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Abstract

A Modeling Framework for Non-Gaussian Spatial and Temporal Processes

by

Xiaotian Zheng

This dissertation builds a modeling framework for non-Gaussian spatial processes,

time series, and point processes, with a Bayesian inference paradigm that pro-

vides uncertainty quantification. Our methodological development emphasizes

direct modeling of non-Gaussianity, in contrast with traditional approaches that

consider data transformations or modeling through functionals of the data prob-

ability distribution. We achieve the goal by defining a joint distribution through

factorization into a product of univariate conditional distributions according to a

directed acyclic graph which implies conditional independence. We model each

conditional distribution as a weighted combination of first-order conditionals, with

weights that can be locally adaptive, for each one of a given number of parents

which correspond to spatial nearest-neighbors or temporal lags. Such a formula-

tion features specification of bivariate distributions that define the first-order con-

ditionals for flexible, parsimonious modeling of multivariate non-Gaussian distri-

butions. We obtain, in time, high-order Markov models with stationary marginals,

and point process models for limited memory, dependent renewals, and duration

clustering; and in space, nearest-neighbor mixture models for spatial processes.

Regarding computation, representing the framework by directed acyclic graphs,

with a mixture model formulation for the conditionals, gains efficiency and scal-

ability relative to many non-Gaussian models. We develop Markov chain Monte

Carlo algorithms for implementation of posterior inference and prediction, with

data illustrations in biological, environmental, and social sciences.

xiv



Acknowledgments

First and foremost, I would like to thank my advisors, Athanasios Kottas

and Bruno Sansó, for their mentorship. This dissertation would not have been

possible without their patience, support, and guidance. Their insights into how to

approach statistical problems have deeply influenced me, and their generous advice

throughout the entire research process has shaped me to become an independent

researcher. I cannot thank them enough.

I would also like to thank: Raquel Prado and Paul Parker for serving on my

dissertation reading committee, and providing excellent suggestions that improved

my dissertation; Eric Aldrich for guiding me to organize code in a package to make

my daily research easier, and for a collaboration on a project involving high-

frequency data that partially motivated the work in Chapter 3; Fabrizio Ruggeri

and Robert Lund for their useful comments on my dissertation proposal; Tyler

McCormick, an associated editor, and three anonymous referees for their helpful

reviews of a manuscript version of Chapter 2.

The research for Chapter 2 was supported in part by the National Science

Foundation under awards SES 1631963 and SES 2050012. The text of the chapter

includes an adapted reprint of the following previously published article:

Zheng, X., Kottas, A., and Sansó, B. (2022), “On Construction and Estimation

of Stationary Mixture Transition Distribution Models,” Journal of Computational

and Graphical Statistics, 31, 283–293.

The co-authors listed in this publication supervised the research that forms the

basis for the chapter.

xv



Chapter 1

Introduction

1.1 Motivation and Objective

Non-Gaussian data are prevalent in a wide range of disciplines including health,

biological, environmental, and social sciences. The term non-Gaussian, in general,

refers to either the nature of the data, such as integer and positive values, or

any behaviors beyond the modeling capacity of a Gaussian distribution, such

as asymmetry and heavy-tailedness. Statistical models that account for non-

Gaussian features are essential as they are building blocks for experts to uncover

underlying patterns and make scientific decisions.

Current approaches for modeling non-Gaussian data can be roughly classified

into two categories: (hierarchical) first-stage Gaussian models and hierarchical

first-stage non-Gaussian models. The former, assuming continuous data, exploits

representing a non-Gaussian distribution as a location-scale mixture of Gaussian

distributions, by choosing appropriate continuous or discrete mixing distributions

for the location and/or scale parameter(s). Transforming the data and apply-

ing a Gaussian or Gaussian mixture model, loosely speaking, is also regarded as

first-stage Gaussian modeling. This approach is straightforward, but the trans-

1



formation may introduce distortion. Alternatively, one can turn to the class of

hierarchical first-stage non-Gaussian models, by specifying non-Gaussian marginal

distributions for the data, and including fixed and/or random effects through some

functional of the data marginal distributions. For example, when the marginal

distribution corresponds to an exponential dispersion family, and the functional

is transformed mean, the resulting model is referred to as the generalized linear

model (GLM; McCullagh and Nelder 1983). We recognize that our discussion

here can by no means include all non-Gaussian models. For example, some non-

parametric methods such as tree models do not fall into the two categories. On

the other hand, a Dirichlet process mixture model can belong to either one of

the categories when the model is written in a hierarchical form, in which the first

stage corresponds to the mixture kernel. Again, we only attempt to summarize

the general idea for modeling non-Gaussian data to motivate our development of

the proposed framework. Comprehensive reviews of non-Gaussian models relevant

to the topic of each chapter are provided therein.

When non-Gaussian data are irregularly located in space, the general strategy

for modeling such data is to remove the independence assumption among obser-

vations, and add to the aforementioned approaches components that can describe

spatial variability across locations. Consequently, the Gaussian distribution is re-

placed with a Gaussian process that offers a rich modeling framework for capturing

complex spatial dependence, usually under the expectation that follows Tobler’s

first law of geography. The issue of distortion when we apply a transformation to

non-real-valued data can be exaggerated, as it is generally difficult to guarantee

one-to-one correspondence in terms of spatial dependence before and after trans-

formation. It is tempting, then, to consider independent first-stage non-Gaussian

likelihoods, conditional on a latent Gaussian process that is associated with some

2



functional of the first-stage marginal distribution. When the Gaussian process is

assumed for the spatial random effects through a link function for some parame-

ter(s) of the first-stage distribution, the model is traditionally known as the spatial

generalized linear mixture model (SGLMM; Diggle et al. 1998). A spatial copula

model specifies the joint distribution over the spatial domain using a multivariate

copula with a collection of marginal distributions. This model can be regarded as

a hierarchical non-Gaussian first-stage model when augmented with a vector of

latent variables that are probability integral transformations of the observations.

The second stage consists of a multivariate distribution underlying the chosen cop-

ula for the latent variables. A question here is whether modeling non-Gaussian

dependence through functionals of the data probability distribution, rather than

data themselves, is sufficient.

As for non-Gaussian data that are dependent in time, first, it is important to

identify the data structure. We focus on two types of temporal data. The first

one concerns data that are collected sequentially with regular intervals, referred

to as discrete time series. The second type relates to continuous times that are

occurrence times of events. These events take place irregularly over time, and form

a point pattern. Stochastic models for point patterns proceed either with modeling

the occurrence times or intervals between them, both of which are naturally non-

Gaussian since they are positive-valued. We are interested in the latter approach,

and for brevity and clarity, hereafter, the interval between event times is referred to

as duration. Durations can be independent or dependent based on the assumption

for the point pattern. When there is dependence among durations, the durations

form a discrete time series, since indices of the durations correspond to event

occurrences, which are integers and are, of course, regularly spaced.

For non-Gaussian discrete time series, a dynamic generalized linear model

3



(DGLM; West et al. 1985; West and Harrison 2006) is in place to model the dy-

namic. Generally speaking, a DGLM is a hierarchical model that consists of data

distributions in the first stage, conditional on a latent process for some parame-

ter(s) of the data distribution, which forms the second stage. Thus, similar to the

SGLMM setting in spatial statistics, the DGLM assumes conditional independent,

non-Gaussian likelihoods, with the difference being the employment of the latent

process to uncover temporal or spatial dependence. This similarity also applies

to the class of copula models for time series. Another popular approach for non-

Gaussian discrete time series results from the well-known autoregressive moving

average (ARMA) models, e.g., the class of integer-valued autoregressive (INAR)

models. In general, the additive representation of ARMA models is restrictive for

non-Gaussian data. Formulating an additive model for non-Gaussian data needs

additional care. For example, defining an INAR model needs the specification of

a thinning operator and either the innovations or the marginal distributions.

All previously mentioned models have been successful in solving a lot of prob-

lems and applied to a great variety of scientific fields. The objective of this dis-

sertation is to develop methodologies that can handle some problems unsolved by

existing models or problems that have unsatisfactory solutions. For example, the

DGLM is well suited to modeling nonstationary time series. On the other hand, it

does not provide a good solution when the application of interest lies in inference

for a non-Gaussian stationary marginal distribution, with a possible assumption

that the temporal dependence is high order. With the high-order dependence in

mind, autoregressive models formulated as stochastic difference equations hinder

the study, which generally requires parameter constraints for the solutions. Cop-

ula models allow for constructing non-Gaussian time series given a pre-specified

family of stationary marginal distribution, with a multivariate copula to capture
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the latent temporal dependence. However, inference for this class is generally diffi-

cult, especially when the data are discrete-valued. Therefore, the first goal of this

dissertation is to provide a framework that allows for constructing non-Gaussian

time series given a pre-specified family for the marginal distributions, with both

stationarity conditions and model inference are easy to implement.

Similar problems are encountered in point process modeling. A renewal pro-

cess is typically specified via independent and identically distributed durations.

Historically, a particular interest in modeling point processes is motivated by re-

moving the independence assumption in the specification of a renewal process.

This, interestingly, coincides with our first goal: building a high-order Markov

model with a non-Gaussian stationary marginal distribution. In fact, even keeping

only the modeling objective of a non-Gaussian high-order time series is interesting

enough for point process modeling. The resulting point process, depending on the

shape of the associated conditional intensity function, can be classified as a self-

exciting or self-regulating process. A popular class of self-exciting point process

model is the Hawkes process (Hawkes, 1971a,b). When one does not seek infer-

ence to recover clustering structure, the Hawkes process specified via an additive

formulation for the conditional intensity that assumes full history dependence can

be computationally unattractive. Moreover, its assumption of dependence on all

past events may be redundant. Thus, the second goal of this dissertation is to

develop a framework for modeling point processes with high-order memory, which

will include various types of point patterns mentioned above.

In non-Gaussian spatial modeling, there are two problems that we consider

need further exploration for better solutions. The first one lies in the hierarchical

first-stage non-Gaussian models that involve working with a large vector of spa-

tially correlated random effects. These models, in particular, are almost default
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choices for a wide range of applications where the data are positive-valued, pro-

portions, or discrete. Introducing spatial dependence through functionals of the

data probability distribution, however, may fail to capture certain aspects of the

complex non-Gaussian dependence. Moreover, inference for the vector of corre-

lated random variables poses great challenges. Non-Gaussian first-stage models do

not enjoy the Gaussian model property to work with marginalized likelihood with

the spatial random effects integrated out. Thus, under simulation-based inference

such as Markov chain Monte Carlo (MCMC) algorithms, it is unavoidable to esti-

mate the spatial random effects which generally requires sampling a large number

of highly correlated variables, not to mention the large computational burden.

Approximate inference is commonly used as the solution at the cost of possibly

inaccurate uncertainty estimation, which may be important for some applications.

The second problem is the lack of a general modeling framework for non-

Gaussian spatial data, although most of the non-Gaussian models connect to a

Gaussian process in certain ways, either through transformation or using it as a

building block. However, simply relying on covariance functions of a Gaussian

process may limit the modeling capacity for capturing non-Gaussian dependence.

The final goal of this dissertation aims at providing a unified framework with

generality that supports constructing spatial processes for general types of non-

Gaussian data, and flexibility for capturing non-Gaussian dependence in a way

beyond the usual link to a Gaussian process, as well as computationally efficiency

that avoids working with a large vector of correlated random variables.
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1.2 A Coherent Framework with Directed Acyclic

Graphs

We achieve the objective of building a coherent framework for spatially and

temporally dependent non-Gaussian data by representing a joint distribution with

respect to a directed acyclic graph (DAG). A directed graphical model (DGM;

Lauritzen 1996; Jordan 2004; Murphy 2012), also known as a Bayesian network,

is a probabilistic model with a DAG that explains the conditional dependence

structure among the random variables. DGMs factorize a joint distribution into a

product of univariate conditionals that imply conditional independence. Express-

ing a joint distribution as a product of conditionals facilitates the construction

of a multivariate non-Gaussian distribution, by choosing appropriate models for

the univariate conditionals, thus achieving flexible, parsimonious modeling, and

computational scalability.

Consider a vector of dependent scalar-valued random variables (Z1, . . . , Zn),

and let zi be the realization of Zi, for i = 1, . . . , n. We assume all random variables

are continuous, and denote by p(z1, . . . , zn) the joint density of (Z1, . . . , Zn). For

brevity, we drop the conditioning of the density on some parameters. We note

that the following discussion in general holds for discrete random variables. By

the chain rule of probability theory, we can always factorize the joint density

p(z1, . . . , zn) = p(z1)p(z2 | z1)p(z3 | z2, z1) · · · p(zn | zn−1, . . . , z1), where p(zi) is the

marginal density of Zi and p(zi | zi−1, . . . , z1) is the conditional density of Zi given

(Zi−1 = zi−1, . . . , Z1 = z1).

For certain problems, some variables in the conditioning set of p(zi | zi−1, . . . , z1),

as i gets larger, can be redundant, i.e., conditional on some useful variables, the

other ones provide no additional information. An immediate attempt may be to
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choose a suitable, small subset of the conditioning set that suffices for statistical

modeling. For example, if the vector (z1, . . . , zn) corresponds to a realization of a

discrete time series, the first-order Markov assumption reduces the joint density to

p(z1, . . . , zn) = p(z1)
∏n
i=2 p(zi | zi−1). This assumption corresponds to the notion

of conditional independence. It assumes that, for i ≥ 3, conditional on Zi−1, the

random variable Zi is independent of the random vector (Zi−2, . . . , Z1). It turns

out that we can generalize this idea to introduce conditional independence through

the conditionals of a DGM when building a model for the joint distribution, with

the conditional independence structure summarized in a DAG.

Let G(V , E) be a graph, where V = {1, . . . , n} is a set of vertices, and E =

{(i, j) : i, j ∈ V} a set of edges. We take G(i, j) = 1 if (i, j) ∈ E , i.e., i → j is a

edge in G. A graph is undirected if G(i, j) = 1 if and only if G(j, i) = 1. Otherwise,

the graph is directed. A directed cycle refers to a set of vertices v1, . . . , vk ∈ V

such that v1 = vk and G(vj, vj+1) = 1 for j = 1, . . . , k − 1. A DAG is a directed

graph with no directed cycles. The set of parents of vertex i in a DAG, denoted as

pa(i), contains vertices j such that pa(i) = {j : G(j, i) = 1}. A DAG is numbered

in topological order if, for every (i, j) ∈ E , i < j. Without loss of generality, we

will assume that the graph is in topological order.

We define a joint density of (Z1, . . . , Zn) with respect to a DAG, G(V , E),

by associating vertex i of G with random variable Zi. The joint density can be

expressed as

p(z1, . . . , zn) = p(z1)
n∏
i=2

p(zi | zpa(i)), (1.1)

where zpa(i) contains elements of (z1, . . . , zi−1) whose associated vertices are the

parents of i, that is, the set of vertices that have directed edges to vertex i.

The expression (1.1) is ready to use for discrete time series or spatial modeling.

In time, zpa(i) can be viewed as a set of temporal lags of zi at time i. Although it
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is not necessarily the case, it is common to assume that pa(i) is, say, a subset of

{i−1, . . . , i−p}, which corresponds to a p-order Markov model. For spatial data,

the parents in set pa(i) can be interpreted as the nearest neighbors of the vertex

i, that is, vertices (or locations) in pa(i) that have shorter distances to vertex i,

compared to other vertices {1, . . . , i− 1} \ pa(i). Therefore, the DAG-based joint

density in (1.1) allows for the development of a coherent framework for spatially

and temporally dependent data. Note that spatial locations are not naturally

ordered, so the indices of the random variables implicitly impose an ordering on

the locations. More details of the ordering effect can be found in Chapters 4 and

5. Here, we focus on motivating the use of DGMs for our framework.

The key to our framework for modeling non-Gaussian multivariate distri-

bution comes from the modeling approach for the conditionals p(zi | zpa(i)) in

(1.1). Note that the dimension of pa(i) could be large in certain cases, mean-

ing that p(zi | zpa(i)) corresponds to a high-dimensional multivariate distribution

p(zi, zpa(i)). In general, multivariate non-Gaussian distributions are not as tractable

as the multivariate Gaussian ones. Developing a framework for modeling multi-

variate non-Gaussian distribution is challenging. We overcome the challenge by

using a structured mixture model for the conditionals, that is,

p(zi | zpa(i)) =
iL∑
l=1

wl(i)fil(zi | z(l)
pa(i)), (1.2)

where iL is the size of the set pa(i), and z(l)
pa(i) is the lth element in the vector zpa(i).

The elements in zpa(i) are placed in ascending order with respect to some distance

function. If (1.2) corresponds to a time series model, then we may let z(l)
pa(i) = zi−l,

which is the lth lag of zi. Note that the weights for the conditional density

p(zi | zpa(i)) in (1.2) are allowed to change across vertices i. In other words, each

vertex i is associated with a vector of weights {wl(i)}iLl=1. This general definition
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features local adaptability, which can be crucial for capturing complex dependence.

For example, in the geospatial context, vertex i corresponds to location si. Thus,

the weights wl(i) = wl(si) can vary across space to accommodate potentially

different dependence structures in different regions.

Combining (1.1) with (1.2), modeling a multivariate distribution boils down to

specification of a collection of bivariate distributions that define the conditionals

fil for l = 1, . . . , iL and i = 2, . . . , n, and a marginal distribution for Z1. Compared

to working with a multivariate distribution, constructing its bivariate analogue for

a non-Gaussian random vector is in general manageable. Various approaches for

constructing bivariate distributions are well studied in the literature, providing

different perspectives to specify a bivariate distribution, such as using a pair of

compatible conditionals (Arnold et al., 1999) and using a bivariate copula (Joe,

2014). These approaches will be discussed and applied throughout this disserta-

tion. Overall, we obtain a general modeling framework for non-Gaussian data,

and, in certain conditions, for non-Gaussian processes in time and space.

The class of mixture transition distribution (MTD) models, which is the fo-

cus in Chapter 2, is a special case of (1.2). The MTD model was first proposed

in Raftery (1985) as a parsimonious model for approximating high-order Markov

chains on finite state space, and is later extended in Le et al. (1996) to mod-

els supported on continuous state space. Chapter 2 modifies the MTD model in

Le et al. (1996). The modified model corresponds to (1.2), by first taking the

first-order conditional densities fil(zi | z(l)
pa(i)) = fl(zi | zi−l), and letting the order

iL = L and weights wl(i) = wl for i > L. When 2 ≤ i ≤ L, we let iL = i − 1,

and wl(i) = wl for 1 ≤ l ≤ i− 2, and wi−1(i) = 1 −∑i−2
r=1 wr(i). This modification

facilitates the study of conditions for first-order strict stationarity, which allows

for different constructions with either continuous or discrete families for the con-

10



ditional densities fl(zi | zi−l) given a pre-specified family for the marginal density,

and with general forms for the resulting conditional expectations. Apart from a

framework to construct MTDs with stationary marginals, we develop a Bayesian

framework for posterior inference and prediction, with particular emphasis on flex-

ible, structured priors for the weights. Such priors support high-order dynamic

modeling, i.e., under a large value of L, with efficient computation leveraged from

the mixture model formulation in (1.2).

We then specify the modified MTD as the conditional density of the duration

of a point process, and propose a point process modeling framework in Chapter 3.

Using an MTD model for the conditional duration density accommodates high-

order, non-Gaussian dynamics, and thus, it enables flexible modeling for temporal

point processes with memory. A byproduct of this modeling approach is that the

conditional intensity function of the resulting point process admits a representa-

tion as a local mixture of first-order hazard functions. This allows for constructing

self-exciting or self-regulating point processes by specifying an appropriate family

of distributions for the conditional densities of the MTD. The stationarity condi-

tion developed in Chapter 2 is applied to construct point processes given a pre-

specified family for the marginal density of the duration process. This overcomes

the particular challenge in modeling point process via dependent durations as dis-

cussed in Section 1.1. The resulting model, interpreted as a dependent renewal

process, has identically distributed but high-order, Markov-dependent durations

with general shapes for the associated hazard function. We also study exten-

sions to cluster point processes that can describe duration clustering behaviors

attributed to different factors, expanding the scope of the modeling framework to

a wider range of applications.

Finally, in Chapters 4 and 5, we use (1.2) for spatial modeling. In particular,
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we replace the weights wl(i) with wl(si) and the conditional densities fil(zi | z(l)
pa(i))

with fsi,l(z(si) | zs(il)), where s(il) is the lth nearest neighbor of a location si with

respect to a distance function. Such a formulation is locally adaptive, combined

with the approach of building nearest-neighbor processes (Datta et al., 2016a),

providing a direct, computationally efficient, probabilistic modeling framework

for non-Gaussian spatial processes. It emphasizes the ability to describe spatial

dependence at the data level. Introducing spatial dependence at the data level

avoids associating some functionals of the data probability distribution with a

latent process, thus offering a solution to the first problem in non-Gaussian spatial

modeling as discussed earlier in Section 1.1. Our coherent framework that models

multivariate non-Gaussian distribution through the combination of (1.1) and (1.2)

naturally solves the second issue. To the best of our knowledge, the proposed

framework is the first one that provides generality for modeling general types of

non-Gaussian spatial data. Another property that distinguishes our framework

from the existing non-Gaussian spatial models is that its computation involves

no large matrix operations, which are commonly known as the biggest barrier in

Gaussian process computations for large data sets.

The rest of the dissertation is organized as follows. Chapters 2 and 3 focus on

developing frameworks for non-Gaussian time series and point processes. Chapters

4 and 5 turn to non-Gaussian data indexed in space, providing frameworks for non-

Gaussian continuous-valued processes and discrete-valued processes, respectively.

In each chapter, we develop posterior simulation methods for model inference and

prediction, and illustrate the benefits of the modeling frameworks through both

synthetic and real data examples. We conclude with some future perspectives and

remarks in Chapter 6. Technical details on proofs and model implementations are

provided in Appendices A and B.
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Chapter 2

Models for Stationary

Non-Gaussian Time Series

2.1 Introduction

MTD models describe a time series {Xt : t ∈ N}, where Xt ∈ S ⊆ R for all t,

by specifying the distribution of Xt conditional on the past as

F (xt | xt−1) =
L∑
l=1

wl Fl(xt | xt−l), (2.1)

for t > L, based on initial values for (x1, . . . , xL)⊤. In Equation (2.1), F (xt | xt−1)

is the conditional cumulative distribution function (cdf) of Xt given that X t−1 =

xt−1, and Fl(xt |xt−l) is the conditional cdf of Xt with respect to the lth transition

component given that Xt−l = xt−l, where X t−1 = {Xi : i ≤ t−1} and xt−1 = {xi :

i ≤ t − 1}. The parameters wl ≥ 0, l = 1, . . . , L, assign weights to the transition

components, such that ∑L
l=1 wl = 1. On a finite state space this model provides a

parsimonious approximation of high-order Markov chains (Raftery, 1985; Raftery

and Tavaré, 1994; Berchtold, 2001). On a more general space, the model structure
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can represent time series that depict non-Gaussian features such as burst, outliers,

and flat stretches (Le et al., 1996), or change-points (Raftery, 1994). We refer to

Berchtold and Raftery (2002) for a review. An MTD model consists of L first-

order transition components. The mixture autoregressive model of Wong and Li

(2000) is a generalization that allows for each transition component to depend on

a different number of lags; Lau and So (2008) consider a Bayesian nonparametric

prior for the transition component of such models. There are several related

extensions that consider mixtures of autoregressive conditional heteroscedastic

terms, including Wong and Li (2001b), Berchtold (2003), Zhu et al. (2010) and Li

et al. (2017). Other extensions include multivariate model settings (Hassan and

Lii, 2006; Fong et al., 2007; Kalliovirta et al., 2016), time-varying mixture weights

(Wong and Li, 2001a; Bartolucci and Farcomeni, 2010; Bolano and Berchtold,

2016), non-linear transition dynamics (Heiner and Kottas, 2022a) and order/lag

selection (Khalili et al., 2017; Heiner and Kottas, 2021). Applications of these

models appear in many fields such as finance, and the environmental and medical

sciences; see, for example, MacDonald and Zucchini (1997); Lanne and Saikkonen

(2003); Escarela et al. (2006); Cervone et al. (2014).

Stationarity for MTD models, and their extensions, is generally difficult to

attain due to the mixture model structure. This limits the choices of parametric

families for the transition components for these models. Families considered in

the literature include: Gaussian (Le et al., 1996; Wong and Li, 2000; Kalliovirta

et al., 2015); Student-t (Wong et al., 2009; Meitz et al., 2021); Laplace (Nguyen

et al., 2016); Weibull (Luo and Qiu, 2009); and Poisson (Zhu et al., 2010). These

models are typically parameterized in ways that result in conditional expectations

that are linear functions of the lags. This particular parameterization facilitates

the study of stationarity, though only in a weak sense, at the cost of reducing
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model flexibility. Indeed, the conditional expectation of an MTD model has the

general form ∑L
l=1 wl µl(xt−l), where µl(y) =

∫
xdFl(x | y), allowing for non-linear

dependence of the mean, conditional on past observations.

The primary goal of this chapter is to develop conditions for first-order strictly

stationary MTD models, that is, stationary models with an invariant marginal

distribution. We show that a sufficient condition is to assume the same marginal

distribution for all the components of the mixture. It turns out that this marginal

distribution is also the invariant marginal distribution of the time series. Under

this condition, first-order strict stationarity is achieved with respect to any par-

ticular parameterization. We thus obtain a rich class of distribution specifications

for the model, facilitating the study of component distributions that have not

been explored in the literature, and enhancing the modeler’s ability to extend

beyond high-order linear dependence in the conditional expectation. Although

the focus of our methodology is on strictly stationary models, we also study weak

stationarity conditions for MTD models with linear conditional expectation.

MTD models are usually built by specifying transition densities fUl|Vl
for each

component l = 1, . . . , L. These correspond to conditional densities for random

variable Ul given random variable Vl. This specification raises a question of ex-

istence of a coherent bivariate density fUl,Vl
. Our second goal is to provide a

constructive approach to building MTD models that satisfy our strict stationar-

ity condition under a coherent bivariate density fUl,Vl
. We present two distinct

approaches: the bivariate distribution method, which is based on specifying the

bivariate distribution of the pair (Ul, Vl), l = 1, . . . , L; and the conditional distribu-

tion method, which consists of finding pairs of compatible conditional distributions

fUl|Vl
and fVl|Ul

for all (Ul, Vl).

Our final goal is to develop a Bayesian framework for MTD model inference
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and prediction. We assume that the order of dependence is unknown, but is

bounded above by a finite number L. We use an over-specified model with L cho-

sen conservatively, under the expectation that only a few of the lags contribute to

the dynamics of the series. We consider two priors for the mixture weights, one

based on a truncated stick-breaking process, and the other obtained by discretiza-

tion of a cdf which is assigned a nonparametric prior. While the former supports

stochastically decreasing weights, the latter favors important, but not necessarily

consecutive weights.

The rest of the chapter is organized as follows. In Section 2.2 we review the

issues related to establishing stationarity conditions for MTD models. We then

introduce the invariant condition that yields the class of first-order strictly sta-

tionary MTD models, and connect it to weak stationarity. Section 2.3 illustrates

two methods to construct such models with many examples. In Section 2.4, we

outline the Bayesian approach for model estimation and prediction, followed in

Section 2.5 by an illustration of the properties of two structured priors for mixture

weights on synthetic data, and applications of the models on two real data sets of

different nature. Finally, we conclude with a discussion in Section 2.6.

2.2 First-Order Strict Stationarity

Consider the conditional density specification of the model in Equation (2.1):

f(xt | xt−1) =
L∑
l=1

wl fl(xt | xt−l). (2.2)

Under our modeling framework, each transition component is taken to correspond

to the distribution for a random vector (Ul, Vl), for l = 1, ..., L, where fl ≡ fUl|Vl

denotes the associated conditional density.
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Earlier work has studied necessary and sufficient conditions for constant first

and second moments (Le et al., 1996). In general, such conditions are difficult

to establish, especially for the second moment
∫

S x
2
t gt(xt)dxt, where gt(xt) =∑L

l=1 wl
∫

S fl(xt |xt−l)gt−l(xt−l)dxt−l is the marginal density of the process {Xt}.

This restricts the choices of parametric families for the component transition den-

sities. In particular, those choices result in linear conditional expectations. Even

when conditions for time-independent first and second moments can be obtained,

the resulting constrained parameter spaces complicate estimation.

The key result for our methodology is given in the following proposition, the

proof of which can be found in the Appendix. The result provides the foundation

for different constructions of first-order strictly stationary MTD models. Rather

than imposing restrictions on the parameter space, the proposition formulates

a substantially easier to implement condition on the marginals of the bivariate

distributions that define the transition components.

Proposition 2.1. Consider a set of bivariate random vectors (Ul, Vl) taking values

in S×S, S ⊆ R, with conditional densities fUl|Vl
, fVl|Ul

and marginal densities fUl
,

fVl
, for l = 1, . . . , L, and let wl ≥ 0, for l = 1, ..., L, with ∑L

l=1 wl = 1. Consider

a time series {Xt : t ∈ N}, where Xt ∈ S, generated from

f(xt | xt−1) =
L∑
l=1

wl fUl|Vl
(xt | xt−l), t > L, (2.3)

and from

f(xt | xt−1) =
t−2∑
l=1

wl fUl|Vl
(xt | xt−l) +

(
1 −

t−2∑
k=1

wk

)
fUt−1|Vt−1(xt | x1), 2 ≤ t ≤ L.

This time series is first-order strictly stationary with invariant marginal density

fX if it satisfies the invariant condition: X1 ∼ fX , and fX(x) = fUl
(x) = fVl

(x),
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for all x ∈ S, and for all l.

The two different expressions for the transition density allow us to establish the

stationarity condition for the entire time series. The relevant form for inference

is the one in Equation (2.3), since we work with the likelihood conditional on the

first L time series observations. Proposition 1 applies regardless of Xt being a

continuous, discrete or mixed random variable.

Regarding strict stationarity, the literature mostly focuses on existence of a

stationary distribution. Exceptions are Kalliovirta et al. (2015) and Meitz et al.

(2021), where a stationary marginal distribution for a mixture autoregressive

model is obtained, albeit again under constrained parameter spaces, and Mena

and Walker (2007) whose approach is the one most closely related to our proposed

methods.

Mena and Walker (2007) use the latent variable method proposed in Pitt

et al. (2002) to construct the conditional density for each transition component

of the MTD. More specifically, fl(xt |xt−l) =
∫
hX|Z(xt | z)hZ|X(z |xt−l)dz, where

hX|Z(x | z) ∝ hZ|X(z |x)fX(x), and the integral is replaced by a sum if Z is a

discrete variable. Then, provided X1 ∼ fX , the MTD model is first-order strictly

stationary with invariant density fX . Under this construction, the invariant den-

sity fX can be viewed as the prior for likelihood hZ|X , which is built through

latent variable Z. In practice, this restricts the approach to continuous time se-

ries, and the choices for the invariant density to cases where fX is conjugate to

hZ|X . Even for such cases, the transition component will typically have a complex

form. In particular, the example explored in Mena and Walker (2007) involves a

gamma invariant distribution, with hZ|X corresponding to a Poisson distribution.

In this case, fl(xt |xt−l) is a countable sum whose evaluation requires modified

Bessel functions of the first kind. Moreover, following Pitt et al. (2002), Mena
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and Walker (2007) restrict attention to choices of hZ|X that yield linear conditional

expectations for the transition components, and thus also for the MTD models.

The key feature of our approach is that it builds from the bivariate distribu-

tions, fUl,Vl
, corresponding to the transition components. In the next section, we

discuss two approaches to specifying those bivariate distributions, either directly

or via compatible conditionals, fUl|Vl
and fVl|Ul

. In conjunction with Proposition

1, we obtain a general framework to constructing first-order strictly stationary

MTD models that can be applied to both discrete and continuous time series,

while allowing for a wide variety of invariant marginal distributions, as well as for

both linear and non-linear lag dependence in the conditional expectation.

In general, an explicit expression for the autocorrelation function for general

MTD models is difficult to derive. However, a recursive equation can be obtained

for a class of linear MTD models. We say the MTD model is linear if E(Ul | Vl =

y) = al + bl y for some al, bl ∈ R, l = 1, . . . , L. Consider a linear MTD model that

satisfies the invariant condition of Proposition 1, and assume that the first and

second moments of the process, denoted by µ and µ(2), exist and are finite. Then,

for any L and h ≥ L, we can derive

E(Xt+hXt) =
L∑
l=1

wlalµ +
L∑
l=1

wlblE(Xt+h−lXt). (2.4)

Assuming that, for any h ≥ 1, E(Xt+hXt) does not depend on time t, let r(h) be

the lag-h autocorrelation function. Then,

r(h) = ϕ+
L∑
l=1

wlblr(h− l), h ≥ L, (2.5)

where ϕ = (∑L
l=1 wlalµ−(1−∑L

l=1 wlbl)µ2)/(µ(2)−µ2) is zero if and only if µ = 0 or

al = (1 − bl)µ. When bl = ρ, ρ ∈ (0, 1) and al = (1 − ρ)µ, for all l, Equation (2.5)
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reduces to r(h) = ρ
∑L
l=1 wlr(h − l), h ≥ L, which is the result in Mena and

Walker (2007).

In the case of distinct roots, the general solution to Equation (2.5) is

r(h) = c1z
h
1 + · · · + cLz

h
L + ϕ ((1 − z1) . . . (1 − zL))−1 , (2.6)

where c1, . . . , cL are determined by the initial conditions r(0), . . . , r(L − 1) and

z1, . . . , zL are the roots of the associated polynomial zL−w1b1z
L−1−· · ·−wLbL = 0.

It follows that, as h → ∞, r(h) → 0 if and only if: (1) ϕ = 0; (2) z1, . . . , zL all lie

inside the unit circle.

The above discussion provides an approach to obtaining a weakly stationary

MTD model based on Equation (2.3), and is summarized in the following propo-

sition the proof.

Proposition 2.2. The time series defined in Equation (2.3) is weakly station-

ary if: (1) the invariant condition of Proposition 1 is satisfied with a stationary

marginal for which the first two moments exist and are finite; (2) the conditional

expectation with respect to fUl|Vl
is E(Ul |Vl = y) = al + bl y, for some al, bl ∈ R,

and for all l; (3) Equation (2.4) is independent of time t, and the roots of the

equation zL − w1b1z
L−1 − · · · − wLbL = 0 all lie inside the unit circle.

Proposition 2 illustrates the construction of a weakly stationary MTD model

building from the invariant condition of Proposition 1. We focus on first-order

strictly stationary MTD models. Weak stationarity can be further studied if

conditions (2) and (3) of Proposition 2 are satisfied.
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2.3 Construction of First-Order Strictly Station-

ary MTD Models

Here, we present two methods to develop first-order strictly stationary MTD

models. The bivariate distribution method constructs the transition density given

a specific marginal distribution. This method may result in analytically in-

tractable transition densities. The second method, consisting of directly speci-

fying the transition component conditional densities, has estimation advantages,

although the analytical form of the marginal density may not be readily available.

Thus, the selection among these methods depends on the modeling objectives.

In fact, there are special cases where both the transition and marginal densities

belong to the same family of distributions.

2.3.1 Bivariate Distribution Method

Under this method, we seek bivariate distributions fUl,Vl
whose marginals fUl

and fVl
are equal to a given fX , for l = 1, . . . , L. Consequently, the lth transition

component density is fUl|Vl
(u | v) = fUl,Vl

(u, v)/fX(v). In contrast to the approach

in Mena and Walker (2007), which is practical when the marginal density is a

conjugate prior for some likelihood, the bivariate distribution method is applicable

to essentially any discrete or continuous marginal invariant density fX . In fact, for

most parametric families, there is a rich literature defining collections of bivariate

distributions with a desired marginal distribution, and allowing for a variety of

dependence structures. The following examples illustrate the method.

Example 1: Gaussian and continuous mixtures of Gaussians MTD models. Un-

der marginal fX(x) = N(x |µ, σ2), the Gaussian MTD model can be constructed
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via the bivariate Gaussian distribution for (Ul, Vl), with mean (µ, µ)⊤ and covari-

ance matrix Σ = σ2
(

1 ρl
ρl 1

)
, resulting in a Gaussian density for fUl|Vl

. In particular,

f(xt | xt−1) =
L∑
l=1

wlN
(
xt | (1 − ρl)µ+ ρlxt−l, σ

2(1 − ρ2
l )
)
. (2.7)

Let t(x |µ, σ, ν) ∝ (1 + ν−1((x− µ)/σ)2)−(ν+1)/2 denote the Student-t density,

where µ, σ and ν are respectively location, scale and tail parameters. To construct

as a natural extension of the Gaussian MTD model a stationary Student-t MTD

model, consider the bivariate Student-t distribution, which can be defined as a

scale mixture of a bivariate Gaussian with mean (µ, µ)⊤ and covariance matrix

qΣ, with Σ as previously defined, mixing on q with respect to an inverse-gamma,

IG(ν/2, ν/2), distribution. Under marginal fX(x) = t(x |µ, σ, ν), the conditional

density f(xt | xt−1) of the Student-t MTD model is given by

L∑
l=1

wl t
(
xt | (1 − ρl)µ+ ρlxt−l, σ

2(1 − ρ2
l )(ν + dl)/(ν + 1), ν + 1

)
, (2.8)

where dl = (xt−l − µ)2/σ2. In both the Gaussian and Student-t MTD examples,

the transition component densities and the invariant density belong to the same

family of distributions.

The Student-t MTD model is an example for building MTD models through

bivariate distributions that admit a location-scale mixture representation. Taking

an exponential distribution for the scale q yields the bivariate Laplace distribution

of Eltoft et al. (2006), thus producing an MTD model with an invariant Laplace

marginal density. Scaling both the mean µ and the covariance Σ of the bivariate

Gaussian distribution by a unit rate exponential random variable yields the bi-

variate asymmetric Laplace distribution of Kotz et al. (2012), and thus an MTD

model with an asymmetric Laplace distribution as the invariant marginal. We
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can further elaborate on this approach using appropriate mixing distributions for

the Gaussian location and scale to obtain skewed-Gaussian and skewed-t distri-

butions (Azzalini, 2013) for the bivariate component distributions, as well as for

the invariant marginal distribution.

Example 2: Poisson and Poisson mixture MTD models. To model time series

of counts taking countably infinite values, we can construct an MTD model with

a Poisson marginal by considering the bivariate Poisson distribution of Holgate

(1964) for the transition components. This choice has been discussed in Berchtold

and Raftery (2002), without addressing the stationarity condition. In particu-

lar, we consider the latent variable representation of Holgate’s bivariate Pois-

son. Given a Poisson marginal fX(x) = Pois(x |ϕ), we take (Ul, Vl) ≡ (U, V ) =

(Q + Z,W + Z), for all l, where Q, W and Z are independent Poisson random

variables with means λ, λ and γ, respectively. It follows that both U and V are

Poisson random variables with rate parameter ϕ = λ+γ. Using the latent variable

representation, the lth component transition density of the Poisson MTD model

can be sampled through Qt ∼ Pois(qt |λ) and Zt |Xt−l = xt−l ∼ Bin(zt |xt−l, γ/ϕ),

with Xt = Qt+Zt obtained as the realization from the lth component conditional

distribution Xt |Xt−l = xt−l. Here, Bin(x |n, p) denotes the binomial distribution

with n trials and probability of success p.

A common extension of the Poisson to account for counts that have excess

zeros is a mixture of Poisson and a distribution that degenerates at 0. A ran-

dom variable X is zero-inflated Poisson distributed, denoted as ZIP(x |ϕ, q), if

its distribution is a mixture of a point mass at zero and a Poisson distribution

with parameter ϕ, with respective probabilities 0 < q < 1 and (1 − q). Given

an invariant marginal fX(x) = ZIP(x |ϕ, q), we use the bivariate zero-inflated

Poisson distribution of Li et al. (1999) for (Ul, Vl) ≡ (U, V ), for all l, given by
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a mixture of a point mass at (0, 0), two univariate Poisson distributions, and a

bivariate Poisson distribution; that is fU,V (u, v) = q0(0, 0) + 0.5q1(Pois(u |ϕ), 0) +

0.5q1(0,Pois(v |ϕ)) + q2BP(u, v |ϕ, ϕ), where ∑2
j=0 qj = 1, q0 + 0.5q1 = q, and

BP(·, · | ϕ, ϕ) denotes Holgate’s bivariate Poisson distribution. Although the

corresponding component density fU |V (u | v) = fU,V (u, v)/fX(v) is complex, this

example provides possibilities for modeling stationary zero-inflated count time

series.

Exploiting the latent variable representation of Holgate’s bivariate Poisson, we

can obtain extensions of the Poisson MTD model that allow for more flexible de-

pendence structure and for overdispersion. Following the earlier notation, replace

the means λ and γ of the latent Poisson random variables with αλ and αγ, and

mix over α with respect to a Ga(α | k, η) distribution, where Ga(x | a, b) denotes

the gamma distribution with mean a/b. Such mixing yields a bivariate negative

binomial distribution after α is marginalized out (Kocherlakota and Kocherlakota,

2006). The conditional distribution of U given V = v admits a convolution repre-

sentation. Let Z1 and Z2 be conditionally independent, given V = v, following a

Bin (z1 | v, γ/(λ+ γ)) and NB (z2 | k + v, 1 − λ/(2λ+ γ + η)) distribution, respec-

tively, where NB(x | r, p) denotes the negative binomial distribution with r number

of successes and probability of success p. Then, U = Z1 +Z2 is a realization from

the conditional distribution U |V = v. Similar to the Poisson case, we can use

this convolution representation to define a stationary MTD model with a negative

binomial marginal fX(x) = NB (x | k, η/(λ+ γ + η)).

Example 3: Bernoulli and Binomial MTD models. Assume again (Ul, Vl) ≡

(U, V ), for all l, and consider the bivariate Bernoulli distribution with prob-

ability mass function p(u, v) = puv1 p
u(1−v)+(1−u)v
2 (1 − p1 − 2p2)(1−u)(1−v), where

p1 > 0, p2 > 0 and p1 + 2p2 < 1. Then, marginally U and V are both Bernoulli
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distributed with probability of success p1 + p2. The conditional distribution of

U given V = v is also Bernoulli (Dai et al., 2013) with probability of success

p(1, v)/ (p(1, v) + p(0, v)). Using this bivariate Bernoulli distribution, we define a

stationary Bernoulli MTD model

f(xt | xt−1) =
L∑
l=1

wl Ber (xt | p(1, xt−l)/(p(1, xt−l) + p(0, xt−l))) , (2.9)

which has a stationary marginal distribution fX(x) = Ber(x | p1 + p2).

Sequences of independent bivariate Bernoulli random vectors can be used as

building blocks for various bivarate distributions. In particular, a family of bivari-

ate binomial distributions for (U, V ) can be constructed by setting U = ∑n
i=1 Ũi

and V = ∑n
i=1 Ṽi, where (Ũi, Ṽi), i = 1, . . . , n, are independent from the bivariate

Bernoulli distribution given above (Kocherlakota and Kocherlakota, 2006). The

conditional distribution of U given V = v can be defined through the convolution

of two conditionally independent, given V = v, binomial random variables, one

with parameters n − v and p2/(1 − p1 − p2) and the other with parameters v

and p1/(p1 + p2). Again, this convolution representation can be used to define a

stationary binomial MTD model with marginal fX(x) = Bin(x |n, p1 + p2).

Examples 2 and 3 illustrate MTD models for finite/infinite-range discrete-

valued time series with high-order dependence, and with stationary marginal dis-

tributions belonging to a range of families. These can be used, for example, for

classification of time series data, or for time-varying counts that exhibit features

such as overdispersion or excess of zero values when compared to a traditional

Poisson model. It is worth mentioning that some of our examples induce non-

linear conditional expectations. For example, the conditional expectation of the

Bernoulli MTD model is ∑L
l=1 wlp(1, xt−l)/(p(1, xt−l) + p(0, xt−l)). Building MTD

models like the ones we have proposed using the existing methods in the MTD
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literature is a formidable task.

2.3.2 Conditional Distribution Method

The strategy here is to use compatible conditional densities, fUl|Vl
and fVl|Ul

,

to specify the bivariate density of (Ul, Vl) for the lth transition component. Condi-

tional densities fU |V and fV |U are said to be compatible if there exists a bivariate

density with its conditionals given by fU |V and fV |U ; see Arnold et al. (1999) for

general conditions under which candidate families of two conditionals are compat-

ible.

We begin with the assumption that fUl|Vl
and fVl|Ul

belong to the same fam-

ily. This assumption is reasonable, since the invariant condition of Proposition

1 requires that all marginals are the same. Once the family of distributions for

the conditionals is chosen, we ensure the conditionals are compatible, as well as

that both marginals of the corresponding bivariate density are given by the tar-

get invariant density fX . In some special cases, the marginal densities are in the

same family as the compatible conditionals. To demonstrate this method, we use

a pair of Lomax conditionals and a pair of gamma conditionals; both cases are

considered in Arnold et al. (1999) to identify compatibility restrictions for their

parameters.

Example 4: Lomax MTD models. The Lomax distribution is a shifted version

of the Pareto Type I distribution such that it is supported on R+. Denote by

P (x |σ, α) = ασ−1 (1 + xσ−1)−(α+1) the Lomax density, where α > 0 is the shape

parameter, and σ > 0 the scale parameter. The corresponding tail distribution

function is Pr(X > x) = (1 + xσ−1)−α, implying a polynomial tail that sup-

ports modeling for time series with high levels of skewness. We consider a pair of

compatible Lomax densities for (Ul, Vl) ≡ (U, V ), for all l, such that fU |V (u | v) =
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P (u | (λ0 + λ1v)/(λ1 + λ2v), α), and fV |U(v |u) = P (v | (λ0 + λ1u)/(λ1 + λ2u), α),

with the restriction that λ0, λ1, λ2 > 0 if α = 1, λ0 ≥ 0, λ1, λ2 > 0 if 0 < α < 1, and

λ0, λ1 > 0, λ2 ≥ 0 if α > 1, to guarantee that these are proper densities. Lomax

MTD models specified using the conditional distributions above have an invariant

marginal fX(x) ∝ (λ1 + λ2x)−1(λ0 + λ1x)−α. Taking α > 1 and λ2 = 0 leads

to a special case where both the component transition density and the marginal

density are Lomax. This particular Lomax MTD model is

f(xt | xt−1) =
L∑
l=1

wl P (xt | ϕ+ xt−l, α), (2.10)

where ϕ = λ0/λ1, and the invariant marginal is fX(x) = P (x |ϕ, α− 1).

Example 5: Gamma MTD models. We consider a pair of conditional gamma

densities for the random vector (Ul, Vl) ≡ (U, V ), for all l, such that fU |V (u | v) =

Ga(u |m0,m1 +m2v), and fV |U(v |u) = Ga(v |m0,m1 +m2u), where m0,m1,m2 >

0. This pair of conditionals is one of six choices discussed in Arnold et al. (1999)

in the context of conditional gamma distributions that produce proper bivariate

densities for (U, V ). The resulting transition density is

f(xt | xt−1) =
L∑
l=1

wl Ga(xt | m0,m1 +m2xt−l), (2.11)

and the invariant marginal is fX(x) ∝ xm0−1 exp(−m1x)(m1 +m2x)−m0 .

Examples 4 and 5 present two stationary MTD models with, respectively, poly-

nomial and exponential tail behaviors. They provide alternatives to the existing

MTD model literature for positive-valued time series, where the only model that

has received attention is based on the Weibull distribution. In addition, the gen-

eral Lomax MTD model with λ2 ̸= 0 and the gamma MTD model have non-linear
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conditional expectations.

2.4 Bayesian Implementation

2.4.1 Hierarchical Model Formulation

Here, we outline an approach to perform posterior inference for the general

MTD model, using a likelihood that is conditional on the first L observations of

the time series realization {xt}nt=1. We introduce a set of latent variables {Zt}nt=L+1

with Zt taking values in {1, . . . , L} such that p(zt | w) = ∑L
l=1 wlδl(zt), where

w = (w1, . . . , wL)⊤, and δl(zt) = 1 if zt = l and 0 otherwise. Conditioning on the

set of latent variables and the first L observations, the hierarchical representation

of the model is:

xt | zt,θ
ind.∼ fzt(xt | xt−zt ,θzt), zt | w

i.i.d.∼
L∑
l=1

wlδl(zt), t = L+ 1, . . . , n,

w ∼ πw(·), θl
ind.∼ πl(·), l = 1, . . . , L,

(2.12)

where θl denotes the transition component parameters, and θ collects all θl. Any

MCMC algorithm for finite mixture models is readily adoptable. If the transition

density of the model is sampled via a latent process, such as for Example 2 of

Section 3, an additional step to sample the latent variables needs to be added in

Equation (2.12).

A key component of the Bayesian model formulation is the choice of the prior

distribution for the mixture weights. As a point of reference, we consider a uniform

Dirichlet prior that assumes equal contribution from each lag, denoted by Dir(· |

1L/L), where 1L is a unit vector of length L. We discuss next two priors that

assume more structure.
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The first prior is a truncated version of the stick-breaking prior, which char-

acterizes the weights for random discrete distributions generated by the Dirichlet

process (Sethuraman, 1994). More specifically, the weights are constructed as fol-

lows: w1 = ζ1, wl = ζl
∏l−1
r=1(1−ζr), l = 2, . . . , L−1, and wL = ∏L−1

l=1 (1−ζl), where

ζl
i.i.d.∼ Beta(1, αs), for l = 1, . . . , L − 1. The resulting joint distribution for the

mixture weights is a special case of the generalized Dirichlet distribution (Connor

and Mosimann, 1969). We denote the truncated stick-breaking prior as SB(· |αs).

For l = 1, ..., L− 1, E(wl) = α∗
s(1 − α∗

s)l−1, where α∗
s = (1 + αs)−1. Hence, on av-

erage, this prior implies geometrically decreasing weights, with smaller αs values

favoring stronger contributions from recent lags. In certain applications, it may

be natural to expect some directionality in the relevance of the weights implied

by time, and this prior provides one option to incorporate into the model such a

property.

An alternative prior is obtained by assuming that the weights are increments

of a cdf G with support on [0, 1]; that is, wl = G(l/L) − G((l − 1)/L), for

l = 1, . . . , L. We place a Dirichlet process prior on G, denoted as DP(α0, G0),

where G0 = Beta(a0, b0) and α0 > 0 is the precision parameter. From the

Dirichlet process definition (Ferguson, 1973), given α0 and G0, the vector of

mixture weights follows a Dirichlet distribution with shape parameter vector

α0(a1, . . . , aL)⊤, where al = G0(l/L) − G0((l − 1)/L), for l = 1, . . . , L. We re-

fer to this prior as the cdf-based prior, and denote it as CDP(· |α0, a0, b0). Under

this prior, we have that E(w) = (a1, . . . , aL)⊤. The nonparametric prior for G

supports general distributional shapes, and thus allows for flexibility in the es-

timation of the mixture weights. In particular, multimodal distributions G can

produce sparse weight vectors, with some/several entries near zero. Hence, this

prior may be suitable for scenarios where there are inactive lags between influential
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lags and the influential lags are not necessarily the most recent lags. Heiner et al.

(2019) proposed a different prior for sparse probability vectors, which generally

requires a larger number of prior hyperparameters.

Overall, the properties of both structured priors support flexible inference for

the mixture weights, enabling our strategy to specify a large value of L, assigning

a priori small probabilities to distant lags. The contribution of each lag will

be induced by the mixing, with important lags being assigned large weights a

posteriori.

2.4.2 Estimation, Model Checking, and Prediction

The posterior distribution of the model parameters, based on the conditional

likelihood, is

p(w,θ, {zt}nt=L+1 | Dn) ∝ πw(w)
L∏
l=1

πl(θl)
n∏

t=L+1

{
fzt(xt | xt−zt ,θzt)

L∑
l=1

wlδl(zt)
}

(2.13)

where Dn = {xt}nt=L+1, and it can be explored using MCMC posterior simulation.

Conditional on θ and w, the posterior full conditional of each Zt is a dis-

crete distribution on {1, ..., L} with probabilities proportional to wlfl(xt |xt−l,θl).

Conditional on the latent variables and w, the sampling for each θl depends on

the particular choice of the transition component distributions. Details for the

models implemented are given in the appendix. The sampling for w, conditional

on {zt}nt=L+1 and θ, depends only on Ml = |{t : zt = l}|, for l = 1, ..., L, where

|{·}| is the cardinality of the set {·}. Both priors for the mixture weights result

in ready updates. The posterior full conditional of w under the truncated stick-

breaking prior can be sampled through latent variables ζ∗
l , which are conditionally
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independent Beta(1+Ml, αs+∑L
r=l+1 Mr), for l = 1, . . . , L−1, such that w1 = ζ∗

1 ,

wl = ζ∗
l

∏l−1
r=1(1 − ζ∗

r ), for l = 2, . . . , L − 1, and wL = ∏L−1
l=1 (1 − ζ∗

l ). Under the

cdf-based prior, the posterior full conditional of w is Dirichlet with parameter

vector (α0a1 +M1, . . . , α0aL +ML)⊤.

We assess the model’s validity using randomized quantile residuals (Dunn and

Smyth, 1996; Escarela et al., 2006). Such residuals are calculated by inverting

the fitted conditional cdf for the time series. Posterior samples of these quantile

sets can then be compared with the standard Gaussian distribution, providing a

measure of goodness-of-fit with uncertainty quantification. Specifically, the ran-

domized quantile residual for continuous xt is defined as rt = Φ−1 (F (xt | xt−1))

where Φ(·) is the cdf of the standard Gaussian distribution. If xt is discrete,

rt = Φ−1(ut), where ut is generated from a uniform distribution on the interval

(at, bt) with at = F (xt − 1 | xt−1) and bt = F (xt | xt−1). If F is correctly specified,

the residuals rt, t = L+1, . . . , n, will be independently and identically distributed

as a standard Gaussian distribution.

Finally, we consider prediction for future observations. The posterior pre-

dictive density of Xn+1, corresponding to the first out-of-sample observation, is

obtained by marginalizing the transition density with respect to the posterior

distribution of model parameters:

p(xn+1 | Dn) =
∫ ∫ {

L∑
l=1

wl fl(xn+1 | xn+1−l,θl)
}
p(θ,w | Dn) dθdw. (2.14)

Exploiting the structure of the conditional distributions of the MTD model, we can

sample from the k-step-ahead posterior predictive density using a straightforward

extension of Equation (2.14). Note that the k-step-ahead posterior predictive

uncertainty incorporates both the uncertainty from the parameter estimation,

and the uncertainty from the predictions of the previous (k − 1) out-of-sample
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observations.

2.5 Data Illustrations

2.5.1 First Simulation Experiment

We generated 2000 observations from the Gaussian MTD model specified in

Equation (2.7) with µ = 10, σ2 = 100, under two scenarios for the mixture weights,

one with exponentially decreasing weights and the other one with an uneven ar-

rangement of the relevant lags. In Scenario 1, we took ρ = (0.7, 0.3, 0.1, 0.05, 0.05)⊤

and wi ∝ exp(−i), i = 1, . . . , 5. In Scenario 2, we took ρ = (0.4, 0.1, 0.7, 0.1, 0.5)⊤

and w = (0.2, 0.05, 0.45, 0.05, 0.25)⊤. We consider these two scenarios to examine

the effectiveness of structured priors for the mixture weights.

We applied the Gaussian MTD model with three different orders L = 5, 15, 25.

In each case, we considered three priors for the weights: the Dirichlet prior, the

truncated stick-breaking prior, and the cdf-based prior. The shape parameter

of the Dirichlet prior was 1L/L for each L. The precision parameter αs for the

truncated stick-breaking prior was taken to be 1, 2, 3, corresponding to the three

L values. For the cdf-based prior, we chose α0 = 5 as the precision parameter,

and used as base distribution a beta with shape parameter a0 = 1, and b0 = 3, 6, 7

respectively for the three orders considered. Thus, this prior elicited a decreasing

pattern similar to the truncated stick-breaking prior. For all models, the mean

µ and the variance σ2 received conjugate priors N(µ | 0, 100) and IG(σ2 | 2, 0.1),

respectively, and the component-specific correlation coefficient ρl was assigned a

uniform prior Unif(−1, 1) independently for all l.

We ran the Gibbs sampler for 165000 iterations, discarding the first 5000

samples as burn-in, and collected samples every 20th iterations. We focus on
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Figure 2.1: Chapter 2 - first simulation data analysis. Inference results for the weights under
Scenario 1, based on the Gaussian MTD model, with the Dirichlet (column (a)), the truncated
stick-breaking (column (b)), and the cdf-based (column (c)) priors, when L = 5 (top), L = 15
(middle) and L = 25 (bottom). Black dashed lines are true weights, red dot-dashed lines are
prior means, blue solid lines are posterior means, and blue polygons are 95% credible intervals.

inference results for the mixture weights. Figures 2.1 and 2.2 provides a visual

inspection on the posterior estimates for the mixture weights, respectively. When

the order was correctly specified, that is, L = 5, all three models provided good

estimates. In Scenario 1, all models underestimated the weight for lag 2. Models

with the proposed priors produced accurate estimates for the rest of the lags,

while the model that used the Dirichlet prior systematically overestimated the

weight for the first lag, and underestimated all other weights. In Scenario 2,
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Figure 2.2: Chapter 2 - first simulation data analysis. Inference results for the weights under
Scenario 2, based on the Gaussian MTD model, with the Dirichlet (column (a)), the truncated
stick-breaking (column (b)), and the cdf-based (column (c)) priors, when L = 5 (top), L = 15
(middle) and L = 25 (bottom). Black dashed lines are true weights, red dot-dashed lines are
prior means, blue solid lines are posterior means, and blue polygons are 95% credible intervals.

all models underestimated the weight for the first lag. For the other non-zero

weights, the model with the Dirichlet prior tended to underestimate the weights

for lag 2, 4 and overestimated the weight for lag 5, while the other two models

estimated the weights quite well. In both scenarios, the proposed priors had a

parsimonious behavior in that, given the data, distant lags were assigned almost

zero probability mass with low posterior uncertainty. Overall, we note that, under

an over-specified order L, the proposed priors offer inferential advantages when
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compared to the Dirichlet prior.

2.5.2 Second Simulation Experiment

In the second simulation experiment, we demonstrate the ability of the nega-

tive binomial MTD (NBMTD) model to accommodate over-dispersed count data,

including comparison with the Poisson MTD (PMTD) model. We generated 800

observations from the NBMTD model as follows.

xt | qt, xt−zt , zt, qt, λ, γ
ind.∼ Bin(xt − qt |xt−zt , γ/(λ+ γ),

qt |xt−zt , κ, λ, γ, η
ind.∼ NB(qt |κ+ xt−zt , 1 − λ/(2λ+ γ + η)),

zt | w
i.i.d.∼

L∑
l=1

wlδl(·),

for t = L + 1, . . . , n, given the first L = 5 initial values. We took λ = 5, γ =

3, κ = 3, η = 2, and specified exponentially decreasing weights such that wi ∝

exp(−i), i = 1, . . . , 5. As a result, the synthetic data was over-dispersed, with

empirical mean and variance being 12.95 and 67.46, respectively.

We applied the PMTD and the NBMTD models to the synthetic data. For

efficient posterior simulation, we reparameterized both models. In particular,

for both models, we used θ = γ/(λ + γ) as the probability of success of the

binomial distribution for Xt. Furthermore, for the negative binomial model, we

took ψ = 1 −λ/(2λ+ γ+ η) as the probability of success of the negative binomial

distribution for Qt. Implementation details of the two models are provided in

Section 4.

For each model, we chose two different orders, with one correctly specified,

L = 5, and the other one over-specified, L = 15, based on the autocorrelation and

partial autocorrelation functions. The priors for θ and ψ were elicited based on
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Figure 2.3: Chapter 2 - second simulation data analysis. Inference results for the weight when
L = 5 (top) and L = 15 (bottom). Black dashed lines are true weights, red dot-dashed lines are
prior means, blue solid lines are posterior means, and blue polygons are 95% credible intervals.

Figure 2.4: Chapter 2 - second simulation data analysis. Inference results for the stationary
marginal distributions. White bars are histogram of the data. Circles are probabilities of the
true marginal distribution NB(3, 0.2) evaluated at the effective support. Red (blue) solid lines
are posterior means from the fitted model with SB (CDP) prior. Red (blue) dashed lines are
95% credible intervals from the fitted model with SB (CDP) prior.
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Table 2.1: Chapter 2 - second simulation data analysis. Empirical coverage of
the 95% predictive intervals.

NBMTD-SB NBMTD-CDP PMTD-SB PMTD-CDP

L = 5 0.96 0.96 0.86 0.86

L = 15 0.96 0.96 0.87 0.88

priors for (λ, γ, η). We took Ga(2, 1) for each of (λ, γ, η), which implies that both

θ and ψ follow beta distributions Beta(θ | 2, 2) and Beta(ψ | 6, 2), respectively. We

also assigned Ga(2, 1) to κ. For the weights, we considered both the truncated

stick-breaking and cdf-based priors. For the former prior, we took αs = 1, 2

corresponding to the orders, and for the latter one, we chose α0 = 5, a0 = 1, and

b0 = 3, 6 respectively for the orders. To obtain the estimates, in each case, we ran

a Gibbs sampler for 85000 iterations, discarding the first 5000 samples as burn-in,

and collected samples every 10th iterations.

We focus on the results in estimating the weights and the stationary marginal

distributions. Figure 2.3 shows that the NBMTD model was able to capture the

weights in all cases, while the PMTD model systematically missed the first weight,

in terms of the 95% credible interval estimates. Moreover, even when L is correctly

specified, the PMTD model missed the last three weights. Figure 2.4 illustrates the

stationary marginal estimated by the two models. In each case, the same model

with the two proposed priors provided estimates that were almost identical. As

expected, the PMTD model was not capable of recovering the marginal, while the

NBMTD model provided an accurate estimate.

Turning to the predictive performance of the two models, Figure 2.5 shows

the one-step ahead 95% posterior predictive intervals for the data. Under a vi-

sual examination, we can observe that the predictive intervals estimated by the

NBMTD model were able to cover most of the small or large values, while the es-
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Figure 2.5: Chapter 2 - second simulation data analysis. 95% one-step ahead posterior pre-
dictive intervals. Red (blue) dashed lines are predictive intervals from the fitted model with SB
(CDP) prior.
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timated predictive interval by the PMTD model missed many such values. Table

2.1 presents the empirical coverage of the 95% posterior predictive intervals. We

see that the NBMTD model provided a close estimate, while the PMTD model

underestimated the coverage by a large margin.

Overall, we note the NBMTD model’s ability to account for over-dispersion.

Moreover, even when L was over-specified, the model provided estimates that were

very close to the ones under the model with L correctly specified.

2.5.3 Chicago Crime Data

The first real data example involves the 1090 daily reported incidents of

domestic-related theft that have occurred in Chicago from 2015 to 2017, extracted

online from the Chicago Data Portal (https://data.cityofchicago.org/). The

data exhibits some flat stretches, without evidence of overdispersion. The empir-

ical mean and variance are 6.05 and 6.39.

We applied the Poisson MTD model discussed in Example 2 of Section 3,

with order L = 20, selected based on the autocorrelation and partial autocor-

relation functions. We reparameterize the model in terms of rate parameter λ,

and binomial probability θ = γ/ϕ for Zt |Xt−l. This allows updates for λ and θ

with posterior full conditionals available in closed form. The prior for (λ, θ) was

taken to be Ga(λ | 2, 1)Beta(θ | 2, 2), implying a Ga(4, 1) prior for ϕ. Two pri-

ors, SB(w | 2) and CDP(w | 5, 1, 8), were considered for the mixture weights. Both

models were fitted to the entire data set. After fitting the model, we obtained the

one-step posterior predictive distribution at each time t and the corresponding

posterior predictive intervals.

We obtained a thinned sample retaining every 10th iteration, from a total

of 85000 samples with the first 5000 as burn-in. The posterior mean and 95%

39

https://data.cityofchicago.org/


Figure 2.6: Chapter 2 - crime data analysis. In panel (a), the circles denote the data, and
solid and dashed lines correspond to the model with the SB and CDP prior, respectively. Panels
(b) and (c): prior means (dashed line), posterior means (solid line) and 95% credible intervals
(polygon) of the weights under the SB and CDP prior, respectively.

interval for ϕ are 6.04 (5.79, 6.30) and 6.05 (5.82, 6.29) for models with SB(w | 2)

and CDP(w | 5, 1, 8) priors. This indicates an average of around six incidents of

domestic-related theft per day. Multiple influential lags, with gaps in between,

are suggested by the results in Figure 2.6(b)-2.6(c). Both models agree on the

pattern for the weights, as well as on lags 1, 4, 6 being the most relevant ones.

Compared to the truncated stick-breaking prior, the cdf-based prior suggests a

weight pattern that decreases slightly faster, and it assigns relatively larger weights

to important lags, albeit with higher uncertainty. Figure 2.6(a) shows that both

models produce similar one-step predictive intervals.

Randomized quantile residual analysis results were similar for both models

as shown in Figure 2.7. The figure shows posterior mean and interval estimates
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Figure 2.7: Chapter 2 - crime data analysis. Randomized quantile residual analysis for the
fitted model with the SB(w | 2) prior (top) and CDP(w | 5, 1, 8) prior (bottom), respectively. In
the left column, the circles and dashed lines correspond to the posterior mean and 95% interval
bands, respectively. In the middle column, the solid and dashed line are the standard Gaussian
density and the kernel density estimate of the posterior means of the residuals, respectively. The
right column is based on the posterior means of the residuals.

for the Gaussian quantile-quantile plot, and the histogram and autocorrelation

function for the posterior means of the residuals. The results suggest reasonably

good model fit, providing an illustration of the flexibility of the proposed MTD

model to capture non-Gaussian tails.

2.5.4 Tunkhannock Creek Precipitation Data

Our second real data example involves 22 years of rainfall data from Jan-

uary 1982 to December 2003. The data consists of 1149 mean areal precipitation

amounts ranging from 0.01 to 128.87 millimeters, aggregated to a weekly time

scale from the daily data for the Tunkhannock Creek near Tunkhannock, Penn-
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Figure 2.8: Chapter 2 - precipitation data analysis. Panels (a) and (b): prior means (dashed
line), posterior means (solid line) and 95% intervals (polygons) of the weights under two priors.
The top row of panel (c) plots the observed precipitation amounts from 2000 to 2004, and the
middle and bottom rows show sample paths generated from the fitted models with SB and CDP
priors, respectively.

sylvania. The data was extracted through R package hddtools (Vitolo, 2017).

We consider a multiplicative model yt = µtϵt, where µt is a seasonal factor and

ϵt is generated by a Lomax MTD model specified in Equation (2.10), with poly-

nomial tails that can accommodate large precipitation events. More specifically,

the model is given by

yt = µtϵt, µt = exp(x⊤
t β), t = 1, . . . , n,

ϵt | ϵt−1, w, ϕ, α ∼
L∑
l=1

wl P (ϵt | ϕ+ ϵt−l, α), t = L+ 1, . . . , n,
(2.15)

with xt = (cos(ωt), sin(ωt), cos(2ωt), sin(2ωt), cos(3ωt), sin(3ωt))⊤ and ω = 2π/T

where T = 52 is the period for weekly data. On the basis of the autocorrela-

tion and partial autocorrelation functions, we chose model order L = 10. The
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Figure 2.9: Chapter 2 - precipitation data analysis. Randomized quantile residual analysis for
the fitted model with the SB(w | 1) prior (top) and CDP(w | 5, 1, 6.5) prior (bottom), respectively.
In panels (a), the circles and dashed lines correspond to the posterior mean and 95% interval
bands, respectively. In panels (b), the solid and dashed line are the standard Gaussian density
and the kernel density estimate of the posterior means of the residuals, respectively. Panels (c)
are based on the posterior means of the residuals.

regression coefficients vector β = (β1, . . . , β6)⊤ was assigned a flat prior. The

shape parameter α was assigned a Ga(α | 6, 1) prior, and the scale parameter ϕ

an IG(ϕ | 3, 20) prior. Note that the invariant marginal of the process {ϵt} is

P (ϵ |ϕ, α − 1) and its tail distribution function is (1 + ϵ/ϕ)−(α−1). A small value

of α indicates a heavy tail, while a large value of α ensures the existence of finite

high moments. Under the priors above, E(α) = 6, implying the expectation that

the first four moments are finite with respect to both the component and marginal

distributions of the Lomax MTD for {ϵt}. We fit the model with SB(w | 1) and

CDP(w | 5, 1, 6.5) priors for the weights.

We ran the algorithm for 85000 iterations and collected samples every 10 it-

erations after the first 5000 was discarded. The inference results were almost
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the same for the two models. Here we report the ones under the SB(w | 1)

prior. The posterior mean and 95% credible interval of the shape parameter

α are 14.80 (10.30, 20.91), indicating a moderately heavy tail. The corresponding

estimates for the scale parameter ϕ are 254.33 (166.36, 370.04), indicating sub-

stantial dispersion. Among the harmonic component coefficients, the first and the

fourth have 95% posterior credible intervals that indicate statistical significance;

the estimates are −0.14 (−0.23,−0.05) for β1, and −0.13 (−0.22,−0.03) for β4,

implying the presence of semiannual and annual seasonality in the data. Figure

2.8(a)-2.8(b) show that both models suggest a decreasing weight pattern, with the

first three lags being the most influential. As shown in Figure 2.8(c), the sample

paths generated from the models resemble the observed precipitation time series.

Randomized quantile residual analysis results were similar for both models

as shown in Figure 2.9. The figure shows posterior mean and interval estimates

for the Gaussian quantile-quantile plot, and the histogram and autocorrelation

function for the posterior means of the residuals. The results suggest reasonably

good model fit, providing an illustration of the flexibility of the proposed MTD

model to capture non-Gaussian tails.

2.6 Discussion

We have developed a broad class of stationary MTD models focusing on at-

taining stationarity from the perspective of a distributional formulation. The

advantage of our proposed approach over more traditional methods is that no con-

straints on the parameter space are needed. This facilitates inference for model

parameters, as the need for constrained optimization or sampling is avoided. We

further proposed structured priors to support flexible inference on the weights,

which accommodate non-standard scenarios that a model with a Dirichlet prior
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may fail to capture.

The proposed constructive framework brings several options for alternative

parametric families that were formidable to tackle for the MTD model and its ex-

tensions, when stationarity is a desirable property. A limitation of our approach

is that, if the stationary marginal distribution shares all the parameters with

the bivariate component distribution, the resulting transition component lacks

component-varying parameters. One solution is to specify the bivariate distribu-

tion using a copula (Joe, 2014), which we regard as a special case of the bivariate

distribution method. Given a pre-specified marginal, the construction boils down

to the selection of a copula. The copula function, which brings additional com-

ponent parameters, allows specifying dependence in the bivariate distribution,

separately from modeling the marginal distribution. On the other hand, some

properties of the resulting model, including the conditional expectation, may be

intractable, and the computational cost may increase, especially in the discrete

case. We will explore the use of copula functions in the latter chapters.

The class of models proposed in this chapter can be easily extended for non-

stationary time series that exhibit trends and seasonality, by incorporating cor-

responding factors into the model, either multiplicatively or additively. This is

illustrated in our second real data example. A similar approach can be applied to

incorporate covariates. Therefore, this class of models is quite general, and is use-

ful as an alternative to the existing time series models, especially when traditional

models fail to capture non-Gaussian features suggested by the data.
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Chapter 3

Models for Temporal Point

Processes with Memory

3.1 Introduction

Temporal point processes are stochastic models for sequences of random events

that occur in continuous time, with irregular durations (or inter-arrival times) be-

tween occurrence times. Data collected in such patterns appear in a wide range

of applications, such as earthquake occurrence (Ogata, 1988), recurrent events

(Cook et al., 2007), financial high frequency trading and orders (Hautsch, 2011),

and neural spike trains (Tang and Li, 2021), to name a few. For many point pat-

terns, it is believed that occurrence of a future event depends on historical ones.

This motivates the use of point processes with memory, for example, the Hawkes

process (Hawkes, 1971a,b) with full memory. Another commonly-used model is

the renewal process in which an event occurs depending on the most recent event.

The renewal process has an additional property that between event times are in-

dependent and identically distributed (i.i.d.) durations. The goal of this chapter
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is to propose a modeling framework for point processes with high-order mem-

ory, relaxing the independent duration assumption in the renewal process, and

including the ability to model duration clustering behaviors that are present in

applications such as health care (Yang et al., 2018), climatology (Cowpertwait,

2001), and finance (Easley and O’hara, 1992; O’hara, 1997).

A popular way for modeling point process dependence is by specifying the

process conditional intensity, namely the instantaneous event rate conditional on

the historical events. Under this approach, the Hawkes process has been used

extensively in the literature. The conditional intensity of the Hawkes process is

decomposed into a baseline intensity and a triggering component. The triggering

component is commonly chosen with an excitation function such as an exponential

or power law kernel. As a result, a new event causes a jump in the conditional

intensity, and the Hawkes process is said to be a self-exciting point process. We

refer to Reinhart (2018) and references therein for a thorough review.

This chapter explores an alternative approach for modeling point processes

with memory. Specifically, we aim at models for temporal dependence of the

durations which themselves form a discrete time series. Dependent models for the

duration process produce conditional densities of the event arrival times, hereafter,

referred to as the conditional arrival densities. These conditional arrival densities

will uniquely determine the distribution of the resulting point process (Daley

and Vere-Jones, 2003). Specifying a point process in this manner results in a

valid conditional intensity derived from the conditional arrival densities. This

is in contrast with the approach of building models for conditional intensities,

which requires mathematical validation of the proposed intensity function, such

as whether the function is locally integrable over a finite domain, in order to

obtain a well-defined point process model.
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Statistical models for durations date back to Wold (1948). In particular, Wold

(1948) formulates a first-order Markov chain for the durations with an additive

model representation. Subsequent works (Jacobs and Lewis, 1977; Gaver and

Lewis, 1980) investigate the stationary marginal distribution of the duration pro-

cess, interpreting the model as a dependent renewal process, i.e., point processes

with dependent, identically distributed durations. Formulation of these models

with the desired property generally results in impractical likelihood inference (En-

gle and Russell, 1998). Besides, the first-order Markov assumption may be too

restricted in practical settings.

More recently, there has emerged a large family of models that builds from the

autoregressive conditional duration (ACD) model (Engle and Russell, 1998). The

ACD model assumes a multiplicative error model for the durations, in which the

errors are i.i.d. and each factor is modeled as a linear function of the past factors

and durations. Extensions of this class aimed at providing more flexibility through

specification on the multiplicative factor or the error distribution; see, e.g., Gram-

mig and Maurer (2000), Bauwens and Veredas (2004), Fernandes and Grammig

(2006), Deo et al. (2010), and Brownlees and Vannucci (2013). We refer to Pacu-

rar (2008) and Bhogal and Thekke Variyam (2019) for comprehensive reviews.

The ACD models are popular for high-frequency data in financial applications.

However, modeling temporal dependence through multiplicative factors in a linear

fashion may limit the modeling capacity for non-linear and non-Gaussian dynam-

ics. Moreover, the model structure complicates inference for real applications

when the assumption of high-order memory is necessary.

The ACD model and its extensions assume independent durations conditional

on a function or process that incorporates temporal dependence. A different ap-

proach is to directly model the transition mechanism of the duration process.
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Recall that the MTD model describes the transition density of the process as a

weighted combination of first-order transition densities for each one of a specified

number of lags. Hassan and Lii (2006) propose a bivariate MTD model for the

joint conditional distribution of the duration and a continuous mark, where marks

are random variables associated with the point events. Hassan and El-Bassiouni

(2013) further extend the bivariate model to include a discrete mark. However,

point process properties such as stationarity were not investigated in their works.

Moreover, their framework involves particular structures that require pairs of cer-

tain families of distributions for the duration and mark, which can be practically

restrictive. Hassan and Lii (2006) point out that the choice of parameterization

is non-trivial in order to ensure model stability and prediction capability.

In this chapter, we introduce a class of temporal point process models that

builds on the idea of modeling duration process dynamics with MTD models.

Modeling dependent, positive-valued durations poses great challenges to employ-

ing traditional high-order autoregressive models without transforming the dura-

tions. These challenges include model inference under a constrained, possibly

high-dimensional parameter space, e.g., negative coefficients that do not lead to

a negative-valued duration, and practical implementation for stationarity condi-

tions. The aforementioned works using MTD models attempt to handle the former

issue, albeit under restrictive structures. A major contribution of the present work

is the development of an MTD point process (MTDPP) constructive framework

that provides flexible modeling of high-order, non-Gaussian dynamics of the du-

ration process without parameter constraints. The framework not only allows for

model construction for various types of practically relevant point patterns such as

those with self-excitation or self-regulation effects, but also retains efficient imple-

mentation for model inference. The MTDPP likelihood evaluation grows linearly
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with the number of events, thus delivering computational scalability, especially

for large point pattern data where the high-order memory assumption suffices.

Within the MTDPP framework, we provide easily-implemented conditions to

construct point processes given a pre-specified family for the duration marginal

distribution, and obtain a limit result analogous to that in the renewal theory.

The resulting class of models with identically distributed, high-order dependent

durations can be interpreted as a class of dependent renewal processes, which re-

laxes the independent duration assumption that may be unrealistic in practice.

Besides, the proposed framework features an extension to flexibly describe du-

ration clustering. We achieve the extension by using a two-component mixture

model for the conditional duration density. In particular, one component of the

mixture corresponds to an independent duration model that accounts for external

factors. The other component is an MTDPP that explains self-excitation. Point

patterns of this type can be found, for example, in hospital emergency department

visits of patients, where long duration was observed between clusters of multiple

visits in short bursts (Yang et al., 2018), and in the financial market in which

fluctuation can be caused by either external or internal processes. (Filimonov and

Sornette, 2012). The proposed extension accounts for the possibility of different

factors that can drive the point process dynamics and provides quantification.

The remainder of the chapter is organized as follows. Section 3.2 introduces

the MTDPP framework, studies model properties, and presents examples for con-

structing various types of MTDPPs and extensions. Section 3.3 develops the

Bayesian hierarchical model, MCMC algorithms, and point process model valida-

tion method. Section 3.4 illustrates the proposed framework with synthetic and

real data examples.
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3.2 Temporal MTD Point Processes

3.2.1 Background

We consider a temporal point process N(t) defined on the positive half-line

R+, where N(t) = ∑
i≥1 1{ti≤t} is a right-continuous integer-valued function, and

t1, t2, · · · ∈ R+ denote the event (or arrival) times. A temporal point process

is usually modeled via specifying its conditional intensity, defined as λ∗(t) ≡

λ(t | Ht) = limdt→0 E[dN(t) | Ht]/dt, where dN(t) = N(t + dt) − N(t), and Ht is

the history of the events up to but not including t, and dt is an arbitrary small

interval. We say a point process has memory if Ht is not empty. A Poisson

process is an example of a memoryless process. A renewal process has the least

limited memory, that is, Ht = tN(t) where tN(t) is the most recent arrival time

before t, while evolution of a Hawkes process depends on the entire past. Given

an observed point pattern {ti}ni=1 over (0, T ), the likelihood of the point pattern

using the conditional intensity λ∗(t) is expressed as

p(t1, . . . , tn) =
(

n∏
i=1

λ∗(ti)
)

exp
(

−
∫ T

0
λ∗(t)dt

)
. (3.1)

An alternative way to characterize the probability structure of a point process

is to use the collection of conditional arrival densities, denoted as p∗
i (t) ≡ pi(t | Ht),

supported on (ti−1,∞), with associated conditional survival functions S∗
i (t) =

1 −
∫ t
ti−1

p∗
i (u)du, for i = 2, . . . , n+ 1. When i = 1, p∗

1(t) ≡ p1(t) and S∗
1(t) = 1 −∫ t

0 p
∗
1(u)du. The conditional arrival densities p∗

i jointly define the density (if exists)

of the Janossy measure that uniquely determines a point process. Additionally,

the Janossy density is exactly the likelihood of the point process. We can write
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the likelihood using the conditional arrival densities p∗
i (t) as

p(t1, . . . , tn) =
(

n∏
i=1

p∗
i (ti)

)(
1 −

∫ T

tn
p∗
n+1(u)du

)
. (3.2)

The last term in (3.2) defines the likelihood normalizing constant, which corre-

sponds to the probability of no events occurring in the interval (tn, T ].

Using the collection of conditional densities p∗
i and conditional survival func-

tions S∗
i , we can define the hazard functions as λ∗

i (t) = p∗
i (t)/S∗

i (t), for i =

1, . . . , n. The hazard function is naturally interpreted as the conditional instan-

taneous event rate. Consequently, given the set of arrival times, we can write the

conditional intensity of the process as λ∗(t) = λ∗
i (t), ti−1 < t ≤ ti, 1 ≤ i ≤ n. Ob-

serving that p∗
i (t) = λ∗

i (t) exp(−
∫ t
ti−1

λ∗
i (u)du), we can easily recover the process

likelihood in the form of (3.1) from (3.2).

Although there is a one-to-one correspondence between modeling the con-

ditional intensities and the conditional arrival densities for a point process, we

note that the model likelihood formulation may result in possibly different com-

putational costs. The logarithm of the likelihood (3.1) involves logarithms of

conditional intensities and an integral over (0, T ). For the Hawkes process, the

conditional intensity involves the sum of the excitation functions over historical

points, which poses great challenges to model inference (Veen and Schoenberg,

2008). Moreover, the computation burden to evaluate the Hawkes process likeli-

hood grows quadratically with the number of observed points, making it infeasible

for large data sets. Point process models defined using conditional arrival densities

typically assume limited memory, with an autoregressive structure on the dura-

tions. The resulting likelihood based on (3.2) is similar to that of an autoregressive

time series, with an extra likelihood normalizing constant term. The tractability

of the normalizing constant depends on particular model formulations. Neverthe-
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less, the likelihood (3.2) overall is simpler than (3.1). Thus, model inference based

on (3.2) is easier to implement.

3.2.2 MTD Models for the Conditional Duration Density

Consider an ordered sequence of arrival times 0 = t0 < t1 < · · · < tn < T .

Let xi = ti − ti−1 be the durations, for i = 1, . . . , n. We assume the point

process evolves with limited memory. The memory of the process is modeled by

specifying an MTD model for the conditional densities of xi for all i. We motivate

the construction using a duration xi for i > L. A formal definition of the MTDPP

is given in Definition 1. We specify the density of xi conditional on the past as a

weighted combination of first-order transition densities, each of which depends on

a specific past duration, that is, f(xi |xi−1, . . . , x1) = ∑L
l=1 wlfl(xi |xi−l), where

wl ≥ 0 for all l and ∑L
l=1 wl = 1. Transforming the conditional density of xi to

that for the arrival time ti = ti−1 + xi, for every i, creates conditional arrival

densities that uniquely determine a point process. The formal definition of the

MTDPP is given as follows.

Definition 1. Let N(t) be a temporal point process defined on R+ with event

arrival times t1, t2, · · · ∈ R+. Denote by f ∗(t − tN(t)) ≡ f(t − tN(t) | Ht) the

conditional duration density. Then N(t) is said to be an MTD point process if (i)

t ∼ f0 for N(t) = 0; (ii) for 1 ≤ N(t) ≤ L− 1, the conditional duration density

f ∗(t− tN(t)) =
N(t)−1∑
l=1

wlfl(t− tN(t) | tN(t)−l+1 − tN(t)−l)+

(1 −
N(t)−1∑
r=1

wr)fN(t)(t− tN(t) | t1);
(3.3)

53



(iii) for N(t) ≥ L, the conditional duration density

f ∗(t− tN(t)) =
L∑
l=1

wlfl(t− tN(t) | tN(t)−l+1 − tN(t)−l). (3.4)

In both (3.3) and (3.4), the weights wl ≥ 0 for l = 1, . . . , L, with ∑L
l=1 wl = 1.

Remark 1. Using the marginal density f0 and the conditional density f ∗(t− tN(t))

given in Definition 1, we can define the conditional arrival densities p∗
i for an

observed point pattern{ti}ni=1, by taking p∗
1(t) = f0 and p∗

i (t) = f ∗(t−ti−1), ti−1 <

t ≤ ti, i = 2, . . . , n. Thus, specification of the densities f0 and f ∗(t−tN(t)) suffices

to characterize the probability structure of the resulting MTDPP.

Remark 2. The two different expressions (3.3) and (3.4) for the conditional dura-

tion density f ∗(t− tN(t)) allow us to study stationarity conditions for the MTDPP

in Section 3.2.3. As we develop model inferential method based on conditional

likelihood, Equation (3.4) is the relevant expression for inference. For brevity, we

will use (3.4) to discuss model properties throughout the rest of the chapter.

The specification of the conditional density f ∗(t− tN(t)) involves building the

first-order transition density fl for l = 1, . . . , L. Following Chapter 2, we build

the transition density fl from a bivariate positive-valued random vector (Ul, Vl)

with joint density fUl,Vl
and marginals fUl

and fVl
, by taking fl = fUl|Vl

as the

conditional density of Ul given Vl. In general, there are two strategies to find the

joint density fUl,Vl
. One is to find fUl,Vl

given a specific marginal distribution,

and the other one consists of specifying a pair of compatible conditional densities.

The two conditional densities fUl|Vl
and fVl|Ul

are said to be compatible if there

exists a bivariate density with its conditionals given by fUl|Vl
and fVl|Ul

. We note

that each strategy has its own benefit depending on the modeling objective. In

Section 3.2.4, we illustrate construction of the transition density fl with various
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examples for different goals.

An important consequence of using the MTD model for the conditional dura-

tion density is a mixture formulation for the implied conditional intensity λ∗(t) ≡

h∗(t− tN(t)) = f ∗(t− tN(t))/S∗(t− tN(t)), where h∗(t− tN(t)) and S∗(t− tN(t)) are

the hazard and survival functions associated with f ∗(t − tN(t)), respectively. Let

hl and Sl be the hazard and survival functions associated with fl, for all l. We

can write the conditional intensity λ∗(t) as

λ∗(t) =
L∑
l=1

w∗
l (t)hl(t− tN(t) | tN(t)−l+1 − tN(t)−l), (3.5)

with time-dependent weights w∗
l (t) given by w∗

l (t) = wlSl(t − tN(t) | tN(t)−l+1 −

tN(t)−l)/S∗(t − tN(t)) and S∗(t − tN(t)) = ∑L
l=1 wlSl(t − tN(t) | tN(t)−l+1 − tN(t)−l),

where w∗
l (t) ≥ 0 and ∑L

l=1 w
∗
l (t) = 1 for all t.

The mixture formulation of λ∗(t) not only provides flexibility to accommodate

a wide range of intensity shapes, but also guides modeling choice. Each mixture

component hl is a first-order hazard function. If we select fl such that hl ≤ Cl, for

constant Cl > 0, and for all l, then λ∗(t) ≤ ∑
l=1 w

∗
l (t)Cl, for every t. Similarly,

we can find a lower bound for λ∗(t). For both cases, if hl → C as t → ∞ for all l,

we have that λ∗(t) → C as t → ∞. On the other hand, if one of the component

hazard functions hl → ∞ as t → ∞, then λ∗(t) → ∞. Moreover, choosing fl

such that hl in certain shapes allows us to construct particular types of point

processes. A point process is said to be self-exciting if a new arrival causes the

conditional intensity to jump, and is called self-regulating (or self-correcting) if a

new arrival causes the conditional intensity to drop. If we choose fl such that hl

monotonically decreases for all l, the resulting MTDPP is self-exciting.
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3.2.3 Model Properties

We first investigate the stationarity of the MTDPP. There are different forms

of stationary definition (Daley and Vere-Jones, 2003). We refer to the first-order

strict stationarity, i.e., the MTDPP has a stationary marginal density for the

duration process. Let gi be the marginal density of the duration xi for all i. Then,

for i ≥ 2, gi(xi) =
∫
f ∗(ti − ti−1) p(t1, . . . , ti−1)

∏i−2
r=1 d(tr), where p(t1, . . . , ti−1) is

the joint density of the event times (t1, . . . , ti−1). The constructive approach

to build fl through the bivariate random vector (Ul, Vl) allows us to obtain a

stationary marginal density fX , using the approach in Chapter 2. We summarize

the conditions in the following proposition.

Proposition 3.1. Consider an MTD point process N(t) with event arrival times

t1, t2, · · · ∈ R+. Let {xi : i ≥ 1} be the duration process, where x1 = t1, and

xi = ti−ti−1, for i ≥ 2. The duration process has a stationary marginal density fX

if (i) t ∼ fX for N(t) = 0; (ii) the transition density fl in (3.3) and (3.4) is taken

to be the conditional density fUl|Vl
of a bivariate positive-valued random vector

(Ul, Vl) with marginal densities fUl
and fVl

, such that fUl
(x) = fVl

(x) = fX(x),

for all x ∈ R+ and for all l.

We refer to the class of MTDPPs that satisfies the conditions in Proposition

3.1 as the class of stationary MTDPPs. Compared to renewal processes that

have i.i.d. durations, the stationary MTDPP can be interpreted as a class of de-

pendent renewal processes, where the durations are identically distributed, and

Markov-dependent, up to L-order. In fact, the independence assumption in classi-

cal renewal processes can be violated in practice (Coen et al., 2019). For example,

in reliability engineering, times to failure between component replacements can be

correlated (Modarres et al., 2017). The class of stationary MTDPPs is practically

relevant to this type of applications.
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In addition to its practical relevance, the class of stationary MTDPPs has a

limit result analogous to that of the renewal process. In renewal theory for the

above example, it is of interest to learn the rate of the component replacement

in the long run. This corresponds to the rate at which N(t) goes to infinity,

i.e. limt→∞ N(t)/t. The following theorem summarizes the limit result for the

stationary MTDPPs.

Theorem 1. Consider an MTD point process N(t) such that its duration process

has stationary marginal density fX with finite mean µ > 0 and finite variance. It

holds that, as t → ∞, N(t)/t → 1/µ a.s..

Theorem 1 for MTDPPs relies on assumptions for the first two moments with

respect to the stationary marginal density of the duration process. In practice,

these assumptions may not hold. The following proposition establishes an upper

bound for the mean-value function m(t) = E[N(t)] for general MTDPPs.

Proposition 3.2. Consider an MTD point process N(t) with conditional intensity

function given by (3.5). Then, for N(t) ≥ L, m(t) = E[N(t)] satisfies

m(t) ≤ M(t1, . . . , tN(t)) +
L∑
l=1

wlE
[
Λl(t− tN(t) | tN(t)−l+1 − tN(t)−l)

]
,

where the first term M(t1, . . . , tN(t)) = ∑N(t)
i=1

∑L
l=1 wlE [Λl(ti − ti−1 | ti−l − ti−1−l],

with Λl(a− tk | tk−l+1 − tk−l) =
∫ a
tk
hl(u− tk | tk−l+1 − tk−l)du, and the expectation is

taken with respect to the probability distribution p(t1, . . . , tN(t)) of the point process.

In general, the upper bound is difficult to compute analytically. However, if,

for example, hl ≤ Cl for all l, then we have that limt→∞ m(t)/t ≤ ∑L
l=1 wlCl. If,

furthermore, the MTDPP is stationary in the context of Proposition 3.1, then all

functions hl share the same parameters. It follows that hl ≤ C for all l, and we
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obtain limt→∞ m(t)/t ≤ C. In other words, the expected average renewal rate in

the long run is no larger than the upper bound of the hazard rate.

3.2.4 Construction of the MTD Point Processes

We provide guidance to construct MTDPPs, focusing on the transition density

fl. As discussed in Section 3.2.2, we derive fl from a bivariate density fUl,Vl
, where

fUl,Vl
can either be specified with a pair of compatible conditionals fUl|Vl

and fVl|Ul
,

or be found/constructed given marginals fUl
and fVl

. The former is particularly

useful when the objective is to construct self-exciting or self-regulating MTDPPs,

by choosing fUl|Vl
such that its associated hazard function is monotonically de-

creasing or increasing, respectively. We illustrate this approach in Example 1.

The strategy of constructing MTDPPs given pre-specified families of marginals

is natural with the objective of modeling dependent renewal processes, or more

generally, modeling point process with the duration distribution as well as the

associated hazard function in desired shapes. For example, Grammig and Maurer

(2000) point out that it may be more appropriate to consider non-monotonic

hazard functions for modeling financial duration processes. We achieve this goal by

using bivariate copula functions that introduce dependence between two random

variables given their marginals. We illustrate this strategy in Example 2.

Example 1: Self-exciting MTDPPs

We derive MTDPPs based on bivariate Lomax distributions. The Lomax

distribution is a shifted version of the Pareto Type I distribution, denoted as

P (u | b, a) = ab−1(1 + xb−1)−(a+1), where a > 0 is the shape parameter, and b > 0

is the scale parameter. In this example, we derive a new pair of compatible Lomax

conditionals, based on the pair of Lomax conditionals given in Arnold et al. (1999).

The definition is given in the following proposition.
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Proposition 3.3. Consider a bivariate Lomax random vector (X, Y ) with density

fX,Y (x, y) ∝ (λ0 + λ1x + λ2y)−(α+1). Let (U, V ) = (αX,αY ). Then the bivari-

ate random vector (U, V ) has conditionals fU |V (u|v) = P (u |λ−1
1 (αλ0 + λ2v), α),

fV |U(v|u) = P (v |λ−1
2 (αλ0 + λ1u), α) and marginals fU(u) = P (u |λ−1

1 αλ0, α − 1)

and fV (v) = P (v |λ−1
2 αλ0, α− 1).

In Proposition 3.3, the random vector (X, Y ) is scaled by α. We refer to

the distribution of (U, V ) as the bivariate scaled-Lomax distribution, with differ-

ence from the original one being that the shape parameter of the scaled-Lomax

distribution is part of the scale parameter.

To construct an MTDPP, we first take a set of bivariate scaled-Lomax densities

fUl,Vl
with parameters αl, λ0l, λ1l, λ2l, for l = 1, . . . , L. For each fUl,Vl

, we simplify

the parameterization by taking λl = λ1l = λ2l and letting ϕl = λ0l/λl. Then

fUl|Vl
(u|v) = P (u |αlϕl+v, αl). Taking fl ≡ fUl|Vl

for all l, we obtain the following

conditional duration density,

f ∗(t− tN(t)) =
L∑
l=1

wl P (t− tN(t) |αlϕl + tN(t)−l+1 − tN(t)−l, αl). (3.6)

We complete the construction of a scaled-Lomax MTDPP (SLMTDPP) by letting

f0(t) = P (t |α1ϕ1, α1 − 1). When αl = α and ϕl = ϕ for all l, the SLMTDPP

has stationary duration density fX(t − tN(t)) = P (αϕ, α − 1). When α > 3, by

Theorem 1, as t → ∞, the limit of N(t)/t is (α− 2)/(αϕ).

The following proposition describes the limiting behavior of the SLMTDPP

conditional duration distribution f ∗(t− tN(t)).

Proposition 3.4. As the shape parameter αl → ∞ for all l, the conditional dura-

tion distribution f ∗(t− tN(t)) of the SLMTDPP is a finite mixture of exponential

distributions in which the lth mixture component of f ∗(t − tN(t)) corresponds to
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an exponential distribution with rate parameter ϕ−1
l . If, furthermore, ϕl = ϕ for

all l, the limiting conditional duration distribution is an exponential distribution

with rate parameter ϕ−1.

According to (3.5), the conditional intensity of the SLMTDPP can be ex-

pressed as λ∗(t) = ∑L
l=1 w

∗
l (t)(ϕl + α−1

l (t − tN(t) + tN(t)−l+1 − tN(t)−l))−1. Obvi-

ously, the lth component of the conditional intensity is bounded above by ϕ−1
l ,

for all l. so λ∗(t) ≤ ∑L
l=1 w

∗
l (t)ϕ−1

l for every t. By Proposition 3.2, we have that

limt→∞ m(t)/t ≤ ∑L
l=1 wlϕ

−1
l .

Finally, we note that if we remove α from the scale parameter component in

(3.6) such that fl = P (t−tN(t) |ϕl+tN(t)−l+1−tN(t)−l, αl) and f0(t) = P (t |ϕ1, α1−

1), then fl corresponds to the bivariate Lomax distribution of Arnold et al. (1999).

The resulting point process is referred to as the Lomax MTDPP (LoMTDPP).

Since the hazard function of a Lomax distribution is monotonically decreasing,

both the SLMTDPP and LoMTDPP are self-exciting point processes. A self-

regulating MTDPP can be constructed with a pair of compatible conditionals

associated with monotonically increasing hazard functions. See, for example, the

pair of gamma conditionals in Arnold et al. (1999).

Example 2: Copula MTDPPs

Recall that we can build the transition density fl with a bivariate density fUl,Vl

and marginals fUl
, fVl

, by letting fl ≡ fUl|Vl
= fUl,Vl

/fVl
. According to Proposition

3.1, given a stationary density fX , we take fUl
= fVl

= fX for all l. Given the

desired marginals, it remains to specify the joint density fUl,Vl
to obtain fUl|Vl

.

In this example, we introduce the idea of specifying a bivariate copula function

C : [0, 1]2 → [0, 1] to build fUl,Vl
, which provides a general scheme to construct

MTDPPs given a stationary marginal fX .

Let FUl,Vl
be the joint cdf of the random vector (Ul, Vl), and denote FUl

, FVl
as
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the corresponding marginal cdfs. Given FUl
and FVl

, by Sklar (1959), there exists

a unique copula Cl such that FUl,Vl
(u, v) = Cl(FUl

(u), FVl
(v)), and the joint density

fUl,Vl
is given by cl(u, v)fUl

(u)fVl
(v), where cl(u, v) = ∂C(FUl

(u), FVl
(v))/(∂FUl

∂FVl
)

is the copula density. Then given fX with a copula Cl, we take fl(u) ≡ fUl|Vl
(u | v) =

cl(u, v)fX(u). The conditional duration density of the resulting MTDPP is

f ∗(t− tN(t)) =
L∑
l=1

wlcl(t− tN(t), tN(t)−l+1 − tN(t)−l)fX(t− tN(t)). (3.7)

We refer to this class of models as copula MTDPPs. The conditional intensity

of this class written in the form of (3.5) consists of hazard functions hl(u | v) =

fl(u | v)/Sl(u | v), where Sl(u | v) = 1 − ∂Cl(FUl
(u), FVl

(v))/∂FVl
. Existence of a

closed-form expression for hl depends on the selection of the copula function. For

example, a Gaussian copula that has intractable integrals for the cdf leads to an

analytically intractable hl.

Using copula with marginals to specify bivariate densities can obtain condi-

tionals that are in the same family as the marginals. Consider a heavy right

tail (HRT) copula with Burr marginals. The conditional distribution is also a

Burr distribution (Venter et al., 2002). Therefore, we can construct a class of

Burr MTDPP (BuMTDPP) with stationary Burr marginals. More specifically,

denote the Burr distribution as Burr(x | γ, λ, κ) = κγxγ−1λ−γ(1 + (x/λ)γ)−(κ+1),

with shape parameters γ > 0, κ > 0, and scale parameter λ > 0. We let

fUl
(x) = fVl

(x) = fX(x) = Burr(x | γ, λ, κ− 1), for all l, and specify an HRT cop-

ula Cl such that fUl,Vl
(u, v) = cl(u, v)fX(u)fX(v). Then the conditional density

fUl|Vl
(u | v) = Burr(u | γ, λ+ v, κ). The resulting BuMTDPP conditional duration

density is given by

f ∗(t− tN(t)) =
L∑
l=1

wlBurr(t− tN(t) | γ, λ+ tN(t)−l+1 − tN(t)−l, κ), (3.8)
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with stationary marginal fX(t−tN(t)) = Burr(t−tN(t) | γ, λ, κ−1). The component

hazard function hl of the resulting conditional intensity written as in (3.5) is

κγ(t−tN(t))γ−1{(λ+tN(t)−l+1−tN(t)−l)γ+(t−tN(t))γ}−1. The parameter γ controls

the shape of the function hl. When 0 ≤ γ ≤ 1, hl is monotonically decreasing.

When γ > 1, hl is hump-shaped.

In fact, the stationary BuMTDPP model includes special cases. If γ = 1, it

becomes an LoMTDPP with stationary marginal P (t− tN(t) |λ, κ−1). When κ =

2, it reduces to a model with stationary log-logistic marginal LL(t− tN(t)) | γ, λ),

where LL(x | γ, λ) = γxγ−1λ−γ(1 + (x/λ)γ)−2. Moreover, if the Burr distribution

is reparameterized to that of Lancaster (1990), according to Grammig and Maurer

(2000), it can be shown that as κ → ∞, the BuMTDPP turns to a model with a

stationary Weibull distribution.

3.2.5 Extension to MTD Cluster Point Processes

A self-exciting MTDPP encourages clustering behaviors. In practice, the clus-

tering behaviors in the duration process may involve different factors. As an ex-

ample, consider in hydrology the durations being dry spells are classified into two

types, corresponding to cyclonic and anticyclonic weather (Cowpertwait, 2001). It

is expected that a point process model for the data is able to account for the two

weather types as the lengths of the dry spells could be distinctly different. Similar

examples can also be found in Li et al. (2021). This section extends the MTDPP

to a class of MTD cluster point process (MTDCPP) based on a two-component

mixture model. The defintion of the MTDCPP is given as follows.

Definition 2. Let N(t) be a temporal point process defined on R+ with event

arrival times t1, t2, · · · ∈ R+. Let f ∗(t− tN(t)) be the conditional duration density

of a self-exciting MTD point process. Then N(t) is said to be an MTD cluster
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point process if (i) t ∼ fI for N(t) = 0; (ii) for N(t) ≥ 1, the conditional duration

density is given by

f ∗
C(t− tN(t)) = π0fI(t− tN(t)) + (1 − π0)f ∗(t− tN(t))), (3.9)

where 0 ≤ π0 ≤ 1, and fI is the probability density of a positive-valued random

variable.

Similar to the MTDPP, we use densities fI and f ∗
C(t− tN(t)) to define the con-

ditional arrival densities p∗
i of event time ti, for an observed point pattern{ti}ni=1,

by taking p∗
1(t) = fI and p∗

i (t) = f ∗
C(t − ti−1), ti−1 < t ≤ ti, i = 2, . . . , n, which

characterize the probabilistic structure of the point process. The MTDCPP in-

cludes several special cases. When π0 = 1, the model reduces to a renewal process;

furthermore, if fI corresponds to an exponential distribution, it becomes a Poisson

process. When π0 = 0, the MTDCPP reduces to an MTDPP. When 0 < π0 < 1,

a new duration is generated from fI independently from the past durations with

probability π0, and is generated from a self-exciting MTDPP that depend on the

past L durations with probability 1 − π0.

Let hI be the hazard function associated with fI . The conditional intensity of

the MTDCPP is given by

λ∗
C(t) = π0(t)hI(t− tN(t)) +

L∑
l=1

πl(t)hl(t− tN(t) | tN(t)−l+1 − tN(t)−l), (3.10)

where the weights π0(t) = π0SI(t− tN(t))/S∗
C(t− tN(t)), πl(t) = (1 − π0)wlSl(t−

tN(t) | tN(t)−l+1 − tN(t)−l)/S∗
C(t − tN(t)), for l = 1, . . . , L, and S∗

C(t − tN(t)) =

π0SI(t− tN(t)) + (1 −π0)S∗(t− tN(t)), and we have that πl(t) ≥ 0, for l = 0, . . . , L,

and ∑L
l=0 π0(t) = 1, for all t. Compared to the MTDPP conditional intensity func-

tion in (3.5), the MTDCPP conditional intensity has an extra term contributed
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from the independent component fI , with time-dependent weights renormalized

incorporating the survival function associated with fI . If we take fI to be an

exponential density with rate µ and the MTDPP to be a stationary LoMTDPP,

the MTDCPP condition intensity is λ∗
C(t) = π0(t)µ +∑L

l=1 πl(t)α(ϕ + t − tN(t) +

tN(t)−l+1 − tN(t)−l)−1. We refer to this model as the Lomax MTDCPP. Note that

we consider a stationary LoMTDPP instead of a stationary SLMTDPP to avoid

potential identifiability problem, since the conditional duration density of the sta-

tionary SLMTDPP converges to an exponential density as α tends to infinity.

3.3 Bayesian Implementation

3.3.1 Conditional Likelihood and Prior Specification

We outline the approach to posterior inference for the MTDCPP model based

on conditional likelihood. The relevant expression in Definition 1 for inference is

(3.4). The MTDPP is regarded as a special case of the MTDCPP with π0 = 0.

Let {ti}ni=1 be the observed temporal point pattern over the interval (0, T ),

with durations x1 = t1 and xi = ti − ti−1 for i = 2, . . . , n. The process likelihood

can be expressed equivalently using {ti} or {xi}. For brevity, we use the latter

collection, and for convenience of noation, we take xn+1 = T−tn. Thus, combining

(3.2) and (3.9), the likelihood conditional on (x1, . . . , xL) is given by

p(x1, . . . , xn | π0,w,ϕ,θ)

≈
n∏

i=L+1

{
π0fI(xi | ϕ) + (1 − π0)

L∑
l=1

wlfl(xi |xi−l,θl)
}

×
(

1 −
∫ xn

0

{
π0fI(u | ϕ) + (1 − π0)

L∑
l=1

wlfl(u |xn+1−l,θl)
}
du

) (3.11)

where w = (w1, . . . , wL)⊤, and the vectors ϕ and θ = {θl}Ll=1 collect the parame-
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ters of the independent duration density fI and the MTDPP component densities,

respectively.

The Bayesian model involves prior specifications for the probability π0, the

MTDPP weight vector w, and the density parameters ϕ and θ. The priors for ϕ

and θ depend on particular choices of the densities fI and fl. For the probability

π0, we consider a beta prior Beta(π0 |u0, v0). Without further information, we

recommend a noninformative prior Beta(π0 | 1, 1) which corresponds to a uniform

prior with E(π0) = 0.5. We take the weights wl as increments of a cdf G, that

is, wl = G(l/L) − G((l − 1)/L), for l = 1, . . . , L, where G has support on the

unit interval. Flexible estimation of the weights wl depends on the shape of

G. We consider a DP prior that supports general distributional shape for G,

denoted as DP(α0, G0), where G0 = Beta(a0, b0) is the baseline cdf, and α0 > 0

is the precision parameter. Given G0 and α0, the vector of weights w follows a

Dirichlet distribution with shape parameter vector α0(a1, . . . , aL)⊤, where al =

G0(l/L) −G0((l− 1)/L), for l = 1, . . . , L. We denote this prior for the weights as

CDP(· |α0, a0, b0), and refer to Chapter 2 for a discussion of its properties.

3.3.2 Bayesian Estimation

We outline an MCMC algorithm to simulate from the joint posterior distri-

bution of the model parameters. To facilitate posterior inference, we first rewrite

the transition density of the MTDCPP in (3.11) as

f ∗
C(xi) =

L∑
l=0

πlf
c
l (xi | ϕ,θl), f c0 = fI , f cl = fl, l = 1, . . . , L, (3.12)

where πl = (1 − π0)wl, for l = 1, . . . , L, and ∑L
l=0 πl = 1.

The mixture model formulation in (3.12) allows us to introduce a set of con-
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figuration variables ℓi, taking values in {0, 1, . . . , L}, with a discrete distribu-

tion P (ℓi = l) = ∑L
l=0 πlδl(ℓi) where δl(ℓi) = 1 if ℓi = l and 0 otherwise, for

i = L + 1, . . . , n. Therefore, ℓi = 0 indicates that the duration xi is generated

from fI , and ℓi = l indicates that xi is generated from the lth component of the

MTDPP, for l = 1, . . . , L. Note that the second term that corresponds to the

likelihood normalizing constant in (3.11) can be written as ∑L
l=0 πlS

c
l (xn+1 | ϕ,θl)

where Sc0 = SI and Scl = Sl for l = 1, . . . , L. Similarly, we can introduce a con-

figuration variables ℓn+1 to identify the component of the mixture for xn+1. The

joint posterior distribution of the model parameters is given by

p(ϕ,θ,w, π0 |x1, . . . , xn) ∝ p(ϕ) ×
L∏
l=1

p(θl) × Dir(w |α0a1, . . . , α0aL)

× Beta(π0 |u0, v0) ×


n∏

i=L+1
f cℓi(xi) | ϕ,θl)

L∑
l=0

πlδl(ℓi)


{
Scℓn+1(xn+1)

L∑
l=0

πlδl(ℓn+1)
}

The posterior updates for parameters ϕ and θ depend on choice of the den-

sity fI and fl, respectively. The posterior full conditional distribution of each

configuration variable ℓi is a discrete distribution on {0, ..., L} with probabilities

proportional to πlf cl (xi | ϕ,θl). Let Ml = |{i : ℓi = l}|, for l = 0, ..., L, where |{·}|

returns the size of the set {·}. Given the configuration variables, we update the

weights w with a Dirichlet posterior full conditional distribution with parameter

vector (α0a1 +M1, . . . , α0aL+ML)⊤. A beta prior for π0 yields conjugate posterior

full conditional distribution Beta(π0 |u0 +M0, v0 +∑L
l=1 Ml).

3.3.3 Inference for Point Process Functionals and Model

Checking

Using the MCMC algorithm, we obtain posterior samples of the model parame-

ters that provide full posterior inference for any functional relevant to the MTDPP
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or MTDCPP. For example, given a posterior draw of the model parameters, we

obtain a posterior realization of the conditional intensity function by evaluating

(3.5) or (3.10) over a grid of time points, conditional on the observed points {ti}.

Similarly, for stationary MTDPPs, we can obtain posterior distribution of the

stationary marginal distribution.

Turning to model validation. For simplicity, we introduce the approach of

model checking for MTDPPs. It can be easily extended for MTDCPPs. The

model goodness-of-fit is examined with the random time-change theorem (Daley

and Vere-Jones, 2003). Denote by Λ∗(t) =
∫ t

0 λ
∗(u)du the compensator of a point

process. Given a realized point pattern {ti}ni=1, by the theorem, {Λ∗(ti)}ni=1 is

a realization from a Poisson process with unit rate. It follows that the random

variables U∗
i = 1 − exp{−(Λ∗(ti) − Λ∗(ti−1))} are independent uniform random

variables over the unit interval.

The compensator of the MTDPP event time ti is Λ∗(ti) = ∑i
j=1

∫ tj
tj−1 h

∗(u −

tj−1)du. It follows that Λ∗(ti) − Λ∗(ti−1) = − log(1 − F ∗(ti − ti−1)), and U∗
i =

F ∗(ti− ti−1), where F ∗(ti− ti−1) =
∫ ti
ti−1

f ∗(u− ti−1)du, for i = 1, . . . , n. The point

process model can be assessed graphically using quantile-quantile plots for the

estimated U∗
i with uncertainty quantification using posterior samples. If the model

is correctly specified, the random variables U∗
i are independent and identically

distributed as uniform distribution over the unit interval.

3.4 Data Illustrations

We illustrate the point process modeling framework with two synthetic data

examples and a real data analysis. In the first simulation experiment, we in-

vestigate the benefit of the proposed framework for modeling dependent point

processes with duration hazard functions in different shapes. The goal of the sec-
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ond simulation experiment is to examine the ability of the MTDCPP to recover

various clustering behaviors, which is further illustrated in the real data analysis.

For each scenario of the synthetic data examples, we chose interval (0, T ) such

that there were around 2000 event times simulated within the window. Posterior

analysis for each data example is based on posterior samples collected every 4

iteration from a Markov chain of 25000 iterations with the first 5000 as burn-in

samples. MCMC algorithms for all models were implemented on a computer with

a 2-GHz Intel Core i5 processor and 32-GB RAM. For each model implemented

in the synthetic data examples, the computing time was around 1.5 minutes. In

the real data analysis, the computing time for fitting the model to all 121 point

patterns sequentially was around 2.5 hours.

3.4.1 First Simulation Experiment

We generated data from several MTDPP models each of which owns a dif-

ferent family of stationary marginal distribution. In particular, we chose three

MTDPP models discussed in Section 3.2.4, with stationary scaled-Lomax, Burr,

and log-logistic marginal distributions, respectively. We specified model parame-

ters, (ϕ, α) = (2, 5), (λ, γ, κ) = (1, 2, 6), and (λ, γ) = (1, 2), respectively, such that

the associated hazard functions for the durations are decreasing for the scaled-

Lomax families and hump-shaped for the last two families. We chose model order

L = 3 for all simulations, with decaying weights w = (0.5, 0.3, 0.2).

We then applied the BuMTDPP model with L = 3 to the three synthetic

data sets. Recall that the shape parameter γ of the model controls the shape

of the hazard function, and γ = 1 is the critical value such that Burr hazard

function becomes monotonic or non-monotonic when γ ≤ 1 or γ > 1. Therefore,

we assigned a gamma prior Ga(1, 1) to γ. Besides, the mth moment of the Burr
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(a) Scaled-Lomax (b) Burr (c) Log-logistic

Figure 3.1: Chapter 3 - first simulation data analysis. The first, second, and third rows
correspond to the posterior means (blue dashed lines) and 95% credible interval estimates (grey
polygons) of the conditional intensity, marginal density, and marginal hazard function. Black
solid lines are true values.

distribution exists if κγ > m. We specified an independent prior Ga(5, 1) for κ,

implying the expectation that the first four moments exist with respect to the

component Burr distribution. The scale parameter λ received Ga(1, 1), and the

vector of weights w was assigned CDP(w | 5, 1, 2), indicating decaying weights.

We focus on the inference for the point process conditional intensity, and the

corresponding duration process stationary marginal density and its associated

hazard function, as shown in Figure 3.1. In particular, the BuMTDPP model was

able to distinguish between monotonically decreasing and hump-shaped functions
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for both the conditional intensity function and the hazard function associated

with the stationary marginal density. For the duration hazard function, the point

estimates tended to underestimate when the function decreases and overestimate

when the function increases. Overall, the model provided reasonably good esti-

mates to these functionals, with uncertainty bands that contain most of the true

values. From the figure, we can also observe that the posterior mean of the hazard

function is not as closer to the true one, compared to the difference between that

of the marginal and true densities. This may result from the hazard function es-

timation which involves first estimating the survival function. Consequently, the

uncertainty estimate includes the uncertainty from the estimation of the survival

function. As in Figure 3.1, the posterior 95% credible interval estimates of the

hazard functions are wider than those of the density functions.

3.4.2 Second Simulation Experiment

We generate data from a Lomax MTDCPP, that is, with fI corresponding to an

exponential distribution with rate µ and f ∗(t− tN(t)) a stationary LoMTDPP. We

consider four scenarios, with π0 taking one of the following values, (0.2, 0.5, 0.8, 1).

The first three values indicate to certain degree is the process affected by external

factors, and the last one results in simply a Poisson process. For all scenarios, we

take µ = 0.2, α = 5, ϕ = 0.1 and decaying weights w = (0.35, 0.25, 0.2, 0.1, 0.1)⊤.

We applied the Lomax MTDCPP model with L = 5 to the synthetic data.

We specified a beta prior Beta(π0 | 1, 1) for the probability π0 and a gamma prior

Ga(µ | 1, 1) for the rate parameter µ of the exponential distribution fI . For the

stationary LoMTDPP, the shape and scale parameters received gamma priors

Ga(α | 5, 1) and Ga(ϕ | 1, 1). Similar to the first simulation experiment, we chose

Ga(α | 5, 1) with the expectation that the first four moments exist with respect to
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Table 3.1: Chapter 3 - second simulation data analysis. Posterior means and
95% credible interval estimates of the MTDCPP model parameters under different
scenarios.

π0 = 0.2 π0 = 0.5 π0 = 0.8 π0 = 1

π0 0.22 (0.19, 0.24) 0.52 (0.48, 0.56) 0.81 (0.75, 0.85) 0.99 (0.96, 1.00)

µ 0.22 (0.19, 0.24) 0.19 (0.17, 0.20) 0.20 (0.19, 0.21) 0.19 (0.18, 0.20)

ϕ 0.12 (0.09, 0.15) 0.13 (0.09, 0.19) 0.10 (0.02, 0.26) 1.28 (0.05, 4.38)

α 5.34 (4.53, 6.28) 6.25 (4.86, 7.87) 4.46 (2.91, 7.48) 4.53 (1.76, 9.42)

the component Lomax distribution. The vector w was assigned CDP(w | 5, 1, 3),

which elicits a decreasing pattern in the weights.

We focus on the inference on the two-component mixture probability π0 and the

component density parameters (µ, ϕ, α). The posterior means and 95% credible

interval estimates of the parameters are presented in Table 3.1. The posterior

estimates of the parameter π0 suggest that the model was able to recover the

proportion of the point process driven by fI , even in the extreme case when

π0 = 1. For other parameters, the model produced estimates close to the true

values for all scenarios.

Figure 3.2 illustrates the conditional intensities of the Lomax MTDPP evalu-

ated at three different time windows, under the scenarios of π0 = 0.2, 0.5, 1. We

omit the scenario with π0 = 0.8 for better visualization. When π0 becomes larger,

the process dynamic is driven more by the exponential component. Thus, accord-

ingly, in the figure, we can observe larger gaps between clusters, with less and

shorter spikes. When π0 = 1, the estimated intensity is overall very close to the

true value µ = 0.2.
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(a) π0 = 0.2 (b) π0 = 0.5 (c) π0 = 1

Figure 3.2: Chapter 3 - second simulation data analysis. Posterior means (solid lines) and 95%
credible interval estimates (grey polygons) of the conditional intensity of the MTDCPP model
evaluated at different time windows under different scenarios.

3.4.3 Mid-Price Changes of the AUD/USD Exchange Rate

Financial markets involve complex human activities, with both external and

internal factors driving market dynamics. Contrary to the “efficient market hy-

pothesis” that expects large price changes occurring with significant news, it is

suggested that, for high-frequency financial data, only a small portion of the

price movements is caused by external factors such as relevant news releases (Fil-

imonov and Sornette, 2012). Therefore, to better understand the financial market

microstructure, is is important to quantify the degree of market reflexivity, mea-
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sured as the proportion of price movements due to internal processes rather than

external processes. Recently, the Hawkes process and its extensions (Filimonov

and Sornette, 2012; Wheatley et al., 2016; Chen and Stindl, 2018; Stindl and Chen,

2021) have been introduced to study the market reflexivity, where each price move

is considered as an event. The Hawkes process admits a branching structure that

allows for separating endogenous events from exogenous events. The model pro-

vides a parameter called branching ratio that can be used to quantify the market

reflexivity. The goal of this section is to investigate the market reflexivity from

the duration clustering perspective using the MTDCPP, where the probability

component (1 − π0) in (3.9) can be interpreted as the proportion of price move-

ments due to endogenous interaction. The ability of the MTDCPP to quantify

the market reflexivity for this particular data exmaple is also compared with the

Hawkes process at the end of the section.

We analyze the price movements of the AUD/USD foreign exchange rate. In

particular, a price movement is recorded when there is a mid-price change, where

mid-price is defined as the average of the best bid and ask prices. A detailed

explanation of using mid-price change as a measure of the price movements can be

found in Filimonov and Sornette (2012). The data consist of 121 non-overlapping

point patterns, with total number of events ranging from 108 to 3961. Each point

pattern corresponds to one hour time window of the trading week from 20:00:00

Greenwich Mean Time (GMT) July 19 to 21:00:00 GMT July 24 in the year

of 2015. Analyzing sequences of point patterns within small windows, to some

extent, avoids the issue of nonstationarity such as diurnal pattern. We refer to

Chen and Stindl (2018) for more details of the data, and the data are available in

the R package RHawkes (Chen and Stindl, 2022).

We considered the Lomax MTDCPP model illustrated in the second simulation
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(a) Exponential distribution parameter 1/µ (b) LoMTDPP scale parameter ϕ

(c) LoMTDPP shape parameter α (d) Endogenous probability (1 − π0)

Figure 3.3: Chapter 3 - AUD/USD foreign exchange market data analysis. Time series plots
of the posterior means (solid lines) and pointwise 95% credible intervals (grey polygons) of the
parameters 1/µ, ϕ, α, (1−π0) for the MTDCPP based on the hourly data. Vertical dashed lines
correspond to midnight and midday GMT. The red dashed line in Panel (a) corresponds to the
averages of the observed durations of the one hour windows.

experiment, and applied the model to the 121 point patterns, with the same prior

specification for (π0, µ, α, ϕ) as in the second simulation experiment. Based on the

autocorrelation and partial autocorrelation functions of the observed durations,

we chose model order L = 15 for all point patterns, and the mixture weights were

assigned a CDP(w | 5, 1, 6).

For each point pattern, we obtained posterior mean and 95% credible interval

estimates of the model parameters. Figure 3.3 shows the time series of the point

and interval estimates of four parameters: exponential distribution parameter
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Figure 3.4: Chapter 3 - AUD/USD foreign exchange market data analysis. Posterior means
(solid lines) and pointwise 95% credible intervals (grey polygons) of the MTDCPP conditional
intensity evaluated at the time windows around midnight of Tuesday, July 21.

1/µ, LoMTDPP scale parameter ϕ, LoMTDPP shape parameter α, the endoge-

nous probability (1 − π0). Specifically, parameters 1/µ and ϕ indicate the mean

waiting time between two mid-price changes due to external and internal factors,

respectively. The estimates of the mean waiting time 1/µ shows obvious diurnal

pattern, with peaks and troughs appearing around midnight and midday, respec-

tively. The posterior estimates of ϕ for all point patterns seem more volatile.

As shown in Figure 3.3(c), the posterior estimates of α reflect a pattern that is

consistent with the exponential distribution waiting time estimates. Recall that a

small value of α indicates a heavy tail. Smaller value of α estimates around mid-

night suggest larger expected waiting time between events. Figure 3.4 shows the

estimated conditional intensity at time windows around the midnight of Tuesday,
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July 21. We can observe clear clustering pattern especially during the last ten

minutes before the midnight.

From Figure 3.3(d), we see that the estimates of the market reflexivity (1−π0)

fluctuate heavily over the whole trading week, with most of them greater than 0.5.

The posterior means of (1−π0) for the 121 point patterns range from 0.29 to 0.94

with median 0.75 and quartiles (0.62, 0.86), suggesting that the market dynamics

are mostly driven by internal processes. A similar conclusion was drawn by Chen

and Stindl (2018) in which a renewal Hawkes (RHawkes) process was used to fit the

same data set to quantify the market reflexivity. The RHawkes process (Wheatley

et al., 2016) extends the Hawkes process to capture dependence between clusters,

by replacing the immigrant Poisson process with a renewal process. Despite this

feature, it remains the same to use the branching ratio to estimate the market

reflexivity as the Hawkes process. The estimated ratios in Chen and Stindl (2018)

range from 0.29 to 0.98 with median 0.66 and quartiles (0.53, 0.80). Their results

are similar to our findings. This suggests that the Lomax MTDCPP was able to

quantify how much the observed dynamics are caused by internal factors versus

external influences.

Finally, we would like to remark that, in addition to the computational advan-

tage, using the MTDCPP for the present objective does not require any station-

arity assumptions. On the contrary, stationarity is essential for both the Hawkes

and RHawkes processes in order to use the branching ratio as an estimator for the

market reflexivity. However, as discussed in Filimonov and Sornette (2012), mar-

ket activities are typically nonstationary. Although seasonality can be addressed

by splitting the time window into small intervals, one has to balance the size of

the intervals and the number of the events within the interval to ensure reliable

estimates produced from the point process models. Moreover, stationarity is not
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guaranteed for each small interval.

3.5 Discussion

We have developed a modeling framework for constructing various types of

point processes, including self-exciting and self-regulating processes, dependent

renewal processes, and cluster point processes. The framework relies on specifying

an MTD model for the conditional duration density of a point process. Thus, the

resulting point process has restricted memory, i.e., the process evolution depends

on some recent events. The high-order Markov assumption facilitates efficient

computation, but it could be a limitation in practice for some scenarios when the

assumption of full history dependence is needed. One solution to ease this issue,

within our framework, is to place a large value for the MTD order. The MTD

mixture model structure with the structured prior for the weights allows efficient

inference with a large order.

Section 3.2.4 illustrates the use of a bivariate copula for the joint cdf of the

random vector (Ul, Vl). It is worth mentioning that, alternatively, we can specify

the joint survival function of (Ul, Vl) with a copula Cl such that the joint survival

probability SUl,Vl
(u, v) = Cl(SUl

(u), SVl
(v)) (Georges et al., 2001). It follows that

fUl,Vl
(u, v) = c̃l(u, v)fUl

(u)fVl
(v) where c̃l(u, v) = ∂C(SUl

(u), SVl
(v))/(∂SUl

∂SVl
).

The conditional duration density of the resulting MTDPP can be obtained by

replacing the cl in (3.7) with c̃l. The component hazard function of the mdoel

is hl(u | v) = −d logSUl|Vl
(u | v)/du, where SUl|Vl

(u | v) = ∂C(SUl
(u), SVl

(v))/∂SVl
.

This approach produces a class of copula NNMPs different from those introduced

in Section 3.2.4, and can be useful in the topic of survival analysis, e.g., for

modeling recurrent event processes.

In many applications, a point process carries information about times of some
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events that are of particular interest. These events are referred to as marks of the

point process, and one is usually interested in the inference for the marks such as

their conditional distributions. Without loss of generality, let y be a vector of con-

tinuous marks. The proposed framework can be easily extended to incorporate

marks through a convenient decomposition of a marked point process intensity

(Daley and Vere-Jones, 2003), that is, λ∗(t,y) = λ∗
g(t)m∗(y | t), where λ∗

g(t) is the

conditional intensity of the point process for the event times, which is referred to

as the ground process. Assuming the ground process does not depend on marks,

we can mode the ground process with an MTDPP or MTDCPP. Then, modeling

a marked point process boils down to specification of the conditional mark distri-

bution m∗(y | t); see, for example, in the context of peaks-over-threshold analysis,

Herrera and Schipp (2013) use a generalized Pareto distribution for m∗(y | t) with

an ACD model for the ground process.
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Chapter 4

Models for Non-Gaussian

Continuous-Valued Spatial

Processes

4.1 Introduction

Gaussian processes have been widely used as an underlying structure in model-

based analysis of irregularly located spatial data in order to capture short range

variability. The fruitfulness of these spatial models owes to the simple charac-

terization of the Gaussian process by a mean and a covariance function, and the

optimal prediction it provides that justifies kriging. However, the assumption of

Gaussianity is restrictive in many fields where the data exhibits non-Gaussian

features, for example, vegetation abundance (Eskelson et al., 2011), precipitation

data (Sun et al., 2015), contaminated soil (Paul and Cressie, 2011), temperature

data (North et al., 2011), and wind speed data (Bevilacqua et al., 2020). In

this chapter, we aim at developing a flexible class of geostatistical models that
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is customizable to general non-Gaussian distributions, with particular focus on

continuous data.

Several approaches have been developed for non-Gaussian geostatistical mod-

eling. A straightforward approach consists of fitting a Gaussian process after

transformation of the original data. Possible transformations include Box-Cox

(De Oliveira et al., 1997), power (Allcroft and Glasbey, 2003), square-root (Johns

et al., 2003), and Tukey g-and-h (Xu and Genton, 2017) transforms, to name a few.

Alternative to transformations, we can represent a non-Gaussian distribution as a

location-scale mixture of Gaussian distributions. This yields Gaussian process ex-

tensions that are able to capture skewness and long tails (Kim and Mallick, 2004;

Palacios and Steel, 2006; Zhang and El-Shaarawi, 2010; Mahmoudian, 2017; Mor-

ris et al., 2017; Zareifard et al., 2018; Bevilacqua et al., 2021). Beyond methods

based on continuous mixtures of Gaussian distributions, Bayesian nonparametric

methods have been explored for geostatistical data modeling, starting with the

approach in Gelfand et al. (2005) which extends the Dirichlet process (Ferguson,

1973) to a prior model for random spatial surfaces. We refer to Müller et al. (2018)

for a review. From a different perspective, a class of non-Gaussian Matérn fields is

formulated with stochastic partial differential equations driven by non-Gaussian

noise (Bolin, 2014; Wallin and Bolin, 2015; Bolin and Wallin, 2020).

An alternative popular approach involves a hierarchical model structure that

assumes conditionally independent non-Gaussian marginals, combined with a la-

tent spatial process that is associated with some functional or link function of the

first-stage marginals. Hereafter, we refer to these models as hierarchical first-stage

non-Gaussian models. If the latent process is linked through a function of some pa-

rameter(s) of the first-stage marginal which belongs to the exponential dispersion

family, the approach is known as the spatial generalized linear mixed model and
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its extensions (Diggle et al., 1998; Chan and Dong, 2011). Non-Gaussian spatial

models that build from copulas (Joe, 2014) can also be classified into this category.

Copula models assume pre-specified families of marginals for observations, with a

multivariate distribution underlying the copula for a vector of latent variables that

are probability integral transformations of the observations (Danaher and Smith,

2011). Spatial copula models replace the multivariate distribution with one that

corresponds to a spatial process, thus introducing spatial dependence (Bárdossy,

2006; Ghosh and Mallick, 2011; Krupskii et al., 2018; Beck et al., 2020).

The non-Gaussian modeling framework proposed in this chapter is distinctly

different from the previously mentioned approaches. Our methodology builds on

the class of nearest-neighbor processes obtained by extending a joint density for

a reference set of locations to the entire spatial domain. The original joint den-

sity is factorized into a product of conditionals with respect to a DAG. Deriving

each conditional from a Gaussian process results in the nearest-neighbor Gaussian

process (NNGP; Datta et al. 2016a). Models defined over DAGs have received

substantial attention; see, e.g., Datta et al. (2016b); Finley et al. (2019); Peruzzi

et al. (2020); Peruzzi and Dunson (2022). The class of DAG-based models orig-

inates from Vecchia’s approach (Vecchia, 1988) that considers nearest-neighbor

approximations. Related works that exploited sparsity for approximating an ex-

pensive Gaussian likelihood include, e.g., Stein et al. (2004), Gramacy and Apley

(2015), Sun and Stein (2016), Stroud et al. (2017), Guinness (2018), and Schäfer

et al. (2021). Katzfuss and Guinness (2021) provide a further generalization of

the Vecchia approximation framework.

Considerably less attention, however, has been devoted to defining models

over a DAG with non-Gaussian distributions for the conditionals of the joint den-

sity. This is in general a difficult problem, as each conditional involves, say, a
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p-dimensional conditioning set, which requires a coherent model for a (p + 1)-

dimensional non-Gaussian distribution, with p potentially large. In this chap-

ter, we take on the challenging task of developing a computationally efficient,

interpretable framework that provides generality for modeling different types of

non-Gaussian data and flexibility for complex spatial dependence.

We overcome the aforementioned challenge by modeling each conditional of

the joint density as a weighted combination of first-order spatially varying tran-

sition kernels, each of which depends on a specific neighbor. This approach pro-

duces multivariate non-Gaussian distributions by specification of the bivariate

distributions that define the local transition kernels. Thus, it provides generality

for modeling different non-Gaussian behaviors, since, relative to the multivariate

analogue, constructing bivariate distributions is substantially easier, for instance,

using bivariate copulas. Moreover, such a model structure offers the convenience

of quantifying multivariate dependence through the collection of bivariate distri-

butions. As an illustration, we study tail dependence properties under appropri-

ate families of bivariate distributions, and provide results that guide modeling

choices. The modeling framework achieves flexibility by letting both the weights

and transition kernels be spatially dependent, inducing sufficient local dependence

to describe a wide range of spatial variability. We refer to the resulting geospatial

process as the nearest-neighbor mixture process (NNMP).

An important feature of the model structure is that it facilitates the study of

conditions for constructing NNMPs with pre-specified families of marginal distri-

butions. Such conditions are easily implemented without parameter constraints,

thus resulting in a general modeling tool to describe spatial data distributions that

are skewed, heavy-tailed, positive-valued, or have bounded support, as illustrated

through several examples in Section 4.4. The NNMP framework emphasizes direct
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modeling by introducing spatial dependence at the data level. It avoids the use

of transformations that may distort the Gaussian process properties (Wallin and

Bolin, 2015). It is fundamentally different from the class of hierarchical first-stage

non-Gaussian models that introduce spatial dependence through functionals of

the data probability distribution, such as the transformed mean. Regarding com-

putation, NNMP models do not require estimation of potentially large vectors

of spatially correlated latent variables, something unavoidable with hierarchical

first-stage non-Gaussian models. Approaches for such models typically resort to

approximate inference, either directly or combined with a scalable model (Zilber

and Katzfuss, 2021). Estimation of NNMPs is analogous to that of a finite mix-

ture model, thus avoiding the need to perform costly matrix operations for large

data sets, and allowing for computationally efficient, full simulation-based infer-

ence. Overall, the NNMP framework offers a flexible class of models that is able

to describe complex spatial dependence, coupled with an efficient computational

approach, leveraged from the mixture structure of the model.

The rest of the chapter is organized as follows. In Section 4.2, we formulate

the NNMP framework and study model properties. Specific examples of NNMP

models illustrate different components of the methodology. Section 4.3 develops

the general approach to Bayesian estimation and prediction under NNMP mod-

els. In Section 4.4, we demonstrate different NNMP models with synthetic data

examples and with an analysis of Mediterranean Sea surface temperature data.

Finally, Section 4.5 concludes with a summary and discussion of future work.
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4.2 Nearest-Neighbor Mixture Processes

4.2.1 Modeling Framework

Consider a univariate spatial process {Z(v) : v ∈ D}, where D ⊂ Rp, for

p ≥ 1. Let S = {s1, . . . , sn} be a finite collection of locations in D, referred to

as the reference set. Let zS = (z(s1), . . . , z(sn)) be a realization of the random

vector ZS = (Z(s1), . . . , Z(sn)). If we regard the locations si as vertices of a

DAG, we can factorize the joint density p(zS) of ZS into a product of univariate

conditionals as

p(zS) = p(z(s1))
n∏
i=2

p(z(si) | zNe(si)), (4.1)

where the set Ne(si) ⊂ S i = {s1, . . . , si−1} consists of parents of si. The joint

density in (4.1) corresponds to a directed graphical model (Jordan 2004; also

known as a Bayesian network), with a DAG that summaries the conditional in-

dependence structure between random variables. In particular, conditional on

ZNe(si), Z(si) is independent of ZSi \Ne(si), for i = 2, . . . , n. Thus, choosing the

set Ne(si) creates different DAGs. Our selection is based on the geostatistical

distance between si and sj ∈ S i, and Ne(si) is referred to as the nearest-neighbor

set of si, having at most L elements with L ≪ n. The selected locations sj are

placed in ascending order according to the distance, denoted as s(i1), . . . , s(i,iL),

where iL := (i−1)∧L. We note that the development of the proposed framework

holds true for any choice of the neighbor sets. For different ways to choose near-

est neighbors in spatial modeling, see, for example, Vecchia (1988), Stein et al.

(2004), and Gramacy and Apley (2015).

Constructing a nearest-neighbor process involves specification of the condi-

tional density p(z(si) | zNe(si)) in (4.1), and extension to an arbitrary finite set in

D that is not overlapping with S. We approach the problem of constructing a
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nearest-neighbor non-Gaussian process following this idea. Specifically, we define

the conditional density as

p(z(si) | zNe(si)) =
iL∑
l=1

wl(si) fsi,l(z(si) | z(s(il))), (4.2)

where fsi,l is the lth component of the mixture density p, and the weights satisfy

wl(si) ≥ 0, for all l, and ∑iL
l=1 wl(si) = 1, for every si ∈ S. In a DAG, nearest

neighbors in set Ne(si) are vertices that have directed edges pointing to si. Thus,

it is appealing to consider a high-order Markov model in which temporal lags have

a similar notion of direction. Our approach to formulating (4.2) is motivated by

a class of mixture transition distribution models (Le et al., 1996), which consists

of a mixture of first-order transition densities with a vector of common weights.

A key feature of the formulation in (4.2) is the decomposition of a non-Gaussian

conditional density, with a potentially large conditioning set, into a weighted sum

of local conditional densities. This provides flexible, parsimonious modeling of

p(z(si) | zNe(si)) through specifying bivariate distributions that define the local

conditionals fsi,l(z(si) | z(s(il)). We provide further discussion on this feature for

model construction and relevant properties in the following sections.

Spatial dependence characterized by (4.2) is twofold. First, each component

fsi,l is associated with spatially varying parameters indexed at si ∈ S, defined by

a probability model or a link function. Secondly, the weights wl(si) are spatially

varying. As each component density fsi,l depends on a specific neighbor, the

weights indicate the contribution of each neighbor of si. Besides, the weights

adapt to the change of locations. For two different si, sj in S, the relative locations

of the nearest neighbors Ne(si) to si are different from that of Ne(sj) to sj. If

all elements of Ne(si) are very close to si, then values of (w1(si), . . . , wiL(si))⊤

should be quite even. On the other hand, if, for sj, only a subset of its neighbors in

85



Ne(sj) are close to sj, then the weights corresponding to this subset should receive

larger values. We remark that in general, probability models or link functions

for the spatially varying parameters should be considered case by case, given

different specifications on the components fsi,l. Details of the construction for the

component densities and the weights are deferred to later sections.

We obtain the NNMP, a legitimate spatial process, by extending (4.2) to an

arbitrary set of non-reference locations U = {u1, . . . ,ur} where U ⊂ D \ S. In

particular, we define the conditional density of zU given zS as

p(zU | zS) =
r∏
i=1

p(z(ui) | zNe(ui)) =
r∏
i=1

L∑
l=1

wl(ui) fui,l(z(ui) | z(u(il))), (4.3)

where the specification on wl(ui) and fui,l for all i and all l is analogous to that

for (4.2), except that Ne(ui) = {u(i1), . . . ,u(iL)} are the first L locations in S that

are closest to ui in terms of geostatistical distance. Building the construction of

the neighbor sets Ne(ui) on the reference set ensures that p(zU | zS) is a proper

density.

Given (4.2) and (4.3), we can obtain the joint density p(zV) of a realization

zV over any finite set of locations V ⊂ D. When V ⊂ S, the joint density p(zV) is

directly available as the appropriate marginal of p(zS). Otherwise, we have that

p(zV) =
∫
p(zU | zS)p(zS)∏{si∈S \ V} dz(si), where U = V \ S. If S \ V is empty,

p(zV) is simply p(zU | zS)p(zS). In general, the joint density p(zV) of an NNMP is

intractable. However, since both p(zU | zS) and p(zS) are products of mixtures, we

can recognize that p(zV) is a finite mixture, which suggests flexibility of the model

to capture complex non-Gaussian dependence over the domain D. Moreover, we

show in Section 4.2.3 that for some NNMPs, the joint density p(zV) has a closed-

form expression. In the subsequent development of model properties, we will use
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the conditional density

p(z(v) | zNe(v)) =
L∑
l=1

wl(v) fv,l(z(v) | z(v(l))), v ∈ D, (4.4)

to characterize an NNMP, where Ne(v) contains the first L locations that are

closest to v, selected from locations in S. These locations in Ne(v) are placed in

ascending order according to distance, denoted as v(1), . . . ,v(L).

In comparison to the nearest-neighbor spatial models discussed in Section 4.1,

we remark on a conceptual difference between them and our modeling framework.

Unlike the nearest-neighbor Gaussian process approach in Datta et al. (2016a),

we do not posit a parent process when building our models. Datta et al. (2016a)

assume a full Gaussian process over the reference set, and use it to derive the

conditional densities p(z(si) | zNe(si)). Similar ideas underlie the Vecchia approxi-

mation framework which considers (4.1) as an approximation to the density of a

full Gaussian process realization. In the present work, we directly model the joint

density p(zS), utilizing the nearest-neighbor DAG representation with a struc-

tured mixture model, which is key to our modeling objective of developing spatial

processes for general non-Gaussian data.

Before closing this section, we note that spatial locations are not naturally

ordered. Given a distance function, a different ordering on the locations results in

different neighbor sets. Therefore, a different DAG with density p(zS) is created

accordingly for model inference. Literature that considers nearest-neighbor models

for Gaussian data by default orders locations based on sorting coordinates. We

refer to Guinness (2018) and references therein for more details. In particular,

Guinness (2018) demonstrates that certain orderings such as random orderings can

improve model performance when compared with coordinate-based orderings. For

the NNMP models illustrated in the data examples, we found through simulation
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experiments that there were no discernible differences between the inferences based

on p(zS), given two different random orderings. As outlined by Datta et al.

(2016a), the effectiveness of p(zS) depends on the information borrowed from the

neighbors, which is often determined by the size of Ne(si) rather than the ordering.

A further remark is that the ordering of the reference set S is typically reserved

for observed data. Thus, the ordering effect lies only in the model estimation

based on (4.2) with realization zS . Spatial prediction typically rests on locations

outside S using (4.3), where the ordering effect disappears.

4.2.2 NNMPs with Stationary Marginal Distributions

We develop a sufficient condition to construct NNMPs with general stationary

marginal distributions. The key feature of this result is that the condition relies

on the bivariate distributions that define the first-order transition kernels in (4.4)

without the need to impose restrictions on the parameter space.

Proposition 4.1. Consider an NNMP for which the component density fv,l is

specified by the conditional density of Uv,l given Vv,l, where the random vector

(Uv,l, Vv,l) follows a bivariate distribution with marginal densities fUv,l
and fVv,l

,

for l = 1, . . . , L. The NNMP has stationary marginal density fZ if it satisfies the

invariant condition: Z(s1) ∼ fZ, s1 ∈ S, and for every v ∈ D, fZ(z) = fUv,l
(z) =

fVv,l
(z), for all z and for all l.

This result builds from the one in Chapter 2 where temporal MTD processes

with stationary marginal distributions were constructed. It applies regardless of

Z(v) being a continuous, discrete or mixed random variable, thus allowing for a

wide range of non-Gaussian marginal distributions and a general functional form,

either linear or non-linear, for the expectation with respect to the conditional

density p in (4.4).
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As previously discussed, the mixture model formulation for the conditional

density in (4.4) induces a finite mixture for the NNMP finite-dimensional dis-

tributions. On the other hand, due to the mixture form, an explicit expression

for the covariance function is difficult to derive. A recursive equation can be ob-

tained for a class of NNMP models for which the conditional expectation with

respect to (Uv,l, Vv,l) is linear, that is, E(Uv,l |Vv,l = z) = al(v) + bl(v) z for some

al(v), bl(v) ∈ R, l = 1, . . . , L, and for all v ∈ D. Suppose the NNMP has a

stationary marginal distribution with finite first and second moments. Without

loss of generality, we assume the first moment is zero. Then the covariance over

any two locations v1,v2 ∈ D is

Cov(Z(v1), Z(v2))

=



∑L
l=1 wl(si) bl(si)E(Z(sj)Z(s(il))), v1 ≡ si ∈ S,v2 ≡ sj ∈ S,

∑L
l=1 wl(v1) bl(v1)E(Z(sj)Z(v(1l))), v1 /∈ S,v2 ≡ sj ∈ S,

∑L
l=1

∑L
l′=1 wll′ {all′ + bll′E(Z(v(1l))Z(v(2l′)))}, v1,v2 /∈ S,

(4.5)

where wll′ ≡ wl(v1)wl′(v2), all′ ≡ al(v1)al′(v2), bll′ ≡ bl(v1)bl′(v2), and without

loss of generality, we assume i > j. The covariance in (4.5) implies that, even

though the process has a stationary marginal distribution, the NNMP is second-

order non-stationary.

4.2.3 Construction of NNMP models

The spatially varying conditional densities fv,l in (4.4) correspond to a se-

quence of bivariate distributions indexed at v, namely, the distributions of (Uv,l, Vv,l),

for l = 1, ..., L. To balance model flexibility and scalability, we build spatially

varying distributions by considering the distribution of random vector (Ul, Vl), for
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l = 1, . . . , L, and extending some of its parameters to be spatially varying, that

is, indexed in v. To this end, we use a probability model or a link function. We

refer to the random vectors (Ul, Vl) as the set of base random vectors. With a

careful choice of the model/function for the spatially varying parameter(s), this

construction method reduces significantly the dimension of the parameter space,

while preserving the capability of the NNMP model structure to capture spatial

dependence.

We illustrate the method with several examples below, starting with a bivariate

Gaussian distribution and its continuous mixtures for real-valued data, followed

by a general strategy using bivariate copulas that can model data with general

support. Before proceeding to the examples, we emphasize that our method allows

for general bivariate distributions. One can also consider using a pair of compatible

conditionals to specify bivariate distributions (Arnold et al., 1999), for instance,

a pair of Lomax conditionals. This is illustrated in Example 4 in Section 4.2.4.

Example 1. Gaussian and continuous mixture of Gaussian NNMP models.

For l = 1, . . . , L, take (Ul, Vl) to be a bivariate Gaussian random vector with

mean µl12 and covariance matrix Σl = σ2
l

(
1 ρl
ρl 1

)
, where 12 is the two-dimensional

column vector of ones, resulting in a Gaussian conditional density fUl|Vl
(ul | vl) =

N(ul | (1 − ρl)µl + ρlvl, σ
2
l (1 − ρ2

l )). If we extend the correlation parameter to be

spatially varying, ρl(v) = kl(v,v(l)), for a correlation function kl, we obtain the

spatially varying conditional density p(z(v) | zNe(v)) of the model expressed as

L∑
l=1

wl(v)N(z(v) | (1 − ρl(v))µl + ρl(v)z(v(l)), σ2
l (1 − (ρl(v))2)). (4.6)

This NNMP is referred to as the Gaussian NNMP (GNNMP). If we take Z(s1) ∼

N(z |µ, σ2), and set µl = µ and σ2
l = σ2, for all l, the resulting model satis-

90



fies the invariant condition of Proposition 4.1 with stationary marginal given by

the N(µ, σ2) distribution. Moreover, the finite-dimensional distribution of the

GNNMP is characterized by the following proposition.

Proposition 4.2. Consider the GNNMP in (4.6) with µl = µ and σ2
l = σ2, for

all l. If Z(s1) ∼ N(z |µ, σ2), the GNNMP has the N(µ, σ2) stationary marginal

distribution, and its finite-dimensional distributions are mixtures of multivariate

Gaussian distributions.

We refer to the model in Proposition 4.2 as the stationary GNNMP. Based

on the GNNMP, various NNMP models with different families for (Ul, Vl) can be

constructed by exploiting location-scale mixtures of Gaussian distributions. We

illustrate the approach with the skew-GNNMP model. Denote by TN(µ, σ2; a, b)

the Gaussian distribution with mean µ and variance σ2, truncated at the interval

(a, b). Building from the GNNMP, we start with a conditional bivariate Gaussian

distribution for (Ul, Vl), given z0 ∼ TN(0, 1; 0,∞), where µl is replaced with µl +

λlz0. Marginalizing out z0 yields the bivariate skew-Gaussian distribution for

(Ul, Vl) (Azzalini, 2013). Extending again ρl to ρl(v), for all l, we can express the

conditional density p(z(v) | zNe(v)) for the skew-GNNMP model as

L∑
l=1

wl(v)
∫ ∞

0
N(z(v) |µl(v), σ2

l (v)) TN(z0(v) |µ0l(v(l)), σ2
0l; 0,∞)dz0(v), (4.7)

where we have: µl(v) = {1 − ρl(v)}{µl + λlz0(v)} + ρl(v)z(v(l)); σ2
l (v) = σ2

l {1 −

(ρl(v))2}; µ0l(v(l)) = {z(v(l))−µl}λl/(σ2
l +λ2

l ); and σ2
0l = σ2

l /(σ2
l +λ2

l ). Setting λl =

λ, µl = µ, and σ2
l = σ2, for all l, we obtain the stationary skew-GNNMP model,

with skew-Gaussian marginal fZ(z) = 2N(z |µ, λ2+σ2) Φ((z−µ)λ/(σ
√
λ2 + σ2)),

denoted as SN(µ, λ2 + σ2, λ/σ).

The skew-GNNMP model is an example of a location mixture of Gaussian

91



distributions. Scale mixtures can also be considered to obtain such as the Student-

t model. In that case, we replace the covariance matrix Σl with cΣl, taking c as

a random variable with an appropriate inverse-gamma distribution. Important

families that admit a location and/or scale mixture of Gaussians representation

include the skew-t, Laplace, and asymmetric Laplace distributions. Using a similar

approach to the one for the skew-Gaussian NNMP example, we can construct the

corresponding NNMP models.

Example 2. Copula NNMP models.

A copula function C : [0, 1]p → [0, 1] is a function such that, for any mul-

tivariate distribution function F (z1, . . . , zp), there exists a copula C for which

F (z1, . . . , zp) = C(F1(z1), . . . , Fp(zp)), where Fj is the marginal distribution func-

tion of Zj, j = 1, . . . , p (Sklar, 1959). If Zj is continuous for all j, C is unique,

and the joint density f(z1, . . . , zp) = c(z1, . . . , zp)
∏p
j=1 fj(zj), where the copula

density c = ∂pC/(∂F1 . . . ∂Fp) and fj is the density of Zj. A copula enables us to

separate the modeling of the marginal distributions from the dependence. Thus,

the invariant condition in Proposition 4.1 can be attained by specifying the sta-

tionary distribution FZ as the marginal distribution of (Ul, Vl) for all l. The copula

parameter that determines the dependence of (Ul, Vl) can be modeled as spatially

varying to create a sequence of spatially dependent bivariate vectors (Uv,l, Vv,l).

Here, we focus on continuous distributions, although this strategy can be applied

for any family of distributions for FZ . We consider bivariate copulas with a single

copula parameter, and illustrate next the construction of a copula NNMP given

a stationary marginal density fZ .

For the bivariate distribution of each (Ul, Vl) with marginals fUl
and fVl

, we

consider a copula Cl with parameter ηl, for l = 1, . . . , L. We obtain a spatially

varying copula Cv,l for (Uv,l, Vv,l) by extending ηl to ηl(v). The joint density
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of (Uv,l, Vv,l) is given by cv,l(z(v), z(v(l)))fUv,l
(z(v))fVv,l

(z(v(l))), where cv,l is the

copula density of Cv,l, and fUv,l
= fUl

and fVv,l
= fVl

are the marginal densities

of Uv,l and Vv,l, respectively. Given a pre-specified stationary marginal fZ , we

replace both fUv,l
and fVv,l

with fZ , for every v and for all l. We then obtain the

conditional density

p(z(v) | zNe(v)) =
L∑
l=1

wl(v) cv,l(z(v), z(v(l))) fZ(z(v)) (4.8)

that characterizes the stationary copula NNMP.

Under the copula framework, one strategy to specify the spatially varying

parameter is through the Kendall’s τ coefficient. The Kendall’s τ , taking values in

[−1, 1], is a bivariate concordance measure with properties useful for non-Gaussian

modeling. In particular, its existence does not require finite second moment and

it is invariant under strictly increasing transformations. If (Ul, Vl) is continuous

with a copula Cl, its Kendall’s τ is ρτ,l = 4
∫

[0,1]2 CldCl − 1. Taking Al ⊂ [−1, 1]

as the range of ρτ,l, we can construct a composition function hl := gl ◦ kl for

some link function gl : Al → Hl and kernel function kl : D × D → Al, where

Hl is the parameter space associated with Cl. The kernel kl should be specified

with caution; kl must satisfy axioms in the definition of a bivariate concordance

measure (Joe 2014, Section 2.12). We illustrate the strategy with the following

example.

Example 3. Spatial Gumbel copula.

The bivariate Gumbel copula is an asymmetric copula useful for modeling

dependence when the marginals are positive and heavy-tailed. The spatial Gumbel

copula can be defined as

Cv,l = exp
(

−
[ {

− logFUv,l
(z(v))

}ηl(v)
+
{

− logFVv,l
(z(v(l)))

}ηl(v)]1/ηl(v))
,
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where ηl(v) ∈ [1,∞) and perfect dependence is obtained if ηl(v) → ∞. The

Kendall’s τ is ρτ,l(v) = 1 − η−1
l (v), taking values in [0, 1]. We define ρτ,l(v) :=

kl(||v − v(l)||), an isotropic correlation function. Let gl(x) = (1 − x)−1. Then, the

function hl(||v − v(l)||) = gl ◦ kl(||v − v(l)||) = (1 − kl(||v − v(l)||))−1. Thus, the

parameter ηl(v) ≡ η(||v − v(l)||) is given by hl(||v − v(l)||), and ηl(v) → ∞ as

||v − v(l)|| → 0.

After we define a spatially varying copula, we obtain a family of copula NNMPs

by choosing a desired family of marginal distributions. Examples of NNMPs with

different copulas and marginals are illustrated in Section 4.4.

Copula NNMP models offer avenues to capture complex dependence using

general bivariate copulas. Traditional spatial copula models specify the finite

dimensional distributions of the underlying spatial process with a multivariate

copula. However, multivariate copulas need to be used with careful consideration

in a spatial setting. For example, it is common to assume that spatial processes

exhibit stronger dependence at smaller distances. Thus, copulas such as the mul-

tivariate Archimedean copula that induce an exchangeable dependence structure

are inappropriate. Though spatial vine copula models (Gräler, 2014) can resolve

this restriction, their model structure and computation are substantially more

complicated than copula NNMP models.

4.2.4 Mixture Component Specification and Tail Depen-

dence

A benefit of building NNMPs from a set of base random vectors is that speci-

fication of the multivariate dependence of Z(v) given its neighbors is determined

mainly by that of the base random vectors. In this section, we illustrate this

attractive property of the model with the establishment of lower bounds for two
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measures used to assess strength of tail dependence.

The main assumption is that the base random vector (Ul, Vl) has stochastically

increasing positive dependence. Ul is said to be stochastically increasing in Vl, if

P
(
Ul > ul |Vl = vl

)
increases as vl increases. The definition can be extended

to a multivariate random vector (Z1, . . . , Zp). Z1 is said to be stochastically

increasing in (Z2, . . . , Zp) if P
(
Z1 > z1 |Z2 = z2, . . . , Zp = zp

)
≤ P

(
Z1 > z1 |Z2 =

z′
2, . . . , Zp = z′

p

)
, for all (z2, . . . , zp) and (z′

2, . . . , z
′
p) in the support of (Z2, . . . , Zp),

where zj ≤ z′
j, for j = 2, . . . , p. The conditional density in (4.4) implies that

P
(
Z(v) > z | ZNe(v) = zNe(v)

)
=

L∑
l=1

wl(v)P
(
Z(v) > z |Z(v(l)) = z(v(l))

)
.

Therefore, Z(v) is stochastically increasing in ZNe(v) if Z(v) is stochastically in-

creasing in Z(v(l)) with respect to (Uv,l, Vv,l) for all l. If the sequence (Uv,l, Vv,l)

is built from the vector (Ul, Vl), then the set of base random vectors determines

the stochastically increasing positive dependence of Z(v) given its neighbors.

For a bivariate random vector (Ul, Vl), the upper and lower tail dependence

coefficients, denoted as λH,l and λL,l, respectively, are λH,l = limq→1− P
(
Ul >

F−1
Ul

(q) |Vl > F−1
Vl

(q)
)

and λL,l = limq→0+ P
(
Ul ≤ F−1

Ul
(q) |Vl ≤ F−1

Vl
(q)
)
. When

λH,l > 0, we say Ul and Vl have upper tail dependence. When λH,l = 0, Ul and Vl

are said to be asymptotically independent in the upper tail. Lower tail dependence

and asymptotically independence in the lower tail are similarly defined using λL,l.

Let FZ(v) be the marginal distribution function of Z(v). Analogously, we can

define the upper and lower tail dependence coefficients for Z(v) given its nearest
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neighbors,

λH(v) = lim
q→1−

P
(
Z(v) > F−1

Z(v)(q) | Z(v(1)) > F−1
Z(v(1))(q), . . . , Z(v(L)) > F−1

Z(v(L))(q)
)
,

λL(v) = lim
q→0+

P
(
Z(v) ≤ F−1

Z(v)(q) | Z(v(1)) ≤ F−1
Z(v(1))(q), . . . , Z(v(L)) ≤ F−1

Z(v(L))(q)
)
.

The following proposition provides lower bounds for the tail dependence coeffi-

cients.

Proposition 4.3. Consider an NNMP for which the component density fv,l is

specified by the conditional density of Uv,l given Vv,l, where the random vector

(Uv,l, Vv,l) follows a bivariate distribution with marginal distribution functions FUv,l

and FVv,l
, for l = 1, . . . , L. The spatial dependence of random vector (Uv,l, Vv,l) is

built from the base vector (Ul, Vl), which has a bivariate distribution such that Ul is

stochastically increasing in Vl, for l = 1, . . . , L. Then, for every v, the lower bound

for the upper tail dependence coefficient λH(v) is ∑L
l=1 wl(v) limq→1− P

(
Z(v) >

F−1
Uv,l

(q) |Z(v(l)) = F−1
Vv,l

(q)
)
, and the lower bound for the lower tail dependence

coefficient λL(v) is ∑L
l=1 wl(v) limq→0+ P

(
Z(v) ≤ F−1

Uv,l
(q) |Z(v(l)) = F−1

Vv,l
(q)
)
.

Proposition 4.3 establishes that the lower and upper tail dependence coeffi-

cients are bounded below by a convex combination of, respectively, the limits

of the conditional distribution functions and the conditional survival functions.

These are fully determined by the dependence structure of the bivariate distribu-

tion for (Ul, Vl). The result is best illustrated with an example.

Example 4. Lomax NNMP models.

Consider a Lomax NNMP for which the bivariate distributions of the base

random vectors correspond to a bivariate Lomax distribution (Arnold et al., 1999),
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resulting in conditional density,

p(z(v) | zNe(v)) =
L∑
l=1

wl(v) Lo(z(v) | z(v(l)) + ϕl, αl(v)),

where Lo(x |ϕ, α) = αϕ−1(1 + xϕ−1)−(α+1) denotes the Lomax density, a shifted

version of the Pareto Type I density. A small value of α indicates a heavy tail.

The component conditional survival function of the Lomax NNMP, expressed in

terms of the quantile q, is
{
1 + F−1

Uv,l
(q)/

(
F−1
Vv,l

(q) + ϕl
)}−αl(v)

which converges to

2−αl(v) as q → 1−. Therefore, the lower bound for λH(v) is ∑L
l=1 wl(v) 2−αl(v). As

αl(v) → 0 for all l, the lower bound for λH(v) tends to one, and hence λH(v)

tends to one, since λH(v) ≤ 1. As αl(v) → ∞ for all l, the lower bound tends to

zero.

Proposition 4.3 holds for the general framework. If the distribution of (Ul, Vl)

with FUl
= FVl

has first-order partial derivatives and exchangeable dependence,

namely (Ul, Vl) and (Vl, Ul) have the same joint distribution, the lower bounds of

the tail dependence coefficients depend on the component tail dependence coeffi-

cients. The result is summarized in the following corollary.

Corollary 1. Suppose that the base random vector (Ul, Vl) in Proposition 4.3 is ex-

changeable, and its bivariate distribution with marginals FUl
= FVl

has first-order

partial derivatives for all l. The upper and lower tail dependence coefficients λH(v)

and λL(v) are bounded below by ∑L
l=1 wl(v)λH,l(v)/2 and ∑L

l=1 wl(v)λL,l(v)/2,

where λH,l(v) and λL,l(v) are tail dependence coefficients with respect to random

vector (Uv,l, Vv,l).

Under Corollary 1, if the bivariate distribution of (Ul, Vl) is symmetric, for

instance, an elliptically symmetric distribution, the upper and lower tail depen-

dence coefficients coincide, and can simply be denoted as λ(v). Then, we have
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that λ(v) ≥ ∑L
l=1 wl(v)λl(v)/2, where λl(v) is the tail dependence coefficient with

respect to (Uv,l, Vv,l).

Tail dependence can also be quantified using the boundary of the conditional

distribution function, as proposed in Hua and Joe (2014) for a bivariate random

vector. In particular, the upper tail dependence of (Ul, Vl) is said to have some

strength if FUl|Vl

(
F−1
Ul

(q) |F−1
Vl

(1)
)

is positive at q = 1. Likewise, a non-zero

FUl|Vl

(
F−1
Ul

(q) |F−1
Vl

(0)
)

at q = 0 indicates some strength of dependence in the

lower tails. The functions FUl|Vl

(
· | F−1

Vl
(0)
)

and FUl|Vl

(
· | F−1

Vl
(1)
)

are referred to

as the boundary conditional distribution functions.

We use F1|2
(

· |F−1
ZNe(v)

(q)
)

for simpler notation for the conditional distribution

function of Z(v), F
(

· |Z(v(1)) = F−1
Z(v(1))(q), . . . , Z(v(L)) = F−1

Z(v(L))(q)
)
. Then

F1|2
(

· |F−1
ZNe(v)

(0)
)

and F1|2
(

· |F−1
ZNe(v)

(1)
)

are the boundary conditional distri-

bution functions for the NNMP model. The upper tail dependence is said to

be i) strongest if F1|2
(
F−1
Z(v)(q) |F−1

ZNe(v)
(1)
)

equals 0 for 0 ≤ q < 1 and has a

mass of 1 at q = 1; ii) intermediate if F1|2
(
F−1
Z(v)(q) |F−1

ZNe(v)
(1)
)

has positive

but not unit mass at q = 1; iii) weakest if F1|2
(
F−1
Z(v)(q) |F−1

ZNe(v)
(1)
)

has no

mass at q = 1. The strength of lower tail dependence is defined likewise us-

ing F1|2
(
F−1
Z(v)(q) |F−1

ZNe(v)
(0)
)
. The following result provides lower bounds for the

boundary conditional distribution functions.

Proposition 4.4. Consider an NNMP for which the component density fv,l is

specified by the conditional density of Uv,l given Vv,l. The spatial dependence of

random vector (Uv,l, Vv,l) is built from the base vector (Ul, Vl), which has a bivari-

ate distribution such that Ul is stochastically increasing in Vl, for l = 1, . . . , L.

Let λL,l(v) and λH,l(v) be the lower and upper tail dependence coefficients cor-

responding to (Uv,l, Vv,l). If for a given v, there exists λL,l(v) > 0 for some

l, then the conditional distribution function F1|2
(
F−1
Z(v)(q) |F−1

ZNe(v)
(0)
)

has strictly
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positive mass p0(v) at q = 0 with p0(v) ≥ ∑L
l=1 wl(v)λL,l(v). Similarly, if for

a given v, there exists λH,l(v) > 0 for some l, then the conditional distribution

function F1|2
(
F−1
Z(v)(q) |F−1

ZNe(v)
(1)
)

has strictly positive mass p1(v) at q = 1 with

p1(v) ≥ ∑L
l=1 wl(v)λH,l(v).

Proposition 4.4 complements Proposition 4.3 to assess the strength of the tail

dependence. It readily applies for bivariate distributions, especially for copulas

which yield explicit expressions for the tail dependence coefficients. In particular,

the spatial Gumbel copula Cv,l in Example 3 has upper tail dependence coefficient

2 − 21/ηl(v) > 0 for ηl(v) > 1, so the tail dependence of a Gumbel copula NNMP

model has some strength if ηl(v) > 1 for some l. In fact, applying the result in

Hua and Joe (2014), with a Gumbel copula, F1|2
(
F−1
Z(v)(q) |F−1

ZNe(v)
(1)
)

degenerates

at q = 1, implying strongest tail dependence.

4.3 Bayesian Hierarchical Model and Inference

4.3.1 Hierarchical Model Formulation

We introduce the general approach for NNMP Bayesian implementation, treat-

ing the observed spatial responses as an NNMP realization. The inferential frame-

work can be easily extended to incorporate model components that may be needed

in practical settings, such as covariates and additional error terms. We illustrate

the extensions with the real data analysis in Section 4.4, and provide further

discussion in Section 4.5.

Our approach for inference is based on a likelihood conditional on the first L

elements of the realization zS = (z(s1), . . . , z(sn))⊤ over the reference set S ⊂ D.

Following a commonly used approach for mixture models fitting, we use data

augmentation to facilitate inference. For z(si), i = L + 1, . . . , n, we introduce a
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configuration variable ℓi, taking values in {1, . . . , L}, such that P
(
ℓi | w(si)

)
=∑L

l=1 wl(si)δl(ℓi), where w(si) = (w1(si), . . . , wL(si))⊤, and δl(ℓi) = 1 if ℓi =

l and 0 otherwise. Conditional on the configuration variables and the vector

(z(s1), . . . , z(sL))⊤, the augmented model on z(si) is

z(si) | z(s(i,ℓi)), ℓi,θ
ind.∼ fsi,ℓi(z(si) | z(s(i,ℓi)),θ),

ℓi | w(si) ind.∼
L∑
l=1

wl(si)δl(ℓi),
(4.9)

where θ collects the parameters of the densities fsi,l.

A key component of the Bayesian model formulation is the prior model for

the weights. Weights are allowed to vary in space, adjusting to the neighbor

structure of different reference locations. We describe the construction for weights

corresponding to a point in the reference set. For non-reference points, weights

are defined analogously. Consider a collection of spatially dependent distribution

functions {Gsi
: si ∈ S} supported on (0, 1). For each si, the weights are defined

as the increments of Gsi
with cutoff points rsi,0 , . . . , rsi,L. More specifically,

wl(si) =
∫
1(rsi,l−1, rsi,l)(t) dGsi

(t), l = 1, . . . , L, (4.10)

where 1A denotes the indicator function for set A. The cutoff points 0 = rsi,0 <

rsi,1 < · · · < rsi,L = 1 are such that, for l = 1, . . . , L, rsi,l − rsi,l−1 = k′(si, s(il) | ζ)

/
∑L
l=1 k

′(si, s(il) | ζ), where k′ : D × D → [0, 1] is a bounded kernel function with

parameters ζ. The kernel and its associated parameters affect the smoothness of

the resulting random field. By default we take Gsi
as a logit Gaussian distribution,

denoted as Gsi
(· |µ(si), κ2), such that the corresponding Gaussian distribution

has mean µ(si) and variance κ2. The spatial dependence across the weights is

introduced through the mean µ(si) = γ0 + γ1si1 + γ2si2, where si = (si1, si2).
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Given the cutoff points and κ2, a small value of µ(si) favors large weights for

the near neighbors of si. A simpler version of the model in (4.10) is obtained

by letting Gsi
be the uniform distribution on (0, 1). Then the weights become

k′(si, s(il) | ζ)/∑L
l=1 k

′(si, s(il) | ζ). We notice that Cadonna et al. (2019) use a set

of fixed, uniform cutoff points on [0, 1], i.e., rsi,l−rsi,l−1 = 1/L, for spectral density

estimation, with a collection of logit Gaussian distributions indexed by frequency.

The full Bayesian model is completed with prior specification for parameters

θ, ζ,γ = (γ0, γ1, γ2)⊤, and κ2. The priors for θ and ζ depend on the choices of

the densities fsi,l and the cutoff point kernel k′, respectively. For parameters γ

and κ2, we specify N(γ | µγ,Vγ) and IG(κ2 |uκ2 , vκ2) priors, respectively, where

IG denotes the inverse gamma distribution.

Finally, we note that an NNMP model requires selection of the neighborhood

size L. This can be done using standard model comparison metrics, scoring rules,

or information criteria. In general, a larger L increases computational cost. Datta

et al. (2016a) conclude that a moderate value L (≤ 20) typically suffices for

NNGPs. On the other hand, it is possible that information from distant neighbors

is also important (Stein et al., 2004). Therefore, one may seek a larger L to

include more neighbor information for large non-Gaussian data sets with complex

dependence. Our model for the weights allows taking a relatively large neighbor

set with less computational demand. We assign small probabilities a priori to

distant neighbors. The contribution of each neighbor will be induced by the

mixing, with important neighbors being assigned large weights a posteriori.

4.3.2 Estimation and Prediction

We implement an MCMC sampler to simulate from the posterior distribution

of the model parameters. To allow for efficient simulation of parameters γ and
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κ2, we associate each y(si) with a latent Gaussian variable ti with mean µ(si)

and variance κ2, for i = L + 1, . . . , n. There is a one-to-one correspondence

between the configuration variables ℓi and latent variables ti: ℓi = l if and only if

ti ∈ (r∗
si,l−1, r

∗
si,l

) where r∗
si,l

= log(rsi,l/(1 − rsi,l)), for l = 1, . . . , L. The posterior

distribution of the model parameters, based on the new augmented model, is

p(θ, ζ,γ, κ2, {ti}ni=L+1 | zS) ∝ πθ(θ) × πζ(ζ) ×N(γ | µγ,Vγ) × IG(κ2 |uκ2 , vκ2)

×N(t | Dγ, κ2In−L) ×
n∏

i=L+1

L∑
l=1

fsi,l(z(si) | z(s(il)),θ)1(r∗
si,l−1,r

∗
si,l

)(ti),

where πθ and πζ are the priors for θ and ζ, respectively, In−L is an (n−L)×(n−L)

identity matrix, the vector t = (tL+1, . . . , tn)⊤, and the matrix D is (n − L) × 3

such that the ith row is (1, sL+i,1, sL+i,2).

The posterior full conditional distribution of θ depends on the form of fsi,l. To

update ζ, we first marginalize out the latent variables ti from the joint posterior

distribution. We then update ζ using a random walk Metropolis step with target

density πζ(ζ)∏n
i=L+1{Gsi

(rsi,ℓi |µ(si), κ2) − Gsi
(rsi,ℓi−1 |µ(si), κ2)}. The poste-

rior full conditional distribution of ti is ∑iL
l=1 ql(si)TN(ti |µ(si), κ2; r∗

si,l−1, r
∗
si,l

),

where ql(si) ∝ wl(si)fsi,l(z(si) | z(s(il)),θ) and wl(si) = Gsi
(rsi,l |µ(si), κ2) −

Gsi
(rsi,l−1 |µ(si), κ2), for l = 1, ..., L. Hence, each ti can be updated by sam-

pling from the l-th truncated Gaussian with probability proportional to ql(si).

The posterior full conditional distribution of γ is N(γ | µ∗
γ ,V

∗
γ ), where V ∗

γ =

(V −1
γ + κ−2D⊤D)−1 and µ∗

γ = V ∗
γ (V −1

γ µγ + κ−2D⊤t). The posterior full condi-

tional of κ2 is IG(κ2 |uκ2 + (n− L)/2, vκ2 +∑n
i=L+1(ti − µ(si))2/2).

Turning to the prediction, let v0 ∈ D be a new location of interest. We obtain

posterior predictive samples of z(v0) in the following way. If v0 /∈ S, for each

posterior sample of the parameters, we first compute the cutoff points rv0,l for

which rv0,l − rv0,l−1 = k′(v0,v(0l) | ζ)/∑L
l=1 k

′(v0,v(0l) | ζ), and obtain the weights
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wl(v0) = Gv0(rv0,l | µ(v0), κ2) − Gv0(rv0,l−1 |µ(v0), κ2) for l = 1, . . . , L. We then

predict z(v0) using (4.3). If v0 ≡ si ∈ S, we generate z(v0) similar to the earlier

case but using posterior samples of the weights collected from the MCMC, and

applying (4.2) instead of (4.3) to generate z(v0).

4.4 Data Illustrations

We present three synthetic data examples and an analysis of the Mediterranean

Sea surface temperature data to demonstrate the benefits of the proposed mod-

eling framework. For the simulation experiments, first, we illustrate the ability

of the NNMP model to handle skewed data using a skew-GNNMP model. Next,

we study inference for tail dependence using copula NNMP models. Finally, we

demonstrate the effectiveness of the NNMP model for bounded spatial data.

In each experiment, we created a regular grid of 200 × 200 resolution on a

unit square domain, and generated data ver the grid. We randomly selected 2000

locations as the reference set with a random ordering for model fitting. For the

purpose of illustration, we chose neighborhood size L = 10 for all cases.

Simulation study results are based on posterior samples collected every 10

iterations from a Markov chain of 30000 iterations, with the first 10000 samples

being discarded. The MCMC algorithms were implemented in the R programming

language on a computer with a 2-GHz Intel Core i5 processor and 32-GB RAM.

We integrated C++ code for the update of latent variables without particular

emphasis on optimizing the code. The computing time for the models in the three

experiments was around 9, 18, and 18 minutes, respectively.
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(a) True y(v) (σ1 = −5) (b) True y(v) (σ1 = 1) (c) True y(v) (σ1 = 10)

(d) Skew-GNNMP (e) Skew-GNNMP (f) Skew-GNNMP

Figure 4.1: Chapter 4 - first simulation data analysis. Top panels are interpolated surfaces of
y(v) generated by the true model. Bottom panels are the posterior median estimates from the
skew-GNNMP model.

4.4.1 First Simulation Experiment

We generated data from the following skew-Gaussian process (Zhang and El-

Shaarawi, 2010),

y(v) = σ1 |ω1(v)| + σ2 ω2(v), v ∈ D,

where ω1(v) and ω2(v) are both standard Gaussian processes with correlation

matrix specified by an exponential correlation function with range parameter 1/12.

The parameter σ1 ∈ R controls the skewness, whereas σ2 > 0 is a scale parameter.

The model has a stationary skew-Gaussian marginal density SN(0, σ2
1 +σ2

2, σ1/σ2).

We took σ2 = 1, and generated data with σ1 = −5, 1 and 10, resulting in three

random fields with different levels of skewness, as shown in Figure 4.1(a)-4.1(c).

We applied the stationary skew-GNNMP model. The model is obtained as

a special case of the skew-GNNMP model in (4.7), taking λl = λ, µl = 0, and
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(a) Estimated marginal
(σ1 = −5)

(b) Estimated marginal
(σ1 = 1)

(c) Estimated marginal
(σ1 = 10)

Figure 4.2: Chapter 4 - first simulation data analysis. Green lines are true marginal densities.
Dashed lines and shaded regions are posterior means and 95% credible interval estimates.

σ2
l = σ2, for all l. Here, λ ∈ R controls the skewness, such that a large positive

(negative) value of λ indicates strong positive (negative) skewness. If λ = 0, the

skew-GNNMP model reduces to the GNNMP model. After marginalizing out

z0, we obtain a stationary skew-Gaussian marginal density SN(0, λ2 + σ2, λ/σ).

We completed the full Bayesian specification for the model, by assigning priors

N(λ | 0, 5), IG(σ2 | 2, 1), IG(ϕ | 3, 1/3), IG(ζ | 3, 0.2), N(γ | (−1.5, 0, 0)⊤, 2I3), and

IG(κ2 | 3, 1), where ζ is the range parameter of the exponential correlation function

specified for the cutoff point kernel.

We focus on the model performance on capturing skewness. The posterior

mean and 95% credible interval estimates of the parameter λ for the three scenar-

ios were −3.65 (−4.10,−3.27), 1.09 (0.91, 1.28), and 7.69 (6.88, 8.68), respectively,

indicating the model’s ability to estimate different levels of skewness. The bottom

row of Figure 4.1 shows that the posterior median estimates of the surfaces cap-

ture well features of the true surfaces, even when the level of skewness is small,

thus demonstrating that the model is also able to recover near-Gaussian features.

Figure 4.2 plots the posterior mean and pointwise 95% credible interval for the

marginal density, overlaid on the histogram of the simulated data for each of the

three cases. In particular, we can observe that the estimates do not align well with
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(a) Estimated marginals (σ1 = −5) (b) Estimated marginals (σ1 = 1)

Figure 4.3: Chapter 4 - first simulation data analysis. Dashed lines and shaded regions
are posterior means and 95% credible interval estimates, with colors in red, blue and purple
corresponding to sample sizes n = 2000, 10000, 50000, respectively.

the true density for the scenarios of σ1 = −5 and 10. We note that, in general,

the skewness characteristic of a distribution/process is difficult to estimate; see,

e.g., Liseo and Loperfido (2006) and Liseo and Parisi (2013). Moreover, for this

example, the model we used to fit the data is very different from the data gener-

ating process, and the data correspond to a single stochastic process realization,

which may not provide enough information to accurately estimate the skewness.

We did an additional simulation experiment. For the scenarios with σ1 = −5 and

10, we generated 10000 and 50000 observations, and fit the model to the data.

Figure 4.3 shows the posterior mean and pointwise 95% credible interval for the

marginal density, with different sample sizes n = 2000, 10000, 50000. The poste-

rior estimate, as shown in the figure, is closer to the true density when the sample

size increases. Overall, we believe that this simulation experiment demonstrates

the adaptability of the skew-GNNMP model in capturing skewed random fields

with different levels of skewness, as well as our versatile framework for modeling

different non-Gaussian behaviors.
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4.4.2 Second Simulation Experiment

The goal of the second experiment is to demonstrate the use of copulas to

construct NNMPs for tail dependence modeling. We note that the focus here

is to illustrate the flexibility of the NNMPs with copulas for modeling complex

dependence structures, but not for extreme value modeling. To this end, we

generated data from the random field

y(v) = F−1
(
Tν(ω(v))

)
, v ∈ D,

where ω(v) is a standard Student-t process with tail parameter ν and scale ma-

trix specified by an exponential correlation function with range parameter ϕw.

The distribution functions F and Tν correspond to a gamma distribution Ga(2, 2)

and a standard Student-t distribution with tail parameter ν, respectively. For

a given pair of locations in D with correlation ρ0 = exp(−d0/ϕw), the cor-

responding tail dependence coefficient of the random field is χν = 2Tν+1
(

−√
(1 + ν)(1 − ρ0)/(1 + ρ0)

)
. We took ϕw = 1/12, and chose ν = 10 so that

the synthetic data exhibits moderate tail dependence at close distance, and the

dependence decreases rapidly as the distance d0 becomes larger. When ρ0 =

0.05, 0.5, 0.95, χ10 = 0.01, 0.08, 0.61, respectively.

We applied two copula NNMP models. The models are of the form in (4.8)

with stationary gamma marginal Ga(a, b) with mean a/b. In the first model,

the component copula density cv,l corresponds to a bivariate Gaussian copula

that is known to be unsuitable for tail dependence modeling. The correlation

parameter of the copula was specified by an exponential correlation function with

range parameter ϕ1. In the second model, we consider a spatially varying Gumbel

copula as in Example 3. The spatially varying parameter of the copula density
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(a) True y(v) (b) Gaussian copula NNMP (c) Gumbel copula NNMP

(d) Estimated marginals
from two models

(e) Estimated probabilities
at site 1

(f) Estimated probabilities
at site 2

Figure 4.4: Chapter 4 - second simulation data analysis. Top panels are interpolated surfaces
of the true field and posterior median estimates from both models. Bottom panels are estimated
marginal densities and conditional survival probabilities from the two models. The green dashed
lines correspond to the true model. The red (blue) dash lines and shaded regions are the posterior
mean and 95% credible interval estimates from the Gaussian (Gumbel) copula NNMP models.

is defined with the link function ηl(v) ≡ ηl(||v − v(l)||) = min{(1 − exp(−||v −

v(l)||/ϕ2))−1, 50}, where the upper bound 50 ensures numerical stability. When

ηl(d0) = 50, exp(−d0/ϕ2) = 0.98. With this link function, we assume that given

ϕ2, the strength of the tail dependence with respect to the lth component of

the Gumbel model stays the same for any distance smaller than d0 between two

locations. For the cutoff point kernels, we specified an exponential correlation

function with range parameters ζ1 and ζ2, respectively, for each model. The

Bayesian model is fully specified with a IG(3, 1/3) prior for ϕ1 and ϕ2, a Ga(1, 1)

prior for a and b, a IG(3, 0.2) prior for ζ1 and ζ2, N(γ | (−1.5, 0, 0)⊤, 2I3), and

IG(κ2 | 3, 1) priors.

We focus on the performance of the two models with respect to tail depen-
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Table 4.1: Chapter 4 - second simulation data analysis. Log-scores for subsets
that exceed the c-th percentile of the held-out data

c 0 10 30 50 70 90 95

Gaussian copula 140.009 80.713 30.224 -15.479 -28.806 -20.377 -13.750

Gumbel copula 118.684 63.962 17.242 -24.300 -28.232 -16.952 -11.422

dence inference. Table 4.1 presents the log-scores (Gneiting and Raftery, 2007)

for subsets of the held-out data that exceed the c-th percentile of the held-out

data. The out-of-sample log-score is the predictive log-likelihood averaging over

the model parameters. It reflects the ability of a model to capture dependence

structure in the data. We can see that for held-out data that exceed high sample

percentiles, the Gumbel copula model gives a higher log-score.

Figure 4.4 shows the random fields, marginals and conditional survival prob-

abilities estimated by the two models. From Figure 4.4(a)-4.4(c), we see that,

comparing with the true field, the posterior median estimate by the Gumbel cop-

ula model seems to recover the large values better than the Gaussian copula model.

Besides, as shown in Figure 4.4(d), the Gumbel copula NNMP model provides a

more accurate estimate of the marginal distribution, especially in the tails. We

computed the conditional survival probabilities at two different unobserved sites

marked in Figure 4.4(a). In particular, Site 1 is surrounded with reference ob-

servations with moderate values, while Site 2 is surrounded with large reference

observations. We see that the Gumbel copula model provides much closer es-

timates to the probabilities, indicating that the model captures better the tail

dependence structure in the data. Overall, this example demonstrates that the

Gumbel copula NNMP model is a useful option for modeling spatial processes

with tail dependence.
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4.4.3 Third Simulation Experiment

Many spatial processes are measured over a compact interval. As an example,

data on proportions are common in ecological applications. In this experiment, we

demonstrate the effectiveness of the NNMP model for directly modeling bounded

spatial data. In particular, we generated data using the following model

y(v) = F−1
(
Φ(ω(v))

)
,

where the distribution function F corresponds to a beta distribution, denoted as

Beta(a0, b0), and ω(v) is a standard Gaussian process with exponential correlation

function with range parameter 0.1. We set a0 = 3, b0 = 6.

We applied a Gaussian copula NNMP model with stationary marginal beta

distribution, denoted as Beta(a, b), with the same spatial Gaussian copula and

prior specification used in the second experiment. Figure 4.5(b) shows the es-

timated random field which captures well the main features of the true field in

Figure 4.5(a). The posterior mean and pointwise 95% credible interval of the es-

timated marginal density in Figure 4.5(c) overlay on the data histogram. These

show that the beta NNMP estimation and prediction provide good approximation

to the true field.

It is worth mentioning that implementing the beta NNMP model is simpler

than fitting existing models for data corresponding to proportions. For example, a

spatial Gaussian copula model, that corresponds to the data generating process of

this experiment, involves computations for large matrices. Alternatively, if a mul-

tivariate non-Gaussian copula is used, the resulting likelihood can be intractable

and require certain approximations. Another model that is commonly used in

this setting is defined analogously to a spatial generalized linear mixed model.
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(a) True y(v) (b) Beta NNMP (c) Estimated marginals

Figure 4.5: Chapter 4 - third simulation data analysis. Panels (a) and (b) are interpolated
surfaces of the true field and posterior median estimate from the beta NNMP model, respectively.
In Panel (c), the green dotted line corresponds to the true marginal. The red dash line and
shaded region are the posterior mean and pointwise 95% credible interval for the estimated
marginal.

The spatial element in the model is introduced through the transformed mean of

the observations. A sample-based approach to fit such model requires sampling

a large number of highly correlated latent variables. We conducted an additional

simulation experiment to demonstrate the effectiveness of the beta NNMP to ap-

proximate the random field simulated by the link function approach. In particular,

we generated bounded data using the following model,

y(v) |µ(v), ψ ∼ Beta(µ(v)ψ, (1 − µ(v))ψ),

logit(µ(v)) = µ0 + σ0ω(v).

The above model is analogous to a spatial generalized linear mixed model where

the mean µ(v) of the beta distribution is modeled via a logit link function, and

ω(v) is a standard Gaussian process with exponential correlation function with

range parameter 0.1. We set ψ = 20, µ0 = −0.5 and σ0 = 0.8.

Since our purpose is primarily demonstrative, we applied a Gaussian copula

NNMP model with a stationary beta marginal Beta(a, b), referred to as the beta

NNMP model. The correlation parameter of the Gaussian copula was specified

by an exponential correlation function with range parameter ϕ. We specified an
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(a) True y(v) (b) Beta NNMP

Figure 4.6: Chapter 4 - third simulation data analysis. Interpolated surfaces of the true field
and posterior median estimate from the beta NNMP model.

exponential correlation function for the random cutoff points kernel function with

range parameter ζ. The Bayesian model is fully specified with a IG(3, 1/3) prior

for ϕ, a Ga(1, 1) prior for a and b, a IG(3, 0.2) prior for ζ, N(γ | (−1.5, 0, 0)⊤, 2I3)

and IG(κ2 | 3, 1).

We trained the model using 2000 observations. Figure 4.6(a)-(b) shows the

interpolated surface of the true field and the predictive field given by the beta

NNMP model. Although the beta NNMP’s stationary marginal distribution as-

sumption does not align with the true model, we can see that the predictive filed

was able to capture the main feature of the true field. Moreover, it is worth

mentioning that the MCMC algorithm for the beta NNMP to fit the data set

took around 18 minutes with 30000 iterations. This is substantially faster than

the MCMC algorithm for fitting the true model which involves sampling a large

number of highly correlated latent variables.

4.4.4 Mediterranean Sea Surface Temperature Data

The study of Ocean’s dynamics is crucial for understanding climate variabil-

ity. One of the most valuable sources of information regarding the evolution of

the state of the ocean is provided by the centuries-long record of temperature
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Figure 4.7: Chapter 4 - Mediterranean SST data analysis. Observed SST.

observations recorded from the surface of the oceans. The record of sea surface

temperatures (SST) consists of data collected over time at irregularly scattered

locations. In this section, we examine the SST from the Mediterranean Sea area

during December 2003.

It is well known that the Mediterranean Sea area produces very heterogeneous

temperature fields. A goal of the spatial analysis of SST in the area is to generate

a spatially continuous field that accounts for the complexity of the surrounding

coastlines as well as the non-linear dynamics of the circulation system. An addi-

tional source of complexity comes from the data collection process. Historically,

SST observations are collected from different types of devices: buckets launched

from navigating vessels, readings from the water intake of ships’ engine rooms,

moored buoys, and drifting buoys (Kirsner and Sansó, 2020). The source of some

observations is known, but not all the data are labelled. A thorough case study

will be needed to include all this information in order to account for possible het-

erogeneities due to the different measuring devices. That is beyond the scope of

this paper. We will focus on demonstrating the ability of the proposed framework
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to model non-Gaussian spatial processes that, hopefully, capture the complexi-

ties of the physical process and the data collection protocol better than Gaussian

processes. We notice that in the original record several sites had multiple obser-

vations. In those cases we took the median of the observations, resulting in a total

of 1966 observations. The data are shown in Figure 4.7.

We first focus on a limited region that allows us to explore in detail the be-

havior of the GNNMP. The GNNMP has the same Gaussian marginals as the

NNGP, but its finite-dimensional distribution is a mixture of multivariate Gaus-

sian distributions. We compare the GNNMP with the NNGP in a spatially varying

regression model, demonstrating the benefit of using a non-Gaussian process to

explain the SST variability. We then illustrate the ability of the NNMPs to model

non-Gaussian marginals by using an extended skew-GNNMP model to analyze

the whole data set.

Regional Analysis

We first focus on SST over an area near the Gulf of Lion, along the islands

near the shores of Spain, France, Monaco and Italy, between 0 - 9 E. longitude

and 33.5 - 44.5 N. latitude. There are 642 observations in the region. As shown

in Figure 4.8(a), the SST observations are very heterogeneous, implying that the

short range variability is likely to be non-Gaussian. To capture the variability, we

consider the following spatially varying regression model,

y(v) = x(v)⊤β + z(v) + ϵ(v), v ∈ D, (4.11)

where y(v) is the SST observation, x(v) = (1, v1, v2)⊤ includes longitude v1 and

latitude v2 to account for the long range variability in SST with regression param-

eters β = (β0, β1, β2)⊤, z(v) is a spatial process, and ϵ(v) i.i.d.∼ N(0, τ 2) represents
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the micro-scale variability and/or the measurement error.

We model z(v) with the GNNMP defined in (4.6) with µl = 0 and σ2
l = σ2, for

all l. For comparison, we also applied an NNGP model for z(v) with variance σ2
0

and exponential correlation function with range paramger ϕ0. For the GNNMP, we

used exponential correlation functions with range parameter ϕ and ζ, respectively,

for the correlation with respect to the component density, and the cutoff point

kernel. For both models, the regression coefficients β were assigned flat priors.

The variances σ2
0 and σ2 received the same inverse gamma prior IG(2, 1), and τ 2

was assigned IG(2, 0.1). The range parameter ϕ0 of the NNGP received a uniform

prior Unif(1/30, 1/3), while the range parameters ϕ and ζ of the GNNMP received

inverse gamma priors IG(3, 1/3) and IG(3, 0.2), respectively. Regarding the logit

Gaussian distribution parameters, γ and κ2, we used N((−1.5, 0, 0)⊤, 2I3) and

IG(3, 1) priors, respectively.

To compare models, we use ten-fold cross-validation. More specifically, we

first create ten empty groups, followed by randomly assigning each observation

into one of the groups based on a uniform distribution on {1, . . . , 10}. For each k =

1, . . . , 10, we use observations in group k as validation set, and the remaining ones

to train the model, using neighborhood sizes L from 10 to 20. For each k and each

L, we calculate the values of the following metrics: root mean squared prediction

error (RMSPE), 95% posterior credible interval coverage rate (95% CI cover), 95%

posterior credible interval width (95% CI width), deviance information criterion

(DIC; Spiegelhalter et al. 2002), posterior predictive loss criterion (PPLC; Gelfand

and Ghosh 1998), and continuous ranked probability score (CRPS; Gneiting and

Raftery 2007). Thus, for each L, we can obtain ten different values for each

metric. We then calculate the average of the ten values for each metric, and use

the averages to compare models.
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(a) Regional SST (b) Predicted SST (GNNMP) (c) Predicted SST (NNGP)

Figure 4.8: Chapter 4 - Mediterranean SST data analysis. Panel (a) shows the observations at
the selected region. Panels (b) and (c) are SST posterior median estimates by different models.

Table 4.2: Chapter 4 - Mediterranean SST data analysis. Performance metrics
of different models.

RMSPE CRPS 95% CI cover 95% CI width PPLC DIC

NNGP(13) 1.144 0.620 0.937 4.322 742.845 1492.722

GNNMP(13) 1.117 0.595 0.941 4.132 249.152 778.239

GNNMP(20) 1.113 0.593 0.945 4.178 198.986 582.681

Note: the numbers in the parentheses correspond to the neighborhood sizes.

For the NNGP model, we implemented the latent NNGP algorithm from the

spNNGP package in R (Finley et al., 2020). In all cases, we ran the MCMC with

120000 iterations, discarding the first 20000 samples, and collected samples every

20 iterations. The computing time for the NNGP model ranged from around 6

minutes to 20 minutes, while that for the GNNMP model ranged from around 11

minutes to 16 minutes.

We report the results for both models. Both models provided similar posterior

estimates of the regression parameters, indicating that there was a trend of SST

decreasing in the latitude at the selected region. For the error variance τ 2, overall,

the GNNMP provided smaller estimates, compared to the estimates given by the

NNGP. For example, when L = 13, the average of the posterior means of τ 2 of all
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Table 4.3: Chapter 4 - Mediterranean SST data analysis. Ten-fold cross vali-
dation results for the NNGP and GNNMP models with different neighborhood
sizes.

RMSPE CRPS 95% CI cover 95% CI width PPLC DIC

NNGP(10) 1.147 0.620 0.941 4.323 741.729 1485.777

GNNMP(10) 1.128 0.603 0.936 4.125 287.105 855.934

NNGP(11) 1.146 0.620 0.938 4.321 744.793 1496.990

GNNMP(11) 1.120 0.598 0.937 4.114 265.694 825.431

NNGP(12) 1.145 0.620 0.940 4.322 738.566 1484.625

GNNMP(12) 1.119 0.597 0.938 4.121 258.192 805.944

NNGP(13) 1.144 0.620 0.937 4.322 742.845 1492.722

GNNMP(13) 1.117 0.595 0.941 4.132 249.152 778.239

NNGP(14) 1.145 0.620 0.937 4.322 746.096 1499.596

GNNMP(14) 1.123 0.599 0.942 4.163 231.989 680.071

NNGP(15) 1.144 0.620 0.935 4.323 747.969 1500.092

GNNMP(15) 1.118 0.597 0.936 4.152 215.208 655.841

NNGP(16) 1.144 0.620 0.935 4.321 751.871 1511.061

GNNMP(16) 1.118 0.596 0.937 4.155 209.155 630.992

NNGP(17) 1.144 0.620 0.938 4.321 749.086 1505.191

GNNMP(17) 1.114 0.594 0.939 4.161 204.148 605.677

NNGP(18) 1.144 0.620 0.940 4.321 751.829 1513.302

GNNMP(18) 1.114 0.594 0.940 4.162 203.136 605.900

NNGP(19) 1.144 0.619 0.937 4.321 754.944 1521.234

GNNMP(19) 1.120 0.596 0.940 4.189 207.918 580.755

NNGP(20) 1.144 0.620 0.938 4.322 752.811 1516.361

GNNMP(20) 1.113 0.593 0.945 4.178 198.986 582.681

Note: the numbers in the parentheses correspond to the neighborhood sizes.
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groups was 0.21 from the GNNMP and 0.47 from the NNGP.

Regarding the model performance metrics, the ten-fold cross validation results

are shown in Table 4.3. For all neighborhood sizes, both the PPLC and DIC

suggest that the GNNMP had a better goodness-of-fit than the NNGP. For out-

of-sample prediction, the GNNMP produced smaller RMSPE and CRPS than the

NNGP. On average, the GNNMP gave slightly better coverage performance of 95%

credible intervals with narrower widths. For each model, we selected the optimal

and economical neighborhood size that corresponds to the smallest RMSPE. Such

a neighborhood size was L = 13 for the NNGP and L = 20 for the GNNMP. We

compared the selected models, together with the GNNMP with L = 13, as shown

in Table 4.2. Overall, we can see that the GNNMP outperforms the NNGP in

this particular data example.

Finally, we fit the two models with L = 13 to all observations over the region.

Figure 4.8(b)-4.8(c) show the posterior median estimates of the temperature field

from both models. We can see that both models yield estimates that resemble

the pattern in the observations. The predictive surface produced by the NNGP

depicts some very localized, unrealistic features. These are not present in the

results from the GNNMP.

Full Analysis with an extended Skew-GNNMP Model

The regional analysis results suggest that a non-Gaussian process may be a

better assumption for the Mediterranean SST spatial variability. In light of the

evidence (Pisano et al., 2020) that the spatial patterns of SST are different over

Mediterranean sub-basins, as shown in Figure 4.9(a), which are characterized with

different dynamics and high variability of surface currents (Bouzaiene et al., 2020),

we further investigate the SST over those sub-basins. We fit a non-spatial linear
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model to all SST data, including longitude and latitude as covariates, and obtained

residuals from the linear model. Figure 4.9(b) shows that the histograms of the

residuals are asymmetric over the sub-basins, indicating skewness in the marginal

SST distribution, with levels of skewness that vary across sub-basins.

The exploratory data analysis suggests the need for a spatial model that can

capture skewness. The symmetric distribution assumption of ϵ(v) in the additive

model (4.11) may be inappropriate for modeling skewness. Moreover, the weak

identifiability of its variance τ 2 may further undermine estimation of the skewness

especially when it is mild. Thus, we analyze the full SST data with an extension

of the skew-GNNMP model in (4.7). The new model has two features that extend

the skew-GNNMP: (i) it incorporates fixed effect through the location parameter

of the mixture component; (ii) it allows the skewness parameter λ to vary in space.

More specifically, the spatially varying conditional density fv,l builds from a Gaus-

sian random vector with mean
(
x(v)⊤β + λ(v)z0(v), x(v(l))⊤β + λ(v(l))z0(v)

)⊤

and covariance matrix σ2
(

1 ρl(v)
ρl(v) 1

)
, where x(v) = (1, v1, v2)⊤ and z0(v) ∼

TN(0, 1), for all v and for all l. The associated conditional density p(y(v) | yNe(v))

of the extended model is

L∑
l=1

wl(v)
∫ ∞

0
N(y(v) |µl(v), σ2

l (v))TN(z0(v) |µ0l(v(l)), σ2
0l(v(l)))dz0(v), (4.12)

where µl(v) = x(v)⊤β + λ(v)z0(v) + ρl(v){y(v(l)) − x(v(l))⊤β − λ(v(l))z0(v)},

σ2
l (v) = σ2{1−(ρl(v))2}, µ0l(v(l)) = {y(v(l))−x(v(l))⊤β}λ(v(l))/{σ2+(λ(v(l)))2},

and σ2
0l(v(l)) = σ2/{σ2 +(λ(v(l)))2}. After marginalizing out z0(v), we obtain that

the marginal distribution of Y (v) is SN
(
x(v)⊤β, (λ(v))2 + σ2, λ(v)/σ

)
, based on

the result of Proposition 4.1. We model the spatially varying λ(v) via a parti-

tioning approach. In particular, we partition the Mediterranean Sea D according

to the sub-basins, i.e., D = ∪K
k=1Pk, Pi ∩ Pj = ∅ for i ̸= j, where K = 5. For
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(a) Mediterranean Sea partitions (b) Histograms of residuals

(c) 50% predicted SST (d) 95% CI width

Figure 4.9: Chapter 4 - Mediterranean SST data analysis. Panels (a) and (b) are partitions
according to Mediterranean sub-basins and histograms of the residuals obtained from a non-
spatial linear model. Panels (c) and (d) are posterior median and 95% credible interval estimates
of the SST from the extended skew-GNNMP model.

all v ∈ Pk, we take λ(v) = λk, for k = 1, . . . , K. The partitions P1, . . . , PK

correspond to the sub-basins: Westernmost Mediterranean Sea, Tyrrhenian Sea,

Adriatic Sea, Ionian Sea, and Levantine-Aegean Sea, respectively.

We applied the extended skew-GNNMP model (4.12) using the whole data set

as reference set with L chosen to be 10, 15 or 20. The regression parameters β =

(β0, β1, β2)⊤ were assigned mean-zero, dispersed normal priors. For the skewness

parameters λ = (λ1, . . . , λ5), each element received a N(0, 5) prior. We used the

same prior specification for other parameters as in the first simulation experiment.

Posterior inference was based on thinned samples retaining every 4th iteration,

from a total of 30000 samples with a burn-in of first 10000 samples. The computing

time was around 14, 16, and 20 minutes, respectively, for each of the L values.
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We focus on the estimation of regression parameters β and skewness pa-

rameters λ. We report the estimates for L = 15; they were similar for L =

10 or 20. The posterior mean and 95% credible interval estimates of β0, β1,

and β2 were 30.51 (28.88, 32.16), 0.12 (0.09, 0.15), and −0.37 (−0.42,−0.33), in-

dicating that there was an increasing trend in SST as longitude increased and

latitude decreased. The corresponding posterior estimates of the skewness pa-

rameters λ were −0.38 (−0.94, 0.14), −1.37 (−2.10,−0.71), −2.44 (−4.03,−1.14),

−1.60 (−2.54,−0.86), and −2.69 (−3.95,−1.82). These estimates suggest different

levels of left skewness over the sub-basins except for the Westernmost Mediter-

ranean Sea.

Figure 4.9(c) provides the posterior median estimate of the SST over a dense

grid of locations on the Mediterranean Sea. Compared to Figure 4.7, the estimate

overall resembles the observed pattern. The prediction was quite smooth even

for areas with few observations. The 95% credible interval width of the SST over

the gridded locations, as shown in Figure 4.9(d), demonstrates that the model

describes the uncertainty in accordance with the observed data structure; the

uncertainty is higher in areas where there are less observations or the observations

are volatile.

4.5 Discussion

We have introduced a class of geostatistical models for large, non-Gaussian

data sets, based on nearest-neighbor processes. Using an MTD model as the par-

ent process, we have demonstrated the NNMP’s flexibility for modeling complex

dependence by specification of a collection of bivariate distributions indexed at

space. The scope of the methodology has been illustrated through data examples

with skewness, heavy tails or compact support.
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To incorporate covariates, the NNMP can be embedded in an additive or

multiplicative regression model. The former is illustrated in the regional analysis

of Section 4.4.4. Under an additive model, the MCMC algorithm requires extra

care as it involves sequential updating of the elements in zS . This may induce slow

convergence behavior. An alternative strategy for covariate inclusion is to model

the weights or some parameter(s) of the spatially varying conditional density as

a function of covariates. For example, in the full analysis of Section 4.4.4, we

modeled the location parameter of the skew-Gaussian marginal as a linear function

of the covariates. Posterior simulation under this approach is easily developed by

modifying the update of the relevant parameters discussed in Section 4.3.2 to that

of the regression coefficients.

The computation of the NNMP not only bypasses all the potential issues from

large matrix operations, but also enhances modeling power. Kernel functions,

such as wave covariance functions, that are impractical for Gaussian process-

based models due to numerical instability from matrix inversion, can be used as

link functions for the spatially varying parameter of the NNMP. One limitation

of the NNMP’s computation, similar to mixture models, is that the MCMC algo-

rithm may experience slow convergence issues. Further development is needed on

efficient algorithms for fast computation, especially when dealing with massive,

complex data sets.

It is also interesting to explore the opportunities for the analysis of spatial

extremes using the NNMP framework. We developed guidelines in Section 4.2.4

to choose NNMP mixture components based on strength of tail dependence. The

results highlight the ability of the NNMP model structure to capture local tail

dependence in different levels, controlled by the mixture component bivariate dis-

tributions, e.g., with a class of bivariate extreme-value copulas. Moreover, using
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NNMPs for spatial extreme modeling allows for efficient computation for imple-

mentiation of inference which is typically a challenge with existing approaches

(Davison et al., 2012).

Other research directions include extensions to multivariate and spatio-temporal

settings. The former extension requires families of high-dimensional multivariate

distributions to construct an NNMP. Effective strategies will be needed to define

the spatially varying multivariate distributions that balance flexibility and scala-

bility. When it comes to a joint model over time and space, there is large scope

for exploring the integration of the time component into the model, including

extending the NNMP weights or the NNMP mixture components.
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Chapter 5

Models for Discrete-Valued

Spatial Processes

5.1 Introduction

Discrete geostatistical data arise in many areas, such as biology, ecology, and

forestry. Such data sets consist of observations that take discrete values and are

indexed in a continuous spatial domain. As an example, consider observations for

counts of a species of interest, commonly used to estimate the species distribution

over a geographical domain.

The most common approach to modeling such data is through a spatial gen-

eralized linear mixed model (SGLMM, Diggle et al. (1998)), under which an ex-

ponential family distribution is specified for the response at a given location,

assuming independence between locations, conditional on an underlying spatial

process. Such process is specified in the second stage of the SGLMM through

a link function that associates the response mean to a set of spatial random ef-

fects. A Gaussian process is typically used for the spatial random effects. Thus,
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SGLMMs provide a general modeling tool for geostatistical discrete data appli-

cations; see, for examples, Wikle (2002), Recta et al. (2012), Berrett and Calder

(2016), and Zhang et al. (2020).

However, SGLMMs have several properties that can be limited. First, they

do not correspond to spatial processes for the observed data. Since the spa-

tial random effects are incorporated into the transformed mean, SGLMMs model

spatial structure on a function of the response means, not the observations di-

rectly. Thus, the model may impose a strong correlation between means over

locations that are close, even though the corresponding observations may not be

strongly correlated. In addition, the SGLMM specification poses computational

challenges. Unlike Gaussian geostatistical models, the spatial random effects can-

not be marginalized out. Under simulation-based inference, estimating the spatial

random effects generally requires sampling a large number of highly correlated pa-

rameters within an MCMC algorithm, which is likely to produce slow convergence,

and a large memory footprint. Although efficient computational strategies have

been explored in the literature (e.g., Zhang 2002; Christensen and Waagepetersen

2002; Christensen et al. 2006; Sengupta and Cressie 2013; Sengupta et al. 2016;

Guan and Haran 2018), the computational challenge is unavoidable, especially for

large spatial datasets.

An alternative to SGLMMs involves Gaussian copula models which construct

random fields given a pre-specified family of marginal distributions. Here, the joint

cdf of the spatial responses is characterized by a Gaussian copula corresponding

to an underlying Gaussian process; see, e.g., Madsen (2009), Kazianka and Pilz

(2010), and Han and De Oliveira (2016). Gaussian copulas provide simplicity in

specifying spatial dependence, and flexibility in selecting discrete marginal dis-

tributions. However, the evaluation of the resulting likelihood requires efficient
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approximations of high-dimensional multivariate Gaussian integrals, limiting the

applicability of this class of models.

The goal of this chapter is threefold. First, we develop a discrete analogue

of the NNMP introduced in Chapter 4, referred to as the discrete NNMP, with

particular focus on using bivariate copulas to define the spatially varying con-

ditional probability mass functions (pmfs) for the structured mixture that gives

rise to the joint distribution. We show that the joint pmf of the discrete copula

NNMP can be further decomposed into a collection of bivariate copulas, pro-

viding interpretability for model construction using different families of copulas.

In fact, our approach allows for the use of arbitrary bivariate copula families,

which enhances model flexibility and enables the description of complex spatial

dependencies. We demonstrate with a simulation study the impact of using dif-

ferent copula families, exploring alternatives to the traditional Gaussian copula

for spatial modeling. Secondly, we extend the first-order strict stationarity result

in Chapter 4. The extension is key for discrete NNMPs, providing a constructive

approach to develop models with spatially varying marginal pmfs. This can be

used, for example, to incorporate either continuous or discrete covariates, which

is practically important in the context of regression modeling for discrete-valued

spatial responses. Finally, utilizing the stationarity extension result, we develop a

Bayesian hierarchical framework that consists of using uniform random variables

to transform discrete variables into continuous ones. The proposed approach lever-

ages the properties of copulas for continuous random vectors, thus facilitating the

use of different copulas as well as efficient computation. We show through a simu-

lation study that, compared with popular SGLMM methods, this approach yields

reliable posterior inference at a much lower computational cost.

The rest of the chapter is organized as follows. In Section 5.2, we introduce
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NNMPs for discrete data, with copula-based discrete NNMPs developed in Section

5.3. Section 5.4 presents the Bayesian model formulation for inference, validation

and prediction, followed by illustration with synthetic and real datasets in Section

5.5. Finally, Section 5.6 concludes with a summary and discussion.

5.2 NNMPs for Discrete Data

5.2.1 Modeling Framework

Consider a univariate discrete-valued spatial process Y (v) indexed by v ∈

D ⊂ Rp, for p ≥ 1. Let yS = (y(s1), . . . , y(sn))⊤ be a realization of the process

Y (v), where S = (s1, . . . , sn) denotes the reference set. We introduce NNMPs

for discrete-valued spatial processes, referred to as discrete NNMPs. Similar to

the steps in Section 4.2.1, we first build a valid joint pmf over S with a weighted

combination of conditional pmfs:

p(y(si) | yNe(si)) =
iL∑
l=1

wl(si) fsi,l(y(si) | y(s(il))), (5.1)

where wl(si) ≥ 0 for every si ∈ S and for all l, and ∑iL
l=1 wl(si) = 1.

There are two model elements in (5.1) that describe spatial variability: the

mixture component pmfs fsi,l, and the weights wl(si). We defer the specification

of the pmfs fsi,l to the next section. Following Chapter 4, we define the weights

as increments of a logit Gaussian cdf Gsi
, i.e., wl(si) = Gsi

(rsi,l) −Gsi
(rsi,l−1), for

l = 1, . . . , iL. Here, 0 = rsi,0 < rsi,1 < · · · < rsi,iL−1 < rsi,iL = 1 are random cutoff

points such that rsi,l − rsi,l−1 = k′(si, s(il))/
∑iL
l=1 k

′(si, s(il)), for some bounded

kernel k′ : D × D → [0, 1]. Convenient choices for k′ are kernels that compute

the correlation between two points. The underlying Gaussian distribution for Gsi
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has mean µ(si) = γ0 + γ1si1 + γ2si2, and variance κ2, with si = (si1, si2) where si1

and si2 correspond to the x− and y− coordinates of location si. This formulation

allows for spatial dependence among the weights through µ(si). Also, the random

cutoff points can flexibly reflect the neighbor structure of si.

The second step completes the construction of a valid stochastic process over

D by extending (5.1) to an arbitrary finite set of locations outside S, denoted

as U = (u1, . . . ,ur), where U ⊂ D \ S. In particular, we define the pmf of yU

conditional on yS as

p(yU | yS) =
r∏
i=1

p(y(ui) | yNe(ui)) =
r∏
i=1

L∑
l=1

wl(ui) fui,l(y(ui) | y(u(il))), (5.2)

where the weights and conditional pmfs are defined analogously to Equation (5.1),

and the points (u(i1), . . . ,u(iL)) in Ne(ui) are the first L locations in S that are

closest to ui.

Given (5.1) and (5.2), a discrete-valued spatial process over D is well defined.

For any finite set V ⊂ D that is not a subset of S, the joint pmf over V is ob-

tained by marginalizing p(yU | yS)p(yS) over yS \ V , where U = V \ S. Practically,

Equations (5.1) and (5.2) serve different purposes. The reference set S is often

reserved for observed data, so model estimation is based on (5.1), while spatial

prediction at new locations outside the reference set relies on (5.2). Henceforth,

we use

p(y(v) | yNe(v)) =
L∑
l=1

wl(v) fv,l(y(v) | y(v(l))) (5.3)

to characterize discrete NNMPs, where v is a generic location in D. The neighbor

set Ne(v) contains the first L locations in S that are closest to v. We place

these locations in ascending order according to distance, denoted as Ne(v) =

(v(1), . . . ,v(L)).
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We note that the discrete NNMP involves selecting the neighborhood size L.

Our prior model for the spatially varying weights supports the strategy of using an

over-specified L that gives a large neighbor set, with important neighbors assigned

large weights a posteriori. For specific data examples, a sensitivity analysis for L

can be further carried out to find an optimal L according to standard model com-

parison metrics or scoring rules. This is illustrated with the real data application

in Section 5.5.

The discrete NNMP formulation implies two distinct features that set it apart

from SGLMMs. In a SGLMM, responses y(v) are conditionally independent with

distribution f(y(v) | z(v),β, r) = a(y(v), r) exp (r{y(v)η(v) − ψ(η(v))}), where

z(v) is a spatial random effect, β are regression parameters, r is a dispersion pa-

rameter, and h(η(v)) = x(v)⊤β+z(v) for some link function h. The joint distribu-

tion of observations (y(s1), . . . , y(sn)) involves integrating out the spatial random

effects, i.e.,
∫
{∏n

i=1 f(y(si) | z(si),β, r)}p(zS)dzS , where zS = (z(s1), . . . , z(sn))⊤.

This restricts the choice of z(v) to stochastic processes for which the correspond-

ing joint densities are easy to work with, limiting the range of spatial variability

the SGLMM can describe over the domain. In practice, z(v) is commonly assumed

to be a Gaussian process. This limitation, however, does not affect discrete NN-

MPs, as the spatial dependence is introduced at the data level. The joint pmf of

a discrete NNMP is fully specified through (5.1) and (5.2), which is a finite mix-

ture of generic spatial components that can flexibly capture spatial variability.

In addition, the mixture model structure of discrete NNMPs allows for efficient

implementation, using inference approaches for mixtures.
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5.2.2 Model Construction with Spatially Varying Marginals

The key ingredient in constructing discrete NNMPs lies in the specification

of the mixture component conditional pmfs fv,l. There are many avenues to

specify fv,l. As each conditional pmf corresponds to a bivariate random vector,

say (Uv,l, Vv,l), our strategy is to model fv,l through its bivariate pmf, denoted

as fUv,l,Vv,l
. Let fUv,l

and fVv,l
be the marginal pmfs of (Uv,l, Vv,l), such that

fv,l ≡ fUv,l|Vv,l
= fUv,l,Vv,l

/fVv,l
. The benefits of this strategy are twofold. First, it

simplifies the multivariate dependence specification by focusing on the bivariate

random vectors (Uv,l, Vv,l). The multivariate dependence will be induced by bivari-

ate distributions through the model’s mixture formulation. Second, the strategy

allows for the construction of models with a pre-specified family of marginal dis-

tributions, facilitating the study of local variability. For example, it is common

in discrete geostatistical data modeling to include covariates through the (trans-

formed) mean of the marginal distribution.

The second feature of this strategy relies on an extension of the first-order strict

stationarity result from Chapter 4. Based on that result, an NNMP has stationary

marginal pmf fY if fUv,l
= fVv,l

= fY , for all v and all l. Here, we generalize the

result such that discrete NNMPs can be built from pre-specified spatially varying

marginal pmfs gv, where gv is the marginal pmf of Y (v). The generalization of the

stationarity proposition applies to all NNMPs. For the interest of this chapter,

we summarize the result in the following proposition for discrete NNMPs.

Proposition 5.1. Consider a discrete NNMP model for spatial process {Y (v) :

v ∈ D}, and a collection of spatially varying pmfs {gv : v ∈ D}. If, for each v,

the marginal pmfs of the mixture component bivariate distributions are such that

fUv,l
= gv and fVv,l

= gv(l), the discrete NNMP has marginal pmf gv for Y (v), for

every v ∈ D.
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A natural example for {gv : v ∈ D} is a family of distributions with (at least)

one of its parameters indexed in space, i.e., gv(·) = g(· | θ(v), ξ), in particular,

through spatially varying covariates. Using a link function for θ(v), we can include

such covariates that provide additional spatially referenced information. A more

general example involves partitioning the domain into several regions, where in

each region, gv is associated with a different family of marginal distributions.

A relevant application is estimation of the abundance of a species that shows

overdispersion in most areas, but underdispersion in areas where the species is

less prevalent (Wu et al., 2015). Overall, Proposition 5.1 provides flexibility for

construction of discrete-valued spatial models with specific marginal pmfs.

We develop next a key component of the methodology, that is, discrete copula

NNMP model construction and inference. Given a family of marginal pmfs gv, we

create spatial copulas for random vectors (Uv,l, Vv,l). We begin with copulas for a

set of base random vectors (Ul, Vl), and extend them to be spatially dependent by

modeling the copula parameter that controls the dependence structure as spatially

varying. Together with Proposition 5.1, this strategy allows for construction of

discrete NNMPs with marginal pmfs in general families.

5.3 Discrete Copula NNMPs

5.3.1 Copula Functions

A bivariate copula function C : [0, 1]2 → [0, 1] is a distribution function whose

marginals are uniform distributions on [0, 1]. Following Sklar (1959), given a

random vector (Z1, Z2) with joint probability distribution F and marginals F1

and F2, there exists a copula function C such that F (z1, z2) = C(F1(z1), F2(z2)).

If F1 and F2 are continuous, C is unique. In this case, the copula density
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is c(z1, z2) = ∂C(F1(z1), F2(z2))/(∂F1∂F2), and the joint density is f(z1, z2) =

c(z1, z2)f1(z1)f2(z2), where f1 and f2 are the densities of F1 and F2, respectively.

If both marginals are discrete, the copula C is only unique on the set Ran(F1)×

Ran(F2), where Ran(Fj) consists of all possible values of Fj, j = 1, 2 (Joe, 2014).

Nevertheless, if C is a copula and F1 and F2 are discrete distribution functions,

then F (z1, z2) = C(F1(z1), F2(z2)) is a valid joint distribution; in practice, we se-

lect a parametric family for C (Smith and Khaled, 2012). Note that, in contrast

with the continuous case, when the marginals are discrete, some popular depen-

dence measures, such as Kendall’s τ , will depend on the marginals (Denuit and

Lambert, 2005; Genest and Nešlehová, 2007). Consequently, the Kendall’s τ of

the random vector (Z1, Z2) will not be equivalent to the Kendall’s τ of the copula.

Without loss of generality, hereafter, we assume the bivariate copula carries a

single parameter.

5.3.2 Copula NNMPs for Discrete Geostatistical Data

Here, we introduce copula NNMPs with discrete marginals, with focus on using

copulas to specify the bivariate distributions of the mixture components. Dropping

the dependence on l for clarity, consider a random vector (U, V ) with discrete

marginal distributions FU , FV , and marginal pmfs fU , fV . Let au = FU(u−) and

bu = FU(u), where FU(u−) denotes the left limit of FU at u. If U is ordinal,

FU(u−) = FU(u − 1). Analogous definitions of av and bv apply for V . The joint

pmf fU,V of (U, V ) is obtained by finite differences,

fU,V (u, v) = C(bu, bv) − C(bu, av) − C(au, bv) + C(au, av). (5.4)

Let c(u, v) = fU,V (u, v)/(fU(u)fV (v)), such that fU,V (u, v) = c(u, v)fU(u)fV (v),

using a notation that is analogous to that of the joint density when (U, V ) is
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continuous. Therefore, the conditional pmf, fU |V (u | v) = c(u, v)fU(u).

To specify the distribution of base random vector (Ul, Vl), we use copula Cl

with parameter ηl. For a parsimonious location-dependent model, we create spa-

tially varying copulas Cv,l on (Uv,l, Vv,l) by extending ηl to ηl(v). In practice,

we associate ηl(v) to a spatial kernel that depends on v ∈ D through a link

function. Using Proposition 5.1 with a family of marginal pmfs gv, the joint

pmf on (Uv,l, Vv,l) is fUv,l,Vv,l
(u, v) = cv,l(u, v)fUv,l

(u)fVv,l
(v), where fUv,l

= gv and

fVv,l
= gv(l) , and the conditional pmf is fv,l(u | v) = cv,l(u, v)gv(u). Finally, the

conditional pmf of the discrete copula NNMP model is given by

p(y(v) | yNe(v)) =
L∑
l=1

wl(v) cv,l(y(v), y(v(l))) gv(y(v)), (5.5)

where the marginal pmf for Y (v) is gv.

Recall that an NNMP model involves two sets of locations, the reference set

S and nonreference set U . As done in practice, we take the reference set S to

correspond to the observed locations, and consider a generic finite set U such that

S ∩ U = ∅. Then, the joint pmf p(yV) over set V = S ∪ U describes the NNMP

distribution over any finite set of locations that includes the observed locations.

In general, for a discrete NNMP, an explicit expression for p(yV) is not available,

since working with a bivariate discrete distribution and its conditional pmf is

difficult. However, using copulas to specify the bivariate mixture component yields

a structured conditional pmf and allows for the study of the joint pmf. The

following proposition provides an explicit expression for p(yV) under a discrete

copula NNMP.

Proposition 5.2. Consider a discrete copula NNMP model for spatial process

{Y (v) : v ∈ D}, with S = {s1, . . . , sn} and U = {u1, . . . ,um}, where n ≥ 2, m ≥

1, and S ∩ U = ∅. Take V = S ∪ U and yV = (y(s1), . . . , y(sn), y(u1), . . . , y(um))⊤.
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Then the joint pmf of yV is p(yV) = p(yU | yS)p(yS), where

p(yS) =
n∏
i=1

gsi
(y(si))

nL∑
ln=1

· · ·
2L∑
l2=1

wsn,ln . . . ws2,l2csn,ln . . . cs2,l2 ,

p(yU | yS) =
m∏
i=1

gui
(y(ui))

L∑
lm=1

· · ·
L∑

l1=1
wum,lm . . . wu1,l1cum,lm . . . cu1,l1 .

(5.6)

where wsi,li ≡ wli(si) and csi,li ≡ csi,li(y(si), y(s(i,li))), for li = 1, . . . , iL, i =

2, . . . , n, and wui,li ≡ wli(ui) and cui,li ≡ cui,li(y(ui), y(u(i,li))), for li = 1, . . . , L,

i = 1, . . . ,m.

We note that Proposition 5.2 also applies when yV is continuous. It indicates

that, given the sequence of pmfs gv, the joint pmf of yV is determined by the

collection of bivariate copulas, motivating the use of different copula families to

construct discrete NNMPs. To balance flexibility and scalability, our strategy is

to take all copulas Cl in one family with the same link function for the copula

parameters. Table 5.1 presents three examples with copula parameters modeled

via a link function k : D × D → [0, 1]. In particular, the Gumbel and Clayton

copulas are asymmetric. They exhibit greater dependence in the positive and

negative tails, respectively. In the first simulation example, we demonstrate that

when the underlying spatial dependence is non-Gaussian, it may be appropriate

to choose asymmetric copulas. We present next an example of a discrete copula

NNMP construction.

Example 1. Gaussian copula NNMP with negative binomial marginals. For the

family of marginal pmfs gv, consider the negative binomial distribution with mean

α(v) and dispersion parameter r, denoted as NB(α(v), r). Therefore, gv(y) =(
y+r−1
y

)
(p(v))r(1 − p(v))y, with p(v) = r/(α(v) + r). To include a vector of co-

variates x(v), we take a log-link function for α(v) such that log(α(v)) = x(v)⊤β,

where β is a vector of regression parameters. We first specify Gaussian copulas
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Table 5.1: Chapter 5 - spatial copula functions. Examples of spatial copulas Cv,l

and corresponding link functions, k : D × D → [0, 1].

Cv,l(z1, z2) link function

Gaussian Φ2(Φ−1(z1), Φ−1(z2)) ρl(v) = k(v, v(l))

Gumbel exp{−[(− log z1)ηl(v) + (− log z2)ηl(v)]1/ηl(v)} ηl(v) = (1 − k(v, v(l)))−1

Clayton (z−δl(v)
1 + z

−δl(v)
2 − 1)−1/δl(v) δl(v) = 2k(v, v(l))/(1 − k(v, v(l)))

Note: the bivariate cdf Φ2 corresponds to the standard bivariate Gaussian distribution with cor-
relation ρ ∈ (0, 1), and the cdf Φ corresponds to the standard univariate Gaussian distribution.

Cl with correlation parameters ρl for the base random vectors (Ul, Vl). We then

modify the correlation parameters ρl using a correlation function k for all l such

that ρl(v) := k(v,v(l)), creating a sequence of spatially varying copulas Cv,l. The

resulting model is given by (5.5) with gv = NB(α(v), r).

5.3.3 Inference for Discrete Copula NNMPs

A traditional copula model for an n-variate discrete-valued vector involves

evaluating 2n terms of n-dimensional copulas. Unless n is very small, the com-

putation is infeasible. Notable exceptions are discrete vine copula models (Pana-

giotelis et al., 2012) that decompose a multivariate pmf into bivariate copulas and

marginals under a set of trees. The computations for likelihood evaluations grow

quadratically in n. Discrete copula NNMPs compare favorably with discrete vine

models, as the structured mixture formulation results in only 4nL bivariate copula

function evaluations for the likelihood, providing linear growth in n.

Here, we develop a framework for discrete copula NNMP inference, based on

transforming the discrete random variables to continuous ones by adding auxiliary

variables, using the continuous extension (CE) approach in Denuit and Lambert

(2005). Working with continuous marginals improves computational efficiency

and stability: the likelihood requires only nL bivariate copula density evaluations;
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and, computing the conditional pmf using the finite differences in (5.4) is bypassed,

thus avoiding numerical instability especially for copulas that are not analytically

available, such as the Gaussian copula. Moreover, this framework makes more

efficiency the key task of spatial prediction over unobserved sites by avoiding

computation that involves inverting the conditional cdf based on (5.4).

We associate each Y (v) with a continuous random variable Y ∗(v), such that

Y ∗(v) = Y (v) − O(v), where O(v) is a continuous uniform random variable on

(0, 1), independent of Y (v) and of O(v′), for v′ ̸= v. We refer to Y ∗(v) as

the continued Y (v) by O(v). Let Qv and gv be the marginal cdf and pmf of

Y (v), respectively. Then, the marginal cdf and density of Y ∗(v) are Q∗
v(y∗(v)) =

Qv([y∗(v)]) + (y∗(v) − [y∗(v)])gv([y∗(v) + 1]), and g∗
v(y∗(v)) = gv([y∗(v) + 1]),

respectively, where [x] denotes the integer part of x.

Based on marginal densities g∗
v, we take spatial copulas C∗

v,l = Cv,l for contin-

uous random vectors (U∗
v,l, V

∗
v,l), with marginals fU∗

v,l
= g∗

v and fV ∗
v,l

= g∗
v(l)

, using

copulas Cv,l from the original NNMP model. The joint density on (U∗
v,l, V

∗
v,l) is

fU∗
v,l
,V ∗

v,l
(u, v) = c∗

v,l(u, v)g∗
v(u)g∗

v(l)
(v), and the conditional density is f ∗

v,l(u | v) =

c∗
v,l(u, v)g∗

v(u), where c∗
v,l is the copula density. Denote by y∗

Ne(v) the vector that

contains the continued elements of yNe(v), and oNe(v) the vector of auxiliary vari-

ables for elements of yNe(v). Then, the implied model on y∗(v) is

p(y∗(v) |D∗(v)) =
L∑
l=1

wl(v) c∗
v,l(y∗(v), y∗(v(l))) g∗

v(y∗(v)) (5.7)

where y∗(v) = y(v) − o(v), and D∗(v) = {y∗
Ne(v), o(v),oNe(v)}. Based on Proposi-

tion 5.1, model (5.7) has marginal density g∗
v for Y ∗(v). To recover y(v), we first

generate y∗(v) from the extended model, and then set y(v) = [y∗(v) + 1].

Regarding the existing literature, statistical inference for spatial copula mod-

els based on the CE approach is typically conducted by maximizing the expected

136



likelihood with respect to the auxiliary variables (Madsen, 2009; Hughes, 2015).

We develop inferential methods under the Bayesian framework. Posterior simu-

lation based on (5.7) takes advantage of copula properties for continuous random

variables, thus providing efficient computation for both model estimation and

prediction.

5.4 Bayesian Implementation

5.4.1 Hierarchical Model Formulation

Assume that yS = (y(s1), . . . , y(sn))⊤ is a realization of a discrete copula

NNMP with spatially varying marginal pmfs through spatially dependent covari-

ates, gsi
(y(si)) ≡ g(y(si) | β, ξ). Here, β = (β0, β1, . . . , βp)⊤, where β0 is an

intercept and (β1, . . . , βp)⊤ is the regression parameter vector for covariates x(si),

and ξ collects all other parameters of g. The copula parameter is modeled through

a link function k with parameter(s) ϕ. We use the CE approach associating each

y(si) with y∗(si), such that y∗(si) = y(si) − oi, where oi ≡ o(si) is uniformly

distributed on (0, 1), independent of y(si) and of oj, for j ̸= i. Moreover, denote

by ζ the parameter of the cutoff point kernel for the mixture weights, defined in

Section 5.2.1.

The formulation of the mixture weights allows us to augment the model with a

sequence of auxiliary variables, {ti : i = 3, . . . , n}, where ti is a Gaussian random

variable with mean µ(si) and variance κ2. The augmented model for the data can
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be expressed as

y(si) = y∗(si) + oi, oi
i.i.d.∼ Unif(0, 1), i = 1, . . . , n,

y∗(s1) | β, ξ ∼ g∗
s1(y∗(s1)), y∗(s2) | y∗(s1),ϕ,β, ξ ∼ f ∗

s2,1(y
∗(s2) | y∗(s1)),

y∗(si) | {y∗(s(il))}iLl=1, ti,ϕ,β, ξ, ζ
ind.∼

iL∑
l=1

f ∗
si,l

(y∗(si) | y∗(s(il)))1(r∗
si,l−1,r

∗
si,l

)(ti),

ti | γ, κ2 ind.∼ N(ti | γ0 + γ1si1 + γ2si2, κ
2), i = 3, . . . , n,

where r∗
si,l

= log{rsi,l/(1 − rsi,l)}, and f ∗
si,l

(y∗(si) | y∗(s(il))) = c∗
si,l

(y∗(si), y∗(s(il)))

g∗
si

(y∗(si)), for l = 1, . . . , iL. The full Bayesian model is completed with prior

specification for parameters β, ξ,ϕ, ζ,γ = (γ0, γ1, γ2)⊤ and κ2. The priors for

ξ, ϕ, and ζ depend on the choices of the pmf gsi
, the copula C∗

si,l
, and the

kernel k′, respectively. For parameters β, γ, and κ2, we consider N(β |µβ,Vβ),

N(γ |µγ ,Vγ), and IG(κ2 |uκ2 , vκ2) priors, where IG denotes the inverse gamma

distribution.

5.4.2 Model Estimation, Validation, and Prediction

We outline the MCMC sampler for parameters (β, ξ,ϕ, ζ,γ, κ2), and latent

variables {ti}ni=3 and {oi}ni=1. We note that there is a set of configuration vari-

ables {ℓi}ni=3 in one-to-one correspondence with ti, i.e., ℓi = l if and only if

ti ∈ (r∗
si,l−1, r

∗
si,l

), for l = 1, . . . , iL.

The updates for parameters β, ξ and ϕ require Metropolis steps, since they

enter in copula densities c∗
si,l

. We use a Metropolis step also for kernel k′ parameter

ζ, which is involved in the definition of the mixture weights. Let D be the (n −

2) × 3 matrix with ith row (1, si+2,1, si+2,2). The posterior full conditional of γ is

N(γ | µ∗
γ ,V

∗
γ ), where V ∗

γ = (V −1
γ +κ−2D⊤D)−1 and µ∗

γ = V ∗
γ (V −1

γ µγ +κ−2D⊤t),

with the vector t = (t3, . . . , tn)⊤. The posterior full conditional distribution of κ2
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is IG(κ2 |uκ2 + (n− 2)/2, vκ2 +∑n
i=3(ti − µ(si))2/2).

The posterior full conditional distribution for each latent variable ti, i =

3, . . . , n, can be expressed as ∑iL
l=1 ql(si) TN(ti |µ(si), κ2; r∗

si,l−1 < ti ≤ r∗
si,l

), where

TN denotes the truncated normal distribution over the indicated interval, and

ql(si) ∝ wl(si) c∗
si,l

(y∗(si), y∗(s(il))), for l = 1, ..., iL. Hence, each ti can be readily

updated by sampling from the l-th truncated normal with probability proportional

to ql(si). For auxiliary variables oi, the posterior full conditional of o1 is propor-

tional to ∏{j:s(j,ℓj )=s1} c
∗
sj ,ℓj

(y(sj) − oj, y(s1) − o1), and that of oi, i ≥ 2, is propor-

tional to c∗
si,ℓi

(y(si) − oi, y(s(i,ℓi)) − o(i,ℓi))
∏

{j:s(j,ℓj )=si} c
∗
sj ,ℓj

(y(sj) − oj, y(si) − oi),

where ℓ2 = 1 and o(i,ℓi) ≡ o(s(i,ℓi)). We update each latent variable oi with an

independent Metropolis step with a Unif(0, 1) proposal distribution.

The continued model likelihood has the form gs1(y∗(s1))
∏n
i=2 p(y∗(si) |D∗(si)).

The product formulation allows for model validation, using a generalization of the

randomized quantile residuals (Dunn and Smyth, 1996) for independent data.

Specifically, we define the marginal quantile residual, r1 = Φ−1(Q∗
s1(y∗(s1))), and

the ith conditional quantile residual, ri = Φ−1(F (y∗(si) |D∗(si))), i = 2, . . . , n,

where F is the conditional cdf of y∗(si). If the model is correctly specified, the

residuals ri, i = 1, . . . , n, would be independent and identically distributed as a

standard Gaussian distribution.

Finally, we turn to posterior predictive inference at a new location v0. If

v0 /∈ S, for each posterior sample, we first compute the cutoff points rv0,l, such that

rv0,l−rv0,l−1 = k′(v0,v(0l))/
∑L
l=1 k

′(v0,v(0l)), and the weights wl(v0) = Gv0(rv0,l)−

Gv0(rv0,l−1), for l = 1, . . . , L. We then generate y∗(v0) based on (5.7), and set

y(v0) = [y∗(v0) + 1]. If v0 ≡ si ∈ S, we generate y(v0) similarly, the difference

being that we now use the posterior samples for the mixture weights obtained

from the MCMC algorithm.
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5.5 Data Illustrations

To illustrate the proposed methodology, we present two synthetic data ex-

amples and a real data analysis. The goal of the first simulation experiment

is to investigate the flexibility of discrete copula NNMPs, using different copula

functions to define the NNMP mixture components. In the second experiment,

we demonstrate the inferential and computational advantages of our approach

for count data modeling, compared to SGLMMs. Implementation details for the

models are provided in the Appendix. Since our purpose is primarily demonstra-

tive, we took L = 10 for the simulation experiments. A comprehensive sensitivity

analysis for L was conducted for the real data application.

In both simulated data examples, we ran the MCMC algorithm for each copula

NNMP model for 20000 iterations, discarding the first 4000 iterations, and col-

lecting posterior samples every four iterations. The SGLMM models were imple-

mented using the spBayes package in R (Finley et al., 2007); we ran the algorithm

for 40000 iterations and collected posterior samples every five iterations, with the

first 20000 as burn-in.

We compare models based on parameter estimates, root mean squared predic-

tion error (RMSPE), 95% credible interval width (95% CI width), 95% credible

interval coverage rate (95% CI cover), continuous ranked probability score (CRPS;

Gneiting and Raftery 2007), energy score (ES; Gneiting and Raftery 2007), and

variogram score of order one (VS; Scheuerer and Hamill 2015). The energy score is

a multivariate extension of the CRPS, while the variogram score examines pairwise

differences of the components of the multivariate quantity. Both the ES and VS

allow for comparison of model predictive performance with respect to dependence

structure.
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5.5.1 First Simulation Experiment

We first generated sites over a regular grid of 120 × 120 resolution on a unit

square domain, and then simulated data from y(v) = F−1
Y

(
FZ(z(v))

)
, where FY

corresponds to the Poisson distribution with rate parameter λ0 = 5, and z(v)

is the skew-Gaussian random field from Zhang and El-Shaarawi (2010) with sta-

tionary marginal distribution FZ . More specifically, z(v) = σ1 |ω1(v)| + σ2 ω2(v),

where both ω1(v) and ω2(v) are standard Gaussian processes with exponential

correlation function based on range parameter 0.1. The density of FZ is fZ(z) =

2N(z | 0, σ2
1 + σ2

2) Φ(σ1z/(σ2

√
σ2

1 + σ2
2)), where σ1 ∈ R controls the skewness, and

σ2 > 0 is a scale parameter. We took σ2 = 1, and σ1 = 1, 3, 10, which corresponds

to positive weak, moderate, and strong skewness.

We considered three discrete copula NNMPs with stationary Poisson marginals,

i.e., gv = fY , for all v, where fY is the Poisson pmf with rate λ. The three mod-

els correspond to the copulas in Table 5.1, with the link function k given by an

exponential correlation function with range parameter denoted by ϕ1, ϕ2, and ϕ3

for the Gaussian, Gumbel, and Clayton copula models, respectively. We specified

the cutoff point kernel through an exponential correlation function with range

parameter ζ1, ζ2, and ζ3 for the Gaussian, Gumbel, and Clayton copula models,

respectively. The Bayesian models are fully specified with an IG(3, 1) prior for

the ϕ and ζ parameters, and with N(γ | (−1.5, 0, 0)⊤, 2I3) and IG(κ2 | 3, 1) priors.

Finally, the prior for the rate parameter λ was taken as Ga(1, 1), where Ga(a, b)

denotes the gamma distribution with mean a/b. We simulated 1000 responses and

used 800 of them to fit the three NNMP models. The remaining 200 observations

were used for model comparison.

Table 5.2 provides estimates for the rate parameter λ of the Poisson marginal

distribution, and predictive performance metrics. For all three cases for σ1 =
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(a) True y(v) (σ1 = 1)
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(b) True y(v) (σ1 = 3)
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(c) True y(v) (σ1 = 10)
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(d) PONNMP (Gaussian)
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(e) PONNMP (Gaussian)
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(f) PONNMP (Gaussian)
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(g) PONNMP (Gumbel)
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(h) PONNMP (Gumbel)
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(i) PONNMP (Gumbel)
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(j) PONNMP (Clayton)
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(k) PONNMP (Clayton)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Easting

N
o

rt
h

in
g

0

4

8

12

16

(l) PONNMP (Clayton)

Figure 5.1: Chapter 5 - first simulation data analysis. Interpolated surfaces of the true model
(first row), and posterior median estimates of the Poisson NNMP (PONNMP) models using
Gaussian (second row), Gumbel (third row), and Clayton (fourth row) copulas. Columns from
left to right correspond to scenarios with σ1 = 1, 3, 10, respectively.
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Table 5.2: Chapter 5 - first simulation data analysis. Posterior mean and 95%
credible interval estimates for the rate parameter λ of the Poisson NNMP marginal
distribution, and scores for comparison of Gaussian, Gumbel and Clayton copula
NNMP models, under each of the three simulation scenarios for σ1.

σ1 = 1 σ1 = 3 σ1 = 10

λ λ λ

Gaussian 4.55 (4.16, 4.94) 4.71 (4.37, 5.07) 4.88 (4.55, 5.22)

Gumbel 4.78 (4.39, 5.21) 4.88 (4.56, 5.24) 4.94 (4.66, 5.23)

Clayton 5.33 (4.99, 5.68) 5.25 (4.96, 5.56) 5.36 (5.08, 5.65)

σ1 = 1 σ1 = 3 σ1 = 10

CRPS ES VS CRPS ES VS CRPS ES VS

Gaussian 0.69 12.77 94855 0.85 15.54 124893 0.93 16.98 138592

Gumbel 0.69 12.58 92278 0.85 15.32 120932 0.92 16.71 134774

Clayton 0.75 14.34 125800 0.90 17.36 164148 1.00 18.70 174123

1, 3, 10, the Gumbel model yields the more accurate estimates for λ. In particu-

lar, the Gumbel model’s 95% CIs include the true parameter value, whereas those

of the Gaussian and Clayton models failed to cover it when σ1 = 1 and σ1 = 10,

respectively. Regarding predictive performance, the Gumbel model outperforms

to a smaller or larger extent the other two models across different scenarios. Pre-

dictive random fields under the three models are provided in Figure 5.1. We found

that prediction by the Clayton model was not able to recover large values. Com-

pared to the Gaussian model, the Gumbel model recovered large values slightly

better. Overall, this example demonstrates that, when the underlying spatial de-

pendence is driven by non-Gaussian processes, it is practically useful to consider

copulas from asymmetric families, including use of appropriate model comparison

tools.
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(a) True y(v)
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(b) SGLMM-GP
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(c) SGLMM-GPP
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(d) NBNNMP

Figure 5.2: Chapter 5 - second simulation data analysis. Interpolated surfaces of the true model
and posterior median estimates of the SGLMM-GP, SGLMM-GPP and NBNNMP models.

5.5.2 Second Simulation Experiment

We generated data over a grid of sites with 120 × 120 resolution, uniformly on

the square [0, 1] × [0, 1], using a Poisson SGLMM with y(v) | η(v) ∼ Pois(η(v)),

and log(η(v)) = β0 + v1β1 + v2β2 + z(v), where v = (v1, v2), and z(v) is a

zero-centered Gaussian process (GP) with variance parameter σ2 = 0.2 and an

exponential correlation function with range parameter ϕ0 = 1/12. We set the

regression coefficients β = (β0, β1, β2)⊤ = (1.5, 1, 2)⊤, resulting in a random field

with a trend, as shown in Figure 5.2(a).

We considered three models. The first is the negative binomial NNMP model

(NBNNMP) with a Gaussian copula, as discussed in Example 1. The second model
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Table 5.3: Chapter 5 - second simulation data analysis. posterior mean and 95%
credible interval estimates for the regression parameters, performance metrics,
and computing time, under the NBNNMP model and the two SGLMM models.

True NBNNMP SGLMM-GP SGLMM-GPP

β0 1.5 1.61 (1.29, 1.97) 1.53 (1.22, 1.81) 1.41 (1.02, 1.73)

β1 1 0.90 (0.51, 1.31) 0.70 (0.25, 1.15) 0.91 (0.43, 1.34)

β2 2 1.94 (1.51, 2.32) 2.18 (1.91, 2.53) 2.25 (1.81, 2.84)

RMSPE - 9.06 8.88 10.00

95% CI cover - 0.98 0.97 0.78

95% CI width - 37.02 32.24 19.02

CRPS - 4.58 4.52 5.37

ES - 92.07 91.41 107.46

VS - 5175591 5199629 6378263

Time (mins) - 11.18 935.02 11.68

(SGLMM-GP) is a Poisson SGLMM with a GP prior assigned to z(v). For the

last model (SGLMM-GPP), we considered a Poisson SGLMM with spatial random

effects z(v) corresponding to a Gaussian predictive process (GPP, Banerjee et al.

2008), with 10×10 knots placed on a grid over the domain. We chose the number

of knots such that the computing times for the SGLMM-GPP and NBNNMP

models are similar. As in the first simulation example, all models were fit to 800

observations and compared on the basis of 200 additional observations.

The regression coefficients for all models were assigned mean-zero, dispersed

normal priors. We worked with an exponential correlation function for all models,

used for ρl(v) of the Gaussian copula in the NBNNMP model, and as the corre-

lation function for the GP and GPP in the SGLMMs. The range parameter was

assigned an inverse gamma prior IG(3, 1) for the NBNNMP model, and a uniform

prior Unif(1/30, 1/3) for the other two models. The cutoff point kernel of the

NBNNMP was also specified an exponential correlation function, with an IG(3, 1)

prior for the range parameter. The variance parameter for the SGLMM models
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was assigned an inverse gamma prior IG(2, 1). For the logit Gaussian distribu-

tion parameters γ and κ2 of the NBNNMP, we used N((−1.5, 0, 0)⊤, 2I3) and

IG(3, 1) priors, respectively. Finally, we placed a Ga(1, 1) prior on the NBNNMP

dispersion parameter r.

Estimates of the regression parameters and performance metrics for out-of-

sample prediction are provided in Table 5.3. We observe that, overall, the NBN-

NMP model provided the more accurate estimation for β. Regarding predictive

performance, the NBNNMP model outperformed the SGLMM-GPP model by a

large margin, and was comparable to the SGLMM-GP model, which corresponds

to the data generating process for this simulation experiment. Moreover, the last

row of the table highlights the NBNNMP model’s huge gains in computing time

compared to the SGLMM-GP model.

Figure 5.2(b)-5.2(d) plots the posterior median estimates of the random field

for the three models. The SGLMM-GPP yields an overly smooth estimate,

whereas the SGLMM-GP and NBNNMP provide similar estimates that approx-

imate well the true surface. Overall, this example illustrates the inferential and

computational advantages of discrete copula NNMPs for modeling count data.

5.5.3 North American Breeding Bird Survey Data

The primary source of information on population evolution for birds is count

data surveys. Since 1966, the North American Breeding Bird Survey (BBS) has

been conducted to monitor bird population change. There are over 4000 sampling

units in the survey, each with a 24.5-mile roadside route. Along each route,

volunteer observers count the number of birds by sight or sound, in a 3-min

period at each of 50 stops (Pardieck et al., 2020). The BBS data are often used to

determine temporal or geographical patterns of relative abundance. Spatial maps
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of relative abundance are crucial for ecological studies.

We are interested in the Northern Cardinal, a bird species that is prevalent

in Eastern United States. Figure 5.5(a) shows the number of birds observed

in 2019, with the sizes of the circle radii proportional to the number of birds

at each sampling location. The dataset was extracted with the help of the R

package bbsAssistant (Burnett et al., 2019); it contains 1515 irregular sampling

locations. From Figure 5.5(a) we observe that the counts tend to increase as

latitude decreases, and we thus take latitude as a covariate to account for the long

range variability in the population.

Analysis of neighborhood sizes

We considered the Gaussian copula NBNNMP model defined in Example 1,

with spatially varying marginal NB(exp(x(v)⊤β), r), where β = (β0, β1)⊤. We

used the same link functions and prior specifications as in Section 5.5.2. We first

examined model performance under different values of L. We applied the Gaussian

copula NBNNMP model to the whole data set with L = 5, 10, 15, 20. For each

L, we ran the MCMC algorithm for 30000 iterations, discarding the first 10000

iterations, and collecting posterior samples every 5th iteration.

Table 5.4 provides the posterior means and 95% credible interval estimates

of the model parameters. They were quite robust across different values of L,

except for those of ϕ and ζ, even though the different credible intervals have

substantial overlap. Note that ϕ and ζ are the range parameters of the exponential

correlation functions for the Gaussian copula correlation and for the cutoff point

kernel, respectively. Since a model with a large value of L includes more distant

neighbors, ϕ and ζ should be larger as they indicate effective ranges.

To examine the model performance on estimating the weights, we randomly

selected ten locations (sj1 , . . . , sj10) such that 21 ≤ jk ≤ 200 for k = 1, . . . , 5 and
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Figure 5.3: Chapter 5 - North American BBS data analysis. Posterior means and 95% credible
interval estimates of the weights of the first five locations.
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Figure 5.4: Chapter 5 - North American BBS data analysis. Posterior means and 95% credible
interval estimates of the weights of the last five locations.
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Table 5.4: Chapter 5 - North American BBS data analysis. Posterior means and
95% credible interval estimates for the parameters and computing time, under the
Gaussian copula NBNNMP models with different values of L.

L = 5 L = 10 L = 15 L = 20

β0 6.52 (5.88, 7.33) 6.56 (5.69, 7.22) 6.48 (5.72, 7.28) 6.48 (5.62, 7.29)

β1 -0.09 (-0.11, -0.07) -0.09 (-0.11, -0.06) -0.09 (-0.11, -0.07) -0.09 (-0.11, -0.06)

ϕ 1.61 (1.26, 2.04) 2.51 (1.80, 3.47) 2.65 (1.93, 3.59) 2.62 (1.81, 3.68)

ζ 0.82 (0.45, 1.82) 1.10 (0.63, 2.15) 1.37 (0.77, 2.70) 1.71 (0.87, 3.80)

r 1.94 (1.65, 2.22) 1.86 (1.51, 2.19) 1.87 (1.54, 2.21) 1.88 (1.53, 2.22)

γ0 -1.28 (-3.60, 0.96) -1.29 (-3.49, 1.01) -1.51 (-3.77, 0.66) -1.69 (-3.85, 0.41)

γ1 0.00 (-0.02, 0.03) 0.00 (-0.02, 0.02) 0.00 (-0.02, 0.02) 0.00 (-0.02, 0.02)

γ2 0.03 (-0.01, 0.08) 0.02 (-0.02, 0.06) 0.01 (-0.02, 0.06) 0.01 (-0.02, 0.05)

κ2 2.39 (1.48, 3.65) 2.23 (1.46, 3.31) 1.93 (1.24, 2.95) 1.63 (1.09, 2.30)

Time (mins) 29.17 32.71 38.49 50.91

1312 ≤ jk ≤ 1512 for k = 6, . . . , 10. Since we used random ordering to assign

indices to the locations, the neighbors of sjk , k = 1, . . . , 5, may consist of distant

locations, whereas the neighbors of sjk , k = 6, . . . , 10, were expected to be all

nearby. Figures 5.3 and 5.4 illustrate the posterior means and 95% credible interval

estimates of the weights at these ten locations. From the figures, we see that the

model provided estimates of the weights that adjust to different neighborhood

structures. The effective number of neighbors varied across locations. In addition,

the estimates of the weights were quite robust as the value of L increased. We

can observe that the model was able to penalize irrelevant neighbors by assigning

very small probabilities. While L = 5 seems too small to work as an upper bound,

we observe that when L ranged from 10 to 20, the effective number of weights for

each location was quite consistent.

Finally, a sensitivity analysis was carried out to study the impact of L on

the model performance. We randomly split the data into two sets, a training set

with 1212 observations and a testing set with 300 observations. We then applied
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Table 5.5: Chapter 5 - North American BBS data analysis. Performance metrics
of the Gaussian copula NBNNMP models with different values of L.

RMSPE 95% CI cover 95% CI width CRPS ES VS

L = 5 19.90 0.93 66.07 9.79 235.34 39759593

L = 6 19.82 0.94 65.91 9.75 234.50 39446330

L = 7 19.83 0.94 66.04 9.75 234.73 39464801

L = 8 19.80 0.94 66.19 9.75 234.36 39345232

L = 9 19.75 0.94 66.33 9.72 233.42 39073447

L = 10 19.72 0.94 66.27 9.72 233.50 39066501

L = 11 19.74 0.94 66.40 9.73 233.75 39179711

L = 12 19.73 0.95 66.67 9.70 233.10 38919544

L = 13 19.73 0.94 66.50 9.71 233.29 38978258

L = 14 19.70 0.95 66.69 9.71 233.20 38920854

L = 15 19.72 0.95 66.70 9.71 233.26 38865662

L = 16 19.73 0.94 66.70 9.72 233.50 38998533

L = 17 19.72 0.95 66.67 9.72 233.55 38982480

L = 18 19.72 0.94 66.80 9.72 233.63 39013058

L = 19 19.74 0.94 66.67 9.72 233.94 39111633

L = 20 19.79 0.94 66.75 9.74 234.30 39194713

the Gaussian copula NBNNMP with L from 5 to 20, and evaluated the model

performance based on out-of-sample predictive performance as shown in Table

5.5. There were no discernible differences among the models with L between 9

and 20. The conclusion from the robustness analysis of the choice of L is that

L = 20 works as a reasonable upper bound for this particular data example.

Comparison of three copula NBNNMP models

We compare three discrete copula NBNNMP models with L = 20. Each model

used either the spatial Gaussian, Gumbel or Clayton copulas, with negative bino-

mial marginals NB(exp(x(v)⊤β), r). We used the same link functions and prior

specifications for copulas as in Section 5.5.1 and the same priors for other pa-
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Table 5.6: Chapter 5 - North American BBS data analysis. Performance metrics
for NBNNMPs based on different copulas.

RMSPE 95%CI cover 95%CI width CRPS ES VS

Gaussian 19.75 0.94 66.62 9.72 233.91 39136486

Gumbel 19.71 0.96 68.77 9.81 236.18 39665090

Clayton 19.97 0.93 71.51 9.91 237.21 39566563

rameters as in Section 5.5.2. We fitted the models to 1215 randomly selected

observations and used the remaining 300 for model comparison. For each model,

we ran the MCMC algorithm for 30000 iterations, discarding the first 10000 iter-

ations, and collected posterior samples every 5th iteration. Table 5.6 shows the

comparison based on out-of-sample predictive performance. Overall, the Gaussian

copula outperformed the other two.

North American BBS data analysis

We proceeded to analyze the BBS data with the Gaussian copula NBNNMP

model with L = 20. The posterior mean and 95% credible interval estimates of

the regression parameters β0 and β1 are 6.53 (5.61, 7.38) and −0.09 (−0.11,−0.06),

respectively, suggesting an increasing trend in the Northern Cardinal counts as

the latitude decreases. The corresponding estimates of the dispersion parameter

r are 1.88 (1.55, 2.22), indicating that there is overdispersion over the domain.

Figure 5.5(b) and 5.5(c) show the posterior predictive median of the counts and

the 95% posterior predictive CI width, respectively. Figure 5.5(b) displays the do-

main’s spatial variability. The estimated uncertainty, as shown in Figure 5.5(c),

is meaningful, as areas with high uncertainty correspond to those where the ob-

served counts are quite heterogeneous. Figure 5.5(d) provides a spatial map of

the mean of the negative binomial marginals, which depicts a North–South trend.

Model checking results are shown in Figure 5.6, including a posterior summary
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(a) Observed counts
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(b) Predicted counts
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(c) 95% CI widths
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(d) Posterior mean of exp(x(v)⊤β)

Figure 5.5: Chapter 5 - North American BBS data analysis: (a) observed counts for 2019
North American BBS of Northern Cardinal, with circle radius proportional to the observed
counts; (b) median of the posterior predictive distribution for Northern Cardinal count; (c) 95%
CI widths of the posterior predictive distribution for Northern Cardinal count; (d) posterior
mean of exp(x(v)⊤β).

of the Gaussian quantile-quantile plot, and the histogram and spatial plot of the

posterior means of the residuals. The results suggest good model fit.

Comparison with the SGLMM method

Finally, we assessed the model performance by comparison with the SGLMM-

GP model. Again, we randomly split the data into a training set with 1212

observations and a testing set with 300 observations. We ran the MCMC algorithm

for the Gaussian copula NBNNMP (L = 20) for 30000 iterations, discarding the

first 10000 iterations, and collecting posterior samples every 5th iteration. Since
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(c) Posterior mean residuals

Figure 5.6: Chapter 5 - North American BBS data analysis. Randomized quantile residual
analysis: (a) dotted and dashed lines correspond to the posterior mean and 95% credible interval
estimates, respectively; (b) solid and dashed lines are the standard Gaussian density and the
kernel density estimate of the posterior means of the residuals, respectively; (c) spatial plot of
the posterior means of the residuals.

the MCMC for SGLMM-GP involves sampling the spatial random effects, we

ran the algorithm for 50000 iterations and collected posterior samples every five

iterations, with the first 30000 as burn-in.

Table 5.7 shows the parameter estimates and predictive performances by the

two models. The parameter estimates of β were quite close under the two models.

Both models indicate an increasing trend in the counts as the latitude decreases.

On the other hand, the NBNNMP model resulted in better out-of-sample predic-

tive performance, and, notably, it was substantially more efficient to implement,

with computing time 110 times faster than that for the SGLMM-GP model.

5.6 Discussion

We have introduced a new class of models for discrete geostatistical data, with

particular focus on using different families of bivariate copulas to build modeling

and inference. Compared to traditional SGLMM methods, the proposed class of

models is scalable, and is able to accommodate complex dependence structures.

In general, multivariate discrete distributions are not as tractable as certain
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Table 5.7: Chapter 5 - North American BBS data analysis. Parameter estimates
and performance metrics of the Gaussian copula NBNNMP and the SGLMM-GP
models.

NBNNMP SGLMM-GP

β0 6.57 (5.83, 7.19) 6.67 (6.55, 6.81)

β1 -0.09 (-0.10, -0.07) -0.10 (-0.10, -0.09)

RMSPE 19.79 20.41

95% CI cover 0.94 0.94

95% CI width 66.56 76.56

CRPS 9.74 10.10

ES 234.22 239.02

VS 39204378.76 40185343.15

Time (mins) 37.56 4208.33

families of multivariate continuous distributions, in particular, the Gaussian fam-

ily. This is the fundamental difficulty of process-based modeling for discrete geo-

statistical data. Our methodology overcomes this difficulty through a structured

mixture model formulation, reducing the specification of a multivariate pmf to

that of bivariate copulas that define the mixture components. This formulation

yields models for spatial processes that provide flexibility and deliver computa-

tional scalability.

In this chapter, we explored the strategy of using a single copula family for

all bivariate distributions. Exploring the alternative which builds from different

copula families for the bivariate distributions remains an interesting question to

investigate. We can cast this as a model selection problem and develop algorithms

to select models; see examples in Panagiotelis et al. (2017) and Gruber and Czado

(2018) in the context of regular vine copula models. Different copula families for

bivariate distributions yield more flexibility for the model to capture complex de-

pendence, albeit at the cost of computational scalability. If the main purpose of
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the application is prediction, rather than model selection, one could explore cali-

brating the prediction using all candidate copula families. This could be done, for

example, with the pseudo Bayesian model averaging approach, where the weight

for each model is estimated based on stacking (Yao et al., 2018).

We conduct inference for the discrete copula NNMPs based on the continuous

extension approach. Apart from the aforementioned benefits, this approach may

allow discrete copula NNMPs to make use of alternative algorithms for faster

computation. Moreover, with the CE approach, it is possible to develop a class of

NNMPs for a multivariate response that consists of both continuous and discrete

components, while at the same time retaining computational efficiency.
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Chapter 6

Conclusions

We conclude with a discussion of some possible extensions of the proposed

methodologies in this dissertation. We have presented a DAG-based framework

for non-Gaussian processes in time and space, using the following mixture densities

for the vertexes of the DAG,

p(zi | zpa(i)) =
iL∑
l=1

wl(i)fil(zi | z(l)
pa(i)), (6.1)

which forms the joint density of interest p(z1, . . . , zn). The key to (6.1) is the

specification of a collection of bivariate distributions that define the conditional

densities fil, which provides generality for modeling non-Gaussian data.

Methodological extensions can be explored according to different components

of (6.1), e.g., the weights wl(i), and the conditional densities fil. For example,

if we define the weights wl(i) = πlhl(z(l)
pa(i))/

∑iL
r=1 πrhr(z

(r)
pa(i)), and construct fil

from a bivariate distribution with marginals fZ(z) = ∑L
l=1 πlhl(z). It is possible

to obtain a stationary marginal fZ after we impose some conditions relevant to

the first L elements (z1, . . . , zL). For density estimation problems, mixture models

with appropriate kernels can well handle non-Gaussianity. Thus, this extension
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improves modeling power for marginal non-Gaussian behaviors. When the kernel

hl is a Gaussian distribution, the finite mixture model for fZ can be extended to

an infinite mixture one without much effort, by using a Dirichlet process Gaussian

mixture model for the bivariate mixture components. The resulting conditional

density fil is similar to those in Antoniano-Villalobos and Walker (2016) and

DeYoreo and Kottas (2017).

Including one of the given parents in each mixture component of (6.1) facil-

itates the study of model properties, and provides generality for modeling non-

Gaussian data based on specifying bivariate distributions. However, the resulting

models are limited in capturing behaviors such as high-order interactions among

parents. In the temporal/spatial context, high-order interactions mean the joint

effects of lags/nearest neighbors on the target. If only second-order interactions

are of interest, an economical extension, i.e., without fundamentally changing the

model structure, is to add mixture components with densities fil conditional on

two parents, which requires trivariate distributions to build such conditionals.

When we expect extensions to k-order interactions (k > 2), this modeling strat-

egy becomes infeasible as the number of mixture components will be tremendously

large even with a small k. Alternatively, we can expand the conditioning set to

include all parents, defining the density as

p(zi | zpa(i)) =
iL∑
l=1

wl(i)fil(zi | zpa(i)). (6.2)

Although expanding the conditioning set defeats the objective of modeling gen-

eral non-Gaussian data, it can be useful for particular data examples. Suppose

{Zi} is a time series and the parents are temporal lags, that is, zpa(i) = ziL,i−1 =

(zi−1, . . . , zi−iL). Take wl(i) = wl, and let fil = fl be a conditional Gaussian dis-

tribution, for all i. Then the mixture density p(zi | zpa(i)) in (6.2) corresponds to
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the mixture autoregressive (MAR) model (Wong and Li, 2000). Letting iL go to

infinity, the mixture density can be regarded as the infinite mixture representation

of a Bayesian nonparametric model, that is, p(zi | zpa(i)) =
∫
f(zi | zpa(i),θ) dG(θ),

where G is assigned a Dirichlet process prior. In particular, Lau and So (2008)

study this formulation as a nonparametric extension of the MAR model. From

a different perspective, Heiner and Kottas (2022b) build a nonparametric condi-

tional density by placing a prior for the joint density p(zi, ziL,i−1). Their modeling

approach yields localized weights that are functions of temporal lags, in contrast

with the static weights in Lau and So (2008). Nevertheless, nonparametric mod-

eling of p(zi | zpa(i)) adds more flexibility to accommodate complex dependence.

While much effort has been pursued for modeling temporal data, little has been

done for spatial statistics. It will be interesting to explore the spatial counterparts

of these Bayesian nonparametric models within the DAG-based framework.

The presented work provides a collection of flexible modeling tools for non-

Gaussian dependent data, without emphasis on forms of the conditionals and

related marginals in (6.1). On the other hand, we believe that the proposed

framework would contribute new statistical methodologies to a variety of particu-

lar problems, by placing focus on specific families of the conditionals and related

marginals. With this in mind, many examples that are discussed briefly in the

previous chapters can be further explored. As an illustration, consider the NNMP

extension to extreme value analysis. Utilizing Propositions 4.1 and 5.1, we can

construct spatial processes given a set of spatially varying marginal distributions.

This coincides with the idea of specifying a family of generalized extreme value

(GEV) distributions in modeling extremes. It is tempting, then, to extend the

approach illustrated in Section 4.2.4, investigating strength of tail dependence

with measures implied by both the dependence structure of the bivariate distri-
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butions and their marginals, in particular, in the GEV family. An example of

such measures is conditional tail expectation (CTE), e.g., E(Zi |Zpa(i) = z0), or

E(Zi |Zpa(i) > z0). When the marginals are GEVs, examining the rate at which

the CTE grows as z0 → ∞ could be interesting to help understand the model’s tail

properties. In a spatial setting, some multivariate distributions such as a skew-t

distribution have the long-range dependence property (Morris et al., 2017). That

is, observations at two locations are asymptotically dependent regardless of the

distance between them. This property is undesirable if only local dependence

is expected. Studying the long-range dependence feature of the NNMP would

benefit the formulation of the modeling framework for spatial extremes.

This dissertation centers on developing applied methodologies. Their practi-

cal importance has been demonstrated in several data examples. It is no doubt

that these methods would find opportunities in applications from diverse areas.

Incidentally, many fields have witnessed technological advancements that have

led to the increasing prevalence of large-scale data. Although we have proposed

models for non-Gaussian data that balance flexibility and scalability, it remains

a challenging task to scale up statistical inference in the presence of massive data

sets. MCMC that delivers full Bayesian inference has been the focus throughout

the dissertation. However, posterior simulation with MCMC is in general com-

putationally expensive. To retain MCMC as an attractive choice in the proposed

framework for “big data” problems, extensions can be pursued in two avenues,

both of which use the idea of “subsetting”. The first one explores scalable MCMC

algorithms that employ data subsampling in each MCMC iteration, while the

other obtains a pseudo posterior distribution in a distributed manner, by combin-

ing sub-posteriors estimated using MCMC for all subsets of the data. We refer to

Quiroz et al. (2018) and Guhaniyogi et al. (2022), respectively, for more details
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regarding the two avenues; see also a related work (Grenier and Sansó, 2021) that

develops a distributed method for the NNGP models.

Alternative to MCMC, the most popular algorithm that solves the problem in

scaling up is variational inference (VI). VI seeks a variational density, say q∗(θ),

to approximate the intractable joint posterior distribution, formulating Bayesian

estimation as an optimization problem. The density q∗(θ) is commonly factorized

over a partition of θ = (θ1, . . . ,θJ), namely, q∗(θ) = ∏J
j=1 q

∗
j (θj), referred to

as the mean-field variational family. Our current framework defines the DAG

conditionals in the form of (6.1), leading to an estimation scheme similar to that of

finite mixture models. However, unlike many finite mixture models that fall within

the category of conditionally conjugate models, mean-field VI for the current

framework does not enjoy the conjugate property, i.e., closed-form expressions

for updates of most q∗
j (θj) are not available in the coordinate ascent algorithm

(Bishop, 2006). Options to resolve this issue include implementing approximation

methods, e.g., Laplace approximation (Wang and Blei, 2013) and importance

sampling (Ren et al., 2011; Barata et al., 2022), or developing more general VI

algorithms based on those such as the black box VI (Ranganath et al., 2014) and

the automatic differentiation VI (Kucukelbir et al., 2017).

We close this section with remarks on the potential of our DAG-based frame-

work. In Chapters 4 and 5, we propose the NNMP, a whole new class of spatial

processes that is flexible for modeling general non-Gaussian data. It is computa-

tionally attractive relative to many non-Gaussian models as it is constructed via a

nearest-neighbor DAG representation that achieves sparsity. The NNMP has the

potential of practical interest in fields such as health and environmental sciences.

This will be achieved with continuous work on expanding the NNMP framework

for relevant problems, combined with the development of publicly available soft-
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ware, e.g., R packages. In Chapter 3, we propose the MTDPP, a broad class of

point process models that can explain various types of point patterns. I believe

that the MTDPP, coupling with the stationarity conditions developed in Chapter

2, would find its place in point process modeling of practical interest, either as an

extension of the renewal processes when the independence assumption is unreal-

istic, or as a computationally efficient model for large-scale point patterns with

dependence between points.
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Appendix A

Proofs

Proof of Proposition 2.1. Without loss of generality, we consider the case

where Xt has a continuous distribution for all t. Moreover, for the argument that

follows to apply to any t ≥ 2, we express the transition density as f(xt | xt−1) =∑tL
l=1 w

∗
l fUl|Vl

(xt | xt−l), for t ≥ 2, where tL = min{t − 1, L}. When t > L,

w∗
l ≡ wl, for l = 1, ..., L, whereas for 2 ≤ t ≤ L, w∗

l = wl, for l = 1, ..., tL − 1, and

w∗
tL

= 1 −∑tL−1
k=1 wk. With this notational convention, we have ∑tL

l=1 w
∗
l = 1.

Using the proposition assumptions,

g2(x2) =
∫

S
f(x2 | x1)fX(x1)dx1 =

∫
S
fU1|V1(x2 | x1)fV1(x1)dx1 = fU1(x2) = fX(x2)

and thus the result is valid for t = 2. To prove the proposition by induction,

assume the result holds true for generic t − 1, that is, gt′(xt′) = fX(xt′), for all

xt′ ∈ S, and for all t′ ≤ t− 1. Denote by p(x1, . . . , xt−1) and p(xt−tL , . . . , xt−1) the

joint density for random vector (X1, . . . , Xt−1) and (Xt−tL , . . . , Xt−1), respectively.
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Then, the marginal density for Xt can be derived as follows:

gt(xt) =
∫

St−1
f(xt | xt−1) p(x1, . . . , xt−1) dx1 . . . dxt−1

=
tL∑
l=1

w∗
l

∫
StL

fUl|Vl
(xt | xt−l) p(xt−tL , . . . , xt−1) dxt−tL . . . dxt−1

=
tL∑
l=1

w∗
l

∫
S
fUl|Vl

(xt | xt−l) gt−l(xt−l) dxt−l

=
tL∑
l=1

w∗
l

∫
S
fUl|Vl

(xt | xt−l) fVl
(xt−l) dxt−l

= fX(xt),

where for the second-to-last equation we used gt−l = fX , for l = 1, ..., tL, obtained

from the induction argument, as well as the proposition assumption, fX = fVl
, for

all l. Finally, the last equation is based on the proposition assumption that fUl
=

fX , for all l.

Proof of Proposition 2.2. We refer to the definition of weak stationarity from

Brockwell and Davis (1991). A time series {Xt : t ∈ N}, with index set N =

{1, 2, . . . }, is said to be weakly stationary if i) E(X2
t ) < ∞ for all t ∈ N; ii)

E(Xt) = m for some finite m and for all t ∈ N; iii) Cov(Xt+h, Xt) = γ(h) for

all t, h ∈ N. Under condition (1) of Proposition 2, if an MTD time series has

a stationary marginal distribution such that its corresponding first and second

moments exist and are finite, then µ = E(Xt) and µ(2) = E(X2
t ) are finite for all

t ∈ N. Thus, the weak stationarity conditions (i) and (ii) are satisfied.

Under condition (2) of Proposition 2, the cross moment

E(Xt+hXt) = E(XtE(Xt+h |, Xt+h−1, . . . , Xt+h−L))

= E(Xt

L∑
l=1

wl(al + blXt+h−l)) =
L∑
l=1

wlalµ+
L∑
l=1

wlblE(Xt+h−lXt),
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for all t ∈ N and h ≥ L. Assuming that the cross moment is independent of t for

h ≥ 1, we can obtain the following non-homogeneous difference equation for the

autocovariance function:

γ(h) = E(Xt+hXt) − µ2 =
L∑
l=1

wlalµ− (1 −
L∑
l=1

wlbl)µ2 +
L∑
l=1

wlblγ(h− l), h ≥ L.

With regard to the autocorrelation function, we have r(h) = γ(h)/(µ(2)−µ2) =

ϕ+∑L
l=1 wlblr(h−l), h ≥ L, where ϕ = (∑L

l=1 wlalµ−(1−∑L
l=1 wlbl)µ2)/(µ(2)−µ2).

The necessary and sufficient condition for the non-homogeneous difference

equation r(h) to have a stable solution is that the roots z1, . . . , zL of the equation

zL − w1b1z
L−1 − · · · − wLbL = 0 all lie inside the unit circle. This condition,

with the assumption that the cross moment is independent of t, forms condition

(3) of Proposition 2. Under condition (3), the weak stationarity condition (iii) is

satisfied.

Proof of Theorem 1. Consider a stationary MTD point process, i.e., the cor-

responding duration process has a stationary marginal distribution. Thus, the

durations X1, . . . , XN(t) are a collection of identically distributed but dependent

random variables. Let TN(t) = ∑N(t)
i=1 Xi be the last arrival time prior to time t.

We have TN(t) < t < TN(t)+1, and

TN(t)

N(t) <
t

N(t) <
TN(t)+1

N(t) ,

for N(t) ≥ 1. Note that TN(t)/N(t) is the average of durations X1, . . . , XN(t).

Assume the stationary marginal distribution corresponds to a finite mean µ >

0 and finite variance. By the strong law of large numbers for dependent non-

negative random variables (Korchevsky and Petrov 2010, Theorem 4), we have
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that TN(t)/N(t) → µ a.s. (t → ∞), since as t → ∞, N(t) → ∞. Observing

that TN(t)+1/N(t) = {TN(t)+1/(N(t) + 1)}{(N(t) + 1)/N(t)}, where the first term

TN(t)+1/(N(t) + 1) → µ a.s., and the second term (N(t) + 1)/N(t) → 1, we can

conclude that N(t)/t → 1/µ a.s. by the squeeze theorem for limits.

Proof of Proposition 3.2. The MTD point process N(t) can be decomposed

as N(t) = M(t) + Λ(t) (Daley and Vere-Jones, 2003), where M(t) is a zero-

mean martingale, and Λ(t) =
∫ t

0 λ
∗(u)du. The decomposition implies that m(t) =

E[N(t)] = E[Λ(t)]. Without loss of generality, suppose N(t) > L. We have that

∫ t

0
λ∗(u)du =

∫ t1

0
h∗(u)du+ · · · +

∫ tN(t)

tN(t)−1

h∗(u− tN(t)−1)du+
∫ t

tN(t)

h∗(u− tN(t))du

=
N(t)∑
i=1

∫ ti

ti−1
h∗(u− ti−1)du+

∫ t

tN(t)

h∗(u− tN(t))du

=
N(t)∑
i=1

(− log{S∗(ti − ti−1)}) − log{S∗(t− tN(t))},

where t0 = 0. For i = 1, . . . , N(t), by Jensen’s inequality, we have that

− log{S∗(ti − ti−1)} = − log
{

L∑
l=1

wlSl(ti − ti−1 | ti−l − ti−1−l)
}

≤
L∑
l=1

wl (− log{Sl(ti − ti−1 | ti−l − ti−1−l)})

=
L∑
l=1

wl

∫ ti

ti−1
hl(u− ti−1 | ti−l − ti−1−l)du

Similarly, we apply the Jensen’s inequality for − log{S∗(t− tN(t))}. It follows that

∫ t

0
λ∗(u)du ≤

N(t)∑
i=1

L∑
l=1

wl

∫ ti

ti−1
hl(u− ti−1 | ti−l − ti−1−l)du+

L∑
l=1

wl

∫ t

tN(t)

hl(u− tN(t) | tN(t)−l+1 − tN(t)−l)du
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Then, we have that the mean-value function

m(t) = E
[∫ t

0
λ∗(u)du

]
≤ M(t1, . . . , tN(t)) +

L∑
l=1

wlE
[
Λl(t− tN(t))

]
,

where M(t1, . . . , tN(t)) = ∑N(t)
i=1

∑L
l=1 wlE [Λl(ti − ti−1)], and Λl(a− tk) =

∫ a
tk
hl(u−

tk | tk−l+1 − tk−l)du.

Proof of Proposition 3.3. Let (U, V ) = (αX,αY ), where the joint density of

(X, Y ) is fX,Y (x, y) ∝ (λ0 + λ1x + λ2y)−(α+1). By change of variable, we obtain

the joint density of (U, V ), namely, fU,V (u, v) ∝ (λ0 +λ1u/α+λ2v/α)−(α+1), with

normalizing constant C =
∫∞

0
∫∞

0 (λ0+λ1u/α+λ2v/α)−(α+1)dudv = αλ
−(α−1)
0 {(α−

1)λ1λ2}−1. It follows that the marginal density of U is fU(u) = C−1 ∫∞
0 α−2(λ0 +

λ1u/α+λ2v/α)−(α+1)dv = (α−1)(λ0α)−1λ1{1+(λ0α)−1λ1u}−α. Since u and v are

symmetric in the joint density, the marginal density fV (v) = (α−1)(λ0α)−1λ2{1+

(λ0α)−1λ2v}−α. By definition, fU |V (u | v) = fU,V (u, v)/fV (v) = αλ1(αλ0 +

λ2v)−1{1 + λ1u(αλ0 + λ2v)−1}−(α+1).

Proof of Proposition 3.4. Let S∗(t − tN(t)) be the conditional survival func-

tion corresponding to the conditional duration distribution of the scaled-Lomax

MTDPP. Without loss of generality, suppose N(t) > L. Then we have that

S∗(t− tN(t)) =
L∑
l=1

wl

(
1 + t− tN(t)

αlϕ+ tN(t)−l+1 − tN(t)−l

)−αl

=
L∑
l=1

wl


(

1 + t− tN(t)

αlϕ+ tN(t)−l+1 − tN(t)−l

)−(αlϕl+tN(t)−l+1−tN(t)−l)


1/ϕl

×
(

1 + t− tN(t)

αlϕl + tN(t)−l+1 − tN(t)−l

)(tN(t)−l+1−tN(t)−l)/ϕl

.
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As αl → ∞ for all l, for each component, the limits of the first term and the

second term are exp(−(t − tN(t))ϕ−1
l ) and 1, respectively. Then we have that

in the limit of all αl, the conditional duration distribution of the scaled-Lomax

MTDPP is ∑L
l=1 wlϕ

−1
l exp(−(t − tN(t))ϕ−1

l ) for N(t) > L. If ϕl = ϕ for all l, the

limiting distribution becomes ϕ−1 exp(−(t − tN(t))ϕ−1), which is an exponential

distribution with rate ϕ−1.

Proof of Proposition 4.1. We consider a univariate spatial process {Z(v),v ∈

D}, where Z(v) takes values in X ⊆ R, and D ⊂ Rp, p ≥ 1. Let S ⊂ D be a

reference set. Without loss of generality, we consider the continuous case, i.e.,

Z(v) has a continuous distribution for which its density exists, for all v ∈ D. To

verify the proposition, we partition the domain D into the reference set S and the

nonreference set U .

Given any v ∈ D, consider a bivariate random vector indexed at v, denoted

as (Uv,l, Vv,l) taking values in X × X . We denote fv,l as the conditional density of

Uv,l given Vv,l, and fUv,l
, fVv,l

as the marginal densities of Uv,l, Vv,l, respectively.

Using the proposition assumption that fZ = fUv,l
= fVv,l

, we have that

∫
X
fv,l(u | v)fZ(v)dv =

∫
X
fv,l(u | v)fVv,l

(v)dv = fUv,l
(u) = fZ(u), (A.1)

for every v ∈ D and for all l.

We first prove the result for the reference set S. By the model assumption,

locations in S are ordered. In this regard, using the proposition assumptions, we

can show that Z(s) ∼ fZ for all s ∈ S by applying Proposition 2.1.

Turning to the nonreference set U . Let gu(z(u)) be the marginal density of

Z(u) for every u ∈ U . Denote by p(zNe(u)) the joint density for the random vector

zNe(u) where Ne(u) = {u(1), . . . ,u(L)} ⊂ S, so every element of ZNe has marginal
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density fZ . Then, the marginal density for Z(u) is given by:

gu(z(u)) =
∫

X L
p(z(u) | zNe(u))p(zNe(u))

∏
{si∈Ne(u)}

d(z(si))

=
L∑
l=1

wl(v)
∫

X L
fv,l(z(u) | z(u(l)))p(zNe(u))

∏
{si∈Ne(u),si ̸=u(l)}

d(z(si))

=
L∑
l=1

wl(v)
∫

X
fv,l(z(u) | z(u(l)))fZ(z(u(l)))d(z(u(l)))

= fZ(z(u)),

where the second-to-last equality holds by the result that Z(s) ∼ fZ for all s ∈ S

and Ne(u) ⊂ S for every u ∈ U . The last equality follows from (A.1).

Proof of Proposition 4.2. We verify the proposition by partitioning the do-

main D into the reference set S and the nonreference set U . We first prove by

induction the result for the joint density p(zS) over S. Then to complete the

proof, it suffices to show that for every location u ∈ U , the joint density p(zU1) is

a mixture of multivariate Gaussian distributions, where U1 = S ∪{u}.

Without loss of generality, we assume µ = 0 for the stationary GNNMP, i.e.,

the GNNMP has invariant marginal fZ(z) = N(z | 0, σ2). The conditional density

for the reference set is

p(z(si)|zNe(si)) =
iL∑
l=1

wl(si)N(z(si)|ρl(si)z(s(il)), σ2(1 − (ρl(si))2)),

where for, i = 2, . . . , L, iL = i − 1, and for i > L, iL = L. For each i, we

denote as {wi,li}
iL
li=1 the vector of mixture weights, as {ρi,li}

iL
li=1 the vector of

the correlation coefficients, and as {zi,li}
iL
li=1 the vector of the nearest neighbors

of zi ≡ z(si), for i ≥ 2, where wi,li ≡ wli(si), ρi,li ≡ ρli(si), zi,li ≡ z(s(i,li)).
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Let z1 ≡ z(s1). We denote by z1:k = (z(s1), . . . , z(sk)) the realization of Z(s)

over locations (s1, . . . , sk)⊤ for k ≥ 2, and use z
−zj

1:k to denote the random vector

z1:k with element zj removed, 1 ≤ j ≤ k. In the following, for a vector a =

(a1, . . . , am)⊤, we have that ac = (a1c, . . . , amc)⊤, where c is a scalar.

Take Z1 ∼ N(z1 | 0, σ2). When i = 2, iL = 1 and w2,1 = 1. The joint density of

z1:2 is p(z1:2) = N(z2|ρ2,1z1), σ2(1 − ρ2
2,1))N(z1|0, σ2) = N(z1:2|0, σ2Ω2,1), where

Ω2,1 =
( 1 ρ2,1
ρ2,1 1

)
. The joint density of z1:3 is

p(z1:3) = p3(z3|z1:2)p(z1:2)

=
2∑

l3=1
w3,l3N(z3|ρ3,l3z3,l3 , σ

2(1 − ρ2
3,l3))N(z1:2|0, σ2Ω2,1)

=
2∑

l3=1
w3,l3N(z3|ρ3,l3z3,l3 , σ

2(1 − ρ2
3,l3))N(z−z3,l3

1:2 |ρ2,l2z3,l3 , σ
2(1 − ρ2

2,1))N(z3,l3|0, σ2)

=
2∑

l3=1
w3,l3N((z3, z

−z3,l3
1:2 )⊤|m3,l3z3,l3 ,V3,l3)N(z3,l3|0, σ2)

where m3,l3 = (ρ3,l3 , ρ2,1)⊤, and V3,l3 =
(
σ2(1−ρ2

3,l3
) 0

0 σ2(1−ρ2
2,1)

)
. The last equality

follows from the fact that a product of conditionally independent Gaussian den-

sities is a Gaussian density. By the properties of the Gaussian distribution and

the property of the model that has a stationary marginal N(0, σ2), for each l3,

we have that N(z̃1:3,l3|0, σ2R3,l3) = N((z3, z
−z3,l3
1:2 )⊤|m3,l3z3,l3 ,V3,l3)N(z3,l3|0, σ2),

where z̃1:3,l3 = (z3, z
−z3,l3
1:2 , z3,l3)⊤, with the following partition relevant to the vec-

tor z̃1:3,l3 , z̃1:3,l3 =

(z3, z
−z3,l3
1:2 )⊤

z3,l3

 , E(z̃1:3,l3) =

0

0

 , R3,l3 =

R
(11)
3,l3 R

(12)
3,l3

R
(21)
3,l3 R

(22)
3,l3

 ,
where R

(22)
3,l3 = 1 corresponds to z3,l3 . It follows that

m3,l3z3,l3 = E((Z3, Z̃
−Z3,l3
1:2 ) |Z3,l3 = z3,l3) = R

(12)
3,l3 z3,l3 ,

V3,l3 = σ2(R(11)
3,l3 − R

(12)
3,l3 R

(21)
3,l3 ).

(A.2)
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From (A.2), we obtain m3,l3 = R
(12)
3,l3 and R3,l3 =

(
1 ρ2,1ρ3,l3 ρ3,l3

ρ2,1ρ3,l3 1 ρ2,1
ρ3,l3 ρ2,1 1

)
for l3 =

1, 2. Then we reorder z̃1:3,l3 with a matrix B3,l3 such that z1:3 = B3,l3 z̃1:3,l3 . It fol-

lows that Ω3,l31 = B3,l3R3,l3BT
3,l3 . The joint density is p(z1:3) = ∑2

l3=1 w3,l3N(z1:3|0,

σ2Ω3,l31). Similarly, the joint density of z1:4 is given by

p(z1:4) = p4(z4|z1:3)p(z1:3)

=
3∑

l4=1
w4,l4N(z4|ρ4,l4z4,l4 , σ

2(1 − ρ2
4,l4))

2∑
l3=1

w3,l3N(z1:3|0, σ2Ω3,l31)

=
3∑

l4=1

2∑
l3=1

w4,l4w3,l3N(z4|ρ4,l4z4,l4 , σ
2(1 − ρ2

4,l4))

N((z−z4,l4
1:3 )⊤ | Ω̃(12)

3,l31z4,l4 , σ
2(Ω̃(11)

3,l31 − Ω̃(12)
3,l31Ω̃

(21)
3,l31))N(z4,l4|0, σ2)

=
3∑

l4=1

2∑
l3=1

w4,l4w3,l3N((z4, z
−z4,l4
1:3 )⊤|m4,l4l3z4,l4 ,V4,l4l3)N(z4,l4|0, σ2),

where Ω̃3,l31 = B̃4,l4Ω3,l31B̃
⊤
4,l4 , and B̃4,l4 is a rotation matrix such that the vector

(z−z4,l4
1:3 , z4,l4)⊤ = B̃4,l4z1:3. We partition the matrix Ω̃3,l31 such that Ω̃(11)

3,l41 and

Ω̃(22)
3,l41 correspond to z

−z4,l4
1:3 and z4,l4 , respectively. We have that for l3 = 1, 2, l4 =

1, 2, 3,

N(z̃1:4,l4|0, σ2R4,l4l3) = N((z4, z
−z4,l4
1:3 )⊤|m4,l4l3z4,l4 ,V4,l4l3)N(z4,l4|0, σ2),

where z̃1:4,l4 = (z4, z
−z4,l4
1:3 , z4,l4)⊤, m4,l4l3 = (ρ4,l4 , (Ω̃

(12)
3,l31)⊤)⊤, and

V4,l4l3 =

σ2(1 − ρ2
4,l4) 0T

0 σ2(Ω̃(11)
3,l31 − Ω̃(12)

3,l31Ω̃
(21)
3,l31)

 ,
R

(12)
4,l4l3 = (R(21)

4,l4l3)⊤ = m4,l4l3 , R
(11)
4,l4l3 = V4,l4l3/σ

2 + m4,l4l3mT
4,l4l3 .

We reorder z̃1:4,l4 with a matrix B4,l4 such that z1:4 = B4,l4 z̃1:4,l4 and let Ω4,l4l31 =

B4,l4R4,l4l3BT
4,l3 . We obtain the joint density p(z1:4) = ∑3

l4=1
∑2
l3=1 w4,l4w3,l3N(z1:4|0,
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σ2Ω4,l4l31). Applying the above technique iteratively for p(z1:j) for 5 ≤ j ≤ k, we

obtain the joint density p(z1:k) ≡ p(zS), for k ≥ 2, namely,

p(z1:k) =
kL∑
lk=1

· · ·
2L∑
l2=1

wk,lk . . . w3,l3w2,l2N(z1:k|0, σ2Ωk,lk...l3l2)

where kL := (k − 1) ∧ L, w2,1 = 1, and for k ≥ 3,

Ω̃k−1,lk−1...l31 = B̃k,lk−1Ωk−1,lk−1...l31B̃k,lk , mk,lk...l1 = (ρk,lk , (Ω̃
(12)
k−1,lk−1...l31)⊤)⊤,

Vk,lk...l3 =

σ2(1 − ρ2
k,lk

) 0

0T σ2(Ω̃(11)
k−1,lk−1...l31 − Ω̃(12)

k−1,lk−1...l31Ω̃
(21)
k−1,lk−1...l31)

 ,
R

(12)
k,lk...l3

= (R(21)
k,lk...l3

)⊤ = mk,lk...l3 , R
(11)
k,lk...l3

= Vk,lk...l3/σ
2 + mk,lk...l3m⊤

k,lk...l3
,

Ωk,lk...l31 = Bk,lkRk,lk...l3BT
k,lk
,

where B̃k,lk is the rotation matrix such that (z−zk,lk

1:(k−1), zk,lk)⊤ = B̃k,lkz1:(k−1), and

Bk,lk is the rotation matrix such that the vector z1:k = Bk,lk z̃1:k,lk , where z̃1:k,lk =

(zk, z
−zk,lk

1:(k−1), zk,lk)⊤.

To complete the proof, what remains to be shown is that the density p(zU1) is a

mixture of multivariate Gaussian distributions, where U1 = S ∪{u}. We have that

p(zU1) = ∑L
l=1 wl(u)N(z(u) | ρl(u)z(u(l)), σ2(1 − (ρl(u))2)) p(z1:k), where z(u(l))

is an element of z1:k, for l = 1, . . . , L. We can express each component density

N(z1:k | 0, σ2Ωk,lk...l31) of the joint density p(z1:k) as the product of a Gaussian

density of Z
−Z(u(l))
1:k conditional on Z(u(l)) = z(u(l)) and a Gaussian density of

Z(u(l)). Using the approach in deriving the joint density over S, we can show

that p(zU1) is a mixture of multivariate Gaussian distributions.

Proof of Proposition 4.3. For an NNMP Z(v), The conditional probability

that Z(v) is greater than z given its neighbors ZNe(v) = zNe(v), where zNe(v) =
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(zv(1) , . . . , zv(L)), is

P (Z(v) > z | ZNe(v) = zNe(v)) =
L∑
l=1

wl(v)P (Z(v) > z |Z(v(l)) = z(v(l))),

where the conditional probability P (Z(v) > z |Z(v(l)) = z(v(l))) corresponds to

the bivariate random vector (Uv,l, Vv,l). If Ul is stochastically increasing in Vl for

all l, by the assumption that the sequence (Uv,l, Vv,l) is built from the base random

vectors (Ul, Vl) for all l, we have that Z(v) is stochastically increasing in ZNe(v) for

every v ∈ D, i.e. P (Z(v) > z | ZNe(v) = zNe(v)) ≤ P (Z(v) > z | ZNe(v) = z′
Ne(v))

for all zNe(v) and z′
Ne(v) in the support of ZNe(v), such that zv(l) ≤ z′

v(l)
for all l.

Let FZ(v) and FZ(v(1)),...,Z(v(L)) be the distribution functions of Z(v) and ZNe(v).

Denote by SZ(v(1)),...,Z(v(L))(z1, . . . , zL) = P (Z(v(1)) > z1, . . . , Z(v(L)) > zL) the

joint survival probability. Then for every v ∈ D and q ∈ (0, 1),

P (Z(v) > F−1
Z(v)(q) | Z(v(1)) > F−1

Z(v(1))(q), . . . , Z(v(L)) > F−1
Z(v(L))(q))

=
{∫ ∞

F−1
Z(v(1))(q)

· · ·
∫ ∞

F−1
Z(v(L))(q)

P (Z(v) > F−1
Z(v)(q) | Z(v(1)) = z1, . . . , Z(v(L)) = zL)

dFZ(v(1)),...,Z(v(L))(z1, . . . , zL)
}/

C

≥
{∫ ∞

F−1
Z(v(1))(q)

· · ·
∫ ∞

F−1
Z(v(L))(q)

P (Z(v) > F−1
Z(v)(q) | Z(v(1)) = F−1

Z(v(1))(q), . . . ,

Z(v(L)) = F−1
Z(v(L))(q)) dFZ(v(1)),...,Z(v(L))(z1, . . . , zL)

}/
C

= P (Z(v) > F−1
Z(v)(q) | Z(v(1)) = F−1

Z(v(1))(q), . . . , Z(v(L)) = F−1
Z(v(L))(q))

=
L∑
l=1

wl(v)P (Z(v) > F−1
Uv,l

(q) | Z(v(l)) = F−1
Vv,l

(q)),

(A.3)

where C = SZ(v(1)),...,Z(v(L))(F−1
Z(v(1))(q), . . . , F

−1
Z(v(L))(q)), and the first inequality fol-

lows from the stochastically increasing positive dependence of Z(v) given ZNe(v).
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Taking q → 1− on both sides of (A.3), we obtain

λH(v) ≥
L∑
l=1

wl(v) lim
q→1−

P (Z(v) > F−1
Uv,l

(q) | Z(v(l)) = F−1
Vv,l

(q)),

where FUv,l
and FVv,l

are the marginal distribution functions of (Uv,l, Vv,l).

Similarly, we can obtain the lower bound for λL(v).

Proof of Corollary 1. We prove the result for λL(v). The result for λH(v) is

obtained in a similar way.

Consider a bivariate distribution FUl,Vl
for random vector (Ul, Vl), with marginal

distributions FUl
= FVl

= Fl and marginal densities fUl
= fVl

= fl, for all l. The

lower tail dependence coefficient is expressed as λL,l = limq→0+
FUl,Vl

(F−1
l

(q),F−1
l

(q))
FUl,Vl

(F−1
l

(q))

with q ∈ [0, 1]. If FUl,Vl
has first order partial derivatives, applying the L’Hopital’s

rule, we obtain

λL,l = lim
q→0+

∂FUl,Vl
/∂Vl(F−1

l (q), F−1
l (q)) + ∂FUl,Vl

/∂Ul(F−1
l (q), F−1

l (q))
fl(F−1

l (q))

= lim
q→0+

P (Ul ≤ F−1
l (q) | Vl = F−1

l (q)) + lim
q→0+

P (Vl ≤ F−1
l (q) | Ul = F−1

l (q)).

The above is a reproduced result from Theorem 8.57 of Joe (2014). If (Ul, Vl)

is exchangeable, we have λL,l = 2 limq→0+ P (Ul ≤ F−1
l (q) |Vl = F−1

l (q)). If the

sequences (Uv,l, Vv,l) of an NNMP model are built from the base random vectors

(Ul, Vl). By our assumption that FUl
= FVl

for all l, the marginal distributions of

(Uv,l, Vv,l) extended from (Ul, Vl) are Fv,l = FUv,l
= FVv,l

for all v and all l. Then

we have λL,l(v) = 2 limq→0+ P (Uv,l ≤ F−1
v,l (q) |Vv,l = F−1

v,l (q)). Using the result of
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Proposition 3, we obtain

λL(v) ≥
L∑
l=1

wl(v) lim
q→0+

P (Uv,l ≤ F−1
v,l (q) | Vv,l = F−1

v,l (q)) =
L∑
l=1

wl(v)λL,l(v)/2.

Proof of Proposition 4.4. By the assumption that Ul is stochastically increas-

ing in Vl and that (Uv,l, Vv,l) is constructed based on (Ul, Vl), Uv,l is stochastically

increasing in Vv,l for all v ∈ D and for all l. Then for (Z(v), Z(v(l))) with respect

to the bivariate distribution of (Uv,l, Vv,l) with marginal distributions FUv,l
and

FVv,l
, we have that

P (Z(v) ≤ F−1
Uv,l

(q) | Z(v(l)) ≤ F−1
Vv,l

(q))

=
∫ F−1

Vv,l
(q)

F−1
Vv,l

(0)
P (Z(v) ≤ F−1

Uv,l
(q) | Z(v(l)) = zl)dFVv,l

(zl)
/∫ F−1

Vv,l
(q)

F−1
Vv,l

(0)
dFVv,l

≤
∫ F−1

Vv,l
(q)

F−1
Vv,l

(0)
P (Z(v) ≤ F−1

Uv,l
(q) | Z(v(l)) = F−1

Vv,l
(0))dFVv,l

(zl)
/∫ F−1

Vv,l
(q)

F−1
Vv,l

(0)
dFVv,l

= P (Z(v) ≤ F−1
Uv,l

(q) | Z(v(l)) = F−1
Vv,l

(0)).

It follows that the boundary cdf of the NNMP model

F1|2(F−1
Z(v)(q) | F−1

ZNe(v)
(0))

= P (Z(v) ≤ F−1
Z(v)(q) | Z(v(1)) = F−1

Z(v(1))(0), . . . , Z(v(L)) = F−1
Z(v(L))(0))

=
L∑
l=1

wl(v)P (Z(v) ≤ F−1
Uv,l

(q) | Z(v(l)) = F−1
Vv,l

(0))

≥
L∑
l=1

wl(v)P (Z(v) ≤ F−1
Uv,l

(q) | Z(v(l)) ≤ F−1
Vv,l

(q)),

(A.4)

Taking q → 0+ on both sides of (A.4), we obtain F1|2(F−1
Z(v)(0) |F−1

ZNe(v)
(0)) ≥∑L

l=1 wl(v)λL,l(v). Hence, if there exists some l such that λL,l(v) > 0, the condi-
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tional cdf F1|2(F−1
Z(v)(q) |F−1

ZNe(v)
(0)) has strictly positive mass at q = 0. We can

prove the result for F1|2(F−1
Z(v)(q) | F−1

ZNe(v)
(1)) in a similar way.

Proof of Proposition 5.2. Consider a discrete copula NNMP characterized by

p(y(v) | yNe(v)) = ∑L
l=1 wl(v) cv,l(y(v), y(v(l)))gv(y(v)), where gv is the marginal

pmf of Y (v).

Let yV = (y(s1), . . . , y(sn), y(u1), . . . , y(um))⊤ for n ≥ 2 and m ≥ 1, where

V = S ∪ U , S = {s1, . . . , sn}, U = {u1, . . . ,um}, and S ∩ U = ∅. The joint pmf of

yV can be written as p(yV) = p(yU | yS)p(yS). We will first derive the joint pmf

p(yS) = p(y(s1), . . . , y(sn)) and then p(yU | yS), where yU = (y(u1), . . . , y(um))⊤.

Let csi,li ≡ csi,li(y(si), y(s(i,li))) and wsi,li ≡ wli(si) with li = 1, . . . , iL and

iL = (i − 1) ∧ L, for all i. Then p(y(s1), y(s2)) = p(y(s2) | y(s1))gs1(y(s1)) =

cs2,1gs2(y(s2))gs1(y(s1)). By definition of the discrete NNMP, ws2,1 = 1. Then

p(y(s1), y(s2), y(s3)) = p(y(s3) | y(s1), y(s2))p(y(s1), y(s2))

=
 2∑
l3=1

ws3,l3cs3,l3gs3(y(s3))
 cs2,1gs2(y(s2))gs1(y(s1))

=
3∏
i=1

gsi
(y(si))

2∑
l3=1

ws3,l3cs3,l3cs2,1 =
3∏
i=1

gsi
(y(si))

2∑
l3=1

1∑
l2=1

ws3,l3ws2,l2cs3,l3cs2,l2 .

Similarly, for 4 ≤ n ≤ L, the joint pmf is

p(y(s1), . . . , y(sn)) = p(y(sn) | yNe(sn))p(y(s1), . . . , y(sn−1))

=
n−1∑
ln=1

wsn,lncsn,lngsn(y(sn))


n−1∏
i=1

gsi
(y(si))

n−2∑
ln−1=1

· · ·
1∑

l2=1
wsn−1,ln−1 . . . ws2,l2csn−1,ln−1 . . . cs2,l2


=

n∏
i=1

gsi
(y(si))

n−1∑
ln=1

· · ·
1∑

l2=1
wsn,ln . . . ws2,l2csn,ln . . . cs2,l2 .
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Finally, for n > L, it is easy to show that the joint pmf is

p(y(s1), . . . , y(sn)) = p(y(sn) | yNe(sn))p(y(s1), . . . , y(sn−1))

=
 L∑
ln=1

wsn,lncsn,lngsn(y(sn))


n−1∏
i=1

gsi
(y(si))

L∑
ln−1=1

· · ·
L∑

lL+1=1

L−1∑
lL=1

· · ·
1∑

l2=1
wsn−1,ln−1 . . . ws2,l2csn−1,ln−1 . . . cs2,l2

=
n∏
i=1

gsi
(y(si))

L∑
ln=1

· · ·
L∑

lL+1=1

L−1∑
lL=1

· · ·
1∑

l2=1
wsn,ln . . . ws2,l2csn,ln . . . cs2,l2 .

Therefore, we have that, for n ≥ 2, the joint pmf

p(yS) = p(y(s1), . . . , y(sn)) =
n∏
i=1

gsi
(y(si))

nL∑
ln=1

· · ·
2L∑
l2=1

wsn,ln . . . ws2,l2csn,ln . . . cs2,l2 .

Turning to the non-reference set U . Let cui,li ≡ cui,li(y(ui), y(u(i,li))) and

wui,li ≡ wli(ui) with li = 1, . . . , L. When m = 1, p(yU | yS) = p(y(u1) | yNe(u1)).

When m ≥ 2, without loss of generality, we consider the case of m = 2, i.e., we

take U = {u1,u2}. Then we have that

p(yU | yS) = p(y(u1) | yNe(u1))p(y(u2) | yNe(u2))

=
 L∑
l1=1

wu1,l1cu1,l1gu1(y(u1))
 L∑

l2=1
wu2,l2cu2,l2gu2(y(u2))


=

2∏
i=1

gui
(y(ui))

L∑
l2=1

L∑
l1=1

wu2,l2wu1,l1cu2,l2cu1,l1 .

Obviously, the result is easily generalized for U = {u1, . . . ,um} for any m > 2.
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Appendix B

Implementation Details

B.1 Copulas

We introduce Gaussian, Gumbel and Clayton copulas with properties relevant

to model estimation and prediction. For more details we refer to Joe (2014). Con-

sider a bivariate vector (X1, X2) with marginal cumulative distribution functions

(cdfs) such that F1(x1) = t1 and F2(x2) = t2.

Gaussian copula A Gaussian copula with correlation ρ ∈ (0, 1) for (X1, X2) is

C(F1(x1), F2(x2) | ρ) = C(t1, t2 | ρ) = Φ2(Φ−1(t1), Φ−1(t2) | ρ). If both X1 and X2

are continuous random variables, the copula has density

1√
1 − ρ2 exp

(
2ρΦ−1(t1)Φ−1(t2) − ρ2{(Φ−1(t1))2 + (Φ−1(t2))2)}

2(1 − ρ2)

)
. (B.1)

The conditional cdf of T1 given T2 = t2, denoted as C1|2(t1 | t2), is given by

C1|2(t1 | t2) = ∂C(t1,t2)
∂t2

= Φ
(

Φ−1(t1)−ρΦ−1(t2)√
1−ρ2

)
. To simulate X1 given X2 = x2,

we first compute t2 = F2(x2). We then generate a random number z from a

uniform distribution on [0, 1], and compute t1 = C−1
1|2(z | t2) where C−1

1|2(z | t2) =
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Φ
(√

(1 − ρ2)Φ−1(z) + ρΦ−1(t2)
)

is the inverse of C1|2(t1 | t2). Finally, we obtain

x1 from the inverse cdf F−1
1 (t1).

Gumbel copula A Gumbel copula with parameter η ∈ [1,∞) for (X1, X2) is

C(F1(x1), F2(x2) | η) = C(t1, t2 | η) = exp(−((− log(t1))η + (− log(t2))η)1/η). Let

u1 = − log(t1) and u2 = − log(t2). If both X1 and X2 are continuous random

variables, the copula has density

exp(−(uη1 + uη2)1/η)((uη1 + uη2)1/η + η − 1)(uη1 + uη2)1/η−2(u1u2)η−1(t1t2)−1. (B.2)

The conditional cdf of T1 given T2 = t2 is C1|2(t1 | t2) = C1|2(u1 |u2) = t−1
2 exp(−(uη1+

uη2)1/η)(1 + (u1/u2)η)1/η−1, where the conditional cdf C1|2(u1 |u2) corresponds to

the copula C(u1, u2 | η) = exp(−(uη1 + uη2)1/η) which is a bivariate exponential

survival function, with marginals corresponding to a unit rate exponential distri-

bution. The inverse conditional cdf C−1
1|2(· | t2) does not have a closed form. To

generate X1 given X2 = x2, following Joe (2014), we first define y = (uη1 + uη2)1/η.

Then we have a realization of X1, say x1 = (yη0 − uη2)1/η, where y0 is the root of

h(y) = y+ (η− 1) log(y) − (u2 + (η− 1) log(u2) − log z) = 0, where y ≥ u2, and z

is a random number generated from a uniform distribution on [0, 1].

Clayton copula A Clayton copula with parameter δ ∈ [0,∞) for (X1, X2) is

C(F1(x1), F2(x2) | δ) = C(t1, t2 | δ) = (t−δ1 + t−δ2 − 1)−1/δ. If both X1 and X2 are

continuous random variables, the copula has density (1 + δ)(t1t2)−δ−1(t−δ1 + t−δ2 −

1)−2−1/δ. The conditional cdf of T1 given T2 = t2 is C1|2(t1 | t2) = (1 + tδ2(t−δ1 −

1))−1−1/δ. To simulate X1 given X2, we first compute t2 = F2(x2), and generate

a uniform random number z on [0, 1]. Then we compute t1 = C−1
1|2(z | t2) where

C−1
1|2(z | t2) = ((z−δ/(1+δ) − 1)t−δ2 + 1)−1/δ. Finally, we obtain x1 from the inverse
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cdf F−1
1 (t1).

B.2 MTD Models

We provide necessary details of the posterior simulation for the Gaussian,

Poisson, negative binomial and Lomax MTD models.

B.2.1 GMTD Models

For the Gaussian MTD model, we consider the following prior p({ρl}Ll=1, µ, σ
2) =∏L

l=1 Unif(ρl | − 1, 1)N(µ |µ0, σ
2
0)IG(σ2 |u0, v0). The full conditional distribution

of µ is N(µ |µ1, σ
2
1), where µ1 = σ2

1 (µ0/σ
2
0 + c/σ2), and σ2

1 = (1/σ2
0 + b/σ2)−1 with

b = ∑n
t=L+1(1 − ρzt)2/(1 − ρ2

zt
) and c = ∑n

t=L+1(1 − ρzt)(xt − ρztxt−zt)/(1 − ρ2
zt

).

The inverse gamma prior for σ2 yields a conjugate full conditional distribution

IG(σ2 |u1, v1) where u1 = u0 + (n − L)/2 and v1 = v0 + ∑L
t=L+1(xt − ρztxt−zt −

(1 − ρzt)µ)2/(2(1 − ρ2
zt

)). Finally, we update each ρl using a slice sampler with

target density Unif(ρl | − 1, 1)∏t:zt=lN(xt | (1 − ρl)µ + ρlxt−l, σ
2(1 − ρ2

l )), for

l = 1, . . . , L. For each time t, t = L+ 1, . . . , n, the posterior probability of zt = l

is proportional to wlN(xt | (1 − ρl)µ+ ρlxt−l, (1 − ρ2
l )σ2).

B.2.2 Poisson and Negative Binomial MTD Models

For the Poisson MTD, we reparameterize the model such that the lth compo-

nent transition density of the model is sampled through xt | qt, xt−l, θ ∼ Bin(xt −

qt |xt−l, θ) and qt |λ ∼ Pois(qt |λ). We consider conjugate prior p(λ, θ) = Ga(λ |

uλ, vλ)Beta(θ | uθ, vθ). The posterior full conditional distribution of λ is gamma

distribution with shape parameter uλ +∑n
t=L+1 qt and rate parameter vλ + n−L.

The posterior full conditional distribution of θ is a beta distribution Beta(θ |uθ +
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∑n
t=L+1(xt − qt), vθ + ∑n

t=L+1(xt−zt − xt + qt)). We update qt with an indepen-

dent Metropolis step with target density Bin(xt − qt |xt−zt , θ)Pois(qt |λ) and pro-

posal distribution being a discrete uniform distribution over the interval [0∨ (xt−

xt−zt), xt], for t = L + 1, . . . , n. For each time t, t = L + 1, . . . , n, the posterior

probability of zt = l is proportional to wlBin(xt − qt |xt−l, θ).

Similar to the Poisson model, we reparameterize the negative binomial MTD

to facilitate posterior simulation. In particular, the lth component transition

density of the model is sampled through xt | qt, xt−l, θ ∼ Bin(xt − qt |xt−l, θ) and

qt |xt−l, κ, ψ ∼ NB(qt |κ+xt−l, ψ), with p(θ, ψ, κ) = Beta(θ |uθ, vθ)Beta(ψ |uψ, vψ)

Ga(κ |uκ, vκ). The beta priors for θ and ψ yield conjugate posterior full conditional

distributions. They are Beta(θ |uθ +∑n
t=L+1(xt − qt), vθ +∑n

t=L+1(xt−zt −xt + qt))

and Beta(ψ |uψ+(n−L)κ+∑n
t=L+1 xt−zt , vψ+∑n

t=L+1 qt). The posterior full condi-

tional of κ is proportional to Ga(κ |uκ, vκ)
∏n
t=L+1 NB(qt |κ+xt−zt , ψ). We update

κ on its log scale using a random-walk Metropolis step. We update qt with an in-

dependent Metropolis step with target density Bin(xt − qt |xt−zt , θ)NB(qt |κ +

xt−zt , ψ) and proposal distribution being a discrete uniform distribution over

the interval [0 ∨ (xt − xt−zt), xt], for t = L + 1, . . . , n. For each time t, t =

L + 1, . . . , n, the posterior probability of zt = l is proportional to wlBin(xt −

qt |xt−l, θ)NB(qt |κ+ xt−l, ψ).

B.2.3 Lomax MTD Models

For the Lomax MTD, we consider prior p(α, ϕ,β) ∝ Ga(α |uα, vα)IG(ϕ |uϕ, vϕ).

The posterior full conditional distribution of α is Ga (α |uα + n− L, v′
α), where

v′
α = vα + ∑n

t=L+1 log
(
1 + yt exp(−x⊤

t β)/(ϕ+ yt−zt exp(−x⊤
t−zt

β))
)
. To improve

mixing, we integrated out α from the posterior full conditionals of ϕ and that of

β. The resulting posterior full conditional distributions of ϕ and β are propor-

181



tional to IG(ϕ |uϕ, vϕ)g({yt}nt=L+1, ϕ,β) and ∏n
t=L+1 exp(−x⊤

t β)g({yt}nt=L+1, ϕ,β),

respectively, where

g({yt}nt=L+1, ϕ,β) =


n∏

t=L+1

(
ϕ+ yt−zt exp(−x⊤

t−zt
β) + yt exp(−x⊤

t β)
)−1

vα +
n∑

t=L+1
log(1 + yt exp(−x⊤

t β)/(ϕ+ yt−zt exp(−x⊤
t−zt

β)))
−(uα+n−L)

.

We use random walk Metropolis steps to update ϕ and β on their log scales,

respectively. Take ϵt = yt exp(−x⊤
t β). For each time t, t = L + 1, . . . , n, the

posterior probability of zt = l is proportional to wlP (ϵt |ϕ+ ϵt−l, α).

B.3 MTDPP Models

We introduce necessary posterior simulation steps for the Burr MTDPP and

the Lomax MTDCPP models illustrated in the data examples. Given an observed

point pattern {ti}ni=1 over the time window (0, T ), we let x1 = t1 and xi = ti− ti−1

for i = 2, . . . , n. For convenience of notation, we take xn+1 = T−tn. The posterior

inference is based on a likelihood, conditional on (x1, . . . , xL).

B.3.1 Burr MTDPP

We associate each xi with a latent variable ℓi such that P (ℓi = l) = ∑L
l=1 wlδl(ℓi),

for i = L+1, . . . , n+1. With customary priors for parameters (γ, λ, κ), we obtain
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the joint distribution

Ga(λ |uλ, vλ) × Ga(γ |uγ, vγ) × Ga(κ |uκ, vκ) × Dir(w |α0a1, . . . , α0aL)

×


n∏

i=L+1
Burr

(
xi | γ, λ+ xi−ℓi , κ

) L∑
l=1

wlδl(ℓi)


×
{
S
(
xn+1 | γ, λ+ xn+1−ℓn+1 , κ

) L∑
l=1

wlδl(ℓn+1)
}
,

where S
(
xn+1 | γ, λ+xn+1−ℓi , κ

)
is the survival function associated the Burr distri-

bution. In particular, S
(
xn+1 | γ, λ+ xn+1−ℓi , κ

)
= (1 + {xn+1/(λ+ xn+1−ℓi)}γ)−κ.

We focus on the posterior updates for parameters (λ, γ, κ). Let p({xi}n+1
i=L+1, γ,

λ, κ, {ℓi}n+1
i=L+1) =

{∏n
i=L+1 Burr(xi | γ, λ+ xi−l, κ)

}
S(xn+1 | γ, λ + xn+1−ℓn+1 , κ).

We use random walk Metropolis steps to update parameters λ and γ with target

densities Ga(λ |uλ, vλ)p({xi}n+1
i=L+1, γ, λ, κ, {ℓi}n+1

i=L+1) and Ga(γ |uγ, vγ)p({xi}n+1
i=L+1,

γ, λ, κ, {ℓi}n+1
i=L+1), respectively. The posterior full conditional distribution of κ

is a gamma distribution with shape parameter uκ + n − L and rate parameter

vκ +∑n+1
i=L+1 log(1 + {xi/(λ+ xi−ℓi)}γ).

B.3.2 Lomax MTDCPP

The conditional duration density of the Lomax MTDCPP, for i > L, can

be written as f ∗
C(xi) = ∑L

l=0 πlf
c
l (xi |µ, ϕ, α), where f c0 ≡ µ exp(−µxi), f cl ≡

P (xi |ϕ + xi−l, α), and πl = (1 − π0)wl, l = 1, . . . , L. Let Sc0 and Scl be the

survival functions associated with f c0 and f cl , respectively, for l = 1, . . . , L. With
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customary priors for parameters (µ, ϕ, α), the joint distribution is

Ga(µ |uµ, vµ) × Ga(ϕ |uϕ, vϕ) × Ga(α |uα, vα) × Dir(w |α0a1, . . . , α0aL)

× Beta(π0 |u0, v0) ×


n∏

i=L+1
f cℓi(xi |µ, ϕ, α)

L∑
l=0

πlδl(ℓi)


×
{
Scℓn+1(xn+1 |µ, ϕ, α)

L∑
l=0

πlδl(ℓn+1)
}
.

We focus one the posterior updates for parameters (µ, ϕ, α). Let Ml = |{i :

ℓi = l}|, for l = 0, . . . , L. A gamma prior for µ yields conjugate full con-

ditional distribution Ga(µ |uµ + M0 − δ0(ℓn+1), vµ + ∑
i:ℓi=0 xi). The posterior

full conditional distribution of α is gamma distribution with shape parameter

uα+∑L
l=1 Ml−1+ δ0(ℓn+1) and rate parameter vα+∑

i:ℓi ̸=0 log(1+xi/(ϕ+xi−ℓi)).

Let Bn
0 = {i : 1 ≤ i ≤ n ∧ ℓi ̸= 0}, and p({xi}n+1

i=L+1, µ, ϕ, α, {ℓi}n+1
i=L+1) =∏

i∈Bn
0
f cℓi(xi |µ, ϕ, α)

{
Scℓn+1(xn+1 |µ, ϕ, α)

}1−δ0(ℓn+1)
. We update ϕ using a random

walk Metropolis step with target density Ga(ϕ |uϕ, vϕ) p({xi}n+1
i=L+1, µ, ϕ, α, {ℓi}n+1

i=L+1).

B.4 NNMP Models

B.4.1 GNNMP Models

Consider a univariate response y(v), at location v ∈ D, in a spatially varying

regression model, y(v) = x(v)⊤β + z(v) + ϵ(v), v ∈ D where ϵ(v) i.i.d.∼ N(0, τ 2),

and the spatial random effect z(v) follows a stationary GNNMP model. The

associated conditional density of the GNNMP is

p(z(v) | zNe(v)) =
L∑
l=1

wl(v)N(z(v) | ρl(v)z(v(l)), σ2(1 − (ρl(v))2)), (B.3)
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where ρl(v) ≡ ρl(||v−v(l)||) = exp(−||v−v(l)||/ϕ). For the weights, we consider an

exponential correlation function with range parameter ζ for the kernel function

that defines the random cutoff points. The Bayesian model is completed with

priors N(β | µβ,Vβ), IG(σ2 |uσ2 , vσ2), IG(τ 2 |uτ2 , vτ2), IG(ϕ |uϕ, vϕ), IG(ζ |uζ , vζ),

N(γ | µγ ,Vγ), IG(κ2 |uκ2 , vκ2).

Let y(si), i = 1, . . . , n, be the observations over reference set S = (s1, . . . , sn).

We introduce the MCMC sampler for the spatially varying regression model in

which the GNNMP is used as a prior for the latent spatial random effect. The

MCMC sampler involves sampling the latent variables z(si), but it is easily de-

veloped based on the sampler described in the Chapter 4.

For each z(si), i = 3, . . . , n, we introduce a configuration variable ℓi, taking val-

ues in {1, . . . , iL} where iL = (i−1)∧L, such that Pr(ℓi | w(si)) = ∑iL
l=1 wl(si)δl(ℓi),

where w(si) = (w1(si), . . . , wiL(si))⊤ and δl(ℓi) = 1 if ℓi = l and 0 other-

wise. To allow for efficient simulation of parameters γ = (γ0, γ1, γ2)⊤ and κ2

for the weights, we associate each z(si) with a latent Gaussian variable with

mean µ(si) = γ0 + si1γ1 + si2γ2 and variance κ2, where si = (si1, si2), for

i = 3, . . . , n. There is a one-to-one correspondence between the configuration

variables ℓi and latent variables ti: ℓi = l if and only if ti ∈ (r∗
si,l−1, r

∗
si,l

) where

r∗
si,l

= log(rsi,l/(1 − rsi,l)), for l = 1, . . . , iL. The posterior distribution of the

model parameters, based on the latent variables ti, is proportional to

N(β | µβ,Vβ) × IG(τ 2 |uτ2 , vτ2) × IG(σ2 |uσ2 , vσ2) × IG(ϕ |uϕ, vϕ) × IG(ζ |uζ , vζ)

×N(γ | µγ ,Vγ) × IG(κ2 |uκ2 , vκ2) ×
n∏
i=1

N(y(si) | x(si)⊤β + z(si), τ 2)

×N(t | Dγ, κ2In−2) ×N(z(s1) | 0, σ2) ×N(z(s2) | ρ1(s2)z(s1), σ2(1 − (ρ1(s2))2))

×
n∏
i=3

iL∑
l=1

N(z(s) | ρl(si)z(s(il)), σ2(1 − (ρl(si))2))1(r∗
si,l−1,r

∗
si,l

)(ti),
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where the vector t = (t3, . . . , tn)⊤, and the matrix D is (n− 2) × 3 such that the

ith row is (1, s2+i,1, s2+i,2).

We describe the MCMC sampler to simulate from the posterior distribution

of model parameters (β,γ, σ2, ϕ, ζ, τ 2, κ2) and latent variables {ti}ni=3, {z(si)}ni=1.

Denote by yS = (y(s1), . . . , y(sn))⊤, zS = (z(s1), . . . , z(sn))⊤, and let X be

the covariate matrix with the ith row being x(si)⊤. The posterior full con-

ditional distribution for β is N(β | µ∗
β,V

∗
β ) where V ∗

β = (V −1
β + τ−2X⊤X)−1

and µ∗
β = V ∗

β (V −1
β µβ + τ−2X⊤(yS − zS)). An inverse gamma prior for τ 2

yields an IG(τ 2 |uτ2 + n/2, vτ2 +∑n
i=1 e

2
i /2) posterior full conditional, where ei =

y(si) − x(si)⊤β − z(si).

Given the latent variable ti, we have the configuration variable ℓi = l if

ti ∈ (r∗
si,l−1, r

∗
si,l

), for i = 3, . . . , n. To update ζ, we first marginalize out the

latent variables ti from the joint posterior distribution. The posterior full condi-

tional distribution of ζ is proportional to IG(ζ |uζ , vζ)
∏n
i=3{Gsi

(rsi,ℓi |µ(si), κ2) −

Gsi
(rsi,ℓi−1 |µ(si), κ2)}. We update ζ on its log scale using a random walk Metropo-

lis step. The posterior full conditional distribution of ti is ∑iL
l=1 ql(si)TN(ti |µ(si),

κ2; r∗
si,l−1, r

∗
si,l

), where ql(si) ∝ wl(si)fsi,l(z(si) | z(s(il)),θ), and wl(si) = Gsi
(rsi,l |

µ(si), κ2)−Gsi
(rsi,l−1 |µ(si), κ2), for l = 1, ..., L. Hence, each ti can be readily up-

dated by sampling from the l-th truncated Gaussian with probability proportional

to ql(si). The posterior full conditional distribution of γ is N(γ | µ∗
γ ,V

∗
γ ) where

V ∗
γ = (V −1

γ + κ−2D⊤D)−1 and µ∗
γ = V ∗

γ (V −1
γ µγ + κ−2D⊤t). The posterior full

conditional distribution of κ2 is IG(κ2 |uκ2 + (n− 2)/2, vκ2 +∑n
i=3(ti −µ(si))2/2).

Since Ne(s2) = z(s1), we take ℓ2 = 1. To make expressions more compact,

we let ℓ1 = 0, ρ0(s1) = 0, and z(s(1,0)) = 0. The posterior full conditional dis-

tribution of σ2 is IG(σ2 |uσ2 + n/2, vσ2 + ∑n
i=1(z(si) − ρℓi(si)z(s(i,ℓi)))2/{2(1 −

(ρℓi(si))2)}). The posterior full conditional distribution of ϕ is proportional to
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IG(ϕ |uϕ, vϕ)
∏n
i=2 N(z(si) | ρℓi(si)z(s(i,ℓi)), σ2

l (1 − (ρℓi(si))2)). We update ϕ on its

log scale with a random walk Metropolis step. Denote by A
(i)
j = {j : z(s(j,ℓj)) =

z(si)}. The posterior full conditional distribution of the latent spatial random

effects z(si), for i = 1, . . . , n, is N(z(si) | σ̃2
i µ̃i, σ̃

2
i ), where σ̃2

i =
(
τ−2 + σ−2(1 −

(ρℓi(si))2)−1+∑
j:j∈A

(i)
j
s̃−2
ij

)−1
, and µ̃i = τ−2(y(si)−x(si)⊤β)+σ−2(1−(ρℓi(si))2)−1

ρℓi(si)z(s(i,ℓi))+
∑
j:j∈A

(i)
j
z(sj)(ρℓj (sj))−1s̃−2

ij with s̃2
ij = σ2(1−(ρℓj (sj))2)/(ρℓj (sj))2.

B.4.2 Skew-GNNMP Models

Bivariate skew-Gaussian distribution

Exploiting the location mixture representation of the skew-Gaussian distribu-

tion (Azzalini and Valle, 1996) for random vector Z = (U, V ), we write

f(z | z0) ∼ N


ξu + λuz0

ξv + λvz0

 , σ2

1 ρ

ρ 1


 , z0 ∼ N(z0 | 0, 1)I(z0 ≥ 0). (B.4)

It follows that, conditional on Z0 = z0, the marginal densities of Z are N(u | ξu +

λuz0, σ
2) and N(v | ξv + λvz0, σ

2), respectively. Then the conditional density of

Z0 given V = v is p(z0 | v) ∝ N(z0 | (v − ξv)/λv, σ2/λ2
v)N(z0 | 0, 1)I(z0 ≥ 0).

Therefore, the conditional density p(z0 | v) is a Gaussian distribution with mean

µ0(v) = (v − ξv)λv/(σ2 + λ2
v) and variance τ 2

0 (v) = σ2/(σ2 + λ2
v), truncated at

[0,∞), denoted as TN0(z0 |µ0(v), τ 2
0 (v)).

Then the conditional distribution of U given V can be written as

fU |V (u | v) =
∫ ∞

0
N(u | µu +ρ(v−µv), σ2(1 −ρ2))TN(z0 | µ0(v), τ 2

0 (v))dz0, (B.5)

where µu = ξu + λuz0, µv = ξv + λvz0.

Let ξ = (ξu, ξv)⊤ and λ = (λu, λv). After marginalizing out z0, the joint density
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of Z is given by f(z) = 2N(z | ξ,Σ) Φ((1 − λ⊤Σ−1λ)−1/2λ⊤Σ−1(z − ξ)), where

Σ = σ2R+λλ⊤, R =
(

1 ρ
ρ 1

)
, and Φ is the cdf of a standard Gaussian distribution.

The marginal density of U is fU(u) = 2N(u | ξu, ω2
u) Φ(αu(u − ξu)/ωu), where

ω2
u = λ2

u + σ2 and αu = λu/σ. We denote fU(u) as SN(u | ξu, ω2
u, αu). Similarly,

the marginal density of V is fV (v) = SN(ξv, ω2
v , αv). It follows that the conditional

density of U given V = v is

fU |V (u | v) = N(u | ξu + γ(v − ξv), ω̃2)

× Φ(α1(u− ξu) + α2(v − ξv))/Φ(αv(v − ξv)/ωv),
(B.6)

with γ = (ρσ2+λuλv)/(σ2+λ2
v), ω̃2 = σ2+λ2

u−(ρσ2+λuλv)2/(σ2+λ2
v), α1 = (λu−

ρλv)/m, α2 = (λv −ρλu)/m, and m =
√

(1 − ρ)s2
√

(1 − ρ)s2 + λ2
u + λ2

v − 2ρλuλv.

In the special case where ξu = ξv = 0 and λu = λv = λ, let ω2 = λ2 + σ2 and

α = λ/σ. The joint density of Z can be written as f(z) = 2N(z | 0,Σ) Φ(λ(1 −

λ21⊤
2 Σ−112)−1/21⊤

2 Σ−1z), where the marginal density of Z is SN(x | 0, ω2, α). The

conditional density of U given V = v is then given by

fU |V (u | v) = N(u | ρ̃v, ω2(1 − ρ̃2)) Φ(α′(u+ v)/ω′)/Φ(αv/ω), (B.7)

where ρ̃ = (ρσ2 + λ2)/(σ2 + λ2), α′ = λ/s, ω′2 = s2 + 2λ2, and s2 = (1 + ρ)σ2.

Stationary skew-GNNMP models

We take a set of base random vectors (Ul, Vl) ≡ (U, V ) for all l, where (U, V )

is a bivariate skew-Gaussian vector with distribution given by (B.4), and take

ξu = ξv = 0, λu = λv = λ. We then extend (Ul, Vl) to (Uv,l, Vv,l) by extending ρ to

ρl(v) using an exponential correlation function such that ρl(v) ≡ ρ(||v − v(l)||) =

exp(−||v − v(l)||/ϕ), for l = 1, . . . , L. Using the resulting bivariate distribution
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for (Uv,l, Vv,l), we define the spatially varying density fv,l = fUv,l|Vv,l
based on the

formulation in (B.5). The resulting associated conditional density of the stationary

skew-GNNMP is

p(y(v) | yNe(v)) =
L∑
l=1

wl(v)
∫ ∞

0
N(y(v) |µl(v), σ2

l (v))TN(z0(v) |µ0(v(l)), σ2
0)dz0(v),

(B.8)

where µl(v) = (1−ρl(v))λz0(v)+ρl(v)y(v(l)), σ2(v) = σ2(1−(ρl(v))2), µ0(v(l)) =

y(v(l))λ/(σ2 + λ2), and σ2
0 = σ2/(σ2 + λ2).

The component conditional density in (B.8) is sampled via a latent variable

z0(v). We marginalize out z0(v) to facilitate computation. Based on (B.7), we

obtain the associated conditional density of the skew-GNNMP as

p(y(v) | yNe(v)) =
L∑
l=1

wl(v) bl(v)N(y(v) | ρ̃l(v)y(v(l)), ω2(1 − (ρ̃l(v))2)), (B.9)

where bl(v) = Φ(α′
l(v)(y(v) + y(v(l)))/ω′

l(v))/Φ(αy(v(l))/ω), ρ̃l(v) = (ρl(v)σ2 +

λ2)/(σ2 + λ2), α′
l(v) = λ/

√
(1 + ρl(v))σ2, ω′2

l (v) = (1 + ρl(v))σ2 + 2λ2, α =

λ/σ, and ω2 = σ2 + λ2. For the weights wl(v), we use an exponential corre-

lation function with range parameter ζ for the kernel functions of the random

cutoff points. The Bayesian model is completed with prior specifications for

λ, σ2, ϕ, ζ,γ, κ2. In particular, we consider priors N(λ |µλ, σ2
λ), IG(σ2 |uσ2 , vσ2),

IG(ϕ |uϕ, vϕ), IG(ζ |uζ , vζ), N(γ | µγ ,Vγ) and IG(κ2 |uκ2 , vκ2).

Given observations y(si), i = 1, . . . , n, over reference set S = (s1, . . . , sn), we

perform Bayesian inference based a likelihood conditional on the first L observa-

tions. The posterior distribution of the model parameters, given the conditional
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likelihood, is proportional to

N(λ |µλ, σ2
λ) × IG(σ2 |uσ2 , vσ2) × IG(ϕ |uϕ, vϕ) × IG(ζ |uζ , vζ)

×N(γ | µγ ,Vγ) × IG(κ2 |uκ2 , vκ2) ×N(t | Dγ, κ2In−L)

×
n∏

i=L+1

L∑
l=1

bl(si)N(y(si) | ρ̃l(si)y(s(il)), ω2(1 − (ρ̃l(si))2))1(r∗
si,l−1,r

∗
si,l

)(ti),

where the vector t = (tL+1, . . . , tn)⊤, and the matrix D is (n − L) × 3 such that

the ith row is (1, sL+i,1, sL+i,2).

The MCMC sampler to obtain samples from the joint posterior distribution is

described in Chapter 4. We present the posterior updates of λ, σ2 and ϕ. Note

that the configuration variables ℓi are such that ℓi = l if ti ∈ (r∗
si,l−1, r

∗
si,l

) for

i ≥ L + 1. Denote by fsi,l = bl(si)N(y(si) | ρ̃l(si)y(s(il)), ω2(1 − (ρ̃l(si))2)). We

use a random walk Metropolis step to update parameter λ with target density

N(λ |µλ, σ2
λ)
∏n
i=L+1 fsi,ℓi . The posterior full conditional distributions of σ2 and

ϕ are proportional to IG(σ2 |uσ2 , vσ2)∏n
i=L+1 fsi,ℓi , and IG(ϕ |uϕ, vϕ)

∏n
i=L+1 fsi,ℓi ,

respectively. For each parameter, we update it on its log scale with a random

walk Metropolis step.

Extended skew-GNNMP models

Again, we take a set of base random vectors (Ul, Vl) ≡ (U, V ) for all l, where

(U, V ) is a bivariate skew-Gaussian vector with distribution given by (B.4). We

extend (Ul, Vl) to (Uv,l, Vv,l) by extending ρ to ρl(v) using an exponential correla-

tion function such that ρl(v) ≡ ρ(||v−v(l)||) = exp(−||v−v(l)||/ϕ), and extending

ξu = x(v)⊤β, ξv = x(v(l))⊤β, λu to λ(v), and λv to λ(v(l)), for l = 1, . . . , L. Using

the resulting bivariate distribution for (Uv,l, Vv,l), we define the spatially varying

density fv,l = fUv,l|Vv,l
based on the formulation in (B.5). The resulting associated
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conditional density p(y(v) | yNe(v)) of the extended skew-GNNMP is

L∑
l=1

wl(v)
∫ ∞

0
N(y(v) |µl(v), σ2

l (v))TN(z0(v) |µ0l(v(l)), σ2
0l(v(l)))dz0(v), (B.10)

where µl(v) = x(v)⊤β + λ(v)z0(v) + ρl(v)(y(v(l)) − x(v(l))⊤β − λ(v(l))z0(v)),

σ2
l (v) = σ2(1 − (ρl(v))2), µ0l(v(l)) = (y(v(l)) − x(v(l))⊤β)λ(v(l))/(σ2 + (λ(v(l)))2),

and σ2
0l(v(l)) = σ2/(σ2 + (λ(v(l)))2).

After marginalizing out z0(v), the conditional density (B.10) based on formu-

lation (B.6) can be written as

p(y(v) | yNe(v)) =
L∑
l=1

wl(v) b̃l(v)N(y(v) | µ̃l(v), ω̃2
l (v)), (B.11)

with µ̃l(v) = x(v)⊤β + γ̃l(v)(y(v(l)) − x(v(l))⊤β), s2
l (v) = (1 + ρl(v))σ2, γ̃l(v) =

(ρl(v)σ2 +λ(v)λ(v(l)))/ω2(v(l)), ω̃2
l (v) = ω(v)2 −(ρl(v)σ2 +λ(v)λ(v(l)))2/ω2(v(l)),

α(v) = λ(v)/σ, (ω(v))2 = λ(v)2 + σ2, and

b̃l(v) = Φ(α1(v,v(l))(y(v) − x(v)⊤β) + α2(v,v(l))(y(v(l)) − x(v(l))⊤β))
Φ(α(v(l))(y(v(l)) − x(v(l))⊤β)/ω(v(l)))

,

α1(v,v(l)) = (λ(v) − ρl(v)λ(v(l)))/m(v),

α2(v,v(l)) = (λ(v(l)) − ρl(v)λ(v))/m(v),

m(v) =
√

(1 − ρl(v))s2
l (v)

×
√

(1 − ρl(v))s2
l (v) + (λ(v))2 + (λ(v(l)))2 − 2ρl(v)λ(v)λ(v(l)).

We model the spatially varying λ(v) via a partitioning approach. In particular,

we partition the domain D such that D = ∪K
k=1Pk, Pi ∩ Pj = ∅ for i ̸= j. For

all v ∈ Pk, we take λ(v) = λk, for k = 1, . . . , K. For the weights wl(v), we

use an exponential correlation function with range parameter ζ for the kernel

function of the random cutoff points. The Bayesian model is completed with prior

191



specifications for β,λ = (λ1, . . . , λK), σ2, ϕ, ζ,γ, κ2. We assign a N(β, | µβ,Vβ) to

the regression parameter β and N(λ |µλk, σ2
λk) to λk, for k = 1, . . . , K. For other

parameters, we take IG(σ2 |uσ2 , vσ2), IG(ϕ |uϕ, vϕ), IG(ζ |uζ , vζ), N(γ | µγ ,Vγ)

and IG(κ2 |uκ2 , vκ2).

Given observations y(si), i = 1, . . . , n, over reference set S = (s1, . . . , sn), we

perform Bayesian inference based a likelihood conditional on the first L observa-

tions. The posterior distribution of the model parameters, given the conditional

likelihood, is proportional to

N(β | µβ,Vβ) ×
K∏
k=1

N(λk |µλk, σ2
λk) × IG(σ2 |uσ2 , vσ2) × IG(ϕ |uϕ, vϕ)

× IG(ζ |uζ , vζ) ×N(γ | µγ ,Vγ) × IG(κ2 |uκ2 , vκ2) ×N(t | Dγ, κ2In−L)

×
n∏

i=L+1

L∑
l=1

b̃l(si)N(y(si) | µ̃l(si), ω̃2
l (si))1(r∗

si,l−1,r
∗
si,l

)(ti),

where the vector t = (tL+1, . . . , tn)⊤, and the matrix D is (n − L) × 3 such that

the ith row is (1, sL+i,1, sL+i,2).

The MCMC sampler to obtain samples from the joint posterior distribution

is described in Chapter 4. We present the posterior updates of β,λ, σ2 and ϕ.

Note that the configuration variables ℓi are such that ℓi = l if ti ∈ (r∗
si,l−1, r

∗
si,l

) for

i ≥ L+ 1. Denote by fsi,l = b̃l(si)N(y(si) | µ̃l(si), ω̃2
l (si)). We use a random walk

Metropolis step to update β with target density N(β | µβ,Vβ)∏n
i=L+1 fsi,ℓi . Let

Bk = {i : si ∈ Pk}∪{i : s(i,ℓi) ∈ Pk}. The posterior full conditional of λk is propor-

tional toN(λk |µλk, σ2
λk)

∏
i:i∈Bk

fsi,ℓi , and we use a random walk Metropolis step to

sample λk, for k = 1, . . . , K. The posterior full conditional distributions of σ2 and

ϕ are proportional to IG(σ2 |uσ2 , vσ2)∏n
i=L+1 fsi,ℓi , and IG(ϕ |uϕ, vϕ)

∏n
i=L+1 fsi,ℓi ,

respectively. For each parameter, we update it on its log scale with a random

walk Metropolis step.
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B.4.3 Copula NNMP Models

We take a set of base random vectors (Ul, Vl) ≡ (U, V ) where its bivariate distri-

bution is specified by a Gaussian copula with correlation parameter ρ. We extend

(Ul, Vl) to (Uv,l, Vv,l) by extending ρ to ρl(v) ≡ ρl(||v−v(l)||) = exp(−||v−v(l)||/ϕ),

creating a sequence of spatially varying Gaussian copula Cv,l for (Uv,l, Vv,l) with

marginal cdfs FUv,l
= FVv,l

= FY for all v and all l. The cdf FY corresponds to the

stationary marginal distribution of the model. The associated conditional density

of the Gaussian copula NNMP is

p(y(v) | yNe(v)) =
L∑
l=1

wl(v) cv,l(y(v), y(v(l)))fY (y(v)), (B.12)

where cv,l(y(v), y(v(l))) is the Gaussian copula density obtained by replacing ρ in

(B.1) with ρl(v), and fY is the density of FY .

Similarly, we can obtain the Gumbel copula NNMP model using a collection

of spatially varying Gumbel copulas by extending η in (B.2) to ηl(v) ≡ ηl(||v −

v(l)||) = min{(1 − exp(−||v − v(l)||/ϕ))−1, 50}, where the upper bound 50 ensures

numerical stability. We discuss the inferential approach for the Gaussian copula

NNMP; the approach for the Gumbel copula NNMP model is similar. Assume

the stationary marginal density is a gamma density, denoted as fY = Ga(a, b),

with mean E(Y ) = a/b. For the weights wl(v), we use an exponential correlation

function with range parameter ζ to define the random cutoff points. The Bayesian

model is completed with prior specifications for a, b, ϕ, ζ,γ, κ2. In particular, we

consider priors Ga(ua, va), Ga(ub, vb), IG(ϕ |uϕ, vϕ), IG(ζ |uζ , vζ), N(γ | µγ ,Vγ)

and IG(κ2 |uκ2 , vκ2).

Given observations y(si), i = 1, . . . , n, over reference set S = (s1, . . . , sn), we

perform Bayesian inference using a likelihood conditional on (y(s1), . . . , y(sL)).
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The posterior distribution of the model parameters, given the conditional likeli-

hood, is proportional to

Ga(ua, va) × Ga(ub, vb) × IG(ϕ |uϕ, vϕ) × IG(ζ |uζ , vζ)

×N(γ | µγ ,Vγ) × IG(κ2 |uκ2 , vκ2) ×N(t | Dγ, κ2In−L)

×
n∏

i=L+1

L∑
l=1

csi,l(y(si), y(s(il)))fY (y(si))1(r∗
si,l−1,r

∗
si,l

)(ti),

where the vector t = (tL+1, . . . , tn)⊤, and the matrix D is (n − L) × 3 such that

the ith row is (1, sL+i,1, sL+i,2).

We provide the updates for parameters (a, b, ϕ). Note that the configura-

tion variables ℓi are such that ℓi = l if ti ∈ (r∗
si,l−1, r

∗
si,l

) for i ≥ L + 1. De-

note by fsi,l = csi,l(y(si), y(s(il)))fY (y(si)). The posterior full conditional distri-

butions for parameters a, b and ϕ are proportional to IG(a |ua, va)
∏n
i=L+1 fsi,ℓi ,

IG(b |ub, vb)
∏n
i=L+1 fsi,ℓi , and IG(ϕ |uϕ, vϕ)

∏n
i=L+1 csi,l(y(si), y(s(il))), respectively.

Each parameter is updated on its log scale with a random walk Metropolis step.

B.5 DNNMP Models

In this section, we introduce necessary posterior simulation steps for the Pois-

son NNMP (PONNMP) and negative binomial NNMP (NBNNMP) models illus-

trated in the data examples. For both models, we use an exponential correlation

function with range parameter ϕ to create spatial copulas. More specifically,

given two different sites v ̸= v′, the link functions for parameters of the Gaussian,
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Gumbel and Clayton copulas, respectively, are

ρ(||v − v′||) = exp(−||v − v′||/ϕ),

η(||v − v′||) = min{(1 − exp(−||v − v′||/ϕ))−1, 50},

δ(||v − v′||) = min{2 exp(−||v − v′||/ϕ)/(1 − exp(−||v − v′||/ϕ)), 98},

where the upper bounds 50 and 98 for Gumbel and Clayton copulas are chosen

for numerical stability. When η(d0) = 50, exp(−d0/ϕ) = 0.98. Similarly, when

δ(d0) = 98, exp(−d0/ϕ) = 0.98. Both link functions imply that given ϕ, the

dependence implied by the copulas stays the same for any distance between v and

v′ smaller than d0.

We assume that yS = (y(s1), . . . , y(sn))⊤ is a vector of observations, where

S = {s1, . . . , sn} is the reference set. Each y(si) is associated with y∗(si) such

that y∗(si) = y(si) − oi, where oi ≡ o(si), o(si) i.i.d.∼ Unif(0, 1), for i = 1, . . . , n.

The auxiliary variables oi is independent of y(si) and of oj for j ̸= i. Let y∗
Ne(si) =

(y∗(s(i1)), . . . , y∗(s(i,iL)))⊤ and oNe(si) = (o(s(i1)), . . . , o(s(i,iL)))⊤, for i = 2, . . . , n.

B.5.1 Poisson NNMP Models

The conditional density of the continued Poisson NNMP (PONNMP) over the

reference set is given by

p(y∗(si) | y∗
Ne(si), o(si),oNe(si)) =

iL∑
l=1

wl(si) c∗
si,l

(y∗(si), y∗(s(il)))f ∗
Y (y∗(si)),

for i = 2, . . . , n, where f ∗
Y (y∗(si)) = fY ([y∗(si) + 1]), and fY is a Poisson distribu-

tion with rate parameter λ. The component c∗
si,l

is the copula density of a spatial

copula. We will illustrate the posterior inference using the Gaussian case as an

example. The copula density c∗
si,l

(y∗(si), y∗(s(il))) of the spatial Gaussian copula
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is given by

1√
1 − (ρl(si))2

exp
(

2ρ(si)Φ−1(qi)Φ−1(qil) − (ρl(si))2{(Φ−1(qi))2 + (Φ−1(qil))2}
2(1 − (ρl(si))2)

)
,

where ρl(si) ≡ ρ(||si − s′
(il)||) = exp(−||si − s(il)||/ϕ), qi = F ∗

Y (y∗(si)), qil =

F ∗
Y (y∗(s(il))), and F ∗

Y is the cdf of f ∗
Y .

The formulation of the mixture weights allows us to augment the model with

a sequence of auxiliary variables ti, i = 3, . . . , n, where ti is a Gaussian random

variable with mean µ(si) = γ0 + si1γ1 + si2γ2 and variance κ2. The conditional

density of the augmented model on y∗(si) is

p(y∗(si) | y∗
Ne(si), o(si),oNe(si)) =

iL∑
l=1

c∗
si,l

(y∗(si), y∗(s(il)))f ∗
Y (y∗(si))1(r∗

si,l−1,r
∗
si,l

)(ti),

for i = 3, . . . , n, where r∗
si,l

= log(rsi,l/(1 − rsi,l)) for l = 1, . . . , iL. The random

cutoff points rsi,l is defined such that rsi,l − rsi,l−1 = k′(si, s(il))/
∑iL
l=1 k

′(si, s(il)),

where k′(si, s(il)) = exp(||si − s(il)||/ζ).

Let γ = (γ0, γ1, γ2). The Bayesian model is completed with prior specifications

for (λ, ϕ, ζ,γ, κ2). Let f ∗
si,l

(y∗(si) | y∗(s(il))) = c∗
si,l

(y∗(si), y∗(s(il)))f ∗
Y (y∗(si)). With

customary prior specifications, the joint distribution can be written as

Ga(λ |uλ, vλ) × IG(ϕ |uϕ, vϕ) × IG(ζ |uζ , vζ) ×N(γ | µγ,Vγ) × IG(κ2 |uκ2 , vκ2)

×N(t | Dγ, κ2In−2)) × f ∗
Y (y(s1) − o1 |λ) × f ∗

s2,1(y(s2) − o2 | y(s1) − o1, λ, ϕ)

×
n∏
i=1

Unif(oi | 0, 1) ×
n∏
i=3

iL∑
l=1

f ∗
si,l

(y(si) − oi | y(s(il)) − o(il), λ, ϕ)1(r∗
si,l−1,r

∗
si,l

)(ti),

where o(il) ≡ o(s(il)), the vector t = (t3, . . . , tn)⊤, and the matrix D is (n− 2) × 3

such that the ith row is (1, s2+i,1, s2+i,2).

The MCMC algorithm to obtain posterior samples consists of updates from
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the posterior full conditional distribution of each of (λ, ϕ, ζ,γ, κ2, {ti}ni=3, {oi}ni=1).

The posterior full conditional distributions of each of (γ, κ2, {ti}ni=3, {oi}ni=1) are

described in Chapter 5. We focus on the posterior updates for (λ, ϕ, ζ). Note

that there is a set of configuration variables {ℓi}ni=3 in one-to-one correspondence

with ti, i.e., ℓi = l if and only if ti ∈ (r∗
si,l−1, r

∗
si,l

), for l = 1, . . . , iL. We take

ℓ2 = 1. The posterior full conditional distributions of λ and ϕ are propor-

tional to Ga(λ |uλ, vλ)f ∗
Y (y(s1) − o1)

∏n
i=2 f

∗
si,ℓi

(y(si) − oi | y(s(i,ℓi)) − o(i,ℓi)) and

IG(ϕ |uϕ, vϕ)
∏n
i=2 c

∗
si,ℓi

(y(si) − oi, y(s(i,ℓi)) − o(i,ℓi)), respectively. For each param-

eter, we update it on its log scale with a random walk Metropolis step. To

update ζ, we first marginalize out the latent variables ti from the joint posterior

distribution. The posterior full conditional distribution of ζ is proportional to

IG(ζ |uζ , vζ)
∏n
i=3{Gsi

(rsi,ℓi |µ(si), κ2) − Gsi
(rsi,ℓi−1 |µ(si), κ2)}. We update ζ on

its log scale with a random walk Metropolis step.

B.5.2 Negative Binomial NNMP Models

The conditional density of the continued negative binomial NNMP (NBN-

NMP) over the reference set is given by

p(y∗(si) | y∗
Ne(si), o(si),oNe(si)) =

iL∑
l=1

wl(si)c∗
si,l

(y∗(si), y∗(s(il)))gsi
(y∗(si)),

for i = 2, . . . , n, where g∗
si

(y∗(si)) = gsi
([y∗(si)+1]), and gsi

is a negative binomial

distribution with mean α(si) = exp(x(si)⊤β) and dispersion parameter r. Similar

to the Poisson case, we illustrate the posterior inference using a spatial Gaussian

copula with copula density c∗
si,l

(y∗(si), y∗(s(il))) given by

1√
1 − (ρl(si))2

exp
(

2ρ(si)Φ−1(qi)Φ−1(qil) − (ρl(si))2{(Φ−1(qi))2 + (Φ−1(q(il)))2}
2(1 − (ρl(si))2)

)
,
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where ρl(si) ≡ ρ(||si − s′
(il)||) = exp(−||si − s(il)||/ϕ), qi = Q∗

si
(y∗(si)), qil =

Q∗
s(il)

(y∗(s(il))), and Q∗
si

is the cdf of g∗
si

for all si.

Similarly, we use an exponential correlation function for the cutoff point kernel

k′, and augment the model with a set of Gaussian random variables ti with mean

µ(si) and κ2. Let f ∗
si,l

(y∗(si) | y∗(s(il))) = c∗
si,l

(y∗(si), y∗(s(il)))g∗
si

(y∗(si)). With

customary prior specifications, we obtain the joint distribution

N(β | µβ,Vβ) × IG(r |ur, vr) × IG(ϕ |uϕ, vϕ) × IG(ζ |uζ , vζ) ×N(γ | µγ,Vγ)

× IG(κ2 |uκ2 , vκ2) ×N(t | Dγ, κ2In−2)) ×
n∏
i=1

Unif(oi | 0, 1)

× g∗
s1(y(s1) − o1 | β, r) × f ∗

s2,1(y(s2) − o2 | y(s1) − o1,β, r, ϕ)

×
n∏
i=3

iL∑
l=1

f ∗
si,l

(y(si) − oi | y(s(il)) − o(il),β, r, ϕ)1(r∗
si,l−1,r

∗
si,l

)(ti),

where o(il) ≡ o(s(il)), the vector t = (t3, . . . , tn)⊤, and the matrix D is (n− 2) × 3

such that the ith row is (1, s2+i,1, s2+i,2).

The MCMC algorithm to obtain posterior samples consists of updates from the

posterior full conditional distribution of each of (β, r, ϕ, ζ,γ, κ2, {ti}ni=3, {oi}ni=1).

The posterior full conditional distributions of each of (γ, κ2, {ti}ni=3, {oi}ni=1) are

described in Chapter 5. We focus on the posterior updates for (β, r, ϕ, ζ). Note

that there is a set of configuration variables {ℓi}ni=3 in one-to-one correspon-

dence with ti, i.e., ℓi = l if and only if ti ∈ (r∗
si,l−1, r

∗
si,l

), for l = 1, . . . , iL.

We take ℓ2 = 1. The posterior full conditional distributions of β and r are

proportional to N(β | µβ,Vβ)g∗
s1(y(s1) − o1)

∏n
i=2 f

∗
si,ℓi

(y(si) − oi | y(s(i,ℓi)) − o(i,ℓi))

and IG(r |ur, vr)g∗
s1(y(s1)−o1)

∏n
i=2 f

∗
si,ℓi

(y(si)−oi | y(s(i,ℓi))−o(i,ℓi)), respectively.

We use a random walk Metropolis step to update β and r on its log scale,

respectively. The posterior full conditional distribution of ϕ is proportional to

IG(ϕ |uϕ, vϕ)
∏n
i=2 c

∗
si,ℓi

(y(si) − oi, y(s(i,ℓi)) − o(i,ℓi)). We update ϕ on its log scale
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with a random walk Metropolis step. To update ζ, we first marginalize out the

latent variables ti from the joint posterior distribution. The posterior full condi-

tional distribution of ζ is proportional to IG(ζ |uζ , vζ)
∏n
i=3{Gsi

(rsi,ℓi |µ(si), κ2)−

Gsi
(rsi,ℓi−1 |µ(si), κ2)}. We update ζ on its log scale with a random walk Metropo-

lis step.
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