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Abstract

Technological innovations have become a key driver of societal advancements. Nowhere is this 
more evident than in the field of machine learning (ML), which has developed algorithmic models
that shape our decisions, behaviors, and outcomes. These tools have widespread use, in part, 
because they can synthesize massive amounts of data to make seemingly objective 
recommendations. Yet, in the past few years, the ML community has been drawing attention to 
the need for caution when interpreting and using these models. This is because these models are 
created by humans, from data generated by humans, whose psychology allows for various biases 
that impact how the models are developed, trained, tested, and interpreted. As psychologists, we 
thus face a fork in the road: Down the first path, we can continue to use these models without 
examining and addressing these critical flaws and rely on computer scientists to try to mitigate 
them. Down the second path, we can turn our expertise in bias toward this growing field, 
collaborating with computer scientists to reduce the models’ deleterious outcomes. This article 
serves to light the way down the second path by identifying how extant psychological research 
can help examine and curtail bias in ML models.
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Introduction

Machine learning (ML) models are now a quintessential part of everyday life. It is easy to 
understand why these models have become so valuable: They are helpful tools that can identify 
and synthesize complex patterns in large data sets, and they often outperform traditional 
statistical methods in prediction and classification across a variety of tasks (e.g., Goretzko & 
Bühner, 2020; Yeomans, 2021). Their ability to simplify decision- making in a seemingly 
unbiased manner makes them essential for many power holders and laypeople alike. After all, ML
models appear to be cold, objective algorithms that—supposedly—are not hindered by the same 
heuristics and biases that plague human psychology. However, in reality, these models are 
developed by imperfect humans using imperfect data generated in imperfect societies. These 
imperfections are consequential because ML models both reflect and amplify the same types of 
biases that humans have (e.g., Angwin & Larson, 2016; Bender et al., 2021; Bolukbasi et al., 
2016; Caliskan et al., 2017; Hovy & Spruit, 2016).

Determining how bias arises in ML is critical to reducing the potential for the model’s 
problematic outputs. Indeed, research in ML—as well as in social and cognitive psychology—has
demonstrated that the biases present in these models reflect human biases in the real world 
(Caliskan et al., 2017; Charlesworth et al., 2021; Garg et al., 2018; Koenecke et al., 2020); for 
instance, they have generated decisions that ensure Black and Brown people (relative to White 
people) are more likely to experience unfavorable outcomes when applying for a loan (Oneto & 
Chiappa, 2020), receiving sentencing decisions (Angwin & Larson, 2016), or obtaining health 
related care (Obermeyer et al., 2019). Unfortunately, these models can perpetuate extant societal 
inequalities that further disadvantage marginalized people by unjustly ruling against their favor. 
Preventing bias from seeping into these models, and decreasing their capacity to output biased 
decisions, is critical to developing a society in which advancements in technology run parallel 
with advancing societal equality.

Fortunately, ML scientists and engineers have started examining how bias permeates the 
construction of ML models. They have highlighted how a variety of these sources—such as 
biases baked into the training data itself (e.g., Bolukbasi et al., 2016), biases in the annotations of 
the training data (e.g., Davani et al., 2021), and the underrepresentation of certain populations in 
the data (e.g., Lucy & Bamman, 2021; Mehrabi et al., 2021; Shankar et al., 2017)—contribute to 
biases in the model output. By bringing awareness to how these factors amplify extant biases, 
they intend to highlight potential biases in the decisions made by the models and propose 
mechanisms to reduce bias in the model’s outputs. This area of inquiry, called fairness in 
machine learning, has generated a variety of tools (e.g., Mehrabi et al., 2021) and insights (e.g., 
Barocas et al., 2019) to help ML researchers and practitioners identify, and subsequently reduce, 
bias in ML models.

Fairness in machine learning is a relatively new field. The novelty of fairness originates, in
part, from ML’s past dominant objective of maximizing models’ predictive accuracy. Although a 
model’s ability to correctly classify an input is important, researchers have recently sought to 
understand how they can create “fair” models that do not disproportionately benefit one group of 
people over others. Although some work has noted that fairness and accuracy may not always be 



in tension with one another when constructing ML models (e.g., Pessach & Shmueli, 2021; Wick 
et al., 2019), work in ML largely acknowledges that increasing fairness has the risk of negatively 
impacting a model’s accuracy (Menon & Williamson, 2018; Zafar et al., 2019).
To that end, ML researchers have raised a signpost to other research communities indicating that 
there is work to be done in understanding how bias can be mitigated in ML (Blodgett et al., 
2020). Yet, there is relatively little work outside of ML, including within psychology, that 
explicitly identifies and explains this new frontier of bias manifestation. We would thus like to 
draw psychologists’ attention to the computer scientists’ aforementioned signpost, indicating that 
we face a fork in the road.

Down the first path lies psychologists’ continued usage of ML models, which are 
currently developed and implemented without significant involvement or informed scrutiny from 
psychologists. These models have appeared in research examining how facial- recognition 
software predicts users’ sexuality (Wang & Kosinski, 2018), what jobs people are likely to opt 
into (Song et al., 2022), how moral rhetoric online predicts future arrests during protests 
(Mooijman et al., 2018) and even in theory development (e.g., Leavitt et al., 2021; Yarkoni & 
Westfall, 2017). However, this path is rockier than it seems. Topics like bias and prejudice have 
long been a core research focus in psychology (e.g., Banaji & Hardin, 1996; Greenwald & Banaji,
1995; Roberts & Rizzo, 2021; Seaton et al., 2018); yet, although ML models are a new 
manifestation and representation of bias, our field, with a few exceptions, has not sufficiently 
incorporated these advancements into our understanding of how modern forms of bias manifest in
contemporary life. Nonetheless, the theories and insights that psychologists have developed over 
the past century not only are applicable to computer scientists and fairness scholars but could be 
their guiding light in detecting—and preventing—bias in technology.

This brings us to the second path: psychologists collaborating closely with computer 
scientists to identify and reduce bias in machine learning models. This path will serve to be both 
theoretically fruitful and practically important. Thus far, the methods developed in computer 
science have led computer scientists to generate solutions that address bias as it arises in the 
process of developing ML models. These solutions are not always completely satisfactory, as they 
are more inclined to hide the bias in the model rather than eliminate it (e.g., Gonen & Goldberg, 
2019). In contrast, over the better part of the past century, psychologists have illuminated a 
variety of strategies to directly eliminate bias at the source. In other words, currently, both 
psychologists and computer scientists look at different pieces of the problem without necessarily 
accounting for the entire process. Psychology has focused its efforts on understanding how bias 
forms in people, whereas computer science has been more interested in how models become 
biased.

Without examining how human biases find their ways into ML models, and how such 
biases can get eliminated, we will continue to lack a full picture of how technology can be a 
purveyor of bias. The aim of this article, then, is to light the way down the second path for 
psychologists and encourage them to turn their attention toward investigating both how bias arises
in ML models and how it can be mitigated. By highlighting how psychological biases arise in ML
models, psychologists can further inform fairness researchers’ efforts to develop generative and 
interesting solutions that systematically address the issue.



Sources of Bias in Machine Learning Models

In this section, we review three potential sources of bias for ML models: First, we discuss 
how biases arise in the composition and content of training data. Second, we describe how ML 
engineers’ own internal biases affect model design. Finally, we note that there is a historical lack 
of knowledge about the possibility of bias in ML because the field of fairness research is 
relatively new. See Figure 1 for an overview of our proposed framework.

Source of bias: Training data

The first source of bias stems from the training data. At a broad level, it is reasonable to 
think that data sets just serve as reflections of the current state of our world. Yet, in reality, they 
are reflections of the processes that went into collecting the data and curating the data set. In 
other words, psychological characteristics encoded in the training data affect how the model 
makes judgments—thus, the way that these characteristics are represented and accounted for in 
constructing the data set is essential to generating equitable outcomes (Kilbertus et al., 2018). We
highlight two important sources of bias that ML engineers may overlook when compiling training
data sets, specifically, how much bias already exists in the data set and how such bias can get 
exacerbated when constructing ground truths data using human annotations.

Extant biases in the data set. Identifying extant biases in the data is an important part of 
detecting and eliminating bias in the model’s outputs. Indeed, data are a product of the historical 
context in which they were generated (Suresh & Guttag, 2019), leading to historical bias that can 
perpetuate extant inequalities. For instance, Bolukbasi et al. (2016) and Caliskan et al. (2022) 
demonstrate that word embeddings contain biases that reflect gender stereotypes in broader 
society. Because word embeddings are frequently used in real-world applications, Bolukbasi et al.
argue that they both reflect and perpetuate these stereotypes.

Some data sets may also hold biases because of inadequate representation of people with 
protected traits. Protected traits are facets of people’s identities that could lead to marginalization,
such as their race, gender, sexuality, and so on (Corbett-Davies & Goel, 2018). Although ML 
models do not always prioritize protected traits, such traits can be disproportionately weighted in 
the model’s decision-making process. Oftentimes, the infrastructures and institutions that house 
the source data make it difficult to collect data sets where those with protected traits are well 
represented— that is, where the same percentage of people who hold intersecting protected traits 
in the general population are represented in the data set. For instance, platforms like Twitter, 
Facebook, and Reddit—as well as resources like the Common Crawl Corpus—oftentimes do not 
reflect the composition of the general population across various protected traits (Luccioni & 
Viviano, 2021; Odabas¸, 2022). As a result, there may be too few observations to accurately 
represent those with underrepresented protected traits or unrepresentative sampling that can limit 
a model’s generalizability (Robinson et al., 2020). Indeed, computer scientists have frequently 
indicated the importance of considering the issue of underrepresentation in data sets (see the 
literature on “representation bias”; e.g., Lucy & Bamman, 2021; Mehrabi et al., 2021; Shankar et 
al., 2017), noting that it can arise from nonrandom sampling (Mehrabi et al., 2021) and lead the 



model to make decisions that perpetuate further marginalization. Thus, the absence of 
marginalized populations is as fundamental to the model’s output and decision-making as their 
presence would be.

Another potential reason for models’ biased decisions is engineers’ reliance on proxy 
labels, markers representing the operationalizations of constructs that need to be captured but can
be captured only indirectly. For instance, the engineer may want to assess employee performance 
(the true label); if there is no direct and objective way to capture this, they would instead use a 
proxy variable (i.e., human assessments of performance). Proxy labels capture only “a particular 
aspect of what we want to measure” (Suresh & Guttag, 2019; p. 4), as determining what is 
captured in this proxy label is up to the engineers’ discretion and thus may also be subject to the 
engineers’ biases. Unfortunately, these labels could inadvertently perpetuate inequality by 
capturing external factors that skew the model’s output (Stock & Cisse, 2018; Suresh & Guttag, 
2019; Van Miltenburg, 2016). For instance, Correctional Offender Management Profiling for 
Alternative Sanction (COMPAS; Angwin & Larson, 2016) was a tool created to predict 
recidivism risk in convicted criminals using a variety of proxy labels. However, to predict future 
recidivism, the tool relied on a variety of proxy labels, like the felon’s own prior arrests as well as 
their family’s. These labels inadvertently perpetuated bias; many of those who were predicted to 
have a high risk of recidivism came from communities that were initially overpoliced, which in 
turn impacted the felon’s prior arrests and family arrests.

Biases in the annotators. Supervised ML models need ground-truth data for training and fine-
tuning. To create ground-truth data, model engineers employ the help of annotators to go through 
a portion of the data and label them for the desired set of categories. Some annotation tasks 
require distinguishing between clearly defined, and objective, categories (e.g., cats vs. dogs, verbs 
vs. adjectives). Increasingly, however, ML models are also being used to make subjective 
decisions. For example, the authors of this article often train ML models for moral-sentiment 
classification. This is a subjective task where the background of the annotators plays an important
role in detecting and categorizing different facets of morality in text. However, the people who 
annotate our data, like the model engineers themselves, are imperfect people who hold their own 
biases (Davani et al., 2021; Van Miltenburg, 2016). Given that the annotators’ inputs serve as 
learning and tuning guidelines for the model, their biases directly influence the model’s decisions.
Moreover, how model engineers select annotators—or account for annotator’s responses— could 
potentially erase the input from annotators with underrepresented identities, further perpetuating 
bias in the model’s output (Prabhakaran et al., 2021).

Source of bias: ML engineers

The second source of bias is the people who develop and design the models themselves. 
We argue that model engineers are imbued with a sense of power that is derived either from the 
psychological consequences of managing a highly valuable resource (i.e., ML models) and/or  is 
granted by the privileges that society affords those who possess their demographic characteristics.
Model engineers have a sense of psychological power (Anderson et al., 2012; Anderson & 
Galinsky, 2006; Tost, 2015) because ML models are valued resources; their output is oftentimes 



vital to the day-to-day operations of many, making the scope of their role in contemporary life 
challenging to overstate. Model engineers are also likely to possess racial and gender identities 
that are societally privileged; indeed, they are overwhelmingly White and male (Blodgett & 
O’Connor, 2017; Jaccheri, 2022). In other words, model engineers are more likely to possess 
societal power that is derived from the model engineer’s demographic characteristics (Fiske & 
Berdahl, 2007).

Both experiencing an elevated psychological sense of power and possessing societal 
power have been associated with reduced inhibitions (Cho & Keltner, 2020; Fiske, 1993; Keltner 
et al., 2003). Consequently, model engineers are positioned to feel fewer psychological constraints
preventing them from acting on, or even detecting, their own biases—thus obfuscating their 
ability to effectively interrogate how their models could impact important societal outcomes for 
different groups of users. Overriding these biases and stereotypes can be done by exercising self-
control (Guinote, 2017), but those in power do not always have the resources or the motivation to 
exercise the necessary self-control to overcome their biases (Fiske & Berdahl, 2007; Guinote, 
2017). As a result, model engineers’ heightened experiences of (psychological or societal) power 
may lead them to perpetuate biases in their ML models.

Source of bias: negligence

The third source of bias stems from model engineers’ ambivalence and negligence about 
the biased outcomes of their models. Given the technology’s novelty and its promises of 
objectivity (Bogert et al., 2022), scientists did not direct much attention to the ways that ML 
models could make systematically biased decisions until recent years (e.g., Barocas et al., 2019). 
As a result, many of these models have been developed without thorough scrutiny—permitting 
some models to produce biased output. Even now, as more scientists across different fields raise 
increasingly visible (and urgent) signposts highlighting the deleterious outcomes associated with 
unfair models, not all model engineers may be paying as much attention as this problem requires. 
For instance, although many top industry labs are among the leaders in fairness in artificial 
intelligence research, for smaller companies—with much more limited resources—fairness might 
not be a high priority.

Fairness in ML

Broadly, fairness research in the ML community has been focused on defining 
mathematical formalizations of fairness criteria—often inspired from social science literature—
and developing methods and models to satisfy these criteria. This is a relatively nascent field, but 
over the past few years, there has been a sharp increase in fairness research (Chouldechova & 
Roth, 2020). A popular focus of the field is on natural language processing and seeks to solve 
problems such as debiasing embeddings (Bolukbasi et al., 2016). However, more recently, 
fairness research has extended into other domains, such as speech (Koenecke et al., 2020) and 
face (Buolamwini & Gebru, 2018) recognition.

In what follows, we first review the prominent formalizations of fairness in ML, focusing 
on allocational harm as a consequence of the decisions made by the model in the context of 
classification. Then, we discuss quantifications of bias captured in representations learned by 



these models. It should be noted, though, that a complete review of all operationalizations of 
fairness and bias in ML is beyond the scope of this work. For a more comprehensive review of 
measures of fairness, we refer the reader to Mehrabi et al. (2021).

Allocational harms

Classification is one of the major applications of ML. Formally, the model’s goal in 
classification is to predict a target variable Y (e.g., a hiring decision), given an observation X (e.g.,
one’s resume). When these applications involve allocating resources or opportunities, the model 
can discriminate against certain groups and bring about allocational harms (i.e., harms caused by
a model denying a certain group access to a resource or an opportunity). Measures of algorithmic 
fairness in classification can be divided into three categories of group, subgroup, and individual 
fairness. Across all definitions discussed next, we use S to denote the protected attribute (e.g., 
gender), Y to denote the model prediction, and Y to denote the ground truth. Moreover, let S =1 
denote the majority group (e.g., males in science, technology, engineering, and mathematics) and 
Y =1 be the preferred outcome (e.g., getting hired).

Group fairness. This family of fairness measures focuses on treating different groups equally. 
There are multiple ways to assess group fairness: through disparate impact, statistical parity, 
equality of opportunity, and equality of odds.

Disparate impact. Viewed as a mathematical formalization of the “80% rule” in the legal 
notion of disparate impact (Feldman et al., 2015), which states that the allocation rate of a desired
resource for the protected group should be at least 80% of the allocation rate of that desired 
resource for the nonprotected group, the measure of disparate impact assesses the extent to which 
members of one group experience the desired outcome relative to other groups. Intuitively, this 
measure ensures that the ratio of assigning desired outcomes to groups remains close. Formally, 
disparate impact is defined as

Relying on this equation, model engineers are able to assess the differences in desired outcome 
rates across groups (PY[  = 1|S ≠ 1] versus PY[  = 1|S = 1]). Lower values of disparate impact 
point to a difference in desired outcome rates across groups (unfair), and higher values show 
similar desired outcome rates across groups (fair).

Statistical (or demographic) parity. This measure ensures that majority and minority groups have
equal probability of getting assigned the desired outcome from the model. Dwork et al. (2012) 
define statistical parity as



The two terms in the equation denote the probability of a positive outcome (Ŷ =1) for different 
groups (S =1 and S ≠ 1). Lower values of this measure indicate similar positive outcome rates 
across groups (fair), and higher values are evidence of unequal rates (unfair).

Equality of opportunity and equality of odds. Hardt et al. (2016) introduced equality of 
opportunity, which requires the model outputs to assign the desired outcome (Ŷ =1) to people in 
the desired ground truth (Y =1) of different groups ( )S with equal probability. An unfair model, 
according to this definition, will have unequal rates of assigning the desired outcome to people 
with the desired ground truth for different groups. Formally, this fairness criterion is defined as

However, in the equality-of-odds measure, Hardt et al. (2016) extend this definition 
beyond the desired ground truth (Y = 1), requiring the model to have equal probability of 
assigning the desired outcome to different groups (e.g., S =1 or S = 0) for all possible values of 
ground truth (Y y= ). For example, an unfair model according to this definition could have 
different false positive rates (P[Ŷ = 1|Y = 0]) for different groups. Formally, equality of odds is 
defined as

Both equality of odds and opportunity assess the extent to which people are classified 
relative to the desired outcome. Because both measures consider some notion of equality between
groups and ignore individuals, pushing models to satisfy either of them may result in two similar 
individuals receiving different treatments, which often is prohibited by law. Additionally, a 
perfect classifier, meaning a classifier that predicts the correct outcome (Ŷ = Y) for all instances, 
may still be considered unfair according to both of these measures. Note that a perfect classifier 
would essentially reproduce the ground-truth labels Y given the input features X. Therefore, if the 
input data set (X,Y ) is biased according to some definition, the perfect classifier trained on it 
would also be biased.

Subgroup fairness. Kearns et al. (2018, 2019) extend the definition of group fairness for 
subgroups. Instead of asking definitions of fairness to hold for a number of coarse groups, they 
ask for the definitions of fairness to hold for an infinitely large collection of subgroups defined as 
g : X→ {0 , 1} ∈G, where g(x) =1 denotes an individual’s membership in group g. For example, 
false positive subgroup fairness requires the model to have equal false-positive rates overall and 



for any group g. Formally, λ-false-positive fairness with respect to G is achieved when, for all g 
∈G ,

Individual fairness. Although group notions of fairness are desirable, they are not strong enough 
in all scenarios. For example, group fairness puts no constraints over which members of each 
group are granted an opportunity. An undesirable model could satisfy group fairness criteria but 
offer the opportunity only to individuals within the minority group who are less likely to benefit 
from it. Unlike the measures discussed so far that focus on groups, individual fairness posits that 
“similar” individuals should be treated similarly. Next, we list three strategies for achieving 
individual fairness.

Fairness through awareness. Fairness through awareness formalizes the core idea of similar 
treatment of similar individuals by imposing constraints (e.g., a Lipschitz condition) on the 
classifier (Dwork et al., 2012).

Fairness through unawareness. Kusner et al. (2017) states, “An algorithm is fair as long as any 
protected attributes . . . are not explicitly used in decision-making process” (p. 2). However, more 
recent work has shown that fairness through unawareness may not be as effective at advancing 
fairness as previously thought, given the model’s ability to uncover protected attributes without 
explicitly relying on them (Pedreshi et al., 2008; Zemel et al., 2013). For example, race could be 
correlated to, and therefore inferred from, neighborhood.

Counterfactual fairness. Kusner et al. (2017) formalizes the idea that a decision for an individual 
is fair if it does not change in a counterfactual world where the individual belongs to a different 
group.

Representational harms

Instead of focusing on resource allocation or opportunity granting, representational 
harms are concerned with providing fair representations of groups and individuals at the same 
time. Most of the success in ML today can be attributed to deep learning models’ ability to build 
informative representations of the world. However, these representations often capture and 
amplify historical inequalities. Therefore, various measures have recently been devised to 
quantify the extent to which ML models capture and potentially amplify our society’s 
stereotypical biases. The seminal work by Caliskan et al. (2017) demonstrated that word-
embedding models replicate human-like stereotypes and proposed the Word Embedding 



Association Test (WEAT) derived from the Implicit Association Test (IAT; Greenwald & Banaji, 
1995): Formally, let X and Y be two equal-sized sets of target words (e.g., science-related words 
and art-related words) and AB, be two sets of attribute words (e.g., male and female words); then 
the effect size and p value of WEAT are defined as

where {(X Yi, i )} is used to denote partitions of X∪Y to equal size sets and 

More recent work has extended the preceding formalization from word embeddings to 
language models while attempting to provide more coverage on the variety of stereotypes 
covered; for example, May et al. (2019) attempted to extend WEAT to sentences, and Nadeem et 
al. (2020) proposed a measure to quantify the stereotypes in state-of-the-art language models. 
Unsurprisingly, they demonstrate that language models encode human stereotypes to varying 
degrees.

Impossibility of fairness

Ideally, we want models that are fair with respect to all the aforementioned definitions. 
However, Chouldechova (2017) and Kleinberg et al. (2016) demonstrate impossibility of fairness 
by proving that it is impossible for a model to satisfy all definitions of fairness in decision-making
simultaneously. Green (2022) argues this can be alleviated by moving toward substantive 
evaluations of the role of models in promoting justice in practical settings.

How Psychologists Can Help Reduce Algorithmic Bias

As psychologists uncover the various ways that psychological bias is prevalent in ML 
models, they may begin to generate solutions to reduce this bias. Central to the psychological 
literature of understanding bias and prejudice is identifying ways to reduce it (e.g., see Mallett & 
Monteith, 2019; Paluck et al., 2021; Paluck & Green, 2009). In this section, we point 
psychologists to some ways that their research can help model engineers identify, and reduce, 
extant biases. We use psychological theories to address two issues model engineers may run into 
when designing these models: identifying existing biases and accounting for protected 
characteristics.

Intergroup contact theory

Some fairness researchers recommend that model engineers should interact with people 
who are affected by their models (e.g., Blodgett et al., 2020), as doing so can help the engineers 



understand how their models impact the lived experiences of different communities— especially 
marginalized communities. Work in psychology provides empirical support for this 
recommendation: Namely, under some conditions, engaging with outgroup members can reduce 
prejudice and discrimination (Pettigrew & Tropp, 2006; Reimer & Sengupta, 2022). For instance,
incidental intergroup contact, where people engage with outgroup members fleetingly, has the 
potential to reduce prejudice (Anicich et al., 2021b). Indeed, this may be achieved when these 
interactions are structured by the model engineers’ employer, as institutionally supported 
intergroup contact is an effective way to improve intergroup relations (Anicich et al., 2021a).

Color blindness in constructing models

One of the key goals of fairness in machine learning is to derive mathematical 
formulations of nondiscrimination in decision-making to reduce bias expressed in the models. 
These formulations set constraints on the shapes of distributions relative to different protected 
traits (Oneto & Chiappa, 2020). There is active discussion within the ML community to 
understand the best way to represent protected traits. Some point out that model engineers could 
design models that do not account for protected traits (Chouldechova & Roth, 2020; Kusner et al.,
2017) but note that this is not always adequate for removing bias (Veale & Binns, 2017; Žliobaite 
& Custers, 2016). This neatly dovetails into the psychological research on color blindness, or the 
belief that racial group membership should not be accounted for in decision-making (Apfelbaum 
et al., 2012). However, higher levels of color-blindness (vs. awareness) ideologies is associated 
with increased bias (Plaut et al., 2018) and other negative outcomes. For instance, among White 
people, higher levels of color blindness have been associated with reduced understanding of 
marginalized people’s unique realities (Neville et al., 2013), greater apathy to racism (Tynes & 
Markoe, 2010), and less willingness to support antidiscrimination efforts (Awad et al., 2005). 
This is because color blindness can correct for visible sources of bias (e.g., making a colorblind 
hiring decision can reduce biases derived from names) but cannot take into account embedded 
biases (e.g., lack of access to resources and necessary support to make a resume or curriculum 
vitae strong and attractive). Thus, reducing model engineers’ color blindness in the model 
construction process may be instrumental to reducing bias in ML. Fairness scholars have 
identified the value of acknowledging protected characteristics, too: For instance, Bender et al. 
(2021) note the power of culturally appropriate training data, and Kilbertus et al. (2018) state that
including protected characteristics can help model engineers understand if a model is really fair. 
Moreover, race-neutral approaches to model development ultimately have poorer prediction rates 
for racial-minority populations (Robinson et al., 2020).

Of course, psychology can help extend computer scientists’ understanding of the notion of
fairness itself. For example, recent research in moral psychology has argued that the notion of 
fairness is too broad and vague, and it may be better captured by breaking it down further into 
notions of equality and proportionality (Atari et al., 2023; Rai & Fiske, 2011). Other lines of 
work could look at cultural differences in perceptions and concerns about fairness; for instance, 
psychology’s extant work on procedural justice could help fairness scholars understand how 
engineers’ desire to voice concerns about unfair model inputs varies by culture (Brockner et al., 
2001). Additionally, psychologists can investigate how psychological bias gets transferred from 



engineers to models, as research on implicit social cognition would argue that model engineers 
nonconsciously transfer beliefs and attitudes into the model (Greenwald & Banaji, 1995), 
impeding their ability to input fairness constraints into the model.

Other major theories in psychology, such as the stereotype content model (SCM; Cuddy et
al., 2008, 2009), can also help reduce stereotypical biases learned by ML models. SCM posits 
that the content of stereotypes, as opposed to their process, can be decomposed along two 
fundamental dimensions of warmth and competence (Cuddy et al., 2008). Recent research from 
our own team has applied SCM to characterize how the stereotypical biases of annotators 
transfers to ML models (Davani et al., 2021) and demonstrated the efficacy of SCM in mitigating 
representational harms in natural language processing across a range of social groups (Omrani et 
al., 2022).

Without direct collaborations, much is lost between the two fields. Research in ML, and 
investigations into fairness in ML, provides an exciting new context wherein psychologists can 
test and expand their theories. Research in psychology, on the other hand, can inform tools, 
strategies, and processes to help ML model engineers identify and mitigate their own bias and 
bias in their models.

Discussion and Conclusion

ML models are not created in a vacuum; they are designed and built by humans and are 
trained and optimized using data from a thin slice of the human population. Moreover, humans’ 
psychological biases beset ML—these biases arise, in part, from existing biases in the data set, 
heightened feelings of power in model engineers, and a negligence about how biases manifest in 
ML. As a result of these biases, ML models—and consequently, the humans who rely on them—
can make problematic decisions that further perpetuate social inequalities. Our goal in writing 
this article is to encourage psychologists to think about how their work could contribute to our 
understanding, and mitigating, of bias in ML.

Specifically, we call for more collaborations between psychologists and ML researchers to
develop frameworks established in psychological theories that can be used to explain how bias 
leaks into the models. The complexity of today’s dominant ML pipelines can prohibit a deep 
understanding of their exact operating. Therefore, leveraging the rich body of psychological 
research on human biases has the potential to help ML researchers and practitioners understand 
the sources of bias and mitigate them in ML pipelines at a deeper level.

In this work, we have focused primarily on strategies that individual model engineers can 
take rather than strategies that organizations can implement. Investigating institution-level biases 
is likely a fruitful alternative approach for psychologists to understand how reducing bias at 
different levels (e.g., the organizational level) could have downstream consequences for the degree
of bias the models exhibit. As much as people perpetuate bias, organizations can institutionalize 
it, particularly if they prioritize prediction accuracy—and consequently, profit—over fairness.

Birhane and Prabhu (2021), inspired by Benjamin (2019), reminded us that “feeding AI 
systems on the world’s beauty, ugliness, and cruelty, but expecting it to reflect only the beauty, is 
a fantasy” (p. 1540). In essence, the biases manifested in the ML models are a reflection of the 
psychological states of the creators of the models; this includes not just the model engineers but 



our society as a whole. In that way, the models are biased because “the sins of the parents are laid
upon the children” (Shakespeare, 2022). It is important for us to use the insights that we have 
developed in psychology to shine our lights on the various inequities that ML models perpetuate 
and reduce bias in the model construction process. Yet, rather than reinventing the wheel, 
psychologists should be aware of the progress that fairness researchers have already made and 
build upon their innovations.



Figures

Fig. 1. Bias in the data and bias of model engineers influence bias in the model output.
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