small disk at the
origin of C to a local system on C×.
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Chapter 3

The Fourier transform and characteristic
cycles of monodromic ℓ-adic sheaves

3.1 Introduction
Let V = Spec(C[x1, x2, ..., xd]) be a finite dimensional vector space over C. Denote by D(V )
the triangulated category of bounded coherent algebraic D-modules on V . M ∈ D(V ) is
called monodromic if the Euler vector field eu = Σixi

∂
∂xi

acts locally finitely on each Hi(M)
(i.e., for any local section s, {eun(s)}n∈N span a finite dimensional C-vector space). Denote
by Dmon(V ) the full subcategory of coherent monodromic D-modules. Let F denote the
Fourier transform of D-modules (c.f. [KL85, 7.1]). It is easy to see that being monodromic
is preserved under the Fourier transform. We have:

Theorem 3.1.1 (Brylinski-Malgrange, [Bry86, 7.25]). 1) IfM∈ Dmon(V ), then CC(M) =
CC(FM). 2) Further assume M is regular holonomic, then so is FM.

Here V ′ denotes the dual of V , and T ∗V is implicitly canonically identified with T ∗V ′

via T ∗V = V × V ′ ∼= V ′× V ∼= T ∗V ′. Note that statement 1) in Theorem 3.1.1 as we stated
is more general than Brylinski-Malgrange’s original version, but in fact their proof works in
this generality.

The main theorem of this paper is the analogue of statement 1) for ℓ-adic sheaves1. Let V
be a finite dimensional vector space over an algebraically closed field of characteristic p > 0.
Let Λ be either a finite extension of Fℓ (the finite case), or a finite extension of Qℓ, or Qℓ

(the rational case), for ℓ a prime different from p. Denote by D(V ) the triangulated category
of bounded constructible Λ-étale sheaves. We will prove:

1Note that the analogue of statement 2) is false, i.e., being monodromic tame is not preserved un-
der the Fourier transform. Example: let k be an algebraically closed field of characteristic p > 0,
V = Spec(k[x, y, z]), Z = {zp−1y = xp} ↪→ V . Consider F := ΛZ , which is evidently monodromic and
tame. But, combining [Bry86, 9.13] and the computation in Example 2.4.21, one sees that FF is not tame.
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Theorem 3.1.2 (Corollary 3.4.2). If F ∈ D(V ) is monodromic, then CC(F) = CC(FF)
and SS(F) = SS(FF).

Here F denotes the ℓ-adic Fourier transform or its finite coefficient analogue (c.f. [Lau87]).
F ∈ D(V ) is called monodromic if all Hi(F) are tame local systems on all Gm-orbits. This
is preserved under the Fourier transform (Proposition 3.2.5.4).

In fact, we will prove the following theorem, which implies Theorem 3.1.2 by the additivity
of characteristic cycles and singular supports with respect to irreducible constituents. We
first introduce a terminology.

Definition 3.1.3 (F-good). F ∈ D(V ) is F-good if for each irreducible constituent P,2
CC(P) = CC(FP).

Theorem 3.1.4 (Theorem 3.4.1). Monodromic sheaves are F-good.

Our proof of Theorem 3.1.4 consists of a precise realisation of the following intuition:
a monodromic sheaf “decomposes” into a “projective component” and a “radial component”
(the twist). The case where the twist is trivial can be proved utilising the relation between
the Radon transform and the Fourier transform (c.f. [Bry86, 9.13]) and the fact that char-
acteristic cycles behave well under the Radon transform ([Sai17b, 7.5]). The general case
then follows, because the radial component is tame by monodromicity, and thus does not
affect the characteristic cycle. Our original way of making the last sentence precise uses
the notion of having the same wild ramification (see [Kat18; Kat21] and references therein).
Beilinson pointed out that the general case in fact follows formally from the trivial twist case
by untwisting the sheaf after pulling back to V ×A1. This leads to a much simpler proof.
Both proofs are presented.

In §3.2, we make a preliminary study on monodromic sheaves and F-good sheaves. In
§3.3, we prove Theorem 3.1.4 in the trivial twist case, and give a formula for the coefficient
of T ∗0 V in CC(F). In §3.4, we prove Theorem 3.1.4. The Appendix reviews basic facts about
characteristic cycles of sheaves with rational coefficients and the notion of having the same
wild ramification.

In [Zho24], we will apply our results to give a microlocal characterisation of admissible
(or character) sheaves on reductive Lie algebras in positive characteristic.

Conventions for Chapter 3

We fix an algebraically closed field k of characteristic p > 0 and a prime ℓ ̸= p. A vari-
ety means a finite type reduced separated scheme over k. For a variety X, D(X) denotes
Db

c(X,Λ) ([Del80, 1.1]). Λ is either a finite extension of Fℓ, or a finite extension of Qℓ,
2This means P is an irreducible subquotient of some pHi(F).
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or Qℓ. We refer to the former as the finite coefficients case, and the latter as the rational
coefficients case. In all statements below, Λ is understood to be either finite or rational
unless otherwise specified. For F ∈ D(X), by an irreducible constituent of F we mean an
irreducible subquotient of some pHi(F).

All derived categories are in the triangulated sense. All sheaf-theoretic functors are de-
rived. A “sheaf” means an object of D(X). A “local system” means an object of D(X) whose
cohomology sheaves are locally constant (if Λ is finite) or lisse (if Λ is rational) with finite
type stalks.

V denotes a finite dimensional vector spaces over k, V ′ denotes its dual, V̊ denotes
V − {0}, P(V ) denotes the projectivisation of V̊ , q denotes the projection V̊ → P(V ).

Gm acts on V by scaling. For n ≥ 1 in N, we call θ(n) : Gm × V → V, (λ, v) 7→ λnv the
n-twisted scaling action. We fix a non-trivial character ψ : Z/p → Λ×. Fourier transforms
are denoted by F and are with respect to this character unless otherwise specified. As we
work over an algebraically closed field, we may ignore Tate twists.

By a Kummer sheaf K, we mean the !-extension to A1 of a rank 1 local system in degree
−1 on Gm corresponding to a non-trivial continuous character from the tame fundamental
group πt

1(Gm, 1) to Λ×. We sometimes abuse notations and denote its restriction to Gm also
by K. We denote by K−1 the Kummer sheaf corresponding to the inverse character of that
of K.

We refer to [Bei16; Sai17b] for the theory of singular support and characteristic cycle for
sheaves with finite coefficients, and to [UYZ20; Bar23] for the case of rational coefficients.

3.2 Preliminaries on monodromic sheaves and F-good
sheaves

The setup is as in the Conventions. Λ can be either finite or rational, unless otherwise
specified. For completeness, we have included more materials in this section than are actually
needed in the sequel. Recall:

Definition 3.2.1 (monodromic sheaves, [Ver83]). A sheaf F on V is monodromic if the
restriction of all Hi(F) to all Gm-orbits are tame local systems.

When Λ is finite, we have the following crucial equivalent characterisation of monodromic
sheaves.

Proposition 3.2.2 ([Ver83, 5.1]). Let Λ be finite. Then, F ∈ D(V ) is monodromic if and
only if ∃ n > 0 in N prime to p such that there exists an isomorphism θ(n)∗F→̃pr∗F . Here
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θ(n) : Gm × V → V, (λ, v) 7→ λnv is the n-twisted scaling action and pr : Gm × V → V is
the projection.

Proof. The “only if” direction is proved in loc. cit. In loc. cit., it is not stated that n can be
chosen to be prime to p, but the proof in fact shows this.

For the “if” direction, just observe that θ(n)∗F→̃pr∗F implies θ(n)∗Hi(F)→̃pr∗Hi(F).
So for each x ∈ V , (θ(1)∗Hi(F))|Gm×{x} is a sheaf concentrated in degree 0 and trivialised by
the cover Gm×{x} → Gm×{x}, λ 7→ λn, p ∤ n. So (θ(1)∗Hi(F))|Gm×{x}, hence Hi(F)|Gm.x,
is necessarily a tame local system.

The “if” direction is false for Λ rational:

Example 3.2.3. Let Λ = Qℓ.
1) Let K be a Kummer sheaf whose corresponding representation of the tame fundamen-

tal group πt
1(Gm, 1) does not factor through a finite quotient, then K cannot be trivialised by

any finite cover (it has “infinite monodromy”), hence an n as in the proposition does not exist.

2) Consider the !-extension to A1 of the local system L of rank 2 concentrated in degree

−1 on Gm corresponding to the representation ρ : πt
1(Gm, 1)→ GL2(Λ), t 7→

ï
1 1
0 1

ò
, where

t is a topological generator of πt
1(Gm, 1). This local system also has “infinite monodromy”,

and an n as in the proposition does not exist.

Let Λ be finite or rational, and F be a monodromic sheaf. If there exists an n as in
Proposition 3.2.2, we say F is finite monodromic and refer to the (multiplicatively) smallest
n as the twist of F , if furthermore the twist is 1, we say F has trivial twist.

Lemma 3.2.4. 1) Being finite monodromic is preserved under taking irreducible constituents,
⊗, and Verdier dual D.
2) Being monodromic is preserved under taking cones, irreducible constituents, ⊗, and
Verdier dual D. In particular, a sheaf is monodromic if and only if its irreducible constituents
are.

For Λ rational, having finite monodromic irreducible constituents does not imply the
sheaf itself is finite monodromic, as Example 3.2.3.2 shows.

Proof. 1) Let F ,G be finite monodromic sheaves, and n > 0 in N prime to p such that there
exist isomorphisms θ(n)∗F→̃pr∗F , θ(n)∗G→̃pr∗G.

θ(n) and pr are smooth maps with connected geometric fibres, so θ(n)∗, pr∗ are perverse
t-exact and embeds Perv(V ) into Perv(Gm × V ) as a full subcategory closed under taking
subquotients ([BBDG, 4.2.5]). We may thus take irreducible constituents on both sides of
θ(n)∗F→̃pr∗F and get the analogous isomorphisms for the irreducible constituents of F . So
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the irreducible constituents are also finite monodromic.

The preservation under ⊗ and D is easily verified: θ(n)∗(F ⊗ G)→̃pr∗(F ⊗ G), so F ⊗ G
is finite monodromic. θ(n)∗DF ∼= Dθ(n)!F→̃Dpr!F ∼= pr∗DF , so DF is finite monodromic.

2) We first show the preservation under taking cones. Let F → G → H → be a distin-
guished triangle, with F ,G monodromic. The long exact sequence associated to Hi easily
implies that Hi(H) sit inside exact sequences of the form 0→ cokeri → Hi(H)→ keri → 0.
Restrict to any Gm-orbit O, cokeri and keri become cokernels and kernels of map between
tame local systems, so are themselves tame local systems. Hi(H)|O are thus also tame local
systems.

To show the preservation under taking irreducible constituents, because of the preserva-
tion under taking cones, we may do induction on the amplitude to reduce to the case of a
monodromic sheaf F concentrated in degree 0. Recall that for a sheaf G concentrated in
degree 0, being monodromic is equivalent to θ∗λG ∼= G, ∀λ ∈ k×, where θλ : V → V is the
map of multiplication by λ ([Ver83, 3.2]). So θ∗λF ∼= F . Since θ∗λ restricts to an equivalence
Perv(V )→ Perv(V ), we may take irreducible constituents on both sides and get θ∗λP ∼= P ,
for each irreducible constituent P of F . Further take Hi, we get θ∗λHi(P) ∼= Hi(P). By
[Ver83, 3.2] again, Hi(P) is monodromic.

We now show the preservation under ⊗. Let F ,G be monodromic sheaves. Because of
the preservation under taking cones, we may do induction on the amplitude to reduce to the
case where F ,G are concentrated in degree 0. Then, for any Gm orbit O, F|O and G|O are
tame local systems in degree 0. It follows that (F|O) ⊗ (G|O) is a tame local system. So
Hi(F ⊗ G)|O = Hi((F|O)⊗ (G|O)) is a tame local system, F ⊗ G is monodromic.

To show the preservation under D, because of the preservation under taking cones, we
may reduce to the case of perverse irreducible monodromic sheaves. The finite coefficient
case is dealt with in 1). For Λ rational, we may further assume Λ = Qℓ because of the easily
verified fact that, for Λ rational, F is monodromic if and only if F ⊗Λ Qℓ is. In this case,
the statement follows from Proposition 3.2.5 items 1) and 3), and the compatibility of the
Fourier transform and linear actions of algebraic groups ([Lau87, 1.2.3.4]).

Proposition 3.2.5. 1) If F ∈ D(V ) is perverse, then F is (finite monodromic) with trivial
twist if and only if F is Gm-equivariant. This is preserved under the Fourier transform.
2) Let F ∈ D(V ) be perverse irreducible finite monodromic with twist n > 1. Assume Λ
contains a primitive n-th root of unity3. Then there exists a Kummer sheaf K on Gm (unique
up to isomorphism), trivialised by the power n cover of Gm, such that θ(1)∗F ∼= K⊠F [−1].
Furthermore, θ(1)∗FF ∼= K−1 ⊠ FF [−1].

3This can always be achieved by adjoining a primitive n-th root of unity, see Remark 3.2.7.
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3) Let Λ = Qℓ. Let F ∈ D(V ) be perverse irreducible monodromic with twist n > 1. Then
there exists a Kummer sheaf K on Gm (unique up to isomorphism), trivialised by the power
n cover of Gm, such that θ(1)∗F ∼= K ⊠ F [−1]. Furthermore, θ(1)∗FF ∼= K−1 ⊠ FF [−1].
4) F ∈ D(V ) is monodromic (resp. finite monodromic) if and only if FF is monodromic
(resp. finite monodromic). In the finite monodromic case, they have the same twist.

Note that in situations 2) and 3), the restriction of F to any Gm-orbit not equal to {0}
is of the form C ⊗ K, for some constant sheaf C (depending on the orbit). We also say that
K is the twist of F .

Proof. 1) The first statement follows from the characterisation of perverse sheaves being
equivariant under actions of connected algebraic groups (c.f. [Ach21, 6.2.17]). The second
statement follows from the compatibility of the Fourier transform and linear actions of alge-
braic groups.

2) Being perverse irreducible, F is of the form j!∗L for some irreducible local system
L on some smooth irreducible locally closed conic subvariety S ↪→ V̊ .4 The restriction of
θ(n)∗F→̃pr∗F to Gm × S gives θ(n)|∗Gm×SL→̃pr|

∗
Gm×SL.

Claim: θ(1)|∗Gm×SL is isomorphic to K ⊠ L[−1] for some Kummer sheaf K on Gm (nec-
essarily unique up to isomorphism), trivialised by the power n cover of Gm.

Accepting this claim, the conclusions follow: using the well-known characterisation of
j!∗ (c.f. [Ach21, 3.3.4]), it is easily seen that θ(1)∗F ∼= K ⊠ pr∗F [−1]. In fact, θ(1)∗F ∼=
θ(1)∗(j!∗L) ∼= j!∗(θ(1)

∗L) ∼= j!∗(K⊠pr∗L[−1]). Apply 3.3.4 in loc. cit., we get K⊠j!∗pr∗L[−1]
is the middle extension of K ⊠ pr∗L[−1], hence isomorphic to θ(1)∗F . The last statement
follows from the compatibility of the Fourier transform and linear actions of algebraic groups.

It remains to prove the claim. Denote e(n) : Gm → Gm, λ 7→ λn. Consider L′ :=
(e(n) × id)∗(e(n) × id)∗θ(1)|∗Gm×SL. Since e(n) × id is finite étale, L′ is a local system
concentrated in a single degree. Denote its corresponding π1(Gm × S) (we omit the base
points in the notation from here on) representation by ρ′ : π1(Gm × S) → AutΛ(L

′).
ρ′ factors through π1(Gm × S) → πt

1(Gm) × π1(S) → Z/n × π1(S). The adjunction
id→ (e(n)× id)∗(e(n)× id)∗ realises θ(1)|∗Gm×SL as a sub-local-system of L′. Its correspond-
ing representation ρ : π1(Gm×S)→ AutΛ(L1) thus also factors through Z/n×π1(S). Since
θ(1)|∗Gm×SL is irreducible, ρ is irreducible. By our assumption on Λ, we can apply Lemma
3.2.6 case 1) and get L1

∼= K ⊠ L as Z/n × π1(S) representations, for some 1-dimensional
representation K of Z/n. Consequently θ(1)|∗Gm×SL ∼= K ⊠ G, for some Kummer sheaf K

4Proof that S can be chosen to be conic (note the proof only requires F being perverse irreducible
monodromic): assume F is not a local system, let D be its ramification divisor. We show D is conic. Let
x be any closed point of D. Then, for some i, Hi(F) is a local system near x. But Hi(F) is monodromic,
hence isomorphic to itself under the pullback by the λ-scaling, ∀λ ∈ k× ([Ver83, 3.2]), so Hi(F) is not a
local system near λ.x, ∀λ ∈ k×. This forces D to be conic, as D is a divisor.
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and some sheaf G. Looking at the restriction of θ(1)|∗Gm×SL to 1× S ↪→ Gm × S, we see G
is necessarily isomorphic to L[−1]. K is clearly trivialised by the power n cover of Gm.

3) The argument is similar to 2), we indicate the differences. Consider θ(1)|∗Gm×SL as
above. Fix a torsion free integral model for θ(1)|∗Gm×SL. For each of its reductions mod ℓr,
the corresponding π1(Gm × S)-representation (over Z/ℓr) factors through Z/m× π1(S) for
varying m. Take the limit over r, we get that the (continuous) π1(Gm × S)-representation
over Qℓ corresponding to θ(1)|∗Gm×SL factors through πt

1(Gm) × π1(S). It is necessarily ir-
reducible. Apply Lemma 3.2.6 case 2) (easily modified to take continuity into account), we
get an external product decomposition of θ(1)|∗Gm×SL. The rest is similar.

4) The statements concerning the finite monodromic case follow from the compatibility
of the Fourier transform and linear actions of algebraic groups, and the fact that being finite
monodromic implies a∗F ∼= F , where a is the antipodal map. The statement concerning the
monodromic (Λ rational) case follows from 3) above, Lemma 3.2.4.1, and the easily verified
fact that, for Λ rational, F is monodromic if and only if F ⊗Λ Qℓ is.

Lemma 3.2.6. Let H be an abelian group, G be any group, Λ be a field. Assume either
1) H = Z/n for n > 1 in N, and Λ contains a primitive n-th root of unity, or 2) Λ
is algebraically closed. Then, for any finite dimensional irreducible Λ-representation M of
H × G, there exist irreducible Λ-representations K of H and L of G and an isomorphism
K ⊠ L ∼= M as representations of H × G. Note, necessarily, dimΛ(K) = 1, dimΛ(L) =
dimΛ(M).

Here ⊠ denotes the external tensor product of group representations. It is also denoted
by ⊗ in the literature.

Proof. In case 1), all finite dimensional representations of Z/n are semisimple (note that n
is necessarily invertible in Λ), and irreducible ones are 1-dimensional. View M as a rep-
resentation of Z/n = Z/n × {1}, it decomposes as M = ⊕iK

⊕ri
i , for some 1-dimensional

representations Ki of Z/n, and ri > 1. Since the G = {1} × G action commutes with the
Z/n action, each K⊕rii is a sub-representation of Z/n×G. By the irreducibility of M , there
is only one of them. Denote it by M = Kr. View M as a representation of G, and denote it
by L, then clearly M ∼= K ⊠ L as representations of Z/n×G.

In case 2), since H × {1} and {1} × G commute, and H is abelian, the homomorphism
H × {1} → EndΛM lands in EndH×G−repM . By Schur’s Lemma, EndH×G−repM ∼= Λ.
We see that each element of H × {1} must act through scaling. Denote the corresponding
1-dimensional representation of H by K, and M regarded as a G-representation (clearly
irreducible) by L. Then M ∼= K ⊠ L as representations of H ×G.

Remark 3.2.7. We own the following observation to Beilinson: for Λ finite, and F ∈ D(V )
a perverse irreducible monodromic sheaf, the twist n is always prime to ℓ. Proof: using the
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same notations as in the fourth paragraph of the proof of Proposition 3.2.5.2, we claim the
representation ρ : Z/n×π1(S)→ AutΛL1 must factor through ((Z/n)/{ℓ−torsion})×π1(S).
Since it follows easily from the definition of the twist that n is the smallest positive integer
for which a factorisation π1(Gm × S) → Z/n × π1(S) → AutΛL1 exists, n must be prime
to ℓ. To see the claim, note that Z/n × {1} is in the centre of Z/n × π1(S), so it lands in
EndZ/n×π1(S)−repL1. As ρ is irreducible, the latter is a division algebra over Λ by Schur’s
Lemma. If m ∈ Z/n × {1} is ℓ-torsion, say ℓrm = 0, then ρ(ℓrm) = ρ(m)ℓ

r
= id, so

ρ(m)ℓ
r − id = (ρ(m)− id)ℓr = 0, so ρ(m) = id.

Proposition 3.2.8. Let F ∈ D(V ) be perverse irreducible monodromic, with non-trivial
twist K. Assume either 1) F is finite monodromic with twist n and Λ contains a primitive
n-th root of unity, or 2) Λ = Qℓ. Let (W,σ) be the data of an open conic subvariety W
of V̊ := V − {0} together with a section σ of the projection q : V̊ → P(V ) (restricted to
W ). Then, F|W ∼= Fσ ⊠ K for some perverse irreducible sheaf Fσ on P(V ) (unique up to
isomorphism).

Here, σ determines an isomorphism W ∼=σ W ×Gm, and the ⊠ is with respect to this
isomorphism. We emphasise that Fσ depends on σ.

Proof. F is of the form j!∗L for some irreducible local system L on some smooth irreducible
locally closed conic subvariety S ↪→ V̊ , F|W ∼= j!∗(L|W∩S). Consider the sheaf (L|W∩S) ⊗
pr∗2K−1, where pr2 : W ∼=σ W ×Gm → Gm is the second projection. By the comment after
the statement of Proposition 3.2.5, (L|W∩S) ⊗ pr∗2K−1 is a local system concentrated in a
single degree and constant on each closed fibre of the projection pr1 : W ∩ S×Gm → W ∩ S.
Apply Lemma 3.2.9, we get (L|W∩S)⊗pr∗2K−1 ∼= pr∗1L′[2] for some (perverse) local system L′
on W ∩ S. (In fact L′ must be isomorphic to ((L|W∩S)⊗pr∗2K−1)|W∩S×{1}[−2].) So L|W∩S ∼=
L′ ⊠K. Reasoning as in the third paragraph in proof of Proposition 3.2.5.2, the well-known
characterisation of j!∗ implies F|W ∼= j!∗(L|W∩S) ∼= j!∗(L′⊠K) ∼= (j!∗L′)⊠K =: Fσ ⊠K.

Lemma 3.2.9. Let f : X → Y be a smooth morphism between varieties of relative dimension
d, with geometrically connected fibres. If F is a sheaf on X concentrated in degree 0, such
that for each closed point y ∈ Y , there exists an isomorphism F|Xy

∼= Λr, for some ri ∈ N
independent of y. Then the canonical map F → f ∗H2d(f!F) is an isomorphism. If F is
perverse, then H2d(f!F) is the unique (up to isomorphism) sheaf on Y (necessarily perverse
and concentrated in degree 0) whose pullback is isomorphic to F .

Here the map F → f ∗H2d(f!F) is obtained by taking H0 of the adjunction map F →
f !f!F .

Proof. 5 It suffices to show F → f ∗H2d(f!F) is an isomorphism for each closed point x ∈ X.
This, in turn, is implied by F|Xy→̃(f ∗H2d(f!F))|Xy

∼= f ∗H2d(f!(F|Xy)) for each closed point
y ∈ Y , where the last isomorphism is from proper base change. Using F|Xy

∼= Λr, the ques-
tion reduces to showing ΛXy

→̃p∗H2d(p!ΛXy
), which is clear (here we use the connectedness

5This proof follows the suggestion of Will Sawin in https://mathoverflow.net/questions/225468
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of Xy). The assertion when F is perverse is a direct consequence of the fact that f ∗ induces
a fully faithful embedding of Perv(Y ) into Perv(X) ([BBDG, 4.2.5], here we use again the
geometrically-connectedness of fibres).

Remark 3.2.10. Proposition 3.2.8 can fail without the assumptions on Λ. In fact, if L|W∩S
corresponds to an irreducible representation of π1(W ∩ S) × Z/n which cannot be written
as an external tensor product (which can exist without the assumptions on Λ), then L|W∩S
cannot be written as an external tensor product.

We now turn to F-good sheaves. Recall:

Definition 3.2.11 (F-good sheaves). F ∈ D(V ) is F-good if for each irreducible constituent
P, CC(P) = CC(FP).

Remark 3.2.12. F-good sheaves are not necessarily monodromic. For example, let L be a
local system concentrated in degree 0 on Gm, F be the !-extension of L[1] to A1. If L is
purely of slope < 1 at ∞, then F is F-good, as one can verify using Laumon’s local Fourier
transforms (c.f. [Lau87, 2.3.1, 2.4.3]). But such an F is not monodromic if L is not tame.

Lemma 3.2.13. 1) Being F-good is preserved under taking cones, taking irreducible con-
stituents, and Verdier dual D.
2) Let f : W → V be a linear injection (resp. surjection) between finite dimensional vector
spaces, F (resp. G) be an F-good sheaf on W (resp. V ). Then f∗F (resp. f ∗G) is F-good.

Proof. 1) That being F-good is preserved under taking irreducible constituents is clear. If
F → G → H → is a distinguished triangle, the long exact sequence associated to pHi easily
implies that irreducible constituents of G is a subset of the union of irreducible constituents
of F and H. So the F-goodness of F and H implies the F-goodness of G. Finally, let F be
F-good, we show DF is F-good: as D is an anti-equivalence preserving Perv(V ), it suffices
to prove CC(DF) = CC(FDF) for F perverse irreducible. Apply the formula FD ∼= a∗DF
to F (where a is the “multiplication by −1” on V ), using the monodromicity of DFF , we
get FDF ∼= DFF . So CC(FDF) = CC(DFF). By CCD = CC (see [Sai17b, 5.13.4] for Λ
finite, and Proposition 3.5.3 for Λ rational), and use the assumption that F is F-good, we
get CC(DF) = CC(F) = CC(FF) = CC(DFF) = CC(FDF).

2) This follows directly from the compatibility of the Fourier transform with linear maps
([Lau87, 1.2.2.4] and its dual version), and the behaviour of CC under closed immersions
and smooth pullbacks (see [Sai17b, 5.13.2, 5.17] for Λ finite, the rational case follows easily
from the finite case and the definition of CC, reviewed in the Appendix).

3.3 The case of the trivial twist
As above, Λ can be either finite or rational. We prove the special case of Theorem 3.1.4
where the sheaf has trivial twist, which will be the basis for the proof of the general case. In
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the terminology of the intuition mentioned in the Introduction, we deal with the “projective
components” in this section.

Proposition 3.3.1. If F ∈ D(V ) is perverse irreducible with trivial twist, then F is F-good.

Recall that, for F perverse, having trivial twist is equivalent to being Gm-equivariant, and
this is preserved under the Fourier transform (Proposition 3.2.5.1). We fix some notations.
Let π : Ṽ → V be the blowup of V at 0, q̃ : Ṽ → P(V ) be the natural projection, j be the
inclusion V̊ ⊆ V . We use the same letters with “ ′ ” to denote the corresponding maps on
the dual side.

Proof. We first prove CC(F) = CC(FF) away from the 0-sections and 0-fibres (i.e., with
the components supported on V × 0 and 0× V ′ removed). Consider the following diagram,
where each sequence is a distinguished triangle:

F!

F F̃

F0 F̃0

Here F! := j!(F|V̊ ), F̃ := π∗q̃
∗F , and F0 (resp. F̃0) is the stalk of F (resp. F̃) at 0,

viewed as skyscraper sheaves. As F is Gm-equivariant, F|V̊ descends to some G on P(V ).
By the compatibility of the Radon transform and the Fourier transform ([Bry86, 9.13]),
(F F̃)|V̊ ′

∼= q′∗RG, where R is the Radon transform on P(V ). By the smooth pullback for-
mula for CC and the compatibility of CC with the Radon transform (see [Sai17b, 7.5] for
Λ finite, and Proposition 3.5.3.3 for Λ rational) this easily implies CC(F F̃) = CC(F) away
from the 0-sections and 0-fibres. By the above diagram and its Fourier dual, CC(F) =
CC(F̃)− CC(F̃0) + CC(F!), CC(FF) = CC(F F̃)− CC(F F̃0) + CC(FF!). Since the last
two terms in each equality are supported on the 0-sections and 0-fibres, we conclude that
CC(F) = CC(FF) away from the 0-sections and 0-fibres.

To prove the full equality CC(F) = CC(FF), consider i : V ↪→ V ×A1, v 7→ (v, 0) and its
dual p′ : (V ×A1)′ → V ′. i∗F is still perverse irreducible with trivial twist, so, by the above
paragraph, CC(i∗F) = CC(Fi∗F) = CC(p′∗FF [1]) away from the 0-sections and 0-fibres
(of V ×A1). The 0-section in CC(F) corresponds to the component {(v, adt), v ∈ V, a ∈ k}
in CC(i∗F) (t is the linear coordinate on A1), and the 0-fibre in CC(FF) corresponds to
the component {(0, ξ), ξ ∈ V ∼= T ∗0′V

′} in CC(p′∗FF [1]). They are away from the 0-sections
and 0-fibres (of V ×A1), hence equal. This proves the 0-section in CC(F) equals the 0-fibre
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in CC(FF). Apply the Fourier inversion, we get the 0-section in CC(FF) equals the 0-fibre
in CC(F). Hence the full equality CC(F) = CC(FF).

Corollary 3.3.2. If F ∈ D(V ) is such that all its irreducible constituents have trivial twists
(equivalently, Gm-equivariant), then F is F-good.

Corollary 3.3.3. If F ∈ D(V ) is such that F|V̊ ∼= q∗F for some F ∈ D(P(V )), then F is
F-good.

Proof. By the corollary above, it suffices to show all irreducible constituents of F are Gm-
equivariant. Let P be an irreducible constituent. If P is supported at {0}, this is clear. If
not, then P is of the form j!∗L for L some perverse irreducible local system on some smooth
irreducible subvariety in V̊ . So P|V̊ is still perverse irreducible. Since the restriction to V̊ is
perverse t-exact, P|V̊ is an irreducible constituent of F|V̊ ∼= q∗F . Since q∗ is also perverse
t-exact and induces a fully faithful embedding of Perv(P(V )) into Perv(V̊ ) closed under
taking subquotients ([BBDG, 4.2.5]), it is easily seen that irreducible constituents of q∗F
are exactly q∗ of irreducible constituents of F . So P|V̊ ∼= q∗P for some perverse irreducible
P on P(V ). So P|V̊ , hence P , is Gm-equivariant.

Remark 3.3.4. It follows from the proof that the irreducible constituents of such an F have
trivial twists, so F is necessarily monodromic (Lemma 3.2.4). Note that, for Λ finite, F
needs not have trivial twist; for Λ rational, F needs not be of finite monodromy. The Fourier
transform of j!∗L for L as in Example 3.2.3.2 and j : Gm → A1 gives such an example (j!∗L
is in fact the maximal extension of ΛGm

[1]).

For a monodromic sheaf F ∈ V , its singular support is Gm-stable6. The 0-fibre SS(F)∩
T ∗0 V is either T ∗0 V or SS(F)|V̊ ∩T ∗0 V (closure taken in T ∗V ). As an application of the above,
we record a formula, applicable to perverse sheaves with trivial twists, which allows us to
tell which case happens. This will not be used in the sequel.

Proposition 3.3.5. Let F ∈ D(V ) be such that F|V̊ ∼= q∗F [1] for some sheaf F on P(V ).
Then, the coefficient of T ∗0 V in CC(F) equals rk0F − χ(P(V ),F [1]) + χ(H,F [1]), where
χ denotes the Euler characteristic, and H is a general hyperplane on P(V ).7 If F is also
perverse, then SS(F) ∩ T ∗0 V = T ∗0 V if and only if rk0F − χ(P(V ),F [1]) + χ(H,F [1]) ̸= 0.

Proof. It suffices to prove the first statement, as the second statement follows from the first
and the effectivity of characteristic cycles of perverse sheaves. Denote dimV by d. It follows
from Corollary 3.3.3 that the coefficient of T ∗0 V in CC(F) equals (−1)d.rk(FF), where rk
denotes the generic rank. Using the same diagram and notations at the beginning of the
proof of Proposition 3.3.1, we get rk(FF) = rk(FF0) + rk(F F̃)− rk(F F̃0). Compute:
rk(FF0) = (−1)d.rk0(F);

6This can be seen, e.g., using Proposition 3.2.8.
7More precisely: there exists an open dense U ⊆ P(V ′), such that χ(H̃,F [1]), as a function of hyperplanes

H̃ (parametrised by closed points of P(V ′)), is constant. χ(H,F [1]) is defined to be this constant.
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rk(F F̃0) = (−1)d.rk(F̃0) = (−1)d.χ(P(V ),F [1]);
rk(F F̃) = rk(q∗RF [1]) = rk(RF [1]) = (−1)d−2.χ(H,F [1]),
where in the last line we have used the compatibility of the Radon transform and the Fourier
transform. The statement easily follows.

3.4 Proof of the main theorem
As above, Λ can be either finite or rational.

Theorem 3.4.1. Monodromic sheaves are F-good.

We present two proofs. The first one follows Beilinson’s key idea of untwisting the sheaf
after pulling back to V ×A1, reducing the general case to the trivial twist case.

Proof. Since irreducible constituents of a monodromic sheaf are monodromic (Lemma 3.2.4),
it suffices to prove the claim for perverse irreducible monodromic sheaves. Further, since be-
ing monodromic is clearly preserved under a finite extension of the coefficient field, and
characteristic cycles do not change under this extension (c.f. the discussion after Definition
3.5.1), we may assume that Λ contains a primitive n-th root of unity8, where n is the twist
of the sheaf in consideration. In the rational case, we may further assume Λ = Qℓ.

Let F ∈ D(V ) be perverse irreducible monodromic. We want to show CC(F) =
CC(FF). If F has trivial twist, then it is F-good by Proposition 3.3.1. Assume F
has non-trivial twist K. Consider F ⊠ K on V × A1. We claim that F ⊠ K−1 satis-
fies (F ⊠ K−1)|(V×A1)−{0} ∼= q∗(F ⊠K−1) for some F ⊠K−1 ∈ D(P(V × A1)), where q :
(V ×A1)−{0} → P(V ×A1) is the projection. Accepting this claim, Corollary 3.3.3 implies
that CC(F ⊠K−1) = CC(F (F ⊠K−1)). As, in general, CC(F1 ⊠F2) = CC(F1)⊠CC(F2)
(for Λ finite, see [Sai17a, 2.2]; for Λ rational, this is verified in Proposition 3.5.3).4 and F
commutes with ⊠ (c.f. [Lau87, 1.2.2.7]), it easily follows that CC(F) = CC(FF).

It remains to show the claim. F is of the form j!∗L for some irreducible local system
L on some smooth irreducible locally closed conic subvariety S ↪→ V̊ . So F ⊠ K−1 ∼=
(j!∗L) ⊠ K−1 ∼= j!∗(L ⊠ K−1). By our construction, L ⊠ K−1 is a local system concentrated
in a single degree, which is constant when restricted to each Gm orbit in S ×A1 (note that
K−1 is 0 at {0} ∈ A1). By Lemma 3.2.9, L ⊠ K−1 ∼= q∗(L⊠K−1), for some L⊠K−1 ∈
D(P(S × A1)). Then F ⊠ K−1 ∼= j!∗q

∗(L⊠K−1). Its restriction to (V × A1) − {0} is
isomorphic to q∗j!∗(L⊠K−1).

We now present our original proof, which uses the local decomposition (Proposition 3.2.8)
and the notion of having the same wild ramification to reduce to the trivial twist case.

8In the extended coefficient field Λ′, we will use the character ψ′ : Z/p → Λ ↪→ Λ′ to define the Fourier
transform, where the first arrow is the character ψ for Λ. This ensures (FψF)⊗Λ Λ′ ∼= Fψ′(F ⊗Λ Λ′).
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Proof. As explained at the beginning of the previous proof, it suffices to consider perverse
irreducible monodromic sheaves, and we may assume, in the finite case, that Λ contains a
primitive n-th root of unity where n is the twist of the sheaf in consideration, or, in the
rational case, that Λ = Qℓ .

We do induction on d = dimV . For d = 1, there are three types of perverse irreducible
monodromic sheaves: i) the rank 1 skyscraper at {0}, ii) the rank 1 constant sheaf in degree
−1 on V , iii) (!-extension of) Kummer sheaves {K}. Their Fourier transforms are easy to
compute: i’) the rank 1 constant sheaf in degree −1 on V ′, ii’) the rank 1 skyscraper at {0′},
iii’) (!-extension of) Kummer sheaves {K−1} ([Lau87, 1.4.3.2]). In each case, F-goodness can
be directly verified.

Now consider the case d > 1. Let F ∈ D(V ) be a perverse irreducible monodromic sheaf.
If F has trivial twist, then it is F-good by Proposition 3.3.1. Assume F has non-trivial twist
K (recall, by our convention, K is in degree −1). Fix linear coordinates (x1, x2, ..., xd) (i.e.
an isomorphism V ∼= Ad = Spec(k[x1, x2, ..., xd])), this induces coordinates [x1 : x2 : ... : xd]
on P(V ). Let D1 = {x1 = 0}, U1 its complement in V . The projection q : V̊ → P(V ) maps
U1 to U1 = {x1 ̸= 0} ⊆ P(V ). Fix the section σ1 : U1 → U1, [x1 : x2, ..., xd] 7→ (1, x2

x1
, ..., xd

x1
).

Apply Proposition 3.2.8 to (U1, σ1), we get a decomposition F|U1
∼= Fσ1

⊠K. We denote
the !-extension of Fσ1

to P(V ) by F1. Then j!(F|U1)
∼= j!(Fσ1

⊠ K) ∼= (j!q
∗F1) ⊗ pr∗1K,

where j denotes the inclusions into V (we use the same j for the inclusion from U1 as well as
V̊ ), and pr : V → A1 denotes the projection to the first coordinate. The last isomorphism
follows from the observation that the map U1

∼=σ1 U1 ×Gm followed by the projection to
Gm coincides with the map pr1 (restricted to U1).

We have the distinguished triangle: j!(F|U1)→ F → i1∗(F|D1)→, where i1∗ is the inclu-
sion of D1 to V . As F|D1 is clearly monodromic, it is F-good by the induction hypothesis.
Using the compatibility of the Fourier transform with linear maps between vector spaces, it
is easily seen that i1∗(F|D1) is F-good. As being F-good is stable under taking cones (Lemma
3.2.13), it suffices to show j!(F|U1) is F-good, i.e., to show CC(Fj!(F|U1)) = CC(j!(F|U1)).
In the following, we assume j!(F|U1) is nonzero (with non-trivial twist K).

We compute: Fj!(F|U1) = F ((j!q
∗F1) ⊗ pr∗1K) = (Fj!q

∗F1) ∗ F (pr∗1K)[d], where − ∗ −
denotes the convolution: let s be the sum map: V ′ × V ′ → V ′, (v1, v2) 7→ v1 + v2, then
− ∗ − : D(V ′) × D(V ′) → D(V ′), (G1,G2) 7→ s!(G1 ⊠ G2). Further compute: F (pr∗1K) =
i′1!FK[1− d] = i′1!K−1[1− d], where i′1 is the inclusion of the x′1-axis into V ′ (we use the dual
coordinates on V ′).

Claim: (Fj!q∗F1)⊠(i′1!K−1) has the same wild ramification (swr) as (Fj!q∗F1)⊠(i′1!ΛGm
[1]).

Accepting the claim, then by Theorem 3.5.5 and Theorem 3.5.7, (Fj!q∗F1) ∗ F (pr∗1K)[d]
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has the swr as (Fj!q∗F1) ∗ (i′1!ΛGm
[1])[1], and they have the same characteristic cycle. Now,

i′1!ΛGm
[1] = FFi′1!ΛGm

[1] = Fpr∗1H[d − 1], where H := Fi′1!ΛGm
[1] is a sheaf on A1 whose

restriction to Gm is constant and concentrated in degree −1. So (Fj!q
∗F1) ∗ (i′1!ΛGm

[1]) =
F ((j!q

∗F1) ⊗ pr∗1H)[−1]. Note that (j!q
∗F1) ⊗ pr∗1H is isomorphic to j!q

∗F1[1], which is
F-good by Corollary 3.3.3. Put these together, we get the equalities CC(Fj!(F|U1)) =
CC(F ((j!q

∗F1) ⊗ pr∗1H)[1 − d]) = CC(j!q
∗F1[1]). Recall that we want to show this equals

CC(j!(F|U1)).

Claim: j!(F|U1) = (j!q
∗F1) ⊗ pr∗1K has the swr as (j!q

∗F1) ⊗ pr∗1ΛGm,![1] = j!q
∗F1[1],

where ΛGm,! denotes the !-extended to A1 of the constant sheaf on Gm.

Accepting this claim and combining it with the previous equalities, we get the desired
equality: CC(Fj!(F|U1)) = CC(j!q

∗F1[1]) = CC(j!(F|U1)).

It remains to prove the two claims. We prove the second claim, the first is completely
analogous. We first consider the Λ finite case. Denote j!q∗F1 by A, K by B. Let C be a
smooth proper curve, g : C ⊆ C an open dense, f : C → X a map, s ∈ C a closed point.
We want to show as(g!f

∗A[1]) = as(g!f
∗(A⊗ pr∗1B)). Recall as = rkηs + swηs − rks. Clearly,

the ranks are the same for g!f ∗A[1] and g!f
∗(A ⊗ pr∗1B) (note A is 0 along D1). For the

Swan conductors, observe (A ⊗ pr∗1B)ηs = Aηs ⊗ (pr∗1B)ηs , (pr∗1B)ηs is 0 (if ηs is mapped
to 0 by pr1 ◦ f) or tame of rank 1 concentrated in degree −1 (otherwise). In both cases,
swηs(A⊗ pr

∗
1B) = swηs(A⊗ pr

∗
1ΛGm,![1]) = swηs(A[1]). This completes the proof for the Λ

finite case. For the Λ = Qℓ case, it suffices to make the following changes to this paragraph:
A denotes the reduction of any integral model of j!q∗F1, and B denotes the reduction of
any torsion free integral model of K. Note, B is then a rank 1 local system concentrated in
degree −1 trivialised by a power n cover of Gm, p ∤ n, hence a Kummer sheaf.

Corollary 3.4.2. If F ∈ D(V ) is monodromic, then CC(F) = CC(FF) and SS(F) =
SS(FF).

Proof. The characteristic cycle (resp. singular support) of a sheaf is the sum (resp. union) of
the characteristic cycles (resp. singular supports) of its irreducible constituents. The Fourier
transform preserves the irreducible constituents. So it suffices to prove CC(F) = CC(FF)
and SS(F) = SS(FF) for F perverse irreducible monodromic. The first equality follows
from the theorem above. The support of the characteristic cycle of a perverse sheaf equals
its singular support (for Λ finite, this is [Sai17b, 5.17]; for Λ rational, this is verified in
Proposition 3.5.3.2), the second equality follows.



CHAPTER 3. THE FOURIER TRANSFORM AND CHARACTERISTIC CYCLES OF
MONODROMIC ℓ-ADIC SHEAVES 57

3.5 Appendix to Chapter 3: review of the characteristic
cycle and the notion of having the same wild
ramification

The characteristic cycle of a sheaf with rational coefficient

We refer to [UYZ20, §5] and [Zhe15] for details. Let X be a variety over k. Denote the
Grothendieck group of constructible Fℓ (resp. Zℓ, resp. Qℓ)-sheaves on X by K(X,Fℓ)
(resp. K(X,Zℓ), resp. K(X,Qℓ)). There are natural group homomorphisms:

K(X,Fℓ) K(X,Zℓ) K(X,Qℓ)
i∗

i∗

j∗

where i∗, i∗, and j∗ are induced by the reduction, restricting scalars, and tensoring to Qℓ,
respectively. It is known that i∗ = 0, i∗ is surjective, and j∗ is an isomorphism. Define the
decomposition homomorphism d : K(X,Qℓ)→ K(X,Fℓ) as i∗ ◦ (j∗)−1.

Definition 3.5.1 (CC for rational coefficients, [UYZ20, 5.3.2]). Let Λ be rational. For
F ∈ D(X), CC(F) := CC(d[F ⊗Λ Qℓ]). Here “[ ]” denotes the class in K(X,Qℓ).

We will drop “[ ]” and “−⊗Λ Qℓ” from the notation if there is no risk of confusion. Here
by CC(d[F⊗ΛQℓ]) we mean the characteristic cycle of any representative for F⊗ΛQℓ which
is defined over some finite extension of Fℓ. This is well-defined because CC is additive and
does not change under coefficient field extensions (which can be seen, for example, using
the Milnor formula and the fact that Swan conductors do not change under coefficient field
extensions).

Concretely, CC(F) can be computed as follows: let Q be a large enough finite extension
of Qℓ on which F is defined. Denote by Z its ring of integers, and by F the residue field.
Choose any integral model F0 for F (i.e. a Z-sheaf F0 such that F0 ⊗Z Q ∼= F). Let
F0 = F0 ⊗Z F be the reduction. Then [F0] = d[F ⊗E Qℓ], and CC(F) = CC(F0).

As the operations f ∗, f∗, f !, f!,⊗ and RHom are exact functors between triangulated
categories, they induce the corresponding operations on the Grothendieck groups, denoted
by the same letters. The decomposition homomorphism commutes with all these operations.
For f ∗, f∗, f !, f!, this is stated in [UYZ20, 5.2.7], for ⊗ and RHom, this is verified in the
following.

Lemma 3.5.2. Let Λ be rational. Let F ,G be sheaves on a variety. Then d(F ⊗ G) =
(dF)⊗ (dG), d(RHom(F ,G)) = RHom(dF , dG).

Proof. Suppose F ,G are defined over a finite extension Q of Qℓ, denote by Z (resp. F ) the
ring of integers (resp. residue field) of Q. Let F0,G0 be any integral models for F ,G, denote
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their reductions by F0,G0.

Essentially by the definition of −⊗Q − ([Zhe15, 6.1]), F0 ⊗Z G0 is an integral model for
F ⊗Q G. So d(F ⊗ G) = (F0 ⊗Z G0)⊗Z F = F0 ⊗F G0 = (dF)⊗ (dG), where in the second
equality we used [Zhe15, 5.3].

Essentially by the definition of RHomQ(−,−), RHomZ(F0,G0) is an integral model for
RHomQ(F ,G). So, d(RHom(F ,G)) = RHomZ(F0,G0)⊗ZF = RHomF (F⊗ZF,G⊗ZF ) =
RHom(dF , dG), where in the second equality we used [Zhe15, 5.7].

One can thus transport results of characteristic cycles proved in the finite coefficient case
to the rational coefficient case. Here are a few that we need but not explicitly stated in
[UYZ20].

Proposition 3.5.3. Let Λ be rational.
1) If F is a sheaf on a smooth variety, then CCD(F) = CC(F).
2) Let F be a sheaf on a smooth variety. Then CC(F) is supported on SS(F). If F is
perverse, nonzero, then the coefficients in CC(F) is positive on each irreducible component
of SS(F). In particular, the support of CC(F) equals SS(F).
3) If G is a sheaf on a projective space P, then CC(RG) = LCC(G), where R is the Radon
transform and L is the Legendre transform (as defined above 7.5 in [Sai17b]).
4) Let X, Y be smooth varieties, F1,F2 be sheaves on X, Y , respectively. Then CC(F1⊠F2) =
CC(F1)⊠ CC(F2) (see [Sai17a, §2] for the meaning of the notation).

Proof. 1) We want to show CC(DF) = CC(F). By definition, CC(DF) = CC(dDF), CC(F) =
CC(dF). By the corresponding result for finite coefficients ([Sai17b, 5.13.4]), it suffices to
show d ◦ D = D ◦ d, which is immediate from the commutativity of d with RHom.

2) Let F0 be an integral model for F , and F0 its reduction mod ℓ, such that SS(F) =
SS(F0) (which exists, by [Bar23, 1.5 (v)]). By definition, CC(F) = CC(F0). The first
claim follows. The second claim follows from the Milnor formula ([UYZ20, 5.3.3]) and the
well-known fact that the vanishing cycle shifted by −1 is perverse t-exact (c.f. [Ill94, 4.6]).

3) and 4) follow from the commutativity of d with f ∗, f∗, and ⊗, and the corresponding
results for finite coefficients ([Sai17b, 7.12; Sai17a, 2.2]).

The notion of having the same wild ramification

In situations relevant to us, this notion is equivalent to having universally the same conduc-
tors ([Kat21, 6.11]). We will only review (and use) the latter, as it is easier to state and
verify (in our situation). We refer to [Kat18; Kat21] and references therein for details.

Definition 3.5.4 (universally the same conductors for finite coefficients, [Kat18, 2.5]). Let
Λ be finite. Let X be a variety over k. We say F ,F ′ ∈ D(X) have universally the same
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conductors (usc), if for all smooth proper curve C, all open dense j : C ⊆ C, all map f :
C → X, all closed point s ∈ C, we have as(j!f ∗F) = as(j!f

∗F ′), where as := rkηs+swηs−rks
is the Artin conductor at s.

Theorem 3.5.5 ([Kat18, 4.6.ii, 4.7]). Let Λ be finite. Let f : X → Y be a map between
varieties.
1) If F ,F ′ ∈ D(X) have usc, then f!F , f!F ′ ∈ D(Y ) have usc.
2) Assume X is smooth. If F ,F ′ ∈ D(X) have usc, then CC(F) = CC(F ′).

Note that as as, j! and f ∗ are additive, having usc descends to the Grothendieck group.
This suggests that we can transport this notion to rational coefficients and get the analogue
of the above theorem.

Definition 3.5.6 (same wild ramification for rational coefficients). Let Λ be rational. Let X
be a variety over k. We say F ,F ′ ∈ D(X) have the same wild ramification (swr), or have
universally the same conductors (usc), if d(F), d(F ′) do.

Theorem 3.5.7. Let Λ be rational, f : X → Y be a map between varieties.
1) If F ,F ′ ∈ D(X) have the swr, then f!F , f!F ′ ∈ D(Y ) have the swr.
2) Assume X is smooth. If F ,F ′ ∈ D(X) have the swr, then CC(F) = CC(F ′).

Proof. 1) This follows from the corresponding statement for Λ finite and the fact that the
decomposition homomorphism commutes with f!.

2) This follows from the corresponding statement for Λ finite and the definition of CC
for Λ rational.
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