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ABSTRACT OF THE DISSERTATION

Using Blinking to Mitigate Passive Side Channel Attacks and Fault Attacks

by

Jeremy Blackstone

Doctor of Philosophy in Computer Science

University of California San Diego, 2021

Professor Ryan Kastner, Chair

Ignoring security concerns when building digital hardware allows for malicious parties

to take advantage of vulnerabilities to gain access to secret information and manipulate systems.

This is unacceptable because of the disastrous results of attackers compromising consumer

products such as cell phones, smart cards and automobiles. To this end, researchers have

developed numerous mathematically secure cryptographic algorithms.

Unfortunately, side channel analysis (SCA) attacks bypass these algorithms by monitoring

the effects of the algorithm on a physical platform through power consumption, electromagnetic

emanations (EM), or subjecting it to fault injection. These effects are referred to as side channels.

By analyzing side channels, an attacker is able to discover sensitive information, e.g., extracting
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the secret key from a cryptographic algorithm.

It is shown in [3] that retrieving side channel information is not uniform. Some portions

of the execution reveal a large amount of information to an adversary while other portions reveal

little to no information to the adversary. However, most SCA countermeasures incur larger than

necessary overhead by protecting all portions of the computation. One way to reduce overhead

is through a methodology called blinking. Blinking identifies the most critical points in time for

a cryptographic computation and performs isolation to prevent an adversary from observing or

modifying any information. This thesis proposes using blinking in a variety of different scenarios

and provides analysis so hardware designers can make informed decisions on how to balance the

performance, area overhead, power consumption and security.

First, this thesis provides analysis on using blinking to mitigate power analysis attacks

with an on-chip capacitor. Next, this thesis shows how the same on-chip capacitor can be used

to protect against differential fault analysis, fault sensitivity analysis, biased fault analysis and

combined fault analysis. Finally, this thesis demonstrates how blinking can be used to attenuate

EM analysis.
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Chapter 1

Background

1.1 Cryptographic Algorithms

Cryptographic algorithms are essential to protecting integrity and confidentiality for data.

These algorithms keep data secure using hardware specifically designed to execute them in order

to perform operations as quickly as possible[8, 45]. Many products including smart cards, mobile

devices and TV set-top boxes implement symmetric encryption algorithms such as the Advanced

Encryption Standard(AES).

Symmetric encryption hinges on the idea that a secret key can introduce uncertainty into

a encryption algorithm[135]. Sharing the secret key only with authorized users allows for them

to access the data while disallowing access to unauthorized users. Cryptography focuses on

ensuring that the computational effort of determining this secret key using a brute force search is

exponentially dependent on the key size to the point that it is not feasible for an adversary to

accomplish it using modern computing resources.

Side channel attacks allow an adversary to use information from the algorithm’s physical

implementation on hardware to extract secret data and assist in finding the key by reducing

the key space. Side channel attacks are important because they undermine the algorithmic

complexity required to keep the secret key secure. The key space is important because it is the

set keys that will be used in an exhaustive search for the secret key.
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Figure 1.1. AES’s S-box

1.1.1 AES

The Advanced Encryption Standard(AES) is a cryptographic algorithm which takes a 128

bit plaintext and encrypts it using a secret key [116]. It is composed of iterations called rounds

and the number of rounds corresponds to the key length. If the secret key is 128 bits, there are 10

rounds, if it is 192 bits there are 12 rounds and if it is 256 bits there are 14 rounds. Each round is

composed of 4 layers: Byte Substitution, ShiftRows, MixColumns and Key Addition.

When computing AES, the plaintext is first exored with the secret key and sent to the

Byte Substitution layer. In this layer, each byte is substituted based on a lookup table called an

S-Box as shown in figure 1.1. The first 4 bits of the plaintext are used to determine the column

and the last 4 bits are used to determine the row. For example, if the input byte is d7 it will be

replaced substituted with the byte 0e.

Next, each byte is considered an element in a 4 x 4 state matrix and sent to the ShiftRows
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Figure 1.2. Shift Rows layer

Figure 1.3. Mix Columns layer

layer.

In this layer, the first row of the matrix remains unchanged, the second row is shifted to

the left 1 byte, the third row is shifted to the left 2 bytes and the fourth row is shifted to the left 3

bytes as shown in Figure 1.2.

After the ShiftRows layer, the MixColumns layer does matrix multiplication between the

current state matrix(Bi) and the matrix shown in Figure 1.3 to produce a new state matrix (Ci).

Finally, in the Key Addition layer, each bit is exored with a 16 byte variation of the secret

key called a round key. Round keys are generated by a key scheduling algorithm as shown in

Figure 1.4. In this algorithm, first the initial key is divided into words and can be considered

round key 0. Next, the last word of round key 0 is sent to a RotWord function which shifts the

positions of bytes in the word and a SubWord function which sends the word into an S-box. This

value is exored with a constant value called RCON to generate the first word of round key 1. The

second word is generated by exoring the first word of the current round key and the second word
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Figure 1.4. Key Scheduling Algorithm

from round key 0. Each subsequent word is generated by exoring the preceding word from the

current round with the parallel word from the previous round. The last word of round key 1 is

sent to the RotWord and SubWord functions and this process continues until all 10 round keys

have been generated.

1.1.2 PRESENT

While AES is the preferred algorithm of choice for most applications, it is not best suited

for highly resource constrained devices such as RFID tags and sensor networks [16]. To address

this problem, PRESENT has been proposed as an ultralightweight block cipher.

PRESENT can be implemented on a 64-bit plaintext with either 80-bit or 128-bit keys.

Like AES, PRESENT is also composed of rounds, but it is always 31 rounds regardless of the

key length. Each round consists of an AddRoundKey layer, S-box layer and permutation layer.

In the AddRoundKey layer, each bit is exored with a 64 bit variation of the secret key
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Figure 1.5. PRESENT key shift operation

Table 1.1. PRESENT’s S-Box

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

called a round key. Round keys are generated by a key scheduling algorithm as shown in Figure

1.4.

While PRESENT can have an 80bit or 128-bit key, we focus on an example with an 80-bit

key. In this algorithm, the 64 leftmost bits of the key (K) are chosen as the initial round key (K0).

Next, the key is shifted left by 61 positions as shown in figure 1.5 and table 1.1. Afterwards, the

four leftmost bits are substituted through PRESENT’s S-Box as shown in equation 1.1. Finally,

bits K19K18K17K16K15 are exored with the least significant bit of the round counter as shown in

equation 1.2 where i is the round number.

K79K78K77K76 = S(K79K78K77K76) (1.1)

K19K18K17K16K15 = K19K18K17K16K15⊕ i0 (1.2)

In the S-Box layer, each nibble is substituted based on PRESENT’s S-box as shown in

table 1.1.

In the permutation layer, each bit in the current state is moved to a new position. This is

shown in table 1.2 where i is the initial position of the bit and P(i) is the new position of the bit.
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Table 1.2. PRESENT’s permutation layer places each bit i in new position P(i)

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P(i) 0 16 32 48 1 17 33 49 2 18 34 50 3 19 35 51

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

P(i) 4 20 36 52 5 21 37 53 6 22 38 54 7 23 39 55

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

P(i) 8 24 40 56 9 25 41 57 10 26 42 58 11 27 43 59

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

P(i) 12 28 44 60 13 29 45 61 14 30 46 62 15 31 47 63

1.2 Passive Side Channel Attacks

1.2.1 Power Analysis

Microprocessors are composed of logical gates which behave differently based on the

data and instructions they are given as input[5]. This is because power is applied or removed

from transistors to hold values or perform an operation on values. Therefore, power consumption

contains information about a device’s operations because differing behaviors require differing

amounts of power to perform. Power analysis attacks correlate power consumption measurements

collected during cryptographic computations to a device’s operation and secret information[77].

A number of power attacks have been used to reveal the secret key in a variety of scenarios

[96, 138, 77, 19, 61, 140, 92, 26, 97, 78, 15, 118, 90, 94]

Simple Power Analysis

Simple Power Analysis(SPA) is the most basic class of power attacks. These attacks

simply observe a power trace, collection of power measurements taken over a period of time, and

attempt to derive information from it[77]. SPA uses variations in power to determine sequences

of instructions. As an example, an adversary could collect the power measurements for a round

of AES and distinguish which cycles are performing Byte Substitution, ShiftRows, MixColumns
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and Key Addition [127].

Differential Power Analysis

While SPA is useful for identifying properties of a cryptogrphic algorithm, in many

cases, simply observing a power trace is not sufficient to recover the entire secret key. Differ-

ential Power Analysis (DPA) solves this problem by analyzing the differences between power

traces. Furthermore, is capable of launching a successful attack even when there is a significant

amount of noise in the power measurement. The attacker simply needs to acquire more power

measurements to develop a reasonable signal to noise ratio.

Classical DPA approaches take a univariate approach by choosing a single point in an

algorithm’s execution, collect a number of traces and divides them into two buckets [87]. The

traces are divided into buckets using a selection function which based on the assumption that a

device consumes more power changing a bit from 0 to 1 than changing a bit from 1 to 0. Thus,

power traces with greater power consumption will be placed in one bucket and power traces with

lesser power consumption will be placed in the other.

An example of DPA is shown in figure 1.6. The adversary begins by running an encryption

algorithm a number of times using a hypothetical key guess [87]. Next, they collect power

traces for a bit in the algorithm’s execution that is directly dependent on a subset of the secret

key(subkey). After this, they divide the traces into 2 buckets based on the value of the bit

dependent on the subkey. The adversary calculates the mean of each bucket and repeats this

process using different values for the subkey. They determine which subkey is correct by finding

which value results in the largest difference between means for its two buckets. The adversary

repeats this process until they are able to recover all the bits of the secret key.

More recent DPA approaches take a multivariate approach by comparing multiple points

on a trace to one another rather than choosing a single point [127]. This trend arose because

previous approaches consider measurements of power consumption at different points in time to

be independent from one another. This means that if the power consumption of point 1 changes,
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Figure 1.6. Differential Power Analysis(DPA) example

there is no guarantee that the power consumption of point 2 will change. However, in the case of

encryption, it is very possible for one point in an algorithm’s execution to directly affect another

point in the algorithm’s execution. Therefore, it is is possible for an adversary to acquire secret

information by analyzing how different points in an algorithm change with respect to each other.

One way to launch a multivariate DPA attack is by developing a multivariate Gaussian

distribution [127]. A Gaussian distribution is a way to determine the likelihood of a measurement

being equal to specific value. If the measurements within a bucket are normally distributed, it is

highly likely that a bucket assumes the correct value for a bit and if the measurements within a

bucket are not normally distributed it is highly unlikely that the bucket assumes the correct value

for a bit. Furthermore, if we consider multiple points in a trace, the variance of each individual
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point and the variance between each 2 sets of points we are able to distinguish subkey guesses in

the presence of greater noise. This is because there are more requirements a subkey guess must

satisfy in order to achieve high likelihood value.

Correlation Power Analysis

While DPA compares power traces to other power traces, Correlation Power Analysis

(CPA) develops a power model for the implementation of a cryptographic algorithm [19] and

compares power traces to the devloped model. The CPA power consumption model stems

from the fact that the power consumption of the device should have a linear correlation with

the Hamming Weight of a reference state dependent on a subkey key. The attacker is able to

determine the subkey by observing which of their subkey guesses has the highest correlation to

the power consumption model.

One way to calculate the correlation between a power model and the actual power

consumption is by using the Pearson correlation coefficient equation [87]. The Pearson correla-

tion coefficient equation operates by calculating whether there is a linear correlation between

two sets of values. For example, if the Hamming Weight of a reference state increases as the

measured power consumption increases, there will be a strong positive correlation between

Hamming Weight and power consumption. The adversary determines which subkey is correct by

finding which value results in the strongest correlation between Hamming Weight and power

consumption.

Template Power Analysis

While DPA and CPA overcome noise by collecting more trace, Template Power Anal-

ysis(TPA) overcomes noise by profiling the power consumption of a device and comparing a

few power traces to the profile [87]. The TPA power consumption model uses a large number of

traces using different potential plaintexts and keys on a device identical to the device they intend

to attack. Afterwards, the adversary collects a small number of power traces using the actual

9



key and determines which subkey guess is correct by determining whether an observed power

consumption value is similar to an power consumption value from the profile

1.2.2 Electromagnetic Analysis Attacks

A number of devices generate electromagnetic(EM) radiation at unintended frequencies

as a consequence of their internal operations [55]. This occurs because EM waves are generated

from electrical currents changing over time and the frequency, amplitude and phase of these

waves are dependent on how the electrical currents vary [42]. By analyzing these EM waves, an

adversary is able to acquire information about the instructions that generated them. A number of

EM attacks have been used to reveal the secret key in a variety of scenarios [55, 68, 114, 9, 33,

11, 24, 22, 21, 23, 20, 25, 46, 50, 52, 53, 54, 66, 69, 70, 71, 73, 79, 93, 98, 111, 115, 124, 133,

132, 136, 142, 141, 143, 149, 42, 43, 139, 41, 47, 63, 95, 126, 83, 147, 144, 39, 29, 112, 100,

102, 101, 103, 91, 84, 1, 148, 137, 91]

Simple Electromagnetic Analysis (SEMA)

One way to acquire information from electromagnetic emanation is through Simple

Electromagnetic Analysis (SEMA) [139, 52, 53, 66]. One way to launch this attack is by visually

inspecting the EM emanations of the computed instructions. This is effective because toggling

a bit consumes one bit of power and leaving a bit unchanged consumes no power because this

variation in power consumption is reflected in the resulting EM emanations. Without noise,

variations in the frequency of the EM emanations can map directly to the executed instructions

allowing an adversary to acquire the secret key to a cryptographic algorithm in a with a single

EM trace. However, many implementations are very noisy and this form of analysis is not viable.

Differential Electromagnetic Analysis (DEMA)

One way to acquire information from EM emanation in presence of noise is through

Differential Electromagnetic Analysis (DEMA) [55]. Just as DPA analyzes the differences

between power traces DEMA analyzes the differences between EM traces. As a result, it is
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possible to launch a successful attack even if there is a significant amount of noise by collecting

more EM measurements.

One way to implement DEMA is by calculating the hamming distance between the value

of register before an instruction and the value of a register after an instruction based on the EM

emanations they generate [55]. An example of this is shown in figure 1.7. First, the adversary

identifies a set of input data bytes, and all possible key bytes. Next, each input data byte is fed

into the device running the encryption algorithm with the real key and EM traces are collected

for each input value before and after the step which performs an XOR operation between the

input value and the secret key. The XOR values are recorded in a matrix referred to as the real

matrix where I j is input byte j and Rb is the difference in EM traces at bit b before and after the

step which performs an XOR operation between the input value and the secret key. After this,

they perform XOR operations between each hypothetical key and the input bytes. These XOR

values are recorded in a matrix referred to as the hypothetical matrix where I j is input byte j, kp

is key hypothesis p and H j, p is the result performing an XOR operation between the input value

and the key hypothesis. Finally, the adversary determines which key hypothesis has the highest

correlation between the real matrix and the hypothetical matrix for an input value as indicated by

the red circles.

Template Electromagnetic Analysis (TEMA)

Another way to acquire information from EM emanation in presence of noise is through

Template Electromagnetic Analysis (TEMA) [139]. Just as TPA uses a large number of traces

to profile the power consumption of a device, TEMA uses a large number of traces to profile

the EM emanations for a device. When performing TEMA an adversary collects a large number

of traces using different potential plaintexts and keys on a device identical to the device they

intend to attack, then collects a small number of EM traces using the actual key. They are able to

and determine which subkey guess is correct by determining whether the observed EM value is

similar to an EM value from the profile.

11



Figure 1.7. Differential Electromagnetic Analysis(DEMA) example

1.3 Fault Analysis Attacks

Fault attacks effectively extract the information a cryptographic algorithm protects by

analyzing the effects of carefully placed bit flips. By analyzing the effects of bit flips, adversaries

are able to acquire secret key bits and reveal sensitive information. A number of EM attacks

have been used to reveal the secret key in a variety of scenarios [31, 17, 10, 48, 28, 72, 129, 106,

13, 105, 85, 56, 60, 49, 80, 57, 67, 86, 14, 40, 120, 108, 131, 62, 44, 107, 18, 5, 32, 130, 146,

76, 6, 8, 7, 134, 58]

1.3.1 Differential Fault Analysis

Adversaries are able to determine a secret key with correct and faulty ciphertext pairs

using a technique called Differential Fault Analysis (DFA) [14]. In DFA, the adversary analyzes

the differences between faulty ciphertexts and their corresponding correct ciphertexts to reveal

secret information. The adversary begins by running AES and getting the correct ciphertext.
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Next, they run AES again using the same plaintext and injecting a fault. Some attacks inject

faults during the initial AK step and others injecting faults on later rounds.

In attacks injecting faults during the initial AK step, the adversary simply observes

whether their fault affects the output. However, in attacks injecting faults on later rounds, the

adversary uses the fact that the diffusion steps of the algorithm spread faults to solve for multiple

key bytes at once. AES spreads the effects of the fault to every column with each SR step and

spreads the effects of the fault to each row within a column in different multiples with each MC

step. Finally, the adversary solves for key bytes by determining which key guess byte causes the

faulty ciphertext and its corresponding correct ciphertext to differ by the same amount (Y*(X’1⊕

X1) = Z*(X’2⊕ X2).

The foundation for all fault analysis attacks on AES was a Differential Fault Analy-

sis(DFA) proposed by Giraud in 2004[62]. The first step in DFA is to simply run the AES

algorithm normally. The attacker starts with a plaintext P. After each round of AES an intermedi-

ate state Si occurs where i is the round which caused S. Finally, after all 10 rounds of AES-128

the algorithm outputs the ciphertext C. Next, the attacker uses the same plaintext and runs the

AES algorithm again. However, this time she induces a fault at the end of round 9. This results

in a faulty intermediate state S‘9 and subsequently a faulty ciphertext because the remainder of

the algorithm is operating on the wrong value of Si. In order to perform analysis, the attacker

seeks to use the differences between the faulty and correct ciphertexts to determine the correct

value for S9. After this, the attacker will use the value of S9 to derive the value of the 10th round

key. Finally, she is able to use the inverse key scheduling algorithm to acquire the entire 128 bit

AES key.

The first step in analysis is to compute the difference between C and C‘[62] as shown

in Figure 1.8 . Assuming a fault was only induced in a single byte, this will cause a one byte

difference between C and C‘. We will use the subscript j to note the byte which has been affected

by a fault and se j to note the differences caused as a result of the fault. Now that the attacker

knows the byte the fault has affected, she will try to work backwards to determine the conditions
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Figure 1.8. Difference between ciphertexts

under which the fault was induced. The value of S9 can be derived from the ciphertext by exoring

it with the 10th round key and performing inverse ShiftRow and Byte Substitution operations.

Using these derivations, it can be shown that the only difference between the faulty and correct

ciphertext(C and C‘) should be the difference between them after the Byte Substitution step in the

final round(I j and I‘ j). Since the same value for K10 is used to exor both M and M’ the difference

between them does not change even though the values differ from C and C‘. Furthermore, the

Inverse ShiftRows and ShiftRows operations change the positions of bytes within the state matrix

but do not change the value of any of the bytes.

It is important that the difference between I and I‘ is the same as the difference between

C and C‘ because the attacker does not know the value of K10 but can derive its value using (1.3)

once she has the value of S9.

C = ISR(ISB(S9))+K10 (1.3)
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Figure 1.9. DFA key recovery diagram

To find the right value for S9, the attacker will use the inverse ShiftRows operation on

both the correct and faulty cipher texts to align them with their corresponding bytes at the end of

round 9 and guess values for the intermediate state byte as well as the fault induced as shown in

Figure 1.9.
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P = 0110101111000001 (1.4a)

S9 = 10111011 (1.4b)

S′9 = 10111001 (1.4c)

C = 0011101000010001 (1.4d)

C′ = 1000 011000010001 (1.4e)

C⊕C′ = 1011110000000000 (1.4f)

j = 0 (1.4g)

se j = 10111100 (1.4h)

S9
j,g = 10111011 (1.4i)

e j,g = 00000010 (1.4j)

I j,g = 11101100 (1.4k)

S′9j,g = 10111001 (1.4l)

I′j,g = 0101 0110 (1.4m)

I j,g⊕ I′j,g = 10111100 = se j =C j⊕C′j (1.4n)

(1.4o)

We will consider the 1 bit fault in the affected byte e j, and we will consider the byte affected by

that fault S‘9
j . If the attacker guesses the right value for S9

j and e j then the difference between

the faulty and correct ciphertext byte(C j and C‘ j) will be the difference between them after the

Byte Substitution step in the final round(I j and I‘ j). There are 28 possibilities for S9
j , and 28

possibilities for a bit fault within a byte and we must do this process for all 16 bytes giving a

time complexity of 220 for this algorithm.

The equations in 1.4 provide an example of DFA calculations. In this example the first
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byte of the plaintext is 0x6b in hexadecimal representation and by the end of round 9 it has been

changed to 0xbb.

If the second bit from the right is flipped from 1 to 0 then the faulty intermediate state

byte is 0xb9. After computing the final round, the first byte is 0x3a for the correct ciphertext and

0x86 for the faulty ciphertext. By exoring the two ciphertexts, the attacker will find the value of

the byte difference is 0xbc and confirm that its position is in byte 0 and all other bytes have a

byte difference of 0. If the attacker correctly guesses that S9
j is 0xbb and that the fault occurred

at the second bit from the right then she can compute that S‘9
j is 0xb9. After this, she places

both into the S-box and discovers that I j is ea and I‘ j is 0x56. By these intermediate values the

attacker discovers that its byte difference is also bc and confirms that she has chosen the correct

value for S9
j . Using the correct value for S9

j she can perform the steps to reach state M and exor

this with the correct ciphertext to acquire a byte of the 10th round key.

In 2006, a theoretical DFA attack emerged which utilized faults that randomly changed

the value of a single byte[107].

In this attack, first the attacker runs AES to produce the correct ciphertext. Next, he runs

AES again inducing a fault before the MixColumns step of the ninth round. The first step in

analysis is to compute the difference between C and C‘. Assuming a fault was only induced

in the first column, this will cause 4 byte differences between C and C‘ as shown in Figure

1.10. The shaded regions are the bytes that have been affected by the fault. Just as in [62], the

difference between I and I‘ should be the same as the difference between C and C‘ for each byte.

Using the same steps outlined in [62], the attacker can compute bytes of the 10th round key four

at a time rather than one at a time reducing the number of ciphertexts that are necessary.

In 2008, it was shown that DFA can circumvent masking which was widely used as a

countermeasure for side channel attacks[18]. In masking, every time the device prepares to

compute AES, a random number is generated and referred to as a mask. This mask is exored

with the plaintext and all of the linear operations that are applied to the plaintext(ShiftRows,

MixColumns, AddRoundkey) are also applied to the mask. One important difference masking
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Figure 1.10. Generalized DFA

makes on the algorithm is that the S-box must be dynamically changed for each mask. The S-box

must be changed so that the correct intermediate value masked with a random value(u) will

produce the correct output with a corresponding random value (v). At the end of the encryption,

the resulting ciphertext is exored with the mask again to remove its effects and provide the

correct ciphertext.

This is shown in Figure 1.11.

The randomness provided by the mask eliminates the correlation between the secret key

and side channels necessary to launch side channel attacks. However, adding randomness does

not disrupt the relationship between the correct and faulty ciphertext necessary for DFA. As in

[62] the attacker is still able to compute the difference between C and C‘ and show that this is

the same difference between I and I‘ as shown in the diagram below. By repeating the same

steps as in [62] the attacker is able to recover the secret key.

In 2009, a DFA attack was discovered capable of breaking AES-128 with only 1 fault.
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Figure 1.11. Maksed DFA diagram

The attack exploited a 1 byte fault before the MixColumns layer of the eighth round[146].

In this attack, first the attacker runs AES to produce the correct ciphertext. Next, he runs

AES again inducing a fault at the end of round 7 and determines the effect the fault will have

on the resulting ciphertext as shown in Figure 1.12. Each Byte Substitution and AddRoundKey

step affects the value of the faulty byte, each ShiftRows step spreads the effects of the fault to

every column and each MixColumns step spreads the effects of the fault to each row within a

column in different multiples. After MixColumns, the value of the fault effect is equivalent in

rows 1 and 2, row 0 has twice this value and row 3 has three times this value. The initial value of

the induced fault will be denoted as f, f ‘ will represent the fault value after the 8th round Byte

Substitution, F1, F2, F3 and F4 will represent the fault values in the shaded bytes after the 9th

round Byte Substitution and A1 through A16 will represent the fault values in each byte after

the 10th round Byte Substitution. Following this, the attacker will make guesses for bytes of the

10th round key. Using these key guesses, he will perform Key Addition then inverse ShiftRows
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Figure 1.12. Single Fault DFA fault propagation

and Byte Substitution operations to derive the state matrices at the end of round 9. If the correct

key guesses were selected then the following systems of equations will be satisfied.

S9
0 +S‘9

0 = 2(S9
1 +S‘9

1) (1.5)

S9
1 +S‘9

1 = S9
2 +S‘9

2 (1.6)

S9
1 +S‘9

1 = 3(S9
3 +S‘9

3) (1.7)

S9
4 +S‘9

4 = S9
5 +S‘9

5 (1.8)

S9
5 +S‘9

5 = 3(S9
6 +S‘9

6) (1.9)

S9
5 +S‘9

5 = 2(S9
7 +S‘9

7) (1.10)
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S9
8 +S‘9

8 = 3(S9
9 +S‘9

9) (1.11)

S9
8 +S‘9

8 = 2(S9
10+S‘9

10) (1.12)

S9
8 +S‘9

8 = S9
11+S‘9

11 (1.13)

S9
14+S‘9

14 = 3(S9
12+S‘9

12) (1.14)

S9
14+S‘9

14 = 2(S9
13+S‘9

13) (1.15)

S9
14+S‘9

14 = S9
15+S‘9

15 (1.16)

If not, he makes another key guess and repeats this process.

S9
0 = ISB(x8+ k8) (1.17)

S‘9
0 = ISB(x8+A5+ k8) (1.18)

S9
1 = ISB(x11+ k11) (1.19)

S‘9
1 = ISB(x11+A9+ k11) (1.20)

In 2011, Meet in the Middle(MiM) attacks developed in response to protection schemes

limited to the last few rounds of AES[40]. In a MiM attack, first the attacker runs AES to produce

the correct ciphertext. Next, she runs AES again inducing a fault at the end of round 6. As

in [146], each Byte Substitution and AddRoundKey step affects the value of the faulty byte,

each ShiftRows step spreads the effects of the fault to every column and each MixColumns step

spreads the effects of the fault to each row within a column in different multiples.
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Figure 1.13. Single Fault DFA

S8
0 +S‘8

0 = S8
1 +S‘8

1 (1.21)

S8
0 +S‘8

0 = 3(S8
2 +S‘8

2) (1.22)

S8
0 +S‘8

0 = 2(S8
3 +S‘8

3) (1.23)

After obtaining the faulty ciphertext, the attacker will attempt to derive the values for

the first 4 bytes of S8 and S‘8. She needs the values for 4 bytes of the 10th round key to reach

guesses for the first byte of S9 and S‘9 and one byte of the round key for the 9th round to reach

guesses for the first byte of S8 and S′8. The attacker generates all possible values for these 5 key

bytes and stores these values as well as the difference between the first byte of S8 and S′8 for

10 pairs of correct and faulty ciphertexts in a list. Afterwards, she repeats this process to store

the possible key values and differences for the second byte of S8 and S′8 in a list. The attacker
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then merges these lists and looks for collisions between the lists to determine which key guesses

satisfy the equation (1.21). Afterwards, she repeats the process to satisfy (1.22) and (1.23).

1.3.2 Fault Sensitivity Analysis

Adversaries are able to determine a secret key without the values of ciphertexts using a

technique called Fault Sensitivity Analysis (FSA) [13]. The adversary begins by running AES

and getting the correct ciphertext. Next, they run AES repeatedly using the same plaintext and

increasing the clock frequency at each iteration. After each iteration, they compare the resulting

ciphertext to the correct ciphertext to determine whether or not a fault was injected. If there is a

difference between the ciphertexts, the adversary records the clock frequency. After this, they are

able to acquire the secret key byte-by-byte using statistical analysis because the clock frequency

where faults begin to occur is data-dependent.

In 2010, Fault Sensitivity Analysis(FSA) was introduced as a fault analysis method that

does not require the value of faulty ciphertexts[13]. Instead, FSA detects characteristics of a

fault injection method that violate setup delay(increased clock frequency or reduced voltage) and

treats them as an additional side channel.

In FSA, the attacker begins by running AES and getting the correct ciphertext. Afterwards,

he runs AES repeatedly using the same plaintext increasing the fault injection intensity at each

iteration. After each iteration, he compares the resulting ciphertext to the correct ciphertext to

determine whether or not a fault was induced. If there is a difference between the ciphertexts,

the fault intensity is recorded as the critical fault intensity. The attacker then repeats this for

numerous plaintexts to get multiple critical fault intensities.

In order to launch an FSA attack, an attacker must understand how to use Hamming

Weight(HW) to determine how close a circuit will be to the maximum timing delay. HW

calculates the number of non-zero elements in a string. It is useful to the attacker because the

critical fault intensity is highly correlated to the number of 0’s in the signals sent to an S-box.

This correlation exists because the value of inputs influences the maximum timing delay for an
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Figure 1.14. FSA example part 1

S-box. The maximum timing delay determines the threshold of timing delays that can occur

without causing a setup time violation. The extent to which a circuit approaches the maximum

timing delay depends on the values of the input signals. If the first input to an AND gate is a

0 then the output of the circuit is determined faster because both inputs must be 1 in order to

output a 1. Since most S-box implementations include AND gates, each 0 in the input signal has

the probability of decreasing the timing delay for the circuit and reduces the chance of a setup

time violation making fault injection methods such as clock and voltage glitching more difficult.

As a result, the critical fault intensities for inputs with higher HW will be lower. An

example is shown in Figure 1.14. A PPRM-1 S-box consists of the AND gate array shown and

an XOR array. If the S-box is given the input byte 0x10 the HW will be 1 and there will only be

1 gate where the first input is 1. In all other gates the first input is 0 so they can be determined

faster and the critical timing delay will be 6.7ns.

As a result, the critical fault intensities for inputs with higher HW will be lower. An
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Figure 1.15. FSA example part 2

example is shown in Figure 1.14. A PPRM-1 S-box consists of the AND gate array shown and

an XOR array. If the S-box is given the input byte 0x10 the HW will be 1 and there will only be

1 gate where the first input is 1. In all other gates the first input is 0 so they can be determined

faster and the critical timing delay will be 6.7ns.

However, when the input byte is 0x61 the HW will be 3 and there will be 6 gates where

the first input is 1 as in Figure 1.15. Since fewer gates have their first input as 0, the critical

timing delay will increase to 7.1ns.

To find the key, first the attacker generates a guess of each byte of the key. Next, he exors

the key guesses with each corresponding byte of the ciphertext and performs an inverse Byte

Substitution operation on them. After this, he uses the Hamming Weight(HW) of this value to

predict a guess value for the critical fault intensity.

The attacker repeats the same steps for each ciphertext using the same key guesses and

calculates Pearson’s correlation coefficient between the actual critical fault intensity and the

25



guessed critical fault intensity to determine the correlation for each key guess. The attacker

repeats this process for each possible value for the key guess for each of the bytes and the key

guess for each byte that has the highest correlation is the correct key guess for that byte. Since

the values of the faulty ciphertexts are not required, countermeasures that stop execution or

provide unusable output are not effective. However, masking which is not effective against DFA,

is a useful countermeasure for FSA since FSA is data dependent.

1.3.3 Biased Fault Analysis

Adversaries are able to determine a secret key without using correct ciphertexts with

a technique called Biased Fault Analysis (BFA) [56]. The adversary begins by running AES

repeatedly with the same plaintext injecting different faults. Next, they will collect the resulting

faulty ciphertexts and use key byte hypotheses to recover the state values where the fault was

injected. Finally, the adversary distinguishes the correct key hypothesis from incorrect hypotheses

by statistically analyzing the faulty state values. This type of analysis works because the correct

key hypothesis will produce faulty states with similar state values while incorrect hypotheses

will produce faulty states with large random differences.

In 2014, Differential Fault Intensity Analysis(DFIA) emerged as a new method of fault

analysis[57]. DFIA uses faulty ciphertexts to derive an intermediate value and selects the most

likely key hypothesis based on the fact that the wrong key hypothesis results in large random

changes when faults are induced.

In DFIA, the attacker does not need the correct ciphertext so he runs the AES algorithm

repeatedly with same plaintext inducing different faults. We will denote a specific fault injection

with the subscript q. A specific fault injection will produce a faulty intermediate state S‘q and

subsequently C‘q. Hamming Distance(HD) gives a count of the difference between bit strings.

Therefore, if the same number of bits are flipped in each computation, each faulty intermediate

state will have the same HD with the correct intermediate state and the faulty intermediate states

will be close to each other in HD. For example, assuming a 1 bit fault, S would have an HD of 1
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Figure 1.16. DFIA attack part 1

with each S‘q. Furthermore, each S‘q would have an HD of 2 with each other S‘q.

To perform the analysis, first the attacker will generate faulty ciphertexts. Next, he will

make a guess for a byte of the 10th round key. Using this key guess, he will perform Key Addition

then inverse ShiftRows and Byte Substitution operations to derive a faulty state. Afterwards, the

attacker calculates the HD between each faulty state and every other faulty state to determine

the cumulative HD for that key guess. The minimum cumulative HD is the most likely guess

for the correct key byte. The attacker then repeats this process for each key byte. Once all of

the key bytes for the 10th round key have been acquired, the attacker is able to use the inverse

key scheduling algorithm to acquire the entire 128 bit AES key. An example of this is shown in

Figure 1.16

In this example the first byte of the plaintext is 0x6b in hexadecimal representation and

by round 9 it has been changed to 0xbb. If the second bit from the right is flipped from 1 to 0
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Figure 1.17. DFIA attack part 2

then the faulty intermediate state byte 0xb9. After computing the final round the first byte is

0x86 for the faulty ciphertext. If the leftmost bit is flipped the faulty state is 0x3b, if the fourth

bit from the left is flipped the faulty byte is 0xab and if the rightmost bit is flipped the faulty state

is 0xba. The resulting ciphertexts bytes are 0x32, 0xb2, and 0x24.

If the attacker correctly guesses that the first key byte is 0xd0 he will find that the

intermediate states are 0x56, 0xe2, 0x62 and 0xf4 when the key byte is xored with each faulty

ciphertext byte. After performing the inverse ShiftRows and Byte Substitution operations he will

recover the faulty states bytes from the 9th round. The HD between each faulty state and every

other faulty state is 2 giving a cumulative HD of 12 as shown in Figure 1.17.

1.3.4 Combined Fault Analysis

Adversaries are able to determine a secret key by combining fault analysis with power

analysis in a technique called Combined Fault Analysis (CFA) [32]. The adversary begins by
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running AES repeatedly with the same plaintext injecting different faults. Next, they will collect

the resulting power consumption curves. Finally, the adversary correlates the power consumption

curves to secret key hypotheses and uses statistical analysis to determine which key hypothesis

is correct.

1.4 Threat Model

For all SCA, our experimental results target the attack of cryptographic algorithms

running on a microcontroller. We assume the attacker is aware of when the computation of the

cryptographic algorithm begins with microsecond level precision (e.g., by using simple power

analysis (SPA)) [77].

For passive SCA, we assume the attacker has physical possession of the target device, is

able to run security critical programs with arbitrary inputs, and is capable of collecting detailed

power or EM traces. We make no assumptions about the equipment the attacker uses to collect

traces.

For active SCA, we assume the attacker has physical possession of the target device, is

able to run security critical programs with arbitrary inputs, and is capable of collecting faulty

ciphertexts. We assume the adversary uses clock, glitching, voltage glitching or electromagnetic

interference to inject faults because these techniques are non-invasive and require less than

$3,000 worth of equipment making them well within the means of a single, motivated adversary

[8]. We assume the adversary does not use focused light beams, lasers, or focused ion beams

to inject faults because the fault injection techniques are too invasive and/or expensive to be

practical. We assume an adversary does not use overheating to inject faults because this technique

is not precise enough to inject faults during critical points in an algorithm’s execution. We do

not consider a decapsulation scenario because this requires an uncommon technical skill and is a

highly invasive technique which leaves tamper evidence and could damage the chip.
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1.5 Passive Side Channel Countermeasures

Some techniques add active equalization circuitry to diminish power variations during

execution and keep the power supply constant [109, 110]. Other techniques use signal attenuation

hardware to reduce the power cost of noise injection [37] or use a suppression circuit to reduce

low frequency power variations and a low-pass filter to reduce high frequency power variations

[128]. There are some ideas which provide internal power sources which an adversary cannot

modify e.g., a charge-pump circuit using on-chip capacitors [119] and a switched capacitor

circuit to isolate an AES core from the power supply line [145]. The disadvantage to these

works is that they were not applied selectively in order to allow designers to make tradeoffs

between performance, area, and security. While computational blinking [3] also identifies non-

uniformity in information leakage, it implements a switched capacitor circuit rather than using

signal attenuation hardware. As a result, applying the different techniques intermittently has

different accommodations and requires different constraints.

1.6 Fault Analysis Countermeasures

1.6.1 Masking

Masking increases the amount of noise by adding randomization to eliminate the cor-

relation between the secret key and intermediate values [13]. It XORs plaintexts and secret

keys with a random value which changes each time the algorithm is executed. Masking can

be used to mitigate FSA attacks because their method of recovering the secret key is the most

data-dependent. DFA, BFA and CFA attacks are not data-dependent because they simply rely on

the correct and fault ciphertexts to differ by the same amount and researchers have practically

demonstrated their effectiveness on masked implementations of AES [18, 32, 117].
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1.6.2 Time Redundancy

Time redundancy performs a step, round or the entire algorithm multiple times to check

whether or not both executions match [88]. If a fault is detected, the system can stop execution

so the adversary is not able to acquire faulty ciphertetxs.

Time redundancy can be used to mitigate DFA attacks because they are able to detect the

differences between correct and faulty ciphertexts during the algorithm’s execution and prevent

the adversary from acquiring faulty ciphertexts [88]. It does not prevent BFA attacks because

they do not require a correct ciphertext [117]. This creates the opportunity for an adversary to

inject the same faults on both the original and redundant step to force them to match and bypass

the error detection step. Time redundancy does not mitigate FSA or CFA attacks because they

do not require the value of faulty ciphertexts; their analysis depends on the faults themselves

rather than their effect on the final ciphertext [13, 32].

1.6.3 Error Detection Codes

Error detection codes use a check bit to determine whether or not a fault has occurred

[88]. While error detection codes incur low performance and area costs, they have lower fault

coverage than time redundancy. We do not compare error detection codes to isolation in our

analysis because in many cases they are not able to detect faults well enough to protect against a

reasonably motivated adversary.

1.6.4 CAMFAS

CAMFAS enables operation duplication using single instruction multiple data (SIMD)

extensions of microprocessors [27]. SIMD extensions operate on wider registers to complete

multiple operations in parallel. SIMD is usually used to exploit data parallelism available in a

cipher through mapping the algorithm’s statements into vector statements manually. Instead of

running the original instruction and it’s copy sequentially, CAMFAS vectorizes the instructions

and packs them into a SIMD register for execution. Error checking is performed on the vectorized
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instruction for fault detection.

CAMFAS can be used to mitigate DFA and BFA attacks by executing the original

instruction and its redundant copy in parallel which prevents the adversary from injecting the

same fault on both. CAMFAS does not work on FSA or CFA because they do not require the

value of faulty ciphertexts [13, 32].

1.7 Contributions

The major contributions of this thesis are:

• Computational blinking is a programmable technique that switches between on-chip and

off-chip energy sources to mitigate power information leakage. This thesis analyzes how

clock speed and on-chip capacitance affect blinking and proposes stalling the processor to

avoid information leakage while the on-chip energy source recharges. This analysis can be

used to help designers determine the level of security they are able to afford based on area

and performance costs

• Faults are purposefully injected by manipulating the clock signal or voltage fed to a

chip. This thesis proposes mitigating this process by selectively isolating the computation

when adversaries must inject faults to successfully launch fault attacks. We develop a

representative sample of fault attacks according to difficulty in terms of effort for the

adversary, to allow for designers to make tradeoffs between performance and security.

This analysis can be used to help designers determine the level of security they are able to

afford based on area and performance costs

• Signature aTtenuation Embedded CRYPTO with Low-Level metAl Routing (STELLAR)

was proposed to mitigate power and EM-based attacks, but incurs 50% power overhead.

This thesis reduces power overhead by operating STELLAR intermittently utilizing an

intelligent scheduling algorithm. The proposed scheduling algorithm determines the
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optimal locations during the crypto operation to turn STELLAR ON, and reduces power

overhead compared to the normal STELLAR operation, while eliminating power and EM

information leakage. This analysis can be used to help designers determine the level of

security they are able to afford based on area costs
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Chapter 2

Introduction

The idea of computational blinking derives from the physiological act of blinking in

humans. Humans blink 15-20 times per minute for a duration between 100-400 ms. Thus,

they spend between 2.5-13.3% of their waking time with their eyes closed due to blinking.

Furthermore, sections of our brain their brains are actually momentarily “powered off” during

each blink. Yet, they are rarely even aware of these near continuous interruptions. These

spontaneous blinks occur at natural breakpoints when attention is least needed, e.g., during a

pause when listening to a speaker or at a scene change in a video. In the same way, computational

blinking attempts to turn mitigation strategies on when an encryption algorithm is vulnerable

to side channel attacks and turn them off when an encryption algorithm is least vulnerable to

side channel attacks. We achieve this through a workflow with a security phase and a design

exploration phase. In the security phase, the designer considers an encryption algorithm such as

AES or PRESENT, implements it on a device and uses a metric to determine which points in

the algorithm’s execution are most vulnerable to a side channel attack. We then use this metric

to rank the vulnerability of the execution cycle by cycle. In the design exploration phase, we

determine the best times to turn a blinking mitigation strategy on or off by considering when it is

most beneficial to utilize the mitigation technique, how much overhead a hardware designer is

willing to sacrifice for security, and the constraints for when it is possible to turn a mitigation

strategy on or off
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Figure 2.1. In the security phase, uses a vulnerability metric to determine which points in the
algorithm’s execution are most vulnerable to a side channel attack cycle by cycle. In the design
exploration phase, the vulnerability rankings from the security phase, power, performance or
area thresholds defined by the designer and the the proposed mitigation strategy’s constraints are
used as inputs to a scheduling algorithm that determines the best times to turn the mitigation
strategy on or off. Afterwards, an evaluation metric is used to evaluate the effectiveness of the
mitigation strategy.
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Figure 2.2. The stalling algorithm improves upon the blinking algorithm by making tradeoffs
among the stalling parameters (security, performance and area) and isolating portions of an
algorithm’s execution left unprotected while an on-chip energy source recharges in three phases.
In the security phase we generate joint mutual information (JMI) rankings to determine which
important parts the algorithm’s execution reveal information about the key. In the first part of the
design exploration phase, we take the JMI rankings from the security phase and the blink and
recharge times of the on-chip capacitor as inputs to a weighted interval scheduling algorithm.
This algorithm generates blinking schedules which do not use stalling to determine when the
capacitor should be turned on(shown in red) and when it should be turned off(shown in green).
In the second part of the design exploration phase, we take the remaining JMI rankings after
implementing our initial blinking schedule as well as a performance threshold as inputs to a
stalling algorithm which extends the initial blinking schedule by giving the capacitor more time
and isolate more computations. Afterwards, we measure the effectiveness of the new blinking
schedule by calculating the sum of the remaining JMI rankings.
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Chapter 3

Power Analysis Mitigation

A number of system-level physical countermeasures have been proposed to thwart these

attacks [128, 109, 110, 119, 37, 145]. Typically, attackers target a particular point in time, e.g.,

one that leaks significant information about the key and is easy to subsequently derive the bits of

the key. The amount of useful information about a key varies radically across the encryption

computation [2]. Thus, techniques that protect all portions of the computation incur larger than

necessary overhead. Furthermore, software implementations require flexible and programmable

techniques to protect cryptographic implementations whose code can be updated to include more

advanced mitigation techniques like masking [34, 12, 113, 64].

Computational blinking addresses these issues by making the on-chip energy source

programmable and using it to isolate the computation at the most critical points in time [3]. One

can then use a smaller, less expensive energy source to provide isolation. During a blink, the

computation is fully powered from an on-chip energy source and draws no energy from the

off-chip power supply. This eliminates the power side channel. However, the on-chip source

stores a finite amount of energy and thus can only power the computation for a fixed amount of

time. When the energy is depleted, the on-chip power source must be recharged before it can be

used again.

A fundamental challenge is deciding when to perform the blinking. We attempt to

position blinks in a manner that minimizes information leakage to develop a blink schedule: the
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Figure 3.1. The joint mutual information (JMI) of a subset of a power trace collected from
an AES-128 implementation from DPA Contest v4.2 [30]. The x-axis shows the time (cycle
number) and the y-axis the JMI, which corresponds to the amount of information leakage. Cycles
that have larger JMI reveal more information about the key.

positions of a set of blinks. Althoff et al. [3] developed an optimal blink scheduling algorithm

under the assumption that the execution time is constant. However, even with an optimal schedule,

information leaks during the recharge times. We propose stalling the processor during these

recharge times and using another blinked computation to avoid information leaks. Although

stalling increases the number of instructions by adding noops, we are able to develop blinking

schedules which improve security without sacrificing performance by placing stalls strategically.

We achieve this by utilizing stalling to allow blinked computations during times with higher

leakage that normally occur during recharge times.

We can further increase security by increasing the amount of on-chip capacitance. This

allows the on-chip capacitor bank to power computations for a longer amount of time before it

must recharge and makes it possible to isolate more instructions with a single blink. However,
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increasing on-chip capacitance incurs additional area costs. In this work, we explore the tradeoffs

among the stalling parameters (security, performance and area) to evaluate blinking and stalling

schedules as shown in Figure 2.2.

3.1 Switched Capacitor

It is possible to use a switched capacitor to use on-chip energy to power a critical compu-

tation for a well-defined but very short duration of time. Since this computation does not draw

power from an external energy source, it eliminates the off-chip power side channel correspond-

ing to the execution of this computation. We focus on providing a programmable, flexible energy

usage model for a general execution core running any software such as encryption, attestation,

or a high-assurance piece of code containing sensitive data. This general framework enables

programmers and system designers to perform a computational blink and mask intermediate

energy usage over a fixed amount of time, either eliminating or greatly reducing the information

leakage through this channel

The blinking process is depicted in Figure 3.2. The core begins by executing instructions

while connected to the external power supply VDD. When the core reaches a point where its

power consumption should be hidden, a blink is initiated and a power control unit disconnects

the chip from its main power source by turning off the blink and recharge transistors. As a result,

the chip is only connected to the capacitor bank’s internal power rails. The core then executes

sensitive operations while connected to the on-chip capacitor bank to hide its power consumption

from the off-chip power monitoring. Afterwards, the capacitor bank is always discharged to a

fixed minimum level (Vmin) by using a shunt resistor to open the discharge transistor.

Discharging the capacitor before recharging is done to eliminate all residual energy

before reconnecting the core and capacitor to the external power supply. Sets of instructions will

use different amounts of energy during a blink, but discharging avoids information leakage by

ensuring the capacitor is always at Vmin by the end of a blink. Thus, recharge energy is always
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Figure 3.2. Recharge periods force some instructions to be executed using the external power
supply, thus leaking information to an attacker. Figure reproduced from [3].

the same regardless of the computation and the amount of energy used on instructions during a

blink cannot be determined by an adversary. Furthermore, cycles are spent on a discharge step

even if the chip is already at Vmin to ensure that the blink/discharge/recharge sequence occurs at

a fixed length. We always perform the discharge step to avoid introducing a timing channel.

Once a blink is completed, the on-chip capacitors must be fully recharged, because

another blink cannot occur until this recharge time is complete. Ordinarily, during the recharge

time, the core must operate from the external power supply. This makes its activity vulnerable to

a power attack.

3.2 Joint Mutual Information

We use JMI to rank time periods within the traces and these rankings are used to determine

when we turn the switched capacitor On/OFF [104, 150]. We argue for the use of joint mutual

information(JMI) because it addresses the issue of variable complementarity[68]. As an example,

consider a scenario where x1 XOR x2 = y under the assumption that x1 and x2 are statistically

independent Boolean variables [2]. In this scenario, the mutual information between x1 and y =0
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and the mutual information between x2 and y is 0. However, if we concatenate x1 and x2 ,the

mutual information between the concatenation of x1 and x2 and y is ¿ 0 because the information

from these Boolean variables completely determines y. Similarly, if a side channel attack security

evaluation metric such as a t-test determines the time index of a security-sensitive algorithm has

low vulnerability by considering just that index, combining functions or multivariate histograms

with a few time indices, it may still be attractive to an adversary if considered alongside additional

time indices as demonstrated in [61].

It is not possible to launch an attack if JMI = 0 because if this is true, the measurements

with differing secret key hypotheses is always equal[3]. Therefore, it is impossible for an attacker

to differentiate between different secret key hypotheses given sets of measurements.

We use joint mutual information (JMI) to rank time periods within the traces and these

rankings as well as blink size and recharge size to develop a blinking schedule using a weighted

interval scheduling (WIS) algorithm. This algorithm ranks time indices based on joint mutual

information (JMI) [104, 150] as shown in equation 3.1.

JMIi = ∑
j∈B

I( f (ti, m̂, ŝ)_ f (t j, m̂, ŝ); ŝ) (3.1)

a _ b calculates the concatenation between a and b, and f is a function used to represent

a power trace. The power trace takes an independently and uniformly random message and

secret key from vectors m̂ and ŝ. I(C;D) determines the mutual information for a and b which

determines how much we can learn about C based on how it is related to D. It is calculated using

equation 3.2 where H(C) is the entropy of C and H(C|D) is the conditional entropy of C given D.

B is the set of indices (i) we have chosen to blink.

As indices are added to B they are given a ranking based on their JMI. The index with the

greatest mutual information with the key will be ranked highest and would be selected first to be

blinked. Next, every time index redundant to this index in the algorithm would be given the same

ranking because they would provide an equal amount of information. The algorithm repeats this
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process with successive time indices ranked according to how much easier they would make it

for an attacker to recover the key. After all of the time indices have been ranked, the JMI scores

are normalized so the sum of all JMI rankings is 1.

I(C;D) = H(C)−H(C|D) (3.2)

After the indices have been ranked, a WIS algorithm takes the amount of time the chip is

able to blink and the amount of time necessary to recharge to optimally select which time periods

to blink. First, it creates a list of every potential blink and calculates the amount of coverage each

blink would provide from the JMI rankings. Next, it determines which blinks can occur in the

same schedule by matching blink start points to the nearest potential blink end point. Finally, it

selects the blink schedule that minimizes the distance between blinks and maximizes the leakage

that is blinked.

After implementing the blinking schedule, we measure its effectiveness by the sum

of our remaining JMI rankings as an evaluation metric because JMI provides a measure of

multivariate vulnerability. As a multivariate metric, it measures the usefulness of each time

region for an attack when combined with information from other time regions. Multivariate

security is important because some time regions may be independent from the key individually,

but may allow an adversary to recover the secret key easily when combined with additional

information from the trace. This type of vulnerability has been exploited in attacks such as [61].

3.3 Stalling

Figure 3.1 provides an example of a scenario where stalling addresses an information leak

that blinking is not able to eliminate. It shows information leakage of a software implementation

of AES-128 (obtained from the DPA Contest v4.2 [30]) running on an AVR microcontroller. The

leakage is computed using JMI; samples of the power trace that have larger JMI values reveal

more information about the secret key.
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Figure 3.3. By blinking (shown in red), we can hide parts of the trace, which effectively
eliminates the leakage, i.e., JMI = 0. But we must recharge (shown in green) after a blink, which
leaves those portions of the computation visible to an attacker.

Figure 3.3 performs more detailed analysis on the cycles circled in Figure 3.1 to show

an example blinking schedule that uses four cycle blinks. The cycles covered in red represent

parts of the power trace hidden by blinking and the cycles covered in green represent parts that

are left uncovered due to recharge periods. Cycles 219 to 222 are blinked out because they are

the four cycles with the highest cumulative JMI. Unfortunately, after blinking for four cycles

it is necessary to spend twelve cycles recharging before it is possible to perform another blink

that can hide four cycles. Although we do not need to blink for cycles 223 and 224 because they

do not leak any information, cycles 225-227 have high JMI and are left unprotected because

blinking them would prevent us from blinking cycles 219 to 222.
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Figure 3.4. By stalling the processor (shown in blue) to recharge, we are able to blink again and
hide parts of the trace we missed in our initial blink schedule

Figure 3.4 illustrates how this issue can be resolved by stalling. We are able to blink

the leakage from cycles 219 to 222 as well as cycles 225-227 by stalling the processor for ten

cycles after cycle 224. We also see that the first blink computation uses all of the on-chip energy

while the second blink computation does not. This is because we always include a discharge

time although the capacitor is already at Vmin to ensure the blink/discharge/recharge time for both

blinks take sixteen cycles.

3.3.1 Stalling Process

By stalling the core’s execution during recharge times, we can effectively perform two

blinks in a row, at least with respect to the execution of the core’s operation as shown in Figure
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Figure 3.5. By stalling the processor, we are able to blink during more of the algorithm’s
execution making it more resilient to power side channel attacks.

3.5. We stall during the “blue” time period while performing the recharge. This increases security

by enabling us to blink during more of the core’s operation time and consequently reducing the

amount of information leakage. However, it comes at the cost of decreasing the performance as

the core’s execution time increases due to stalling.

We perform stalling in a manner that is consistent across any and all executions of the

cryptographic algorithm to avoid introducing a new timing side channel. The stalling schedule

is determined before the execution starts. It is the same regardless of the data that is being

computed, and it never changes the time, locations or the number of stalls. Thus, this does

not introduce a timing channel. If the stalling was done in a dynamic manner or not enforced

consistently across every execution of the cryptographic algorithm, it would very likely introduce

a timing side channel. This is not the case with our proposed techniques.

3.3.2 Stalling Algorithm

In order to further improve security from blinking, we propose using the stalling algorithm

shown in Algorithm 1. This algorithm attempts to address the instructions that the algorithm
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from [3] was not able to hide from the attacker. It uses a sliding window to determine which

sequence of cycles has the highest leakage according to their JMI rankings. The algorithm

schedules a blink for this sequence of cycles and determines the execution time and security of

the new power trace. This process repeats until an execution time threshold has been reached.

Algorithm 1. Stalling Schedule
Input:
length-n vector r of JMI rankings after blinking,

execution time E after blinking and
constants blinkTime, rechargeTime, threshold

Output:
Execution time E and leakage

1: procedure STALL

2: leakage← ∑
n
i=1 ri

3: while E < threshold do
4: for each i ∈ [n] do
5: start← i
6: end← blinkTime
7: f indMaxi← ∑

n
j=start r j

8: newBlink←max( f indMax)
9: k← newBlink

10: while k < blinkTime do
11: rk← 0
12: k← k+1
13: E← E + rechargeTime
14: leakage← ∑

n
i=1 ri

If security is the highest priority, designers should aim to ensure JMI is 0. They would

begin by choosing the optimal blinking schedule for their capacitance value and clock speed,

then perform stalling until all cycles with a mutual information value greater than 0 have been

blinked. In this case, an adversary is not able to ascertain any information about the secret key

from power traces and will not be able to acquire the secret key using power analysis.

If performance is the highest priority, designers could choose not to implement blinking

at all. In this case, JMI would be 1 and the entire power trace would be vulnerable to power

analysis attacks.
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If designers want to balance security and performance, they would begin by choosing the

optimal blinking schedule for their capacitance value and clock speed. If large peaks in mutual

information still exist using the optimal blinking schedule due to recharge constraints,

designers can perform stalling to eliminate them.

3.4 Stalling Parameters

The effectiveness of stalling is directly dependent on the amount of time we are able to

blink and the amount of time we must recharge after blinking. This is because longer blink times

allow us to hide more of the power consumption with each additional blink and longer recharge

times increase the performance penalty we incur from stalling. Section 3.4.1 describes our blink

and recharge time calculations and Sections 3.4.2, 3.4.3 and 3.4.4 outline the factors which affect

our blink and recharge time calculations.

3.4.1 Blink and Recharge Time

Designers will increase security the most by blinking as often as possible. However,

this is limited by the maximum blink time and the recharge time. The maximum blink time is

the number of cycles that a blink can cover [3] and the recharge time is the number of cycles

necessary to recharge the capacitor bank to perform another blink of the same size.

The number of cycles spent performing instructions from the capacitor bank being full

to operating at Vmin is the maximum blink time. We compute the maximum blink time using

the per instruction energy (CL), storage capacitance (CS), nominal operating voltage (Vmax), and

minimum operating voltage (Vmin). The equation is shown below:

MaximumBlinkTime =
2∗ log(Vmin

Vmax
)

log(1− CL
CS
)

(3.3)

The number of cycles spent recharging the capacitor from Vmin back to its initial capac-

itance is the maximum recharge time. Energy is potentially wasted in every blink, as excess
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charge in the capacitor must be shunted to avoid leaking information. From our power simula-

tions, the most energy-intensive instructions consume 1.6x the energy of an average instruction.

Provisioning for the worst case, we account for wasting 60% capacitance and increase our

recharge time accordingly. The equation is shown below:

RechargeTime =
2∗ log(Vmin

Vmax
)

log(1− .6∗ CL
CS∗1.6)

(3.4)

For a given capacitor bank size, the recharge resistor can be tuned to achieve the desired

recharge time; however reducing the recharge resistor (and thus the recharge time) will cause a

larger in-rush current which at a certain point can corrupt the data inside the secure core [75].

For safety, we ensure that the in-rush current is no greater than peak current drawn from the

secure core during normal operation.

3.4.2 On-Chip Capacitance

On-chip capacitance impacts security because increasing it allows for longer maximum

blinks times at higher clock speeds. By increasing on-chip capacitance, designers can minimize

power side channel leakage for much lower performance degradation.

Designers can increase on-chip capacitance by introducing additional on-chip decoupling

capacitors [122]. However, introducing more capacitors requires more area. As a result we

consider two scenarios with differing amounts of capacitance.

3.4.3 Clock Speed

Clock speed impacts security because it affects the maximum blink time for a capacitance

value. Increasing the clock speed reduces the maximum blink time and decreasing it allows for

larger maximum blink times. Unfortunately, decreasing the clock speed degrades performance.

For example, when operating at 290 MHz, Vmin is 1.8 V , but when operating at 70 MHz Vmin is

1 V .
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3.4.4 Multiple Blink Times

While having a long maximum blink time is desirable, it is not always necessary or

advantageous to use the maximum blink time. In light of this, we also use a half length or quarter

length blink times when possible to drain less capacitance and recharge faster. However, in order

to perform half length and quarter length blink times, our maximum blink time must be long

enough to allow it.

We assume that we must blink for an entire cycle, and thus, we require at least a maximum

blink time of two to have a half length blink time and we require at least a maximum blink time

of four to have a quarter length blink time. Different blink times do not drain the capacitor

equally, but blinks of the same length are discharged to the same level of capacitance. As a result,

there can be one, two or three Vmin thresholds.

3.5 Results

We demonstrate the effectiveness of stalling by comparing optimal blink schedules to

stalling schedules. We define our experimental setup in Section 3.5.1, we calculate our maximum

blink and recharge times in Section 3.5.2, we describe our stalling algorithm in Section 3.3.2 and

we perform design exploration in Section 3.5.3 to find the best stalling schedules.

3.5.1 Experimental Setup

We develop power traces using SimAVR to simulate an Atmel ATmega328 chip[121, 74].

SimAVR is capable of executing binaries compiled by the avr-gcc toolchain as they would be

run on an AVR microcontroller and we use it to collect power traces using a Hamming distance

leakage model [19]. To perform our evaluation, we collect power traces for 214 experimental

plaintext and secret key vectors on an implementation of AES-128 from DPA Contest v4.2 [30].

Under this model, each time point in a trace consists of the difference in Hamming distance

between an opcode and its predecessor for different experimental plaintext and secret key vectors
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[3]. For our information leakage model we assume that toggling a bit consumes one bit of

power and leaving a bit unchanged consumes no power. Our information leakage evaluation is

independent of the instruction type or the type of the data.

We consider two different scenarios for capacitance. In our first scenario, we were able to

achieve 11 nF of storage capacitance on TSMC 180nm by filling 2.34mm2 of the 25mm2 die area

with decoupling capacitors. Alternatively, in our second scenario we were able to achieve 22 nF

of storage capacitance by filling 4.68mm2 of the 25mm2 die area with decoupling capacitors.

3.5.2 Blink/Recharge Time Calculations

Figure 3.6 shows the maximum blink times and recharge times for clock speeds ranging

from 70MHz to 280MHz with 11 nF and 22 nF on-chip capacitance banks. It visually demon-

strates how the maximum blink/recharge times increase when the clock speed decreases or the

capacitance increases.

We are able to determine the maximum blink time and recharge time for a capacitor bank

by selecting a clock speed. Using vector power simulations of a 32-bit RISC-V processor in

TSMC 180nm, we found that each instruction consumes an average of 513 pJ which requires

317 picofarads (pF) to store (CL). When using 11 nF of capacitance, our CS value is 11 and if

we run at 280MHz, our Vmin value will be 1.75V and our Vmax value is 1.8 because the nominal

voltage for the core in our 32-bit RISC-V processor is 1.8V. This makes the maximum blink time

only one cycle and we must recharge for four cycles. If we decrease the clock speed to 70MHz,

our Vmin value will be 1V allowing a maximum blink time of 24 cycles. However, if we blink for

24 cycles we will have to recharge for 68 cycles.

When using 22 nF of capacitance, our CS value is 22, and if we run at 280MHz our Vmin

value will be 1.75V. This makes the maximum blink time only two cycles and we must recharge

for seven cycles. If we decrease the clock speed to 70MHz, our Vmin value will be 1V. This

allows a maximum blink time of 50 cycles. However, if we blink for 50 cycles we will have to

recharge for 136 cycles.
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Figure 3.6. Greater capacitance allows larger blink sizes. Higher clock frequencies have stricter
requirements on Vmin and thus decrease the blink and recharge times.

3.5.3 Design Exploration for Stalling

Figure 3.7 outlines how we evaluate our stalling schedules. Each stalling schedule can

be divided into three sections: “no blink/no stall”, “blink/no stall” and “blink/stall”. The “no

blink/no stall” section is a single point which shows the normalized execution time(NET) without

implementing blinking at a given clock speed; in this case JMI is always 1 and the entire power

trace is vulnerable to power analysis attacks. The “blink/no stall (x,y,z)” section is a single point

which shows the NET and JMI score after implementing the optimal blinking schedule for blink

times x, y, and z without stalling to perform additional blinks. The “blink/stall (x,y,z)” section is

a set of points showing the new NETs and JMI scores after stalling to perform additional blinks.

When selecting a stalling schedule, we seek to obtain optimal performance or security for the

“blink/no stall (x,y,z)” and “blink/stall (x,y,z)” sections. Once the best stalling schedule has been

selected, all other potential stalling schedules will be discarded and the schedule will be constant

for all executions of the algorithm regardless of the input data to avoid introducing a timing
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Figure 3.7. Stalling Schedules can be divided into “no blink/no stall”, “blink/no stall” and
“blink/stall”. “no blink/no stall” does not performing blinking at all, “blink/no stall” implements
the algorithm in [3] and “blink/no stall” allows us to add more blinks to improve security

channel.

Figure 3.9 shows stalling schedules for both long and short blink times on a 11 nF

capacitor bank and a 22 nF capacitor bank. Section 3.5.3 evaluates blink times on a 11 nF

capacitor bank, and Section 3.5.3 evaluates short blink times on a 22 nF capacitor bank. We

evaluate these stalling schedules in terms of performance and security.

Blink Times with 11 nF Capacitor Bank

Figure 3.8a provides an extreme example of how slowing down clock speed to increase

maximum blink time can dramatically degrade performance. “blink/no stall (10,5,2)” uses

blink times that are ten, five and two cycles long. Unfortunately, “blink/no stall (10,5,2)” only
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Figure 3.8. The scatter plots above shows “blink/no stall” when using a 11 nF and 22 nF
capacitor bank. Non-optimal points at 11 nF are shown in blue. Optimal points at 11 nF are
shown in red. Non-optimal points at 22 nF are shown in green. Optimal points at 22 nF are
shown in orange. The points are extended into stalling schedules in Figure 3.9

achieves a JMI score of .470 with an NET of .510. In Figure 3.9a we see that it has the highest

performance for “blink/no stall (x,y,z)” points on the graph and“blink/stall (10,5,2)” degrades

performance even further.

“blink/no stall (9,4,2)” and “blink/no stall (8,4,2) have very similar JMI scores and NETs.

“blink/no stall (9,4,2)” achieves a JMI score of .462 with an NET of .490 and“blink/no stall

(8,4,2)” achieves a JMI score of .425 with an NET of .496. Although“blink/stall (9,4,2)” and

“blink/stall (8,4,2)” are both much better than“blink/stall (10,5,2)”, the performance penalties for

both far outweigh the security benefits.

In Figure 3.9a we also see how stalling can help designers decide between a blinking

schedule which optimizes performance and a blinking schedule which optimizes security. In

3.8a we see “blink/no stall (6,3,1)” optimizes performance with an NET of .459 and achieves a

JMI score of .450. Alternatively, “blink/no stall (7,3,1)” optimizes security by achieving a JMI

score of .409 and an NET of .479.

However, when we consider the “blink/stall (x,y,z)” sections of each schedule we see

that “blink/stall (6,3,1)” provides better performance and security. If we want to prioritize
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performance, “blink/stall (6,3,1)” has an NET of .472 and achieves a JMI score of .400. If we

want to prioritize security, “blink/stall (6,3,1)”achieves a JMI score of 0 with an NET of .810.

Figure 3.8a also provides an extreme example of how limiting the blink time by increasing

clock speed can dramatically degrade performance. “blink/no stall (1)” and “blink/stall (1)” can

only use blinks that are one cycle long. “blink/no stall (1)” only achieves a JMI score of .410

with an NET of .525. It has the highest performance for “blink/no stall (x,y,z)” points on the

graph and“blink/stall (1)” degrades performance even further.

“blink/no stall (5,2,1)”, “blink/no stall (3,1)” and “blink/no stall (3,1)” have very similar

JMI scores and executions times. “blink/no stall (5, 2,1)” achieves a JMI score of .435 with an

NET of .472, “blink/no stall (3,1)” achieves a JMI score of .499 in with an NET of .457 and

“blink/no stall (2,1)” achieves a JMI score of .517 with an NET of .449. Although these stalling

schedules are all much better than“blink/stall (1)”, their performance penalties far outweigh the

security benefits.

Figure 3.9b repeats the analysis in Figure 3.9a for shorter blink times. “blink/no stall

(4,2,1)” optimizes performance by achieving a JMI score of .435 with an NET of .453. “blink/no

stall (1)”optimizes security by achieving a JMI score of .410 and with an NET of .525. While

“blink/no stall (1)” is worse than “blink/no stall (7,3,1)” with respect to both performance

and security, “blink/no stall (4,2,1)” is better than “blink/no stall (6,3,1)’ with respect to both

performance and security. Furthermore, when we consider the “blink/stall (x,y,z)” sections of

each schedule “blink/no stall (4,2,1)” provides the best performance and security when using a

11 nF capacitor bank. If we want to prioritize performance, “blink/stall (4,2,1)” chieves a JMI

score of .394 with an NET of .466. If we want to prioritize security, “blink/stall (4,2,1)” achieves

a JMI score of 0 with an NET of .772. These results are summarized in Table 3.1.

Blink Times with 22 nF Capacitor Bank

In Figures 3.9c and 3.9d and we also see how additional capacitance can make it more

difficult to determine the best blinking schedule. In Figure 3.8b we see that “blink/no stall (7,3,1)”
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Table 3.1. 11 nF Results

Model Area (mm2) ET(normalized) JMI

Baseline [145] 670 .348 0
no blink/no stall 2.34 .348 1

blink/no stall (2,1) [3] 2.34 .449 .517
blink/no stall (7,3,1) [3] 2.34 .479 .409

blink/stall (4,2,1) 2.34 .466 .394
blink/stall (4,2,1) 2.34 .772 0

Table 3.2. 22 nF Results

Model Area(mm2) ET(normalized) JMI

Baseline [145] 670 .348 0
no blink/no stall 4.68 .348 1

blink/no stall (4,2,1)[3] 4.68 .420 .435
blink/no stall (7,3,1)[3] 4.68 .423 .409

blink/stall (4,2,1) 4.68 .432 .394
blink/stall (7,3,1) 4.68 .432 .376
blink/stall (4,2,1) 4.68 .715 0

optimizes performance and security by achieving a JMI score of .409 with an NET of .423. We

also see that “blink/no stall (4,2,1)”optimizes performance and “blink/no stall (1)” optimizes

security. “blink/no stall (4,2,1)” optimizes performance by achieving a JMI score of .435 with an

NET of .420.

When considering the “blink/stall (x,y,z)” sections of each schedule we argue that

“blink/stall (7,3,1)” optimizes performance and “blink/stall (4,2,1)” optimizes security. We argue

that “blink/stall (7,3,1)” optimizes performance because when comparing the stalling schedules

at a lower NET (.432), “blink/stall (7,3,1)” achieves a JMI score of .376 while “blink/stall (4,2,1)”

only achieves a JMI score of .394 We argue that “blink/stall (4,2,1)”optimizes security because

when comparing the stalling schedules when JMI is 0, “blink/stall (4,2,1)” has an NET of .715

while “blink/stall (7,3,1)” has an NET of .726. These results are summarized in Table 3.2.
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3.6 Conclusion

Although the blink scheduling algorithm finds the optimal blink schedule under given

parameters, many leakage peaks remain due to recharge constraints. By strategically stalling

the processor, we are able to eliminate these leakage peaks without sacrificing performance.

Furthermore, we are able to improve security even more with additional capacitance because

we are able to isolate more of the power consumption with each additional blink. While the

proposed methodology is tailored to power attack mitigation we plan use blinking to address

other side channel attacks in future work.
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Chapter 4

Fault Analysis Mitigation

Security is becoming a first-class optimization objective along with power, performance

area, for modern EDA and chip design. Unfortunately, side channel attacks exploit weaknesses

in the physical system performing computations rather than weaknesses in software algorithms

to reveal secret information [123]. Passive side channel attacks monitor output from the physical

system such as the timing, power consumption, or electromagnetic emanation of the system to

acquire secret key bits [5]. Active side channel attacks perturb the physical system and observe

the results. Fault attacks are considered active side channel attacks because an adversary must

modify the physical state in some way to perform analysis that allows him to derive the secret

key. Fault attacks pose a unique threat because they require less data collection than other side

channel attacks and are more costly to prevent [76, 88].

Faults are purposefully injected by perturbing the clock frequency (clock glitching),

perturbing the power supply (voltage glitching), electromagnetic interference (EMI), focused

light beams, lasers, focused ion beams, and overheating [6]. While all of these methods can be

used to inject faults, clock glitching and voltage glitching are used most widely because they are

low cost and relatively easy to implement.

Boneh, DeMillo, and Lipton proposed the first theoretical fault attack against RSA using

the Chinese Remainder Theorem [17]. Since then, a number of attacks have been proposed

against a number of different cryptographic algorithms including Elliptic Curve Cryptography

58



Figure 4.1. Fault analysis mitigation can be performed using an on-chip switched capacitor
and ring oscillator to mitigate fault attacks in two stages. In the security phase, we use the
injection location and required number of faults for a representative sample of fault attacks as
our evaluation metric and rank the difficulty for launching a fault analysis attack cycle by cycle.
In the design exploration phase, we take the blink and recharge times of the capacitor as well
as a performance threshold as inputs to the stalling algorithm to generate a mitigation schedule
which determines when the mitigation strategies should be turned on(shown in red) and when
they should be turned off(shown in green). Afterwards, we measure the the effectiveness of the
mitigation schedule with representative mitigation percentage(RMP) which determinines how
many attacks from our representative list of fault attacks the mitigation schedule is able to protect
against

[10, 48, 28], DES [72, 129, 106] and AES[13, 85, 56, 14, 40, 60, 146, 107, 18, 67, 49, 57]. AES

has been the subject of extensive study for fault attacks due to its prevalence in devices such as

smart cards, servers, FPGAs and TV set-top boxes.

Masking [13], time redundancy [88], and a compiler approach to mitigate fault attacks
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(CAMFAS) [27] have been proposed as techniques to mitigate fault attacks. While masking adds

randomization to weaken the correlation between the secret key and intermediate values, the

other two techniques are simply different ways to detect faults. Time redundancy repeats steps in

the algorithm to detect faults and CAMFAS duplicates instructions in larger registers to check

for faults.

Blinking [3] has been used to prevent information leakage through power channels by

disconnecting secure cores from the main power supply and using an on-chip capacitor for short

periods of time . We propose extending this technique by using a chip an on-chip ring oscillator

in addition to using an on-chip capacitor. An on-chip ring oscillator would isolate the clock

signal to prevent clock glitching and an on-chip capacitor would isolate the power supply to

prevent voltage glitching. In this paper, we investigate whether isolation which implements

blinking would be effective as a fault attack mitigation strategy.

4.1 Fault Attacks

We choose fault attacks from [13, 85, 56, 14, 40, 60, 146, 107, 18, 67, 49, 57] to develop

a representative list of fault attacks with which we will evaluate the security of our fault attack

mitigation strategies. Although this is not an exhaustive list of all fault attacks against AES, it

does contain a representative list of attacks detailing the main four categories of fault attacks

(Fault Sensitivity Analysis (FSA), Differential Fault Analysis (DFA), Biased Fault Analysis

(BFA), and Combined Fault Analysis (CFA)). FSA recovers the secret key by analyzing how an

adversary manipulates aspects of the physical system to inject faults. DFA precisely derives the

secret key using differences generated by faults. BFA performs statistical analysis to distinguish

the correct key hypothesis from incorrect key hypotheses. CFA uses fault injection in tandem

with passive side channel analysis to reveal the secret key.

Each mitigation technique is able to protect against particular categories of fault attacks.

Masking is only able to mitigate FSA attacks, time redundancy is only able to mitigate DFA, and
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Table 4.1. The attacks, its type, injection location, and the number of faults to perform the attack.
Attacks that require more faults are considered more difficult than those requiring fewer faults.

Attack Type Injection Location # Faults

[14] DFA AK0 128
[13] FSA AK0 285
[32] CFA AK0 1568
[13] FSA SB1 32

[130] CFA SB1-AK1 256
[56] FSA SB6 5×104

[40] DFA MC6-MC7 5
[56] BFA AK6-AK7 4×104

[56] FSA SB7 3.5×104

[146] DFA MC7-MC8 1
[67] BFA AK7-SB8 2
[56] BFA AK7-AK8 3×104

[56] FSA SB8 2×104

[107] DFA MC8-MC9 6
[49] BFA AK8-AK9 14
[56] FSA SB9 1×104

[60] BFA MC9-SB10 50
[130] CFA AK9-SB10 256
[18] DFA AK9-SB10 16
[57] BFA AK9-SB10 7
[85] FSA SB10 50
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CAMFAS is only able to mitigate DFA and BFA. However, isolation is able to mitigate all four

categories.

In our representative sample of fault attacks, we choose the attack from each injection

location that requires the lowest number of faults for each fault attack type because it is the

easiest attack of that type to execute. If there are 2 DFA attacks that require faults injected in the

same location, then we only consider the attack with the least number of required faults because

a single countermeasure could mitigate both of them. Alternatively, if one DFA attack, one FSA

attack, one BFA attack, and one CFA attack all require faults injected the same location, then we

consider all four attacks because there are different countermeasures to mitigate the different

types of attacks.

4.2 Isolation

Blinking provides power isolation to mitigate fault injection through voltage glitching

and an on-chip clock generator provides clock isolation to mitigate fault injection through clock

glitching. We discuss how an adversary would typically inject faults using an injection method

and how isolation would mitigate this process.

4.2.1 Power Isolation

Blinking uses an on-chip energy source to perform sensitive computations rather than an

off-chip power supply [3]. It was initially introduced as a countermeasure for power side channel

attacks because an adversary cannot learn anything about the value of the computations from the

ground, power or any other pins of the chip. We argue that using an on-chip power source would

also prevent an adversary from modifying the chip’s power supply to inject faults.

Voltage Glitching

Adversaries can perform voltage glitching through power spikes and temporary brown

outs [8]. For temporary brown outs an adversary taps into the power supply line of the device
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and connects their own power supply unit with reduced feeding voltage for a single clock cycle

to increase the setup time for latches in the circuit and slow down the propagation of signals

on the bus lines [7]. Alternatively, for spike attacks, an adversary connects the power supply

to ground for a single clock cycle to cause a dramatic voltage drop and a drastic increase in

power consumption [134]. We argue that in a blinking scenario an adversary would not be able

to perform either of these techniques because the chip would be disconnected from the power

supply line and ground pins of the chip.

Blinking Power/Area Overhead

Designers can increase on-chip capacitance by introducing additional on-chip decoupling

capacitors [122]. However, introducing more capacitors requires more area. For our experiments

we were able to achieve 22 nF of storage capacitance by filling 4.68mm2 of the 25mm2 die area

with decoupling capacitors.

Blinking is limited by the fact that having an on-chip source requires recharging between

periods of isolation. This prevents designers from isolating portions of an algorithm’s execution

they would like to protect. Designers can overcome this limitation by stalling the processor while

the capacitor recharges, but this incurs an additional performance cost.

4.2.2 Clock Isolation

Adversaries use clock glitching to inject faults by using their own faulty clock signal for

a single clock cycle. This forces the next rising clock edge to occur earlier or causing the falling

clock edge to occur later [8]. However, it been shown by [4] that it is not possible to perform

clock glitching on chips that generate their own clock signal because the adversary is not able to

disconnect the clock line from the circuit. Therefore, we propose extending blinking to use an

on-chip clock rather than an off-chip clock signal.

A tunable ring oscillator may have advantages as an on-chip clock source rather than a

phase-locked loop (PLL) and have been used practically [82, 81, 125, 51]. Although PLLs are
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used as on-chip clock sources traditionally, they are sensitive devices (analog PLLs typically

outperform digital PLLs significantly) and are tricky to design so most chip-builders who want a

PLL would license the device for $10-100K. Off the shelf PLL’s generally assume ultra-stable

input voltages, which may not be a valid assumption in the presence of faults or when blinking.

Furthermore, the PLL requires an external reference clock which could be glitched and thus has

the potential to leak information.

Additionally, ring oscillators are much simpler than PLLs. The ring oscillator would

use energy from the on-chip capacitor to generate a clock signal and as the voltage drops their

behavior is much easier to predict (simply slows down) [89]. Environmental factors such as

temperature will affect the clock generators, however the effects will correlate with the main

circuitry. The oscillator frequencies are also tunable and designed to have a large range beyond

the target frequency.

4.3 Results

4.3.1 Blinking Performance Lower Bound

We determine the lower bound for performance with blinking based on the number of

cycles we can isolate per blink (maximum blink time) and how many cycles we must recharge

between each blink (recharge time). The calculations are dependent on the clock speed we run

the algorithm, so we perform design exploration to determine the optimal clock speed to run the

algorithm.

Design Exploration

Using our maximum blink time and recharge time calculations we determine the perfor-

mance for blink schedules at 270 MHz, 260 MHz, 250 MHz, 240 MHz, 230 MHz and 220 MHz.

At 270 MHz we are able to isolate the power for up to four cycles, at 260 MHz we can isolate

for up to seven cycles, at 250 MHz we can isolate for up to eight cycles, at 240 MHz we can

isolate for up to eleven cycles, at 230 MHz we can isolate for up to twelve cycles and at 220
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Figure 4.2. The lower bound for performance with blinking is between 220 MHz and 270 MHz

MHz we can isolate for up to eighteen cycles. However, we do not have to perform only blinks

using the our maximum blink time because the injection locations are not all multiples of our

maximum blink time. As an example, isolating the initial AK step requires 80 cycles. In this

scenario we could perform our first blink by isolating the power for 18 cycles. After this, we

would have to stall the processor for 52 cycles. Since 62 cycles still remain, we could isolate the

power for another 18 cycles and we would have to stall the processor for another 52 cycles. This

process would be repeated 2 more times until we reach the final 8 cycles. We could then isolate

the power for 8 cycles and we would not have to stall the processor because it is performing
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instructions we do not need to isolate.

Figure 4.2 shows our design exploration to find the optimal blink schedule. The blink

schedule at 230 MHz starts off slightly faster than the blink schedule at 220 MHz, but ends up

being slower overall because the slight increase in clock speed does not make up for the fact

that longer maximum blink times are possible at 220 MHz. However, the maximum blink times

are long enough to make it better than the blink schedule at 270 MHz. The blink schedule at

240 MHz has a similar clock speed and maximum blink time, but the shorter recharge time and

slightly faster clock speed make its execution time much shorter. The blink schedule at 250

MHz is similar to the blink schedule at 230 MHz. It has a similar clock speed and maximum

blink time to the blink schedule at 260 MHz, but its longer recharge time and slightly slower

clock speed make its execution time much longer. The blink schedule at 260 MHz defines our

performance lower bound with the lowest execution time, .933 seconds.
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Table 4.2. We show the performance and security for individual fault mitigation techniques.
We measure performance by a technique’s performance overhead and security by a technique’s
representative mitigation percentage (RMP) to demonstrate how many attacks a technique can
mitigate from a representative sample of fault attacks.

Technique Performance Overhead RMP

Masking 2.8% [99] 33.3%
Time Redundancy 29.7% [88] 23.8%

CAMFAS 120% [27] 52.4%
Blinking (Isolation) 97% 100%

4.3.2 Mitigation Technique Comparison

We compare the different fault attack mitigation techniques (masking, time redundancy,

CAMFAS and isolation) in terms of performance and demonstrate how a designer can make

tradeoffs by selectively applying them to protect against fault attacks. We measure performance

with performance overhead and security in terms of representative mitigation percentage (RMP).

We calculate RMP by determining how many of the represented attacks are mitigated as shown

in equation 4.1. We use RMP as a measure of security because it demonstrates how secure an

implementation is after applying a fault mitigation technique.

RMP =
attacks mitigated

representative sample
(4.1)

Individual Techniques

Table 4.2 shows the performance overhead for using each technique to mitigate as many

fault attacks as possible.

We see that masking has very low performance overhead because it only needs to provide

mitigation during the SB steps. However, only seven out of the 21 attacks in our representative

list are FSA attacks so RMP is only 33.3%. Time redundancy has the next lowest performance

overhead, but only five attacks from our representative list are DFA attacks so RMP is only

23.8%. CAMFAS has the highest performance overhead because it cannot be applied selectively;
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Table 4.3. The attacks, its type, injection location, and the number of faults to perform the attack.
Attacks that require more faults are considered more difficult than those requiring fewer faults.
We mitigate attacks from least difficult to most difficult

Attack Type Range Faults

[146] DFA MC7-MC8 1
[67] BFA AK7-SB8 2
[40] DFA MC6-MC7 5

[107] DFA MC8-MC9 6
[57] BFA AK9-SB10 7
[49] BFA AK8-AK9 14
[18] DFA AK9-SB10 16
[13] FSA SB1 32
[85] FSA SB10 50
[60] BFA MC9-SB10 50
[14] DFA AK0 128

[130] CFA SB1-SB2 256
[130] CFA AK9-SB10 256
[13] FSA AK0 285
[32] CFA AK0 1568
[56] FSA SB9 1×104

[56] FSA SB8 2×104

[56] BFA AK7-AK8 3×104

[56] FSA SB7 3.5×104

[56] BFA AK6-AK7 4×104

[56] FSA SB6 5×104

it is a compiler option that can only be turned on or off. CAMFAS can mitigate six more attacks

than time redundancy because it protects against DFA and BFA attacks, but it cannot mitigate

FSA or CFA attacks. Consequently, its RMP is only 52.4%. Finally, isolation has a performance

overhead of 97% and an RMP of 100% because it involves introducing thousands of noops to

provide power and clock isolation, which allows it to mitigate all four categories of fault attacks.

Combined Techniques

Since only isolation is able to mitigate all of the attacks, we proposed combined mitigation

strategies: Time redundancy, Blinking, and Masking(TBM), Time redundancy and Blinking

(TB), Blinking and Masking (BM), Blinking (B), CAMFAS, Masking and Blinking (CMB) and
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CAMFAS and Blinking (CB). Figure 4.3 shows our results after using combined mitigation

strategies to selectively protect against fault attacks according to their attack difficulty as shown

in Table 4.3.

The CB and CMB strategies have the highest overall performance overhead with 150%

and 145% performance overhead respectively. This is because using just CAMFAS incurs 120%

performance overhead. B and BM have high performance overhead initially, but have lowest

overall performance overhead with 97% and 95% respectively. Conversely, TB and TBM have

the lowest initial performance overhead and the third and fourth highest overall performance

overhead with 127% and 122% performance overhead respectively. These trends occur because

of the overlap between injection locations for different types of fault attacks. TB and TBM use

time redundancy to mitigate DFA attacks in the beginning and then overlap these regions later

using blinking to mitigate BFA and CFA attacks. On the other hand, B and BM use blinking

to mitigate all three types of attacks simultaneously. CMB, BM and TBM have slightly lower

overhead than CB, B and TB because they are able to use masking rather than blinking to mitigate

FSA attacks.

4.4 Conclusions

Adversaries can use clock and voltage glitching to easily inject faults for fault attacks,

but isolation implementing blinking has the potential to isolate a chip’s clock signal and power

supply so adversaries are not able to manipulate them. Additionally, metal shielding can be

added to prevent fault injection through electromagnetic interference. While blinking could incur

high performance overhead, it could be performed selectively by taking advantage of the fact

that faults must be injected during specific steps of the algorithm and attacks could be mitigated

individually according to their attack difficulty. Furthermore, we show that isolation which

implements blinking mitigates biased fault attacks for the lowest performance overhead and

could be the only known strategy to mitigate combined fault attacks.
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Chapter 5

EM Analysis Mitigation

The development of devices containing greater amounts of sensitive information has

sparked the creation of many strong, mathematically secure cryptographic algorithms. Unfortu-

nately, side channel analysis (SCA) attacks bypass these algorithms by monitoring the effects of

the algorithm on a physical platform through power consumption, electromagnetic emanations

(EM), timing of operations, or acoustic vibrations. By measuring these aspects of the physical

computations, an attacker is able to discover sensitive information, e.g., extracting the secret key

from a cryptographic algorithm.

Signature aTtenuation Embedded CRYPTO with Low-Level metAl Routing (STELLAR)

mitigates power and EM SCA by routing the cryptographic core through the lower metal layers,

and then embedding the crypto core locally within a signature attenuation hardware, which

suppresses the critical correlated crypto signature significantly before passing it through to

the higher metal layers to connect to the external pins [38]. STELLAR, proposed in 2019

[38], was shown to be secure against EM and power SCA even after 1M encryptions for an

AES-128. However, STELLAR incurs a 50% power overhead to actively suppress the crypto

power signature (when compared to the unprotected crypto core). To address this issue, we

propose iSTELLAR – a programmable technique to implement STELLAR intermittently based

on the side-channel leakage, thereby providing security while reducing the power overhead.

The goal of iSTELLAR is to minimize the power consumption while maximizing the
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Figure 5.1. STELLAR provides high resilience to side channel attacks but requires 50% power
overhead. iSTELLAR performs STELLAR intermittently to reduce overhead in two stages. In
the first stage we generate joint mutual information (JMI) rankings to determine which parts of
the algorithm’s execution reveal information about the key. In the second stage, we generate an
iSTELLAR schedule to determine when STELLAR should be turned ON (shown in red) or OFF
(shown in green).

security of the crypto implementations against SCA attacks. Unfortunately, iSTELLAR cannot

instantly turn ON and OFF, as it requires a turn ON delay of a few cycles. In this paper, we

study those start-up constraints and propose scheduling algorithms to only turn ON iSTELLAR at

critical time points to minimize both power overhead and information leakage (i.e., maximize

SCA security).

In order to maximize the SCA security, we determine which periods of time to turn

STELLAR ON based on information leakage as shown in figure 5.1. We develop an information

leakage model by selecting an algorithm and performing an implementation of the selected

algorithm in SimAVR[121]. Using our information leakage model, we rank the information

leakage of the implementation cycle by cycle based on its usefulness to an attacker in a side

channel attack. Utilizing these information leakage rankings and iSTELLAR’s constraints, the

iSTELLAR scheduling algorithm decides the cycles in which to turn STELLAR ON or turn it

OFF.
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Figure 5.2. (a) STELLAR technique; and (b) design of the Signature Attenuation Hardware
(SAH). (c) Time-domain measurements of the unprotected and protected AES with the SAH
(STELLAR) shows > 350× current-domain signature attenuation.

5.1 STELLAR

The concept of STELLAR is shown in figure. 5.2(a). The STELLAR technique proposes

routing the crypto core within the lower metal layers and then embedding it within a signature

attenuation hardware (SAH) which suppresses the correlated critical crypto signature significantly

before it reaches to the higher metal layers. figure 5.2(b) shows the design of the SAH, which

ensures that the current from the top current source (CS) remains almost equal to the average

crypto current independent of the crypto core switching. STELLAR prevents against both EM

as well as power SCA attacks. For EM SCA protection, STELLAR is placed locally within the
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lower-level metal layers embedding the crypto core, which is also routed in the lower metals.

It has been shown that the higher metal layers leak more EM radiation compared to the lower

metals due to its larger dimensions. Hence, STELLAR uses the SAH circuit to attenuate the

critical signature within the lower metal layers before it goes through the higher metals to prevent

against EM SCA. The SAH reduces the correlated signal to noise ratio (SNR) significantly and

hence provides high power SCA immunity as well [38, 35].

As shown in figure 5.2(b), the SAH is designed with a CS on top which provides a high

output impedance ensuring that the voltage fluctuations across the entire execution of AES are

significantly suppressed before the critical information reaches the supply pin. Now, as the

top CS current cannot be exactly equal to the average crypto current, it is set to the closest

quantization level, and the quantization error (∆) is bypassed through a shunt bleed path. Also,

to compensate for process, voltage and temperature (PVT), a switched mode digital control

loop with a guard band is used which turns ON or OFF the required number of CS slices to

maintain an average crypto current from the top. Recently, in 2021 [59], a fully-synthesizable

implementation of the STELLAR has also been proposed. iSTELLAR aims to intermittently turn

ON the STELLAR countermeasure – only protecting the most sensitive computations. Hence, it

is important to analyze the start-up constraints involved with the SAH design.

5.2 Motivation

Figure 5.3 provides an example of why STELLAR incurs larger than necessary overhead

by protecting all portions of the computation. It shows information leakage of a software

implementation of AES-128 (obtained from the DPA Contest v4.2 [30]) running on an AVR

microcontroller. The leakage is computed using joint mutual information (JMI)(JMI explained

in detail in section 5.3). Samples of the power trace that have larger JMI values reveal more

information about the secret key. While some cycles have very high information leakage (noted

by the high peaks in JMI), other cycles have low leakage or zero leakage. Given this, we can
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Figure 5.3. The joint mutual information (JMI) of a subset of a power trace collected from
an AES-128 implementation from DPA Contest v4.2 [30]. The x-axis shows the time (cycle
number) and the y-axis the JMI, which corresponds to the amount of information leakage. Cycles
that have larger JMI reveal more information about the key.

turn STELLAR ON for the cycles with high leakage (shown in red), and turn STELLAR OFF

for the cycles with low or no leakage to minimize the power consumption (shown in green).

5.3 Security Evaluation

iSTELLAR requires security evaluation in order to determine when it is most beneficial to

turn STELLAR ON and how effective STELLAR will be when turned ON. We choose to use

joint mutual information(JMI) as a quantitative metric to determine the most vulnerable points in

the algorithm’s execution and use minimum traces to disclosure (MTD) as a qualitative metric to

determine how effective STELLAR will in mitigating SCA.

5.3.1 Joint Mutual Information (JMI)

Usage

We use JMI to rank time periods within the traces and these rankings are used to determine

when we turn STELLAR ON/OFF [104, 150]. We calculate JMI using equation 5.1.

JMIi = ∑
j∈B

I( f (ti, m̂, ŝ)_ f (t j, m̂, ŝ); ŝ) (5.1)
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Figure 5.4. (a) Timing diagram of the iSTELLAR operation: At start-up, for the first time (only
for one-time calibration), the delay is contributed by the digital control loop settling delay, which
takes ∼ 3 cycles to settle to the number of CS slices to ensure average crypto current from the
top CS and the digital loop runs at a 10× lower frequency than the crypto core. In steady state,
the main delay is caused due to the settling time of the analog biases to set the top CS stage
in saturation to ensure a high output impedance and maximize the signature attenuation of the
current source. (b) Output of the digital control loop determines the number of CS slices to be
turned ON. (c) CS current with the iSTELLAR operation, showing ∼ 40ns turn ON delays for all
different conditions. The steady state delay constraint (circled in blue) is also illustrated in figure
5.5 which needs to be accounted for in the iSTELLAR scheduling algorithm.

a _ b calculates the concatenation between a and b, and f is a function used to represent

a trace. The trace takes an independently and uniformly random message and the secret key from

vectors m̂ and ŝ. I(C; D) determines the mutual information for a and b which determines how

much we can learn about C based on how it is related to D. It is calculated using equation 5.2

where H(C) is the entropy of C and H(C|D) is the conditional entropy of C given D. B is the set

of indices (i) that we have chosen to turn STELLAR ON.

I(C;D) = H(C)−H(C|D) (5.2)

As indices are added to B, they are given a ranking based on their JMI. The index with

the greatest mutual information with the key will be ranked highest and would be selected first.

The algorithm repeats this process with successive time indices ranked according to how much

easier they would make it for an attacker to recover the key. Once the time indices have been
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ranked, the JMI scores are normalized so that the sum of all the JMI rankings is 1.

We determine JMI during design time to ensure we perform iSTELLAR in a manner that is

consistent across any and all executions of the cryptographic algorithm. The iSTELLAR schedule

is determined before the execution starts, and is the same regardless of the data that is being

computed. Thus, this does not introduce a timing channel.

Reasoning

One reason we choose joint mutual information (JMI) as a metric is because it considers

how each point in an algorithm’s execution is related to all the other points[2]. This is important

because it addresses the issue of variable complementarity[68]. As an example, consider a

scenario where x1⊕ x2 = y under the assumption that x1 and x2 are statistically independent

Boolean variables[3]. In this scenario, the mutual information between x1 and y =0 and the

mutual information between x2 and y is 0. However, if we concatenate x1 and x2 ,the mutual

information between the concatenation of x1, x2 and y is greater than 0 because the information

from these Boolean variables completely determines y. Similarly, a SCA security evaluation

metric such as the Test Vector Leakage Assessment (TVLA) may determine the time index

of a security-sensitive algorithm has low vulnerability by considering just that index [65].

However, combining functions or multivariate histograms with a few time indices, it may still

be attractive to an adversary if considered alongside additional time indices. In comparison,

other metrics such as the Test Vector Leakage Assessment (TVLA) only consider one point in an

algorithm’s execution at a time. While metrics that only consider one point in an algorithm’s

execution at a time are very effective for determining vulnerability to a number of powerful

attacks[19, 77, 43, 41], an implementation may still be vulnerable to attacks which consider

multiple points in an algorithm’s execution at a time[26, 61, 97].

Another reason we choose joint mutual information as a metric is because it provides

a numeric score[2]. Having a numeric score allows us to precisely compare each cycle in an

algorithm’s execution to other cycles and precisely compare one potential iSTELLAR schedule to
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any other potential iSTELLAR schedules. We assume that each cycle in an algorithm’s execution

that handles sensitive information has the potential to reveal it if left unprotected and this is

indicated by a non-zero JMI value. However, different cycles may reveal differing amounts of

information to an adversary. Time periods with high JMI values indicate high vulnerability to

SCA attacks and similarly time periods with low JMI values indicate low vulnerability to SCA

attacks.

It is not possible to launch an attack if JMI = 0 because if this is true, the measurements

with differing secret key hypotheses are always equal[3]. Therefore, it is impossible for an

attacker to differentiate between different secret key hypotheses given sets of measurements.

While we performed our analysis using JMI, our methodology can easily use other

leakage assessment metrics. Any metric capable of providing a numeric score to compare one

cycle in an algorithm’s execution to another could be used in place of JMI to rank and determine

the time points that are most vulnerable to SCA.

5.3.2 Minimum Traces to Disclosure (MTD)

Usage

Figure 5.2(c) shows that the signature in case of the protected implementation is signifi-

cantly suppressed by > 350× compared to the unprotected implementation, thereby promising a

> 3502× improvement in the MTD. Recently, STELLAR has been fabricated in TSMC 65nm

process using AES256 as the crypto core [36]. Embracing signature attenuation and local lower

metal routing, the countermeasure achieved a MTD of > 1B, which to the best of our knowl-

edge is the best reported result to date. Due to the efficiency of STELLAR, we assume that if

STELLAR is turned ON, then the cycles it protects will not leak sufficient information for an

adversary to launch a SCA attack and these cycles will assume a JMI value of 0.
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Reasoning

We chose minimum traces to disclosure (MTD) as a metric because it models the time

and effort it would take for an adversary to successfully launch an SCA attack in a practical

scenario. We did not use MTD to compare each cycle in algorithm’s execution to the others

because it is computationally expensive when considering how each point in an algorithm’s

execution is related to all other points. As an example, let us first consider the scenario where

we only consider one point in an algorithm’s execution at a time. In this scenario we only need

to calculate the MTD for (n:1) combinations where n is the number of cycles in the crypto

algorithm. This has a time complexity of O(n). However, if we need to consider how each point

is related to all other points we must calculate the MTD for (n:1), (n:2), (n:3)...(n:m) where m is

the number of time points an adversary uses for their attack and m < n. This increases the time

complexity to O(n:m).
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5.4 iSTELLAR

STELLAR can remain ON for any amount of time. However, if we turn STELLAR OFF

to conserve power during cycles with low or no leakage, we must wait a certain amount of time

for STELLAR to complete its start-up process. As a result, we must determine when to turn

STELLAR ON/OFF while allowing it the necessary time to start back up after being turned OFF.

5.4.1 Constraints

The timing diagram for the iSTELLAR operation is shown in figure 5.4. At start-up, the

signature attenuation hardware (SAH) requires a few cycles for the digital switched mode control

(SMC) loop to set the CS current at the average crypto current. The SMC, which runs at 10×

lower frequency compared to the crypto core, requires ∼ 2− 3 cycles to reach steady state,

which is ∼ 20−30 crypto clock cycles. In steady state, the scheduling algorithms for iSTELLAR

intermittently turn the SAH ON and OFF depending on the information leakage content in the

traces. Once the digital loop is stable and the STELLAR operates in steady-state, the iSTELLAR

algorithm may want to turn STELLAR OFF after a certain time point. With STELLAR turned

OFF, once iSTELLAR turns it ON again, the CS biases need to settle to the correct bias voltages

to ensure the transistors remain in saturation for a high output impedance thereby leading to a

high signature attenuation.

Figure 5.5(a) shows that one of the 32 bits of the SMC output (S16) switches from zero

to one, which means that the corresponding CS slice should be turned ON. Now, to turn ON a

CS slice, the bias voltage at the gate of the PMOS needs to transition from the supply voltage

(1.1V) to the CS bias voltage (VCS). With the AES operating at 50MHz, the settling time for

the PMOS bias is ∼ 40ns. This implies that, we need to wait for ∼ 40ns once we turn OFF

STELLAR to turn it back ON. For the purpose of our calculations in sections 5.4.3 and 5.5.2

we conservatively estimate this analog settling time to have a turn ON delay of 3 cycles in our

digital loop to account for a broad range of clock speeds. This analog settling time as shown in
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figure 5.5 is ∼ 40ns, and this is the typical steady state delay the iSTELLAR needs to handle each

time the STELLAR SAH circuit is turned ON and OFF. Note that this delay is due to the settling

of the analog bias voltages to turn ON the PMOS CS slice, and is equal to the RC time constant

for the node, where R is the on resistance and C is the gate capacitance of the PMOS. Now, if

the frequency of the crypto core is increased, the size of the PMOS CS slice can be increased

accordingly so that the RC time constant remains the same (R reduces, C increases due to larger

size). Hence, iSTELLAR only needs to deal with the analog bias settling delay of 40ns as it turns

OFF and ON the PMOS CS (figure 5.5). While this is typically the only delay, iSTELLAR may

require up to 10 crypto clock cycles (equivalent to 1 cycle of the SMC loop) to account for the

PVT(process/voltage/temperature) variations and settle to the optimal number of CS slices, as

illustrated in figure 5.4.

Overheads & Performance of iSTELLAR

As discussed, in steady state operation of the STELLAR, the only constraint for turning

it ON and OFF is the turn ON delay for the analog bias to bring the top current source stage into

saturation region. Our scheduling algorithm for iSTELLAR ensures that at the end of its OFF

time, it turns ON the STELLAR circuit for the bias settling. Hence, there are no performance

overheads associated with the turn ON or OFF of the STELLAR hardware.

Overall, the area overhead for STELLAR is ∼ 40% and the power overhead is ∼ 50%

[38], which is drastically reduced using the proposed iSTELLAR technique without incurring any

performance penalty.

5.4.2 iSTELLAR Lower Bound

To determine the best times to turn STELLAR ON, we began by developing a best-

case scenario algorithm to minimize power consumption and maximize security to establish

iSTELLAR’s lower bound for power consumption. In this algorithm, we assume we can turn

STELLAR back ON immediately after turning it OFF.
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First, we determine the total information leakage for a trace according to each cycle’s

JMI. Next, we find the highest leakage cycle and mark it as a cycle where we would like to turn

STELLAR ON. After this, we add it to a list of cycles we plan to turn STELLAR ON for and

determine the new total information leakage and power overhead for turning STELLAR ON. We

continue this process for every cycle that has a JMI greater than zero or until we reach a power

overhead threshold selected by the designer. For example, in figure 5.6a, we would mark cycles

in the following order: 239, 230, 225, 242, 238, 237, 243, 240, 235, 219, 241,222, 232, 226, 211,

221, 220, 215, 227, 231, 216. After marking these cycles we would choose to turn STELLAR

ON for the cycles we selected (shown in red) and OFF for the cycles we did not select (shown in

green).

5.4.3 iSTELLAR Scheduling

Using the lower bound algorithm under realistic constraints presents an interesting

challenge due to the turn ON delay required after turning STELLAR OFF. In most circumstances,

this will be the 40 ns turn ON delay which we conservatively estimate to be 3 crypto clock cycles

to account for a broad range of clock speeds. This means that after we turn STELLAR OFF, we

must wait 3 clock cycles before turning STELLAR back ON. As a result, if any cycle we plan to

select is within 3 cycles of a cycle we have already selected, we will have to ignore it because it

would violate the 3 cycle turn ON delay. Similarly, if we want to account for the 10 cycle turn

ON delay due to PVT variations, if any cycle we plan to select is within 10 cycles of a cycle we

have already selected, we will have to ignore it because it would violate the 10 cycle turn ON

delay.

In figure 5.6b, the lower bound algorithm would mark cycles 230 and 239 because they

have the highest JMI. Next, it would mark cycle 225 rather than cycle 236 because it is within 3

cycles of another cycle we have already marked. For the same reason, cycles 216-218, 220-224,

226-229, 231-234,236-238, and 240-242 would be ignored and cycles 215, 219, 235 and 243

would be marked.
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(a) iSTELLAR Lower Bound (b) Challenge

(c) iSTELLAR

Figure 5.6. (a) By turning ON STELLAR (shown in red), we can hide parts of the trace, which
effectively eliminates the information leakage, that is, JMI = 0. (b) However, if we turn it OFF
for cycles where there is no information leakage, we must wait for a set amount of cycles (shown
in green) for it to start back up . (c) If we keep STELLAR ON for some cycles that have no
information leakage, then we are able to hide nearby cycles with high information leakage.

To further decrease information leakage, we chose to check for and address cycles that

occur during the turn ON delay between STELLAR being turned OFF and being turned back

ON. If a new cycle we plan to mark would violate the turn ON delay of a cycle we have already

marked, we will keep STELLAR ON between the cycle we plan to mark and the cycle we have

already marked.

Figure 5.6c shows how using this approach addresses the challenge from our first ap-

proach. Using this approach, the lower bound algorithm would still mark cycles 230 and 239

because they have the highest JMI. Next, it would mark cycle 236 and realize that it would

violate the turn ON delay if we turned STELLAR OFF then tried to turn it ON again for cycle
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239. As a result, we would also mark cycles 237 and 238 even though they do not have the next

highest JMI. This process continues until we have marked all of the cycles that have a JMI value

greater than 0. It will also mark cycles 216-217, 223-224, 228-229 and 233-234 even though

they have a JMI value of 0 to ensure STELLAR stays ON between cycles that would violate

each others’ turn ON delay. However, it will not mark cycles 212-214 because no surrounding

cycles violate each others’ turn ON delay time. Even though we use power to turn STELLAR

ON for cycles where STELLAR is unnecessary, we are able to achieve higher security at a lower

power overhead.

5.5 Results

Using iSTELLAR’s constraints, the JMI rankings for each cycle, iSTELLAR’s power

overhead lower bound and an iSTELLAR scheduling algorithm, we are able to develop an

iSTELLAR schedule to minimize information leakage and power overhead. We can choose to

keep STELLAR OFF for as many cycles as we choose, to make tradeoffs between power and

security. This section evaluates these tradeoffs.

5.5.1 Experimental Setup

We develop power traces using SimAVR to simulate an Atmel ATmega328 chip[121, 74].

SimAVR is capable of executing binaries compiled by the avr-gcc toolchain as they would be

run on an AVR microcontroller and we use it to collect power traces using a Hamming distance

leakage model [19]. Although we evaluate power traces, a similar experimental setup could be

performed to use EM traces.

To perform our evaluation, we collect power traces for 214 experimental plaintext and

secret key vectors on an implementation of AES-128 from DPA Contest v4.2 [30], an implemen-

tation of PRESENT from the avr library and an implementation of AES from the avr library.

Under this model, each time point in a trace consists of the difference in Hamming distance

between an opcode and its predecessor for different experimental plaintext and secret key vectors
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(a) (b)

(c)

Figure 5.7. (a) Considering the 3 cycle turn ON delay, iSTELLAR achieves 38.14% less power
overhead on AES(avr), (b) 36.78% less power overhead on PRESENT(avr), and (c) 30.18% less
power overhead than STELLAR on AES(DPA)

[3]. For our information leakage model we assume that toggling a bit consumes one bit of

power and leaving a bit unchanged consumes no power. Our information leakage evaluation is

independent of the instruction type or the type of the data.

5.5.2 Power vs Security

Since STELLAR is responsible for eliminating information leakage, we consider any

decision to keep STELLAR ON/OFF as a tradeoff between power and security. We can choose

to maximize security by ensuring STELLAR is ON for every cycle that leaks information or we

can minimize power overhead by having the designer select a specific power threshold and only

turning STELLAR ON for cycles the iSTELLAR scheduling algorithm has marked up to that

point. Once we establish an iSTELLAR schedule, the schedule will be constant for all executions

of the algorithm regardless of the input data to avoid introducing a timing channel.

Figure 5.7a shows the power and security for using iSTELLAR on an implementation
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(c)

Figure 5.8. (a) Considering the process/voltage/temperature (PVT) variations, iSTELLAR

achieves 24.98% less power overhead on AES (avr), (b) 25.80% less power overhead on
PRESENT (avr), (c) and 23.93% less power overhead than STELLAR on AES (DPA).

of AES-128 from the avr library. The red square labeled STELLAR is representative of the

baseline STELLAR technique. This assumes that no iSTELLAR scheduling algorithm is used and

STELLAR remains ON for the entire algorithm’s execution. Under these conditions, STELLAR

incurs a 50% power overhead, but is able to eliminate power and EM leakage to reduce the sum

of JMI rankings to 0. This means it is not possible to launch an SCA attack because an adversary

will not be able to differentiate between different secret key hypotheses by measuring the power

consumption or electromagnetic emanations.

The yellow line in figure 5.7a labeled Lower Bound assumes the scenario outlined in

section 5.4.2 which ignores iSTELLAR’s turn ON delay constraint to establish a best-case scenario

for minimizing power consumption and maximizing security. Under these conditions, the sum

of JMI rankings starts at 1 which means power and EM leakage is completely unmitigated

and vulnerable to attack. If we choose to turn STELLAR on, only for cycles that have a JMI
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Table 5.1. Power Overhead for iSTELLAR

Algorithm AES(avr) PRESENT(avr) AES(DPA)

STELLAR 50% 50% 50%
Lower Bound 11.87% 12.67% 19.82%

3 cycle turn ON delay 13.14% 13.22% 20.05%
10 cycle PVT delay 24.20% 25.02% 26.07%

value great than 0, we are able to reduce the sum of JMI rankings to 0 for 11.87% power

overhead. Additionally, if 11.87% power overhead is still too high, the designer can establish a

power threshold, and the iSTELLAR scheduling algorithm is able to maximize security for that

threshold.

The blue line in figure 5.7a labeled 3 cycle turn on delay assumes the scenario outlined

in section 5.4.3 which requires a 3 cycle turn ON delay to turn STELLAR back ON after it has

been turned OFF. Under these conditions, we are able to reduce the sum of JMI rankings to 0 for

13.14% power overhead, only 1.27% higher than the Lower Bound scenario. Furthermore, we

are also able to maximize security within a power threshold for around the same power overhead

as the Lower Bound scenario.

Figure 5.7b shows the power and security for using iSTELLAR on an implementation of

PRESENT from the avr library and 5.7c shows the power and security for using an implementa-

tion of AES-128 from DPA Contest v4.2. Figure 5.8 repeats the scenarios for 5.7 with the a 10

cycle PVT turn ON delay rather than the typical 3 cycle turn ON delay to account for worst case

conditions. These results are summarized in table 5.1.

5.5.3 Discussion

We believe that the efficiency of iSTELLAR may be dependent on the leakage distribution

in the implementations of the different algorithms. The implementation of AES-128 from DPA

Contest v4.2 may have the power overhead closest to the Lower Bound scenario because its

leakage is distributed over fewer cycles. While 28.71% of the cycles in this implementation of
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AES-128 have a JMI value of 0, only 14.06% of the cycles in the AES-128 implementation from

the avr library have a JMI value of 0, and only 13.57% of the cycles in the PRESENT from the

avr library have a JMI value of 0. We further note that the implementations of PRESENT and

AES-128 from the avr library have similar leakage distributions and similar power overheads

necessary to turn STELLAR ON for.

5.6 Related Work

Power side-channel countermeasures attempt to modify the power trace signal to hide

any information related to the key. Some techniques add active equalization circuitry to diminish

power variations during execution and keep the power supply constant [109, 110]. Other

techniques use signal attenuation hardware to reduce the power cost of noise injection [37] or

use a suppression circuit to reduce low frequency power variations and a low-pass filter to reduce

high frequency power variations [128]. There are some ideas to use internal power sources

which an adversary cannot modify e.g., a charge-pump circuit using on-chip capacitors [119]

and a switched capacitor circuit to isolate an AES core from the power supply line [145]. The

disadvantage to these works is that they were not applied selectively in order to allow designers

to make trade-offs between performance, area, and security. While computational blinking [3]

also identifies non-uniformity in information leakage, it implements a switched capacitor circuit

rather than using signal attenuation hardware. As a result, applying the different techniques

intermittently has different accommodations and requires different constraints. STELLAR is

one of the most recent proposals as a signature attenuation-based countermeasure and has been

demonstrated to achieve the highest security (MTD of 1B traces) with only ∼ 50% power and

∼ 40% area overheads [35, 59]. Moreover, it is a generic countermeasure (agnostic to any crypto

algorithm) without any performance degradation.
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5.7 Conclusion

Although STELLAR provides protection from power and EM SCA, it incurs larger than

necessary power overhead because many of the cycles it protects do not have any information

leakage. By turning STELLAR ON and OFF, we are able to to eliminate all information leakage

with minimal power overhead. However, turning STELLAR OFF, we must give it a set amount of

cycles to turn back ON. Utilizing our proposed scheduling algorithm for iSTELLAR, we address

this issue by turning STELLAR ON for all cycles with high information leakage as well as some

of prior cycles with low information leakage to avoid violating startup constraints. We were able

to eliminate information leakage with 38.14% lower power overhead.
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Chapter 6

Conclusion

In this dissertation we have demonstrated how the blinking methodology can be used

to mitigate power analysis attacks, fault analysis attacks and EM analysis attacks. A switched

capacitor can be used to mitigate power analysis and fault attacks and STELLAR can be used to

mitigate power analysis attacks and EM analysis attacks. Power and EM analysis attacks use

JMI as a vulnerability metric and the sum of remaining JMI rankings as an evaluation metric.

Fault attacks use fault attack difficulty as an evaluation metric and RMP as an evaluation metric.

In all of these cases, we are able to determine the best times to use the mitigation strategy by

determining when it is most beneficial to utilize the mitigation technique, how much overhead a

hardware designer is willing to sacrifice for security and the constraints for when it is possible to

turn a mitigation strategy on or off.
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[14] Johannes Blömer and Jean-Pierre Seifert. Fault based cryptanalysis of the advanced
encryption standard (aes). In International Conference on Financial Cryptography, pages
162–181. Springer, 2003.

[15] Andrey Bogdanov, Ilya Kizhvatov, Kamran Manzoor, Elmar Tischhauser, and Marc
Witteman. Fast and memory-efficient key recovery in side-channel attacks. In International
Conference on Selected Areas in Cryptography, pages 310–327. Springer, 2015.

[16] Andrey Bogdanov, Lars R Knudsen, Gregor Leander, Christof Paar, Axel Poschmann,
Matthew JB Robshaw, Yannick Seurin, and Charlotte Vikkelsoe. Present: An ultra-
lightweight block cipher. In International workshop on cryptographic hardware and
embedded systems, pages 450–466. Springer, 2007.

[17] Dan Boneh, Richard A DeMillo, and Richard J Lipton. On the importance of check-
ing cryptographic protocols for faults. In International conference on the theory and
applications of cryptographic techniques, pages 37–51. Springer, 1997.

[18] Arnaud Boscher and Helena Handschuh. Masking does not protect against differential
fault attacks. In 2008 5th Workshop on Fault Diagnosis and Tolerance in Cryptography,
pages 35–40. IEEE, 2008.

[19] Eric Brier, Christophe Clavier, , and Francis Olivier. Correlation power analysis with a
leakage model. International Workshop on Crypto- graphic Hardware and Embedded
Systems, pages 16–29, 2004.

[20] Robert Callan, Farnaz Behrang, Alenka Zajic, Milos Prvulovic, and Alessandro Orso.
Zero-overhead profiling via em emanations. In Proceedings of the 25th international
symposium on software testing and analysis, pages 401–412, 2016.

[21] Robert Callan, Nina Popovic, Angel Daruna, Eric Pollmann, Alenka Zajic, and Milos
Prvulovic. Comparison of electromagnetic side-channel energy available to the attacker
from different computer systems. In 2015 IEEE International Symposium on Electromag-
netic Compatibility (EMC), pages 219–223. IEEE, 2015.

92



[22] Robert Callan, Alenka Zajic, and Milos Prvulovic. A practical methodology for measuring
the side-channel signal available to the attacker for instruction-level events. In 2014 47th
Annual IEEE/ACM International Symposium on Microarchitecture, pages 242–254. IEEE,
2014.
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