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Abstract 
Precision livestock farming has become an important research focus with the rising demand of meat production in the swine industry. Currently, 
the farming practice is widely conducted by the technology of computer vision (CV), which automates monitoring pig activity solely based on 
video recordings. Automation is fulfilled by deriving imagery features that can guide CV systems to recognize animals’ body contours, positions, 
and behavioral categories. Nevertheless, the performance of the CV systems is sensitive to the quality of imagery features. When the CV sys-
tem is deployed in a variable environment, its performance may decrease as the features are not generalized enough under different illumination 
conditions. Moreover, most CV systems are established by supervised learning, in which intensive effort in labeling ground truths for the training 
process is required. Hence, a semi-supervised pipeline, VTag, is developed in this study. The pipeline focuses on long-term tracking of pig activity 
without requesting any pre-labeled video but a few human supervisions to build a CV system. The pipeline can be rapidly deployed as only one 
top-view RGB camera is needed for the tracking task. Additionally, the pipeline was released as a software tool with a friendly graphical interface 
available to general users. Among the presented datasets, the average tracking error was 17.99 cm. Besides, with the prediction results, the pig 
moving distance per unit time can be estimated for activity studies. Finally, as the motion is monitored, a heat map showing spatial hot spots 
visited by the pigs can be useful guidance for farming management. The presented pipeline saves massive laborious work in preparing training 
dataset. The rapid deployment of the tracking system paves the way for pig behavior monitoring.

Lay Summary 
Collecting detailed measurements of animals through cameras has become an important focus with the rising demand for meat production in 
the swine industry. Currently, researchers use computational approaches to train models to recognize pig morphological features and monitor 
pig behaviors automatically. Though little human effort is needed after model training, current solutions require a large amount of pre-selected 
images for the training process, and the expensive preparation work is difficult for many farms to implement such practice. Hence, a pipeline, 
VTag, is presented to address these challenges in our study. With few supervisions, VTag can automatically track positions of multiple pigs from 
one single top-view RGB camera. No pre-labeled images are required to establish a robust pig tracking system. Additionally, the pipeline was 
released as a software tool with a friendly graphical user interface, that is easy to learn for general users. Among the presented datasets, the 
average tracking error is 17.99 cm, which is shorter than one-third of the pig body length in the study. The estimated pig activity from VTag can 
serve as useful farming guidance. The presented strategy saves massive laborious work in preparing training datasets and setting up monitoring 
environments. The rapid deployment of the tracking system paves the way for pig behavior monitoring.
Key words: computer vision; pig activity; object tracking; RGB camera
Abbreviations: CV, computer vision; GPU, graphics processing unit; POI, pixels of interest; RGB, red, green, and blue; VTag, virtual tag

Introduction
Precision livestock farming, which collects detailed measure-
ments of animals through sensors or cameras, has become 
an important research focus with the rising demand of ani-
mal production (Morota et al., 2018; Clark et al., 2020). 
Monitoring animal activity can facilitate the management 
of animal production, and it is conventionally conducted by 
frequently visiting the farms or manually reviewing recorded 
videos (Larsen et al., 2019). However, these approaches can 
be subjective and laborious. Alternatively, the technology of 
computer vision (CV), which is inspired by human vision that 

can intuitively focus on objects of interest and exclude noisy 
signals, can automate monitoring animal activity solely based 
on information obtained from video recordings. Automation 
is fulfilled by deriving imagery features from a series of 
computational tasks, such as video segmentation and edge 
detection, guiding the CV models to recognize animals’ body 
contours, positions, and behavioral categories.

With the CV technology, many studies have shown prom-
ising results in practicing precision livestock farming. For 
example, it used to be costly to manage cattle in large-scale 
pasture lands. Coupling with unmanned aerial vehicles, CV is 
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possible to automate cattle counting in real-time with labor 
costs substantially reduced (Xu et al., 2020). In smaller-scale 
indoor farms, CV systems were also used to detect body 
cleanness (Li et al., 2019a), entirety (Fang et al., 2020), struc-
ture (Liu et al., 2020), and behaviors (Okura et al., 2019; 
Fuentes et al., 2020; Ren et al., 2021) for animal production. 
This technology is particularly beneficial to the swine indus-
try, as pigs are usually group-housed in indoors settings. By 
deploying one top-view RGB colors camera, producers can 
track pig activity by capturing their positions and identities 
in a high-throughput manner (Yang et al., 2018; Li et al., 
2019b; Zhang et al., 2019; Huang et al., 2020). To assess 
complicated traits that are labor intensive to be measured, 
the deployment of multiple cameras or RGB-D depth sens-
ing cameras can provide extra dimensions of information to 
enhance the CV system. Many successful applications have 
also demonstrated automation in assessing body weight (Yu 
et al., 2021), feeding behaviors (Leonard et al., 2019), and 
more precise measurement of real-time pig positions (Tu et 
al., 2020) in recent years.

Nevertheless, challenges still exist in the current CV sys-
tems and make CV difficult to be widely implemented in most 
farming environments. First, the performance of CV systems 
is sensitive to the imagery features, which are derived based 
on the observed imagery patterns under certain environmen-
tal conditions (e.g., lighting). When the CV system is deployed 
in a new environment, its performance may decrease as the 
features are not generalized enough to be associated with 
pig morphological patterns under different illumination con-
ditions (Chen et al., 2021). Second, most CV systems are 
established by supervised learning, in which intensive effort 
in labeling ground truths for the training process is required. 
The insufficient size or quality of training datasets may be a 
harmful factor for the model robustness. Lastly, many success-
ful CV systems are built by deep learning models, in which 
tens of millions of unknown parameters are estimated (He 
et al., 2015; Simonyan and Zisserman, 2015; Bochkovskiy 
et al., 2020). Such nature makes CV systems challenging to 
implement, limiting a wider deployment of high-throughput 
monitoring in animal industry.

Due to the difficulties described in the current CV 
approaches, tracking pig activity is a challenging task with-
out considerable labor efforts. The objective of this paper is 
to develop a semi-supervised pipeline, Virtual Tag (VTag), to 
automate long-term tracking of group-housed pigs. In this 
pipeline, successful tracking algorithms (hereafter track-
ers) are implemented. They include Sparse Optical Flow 
proposed by Lucas and Kanade (LK) (Lucas and Kanade, 
1981), multiple instance learning (MIL) (Babenko et al., 
2009), and channel and spatial reliability (CSRT) (Lukežič 
et al., 2018) that learn representatives from the object of 
interest and to find the similar image region in the next input 
video frame. These algorithms are lightweight and require 
no specific computing resources such as graphics processing 
units (GPU). The implemented tracker substantially reduce 
efforts in labeling pig positions for every single frame. To 
start tracking, users can either assign initial positions, or 
VTag can predict the positions based on their motion, which 
is anticipated to be effective features under different moni-
toring environments. We validated VTag by four three-hun-
dred-frame videos collected from our farming trials, and the 
benchmark test is performed to compare the performance 
and detected frames per second (FPS) of the implemented 

trackers and other state-of-the-art models, such as YOLOv5 
(Jocher et al., 2022) and Mask R-CNN (He et al., 2017). In 
addition, VTag is released as a friendly software tool in both 
a graphical user interface (GUI) and a Python library, allow-
ing users to freely utilize the labeled data for their follow-
ing research. Therefore, neither hard-coded features selected 
by human experts nor large training datasets labeled from 
a massive manual work are required in our pipeline. The 
complete algorithm and source code are available at https://
github.com/vt-ads/vtag.

Materials and Methods
Data acquisition
All animal experiments were approved and carried out in 
accordance with the Virginia Tech Institutional Animal Care 
and Use Committee (IACUC) under protocol #19-182. The 
demonstrated video recordings were obtained from (Yu et 
al., 2021), which reported the image-based live body weight 
prediction of non-restrained grower pigs. The pigs entered 
the trial at 5 wk post-weaning. The imaging system was built 
with a laptop-controlled camera (Intel RealSense D425) that 
captured RGB and depth videos with resolution of 848 × 480 
pixels. The camera was installed at a height of 2.25 m per-
pendicularly to the floor in each 5 × 7 ft pen, where pigs can 
freely move and walk during the entire recording. In each 
day, each monitored pen was recorded in a three-hundred-
frame video at a rate of 6 frames per second. Raw videos were 
saved in Robot Operating System bag video format, and the 
decoder Intel RealSense Viewer was applied to obtain sequen-
tial image files as the input data. In this study, only RGB-
converted grayscale images were used, and depth and color 
information were excluded from the pipeline. Each video clip 
had 300 timeframes. There were four video clips being eval-
uated for the performance of the presented pipeline: 3 clips 
contain 1, 2, and 3 pigs (denoted as 1-pig, 2-pig, 3-pig data-
sets in the following paragraphs), respectively. The last clip 
also contains 2 pigs, but more motion was observed (denoted 
as 2-pig (high motion)).

Implemented trackers
In VTag, 3 trackers, LK, CSRT, and MIL, are implemented 
by Python OpenCV (Bradski, 2000). To simplify the pipeline, 
users only need to provide 2 parameters to the trackers. First, 
positions coded in (x, y) coordinates are required to be set to 
start the tracking task. Each pig needs to be assigned to at 
least one starting position. The position can be provided auto-
matically by VTag, which uses detected motion to propose 
starting positions for users. The detailed process is described 
in the following section. The second parameter is the size of 
the bounding box that covers the tracking area. The bound-
ing box is centered on the starting position assigned from the 
first parameter, and it is desired to cover diverse textures (e.g., 
contour edges) for the best tracking performance.

Motion detection
Motion detection is useful to automatically propose potential 
pig positions for trackers. VTag will detect the pixels of inter-
est (POI) over time frames, which are expected to cover entire 
animal bodies and help locate positions of pigs. The motion is 
quantified by the variation of pixel values in a time range of 
multiple neighboring time frames (Figure 1a). Assuming pxyt 
is a pixel value at coordinate x, y of the time framet, and pxy· 
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is an averaged value in the range (tb,tl) at coordinate x, y. The 
detected motion mtb,tl (x, y) during the time range (tb,tl) is:

mtb,tl (x, y) =

∑
t∈(tb ,tl)

(pxyt−pxy·)
tl−tb

where tb, tl are the beginning and the last time frames in the 
scanned time range, respectively. High pixel variation rep-
resents high motion values m for a pixel at coordinate x, y
. If the studied pigs show up or leave out of the scope (pixel 
at (x, y)) in the middle of the time range (tb,tl), the pixel val-
ues therefore change from background colors to animal skin 
textures or from animal skin textures to background colors, 
resulting in high pixel variation (Figure 1b).

Pig positions
By computing pixel motion for 2 flanking, equal-length time 
ranges, the positions of all monitored pigs can be located. 
For example, to infer the livestock positions at time frame 
t0, pixel motion mt−k,t0 and mt0,tk are calculated, where t−k 
and tk are k frames before and after the observed frame t0
, respectively. Then, summing 2 motion values can obtain a 
score map St0 where high-value pixels are more likely to be 
occupied by the studied objects at the moment (Figure 1c). 
In this study, pixel scores st0 (x, y) in the score map St0 are 
defined with 2 frames before and after the observed frame 
t0 as

st0 (x, y) =
2∑

k=1

(
mt−k,t0 (x, y) +mt0,tk (x, y)

)

The scores s were hypothesized to follow a skewed distri-
bution in which most pixels are observed with low scores. 
Hence, the 99th quantile of scores was set as the threshold 
to binarize pixels into 2 categories: POI is assigned a value of 
1 if its score is greater than the threshold, otherwise value 0 
is assigned to represent a background pixel. Finally, for each 

time framet, we have a binary map Bt  indicating the positions 
of the studied objects (i.e., pixel areas with non-zero values).

Refining motion detection and proposals of 
tracking points
As the pig positions were inferred from observed motion, 
motion caused by irrelevant sources, such as human activ-
ities or pigs from other pens, should be avoided. Although 
the camera scope is limited to the studied pigs, some unre-
lated movements will be detected by our score functions 
and become noisy signals. For example, the noisy move-
ments can be vibrations caused by the occasional collision 
between the pigs and pens or human activities. Such noisy 
signals are usually small in pixel areas and can be removed 
by “blurring” the binary map Bt  with a Gaussian kernel ω
(Appendix) in convolutional operations. Each refined pixel 
B ′

t (x, y) is:

B ′
t (x, y) = f (ω∗Bt (x, y))

= f

Ñ
m∑

dx=−m

n∑
dy=−n

ω (dx, dy)Bt (x+ dx, y+ dy)

é

f (x) =

®
1, if x ≥ 0.5
0, otherwise

where B ′
t is the refined binary map in which POIs are rep-

resented by values of ones, and background colors are noted 
as zeros at the time framet. The lower and upper boundaries 
of the kernel ω are denoted by −m,m of x-dimension and 
−n, n of y-dimension, respectively. To save memory usage and 
avoid including noisy signals, we do not keep the positions 
of every POI but track their contours as representatives. We 
can obtain the finalized map B′ ′

t containing the contours 
of objects with edge detection kernel γ(Appendix a) in the 
convolutional operation:

Figure 1. The computational approach to detect motions. (a) In this example, the input video containing three frames from t − 1 to t + 1. Yellow blocks 
represent the ground truths of animal positions. (b) Motions detected in the time range of (tb,tl). Blue blocks show the area with high motions. (c) The 
pixels with larger gradient of red means higher chance the areas are occupied by the studied objects.
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B′ ′
t = γ ∗Bt

Instead of keeping the entire area of POIs with high motion, the 
derived map B′ ′

t only records the contours of POIs. The con-
tours of POIs in B′ ′

t are further clustered into object identi-
ties. A similarity matrix of each POI coordinate was calculated 
as a clustering constraint. With the defined constraint, agglom-
erative hierarchical clustering from the Python library, scikit-
learn (Pedregosa et al., 2018), was performed to cluster POIs 
into each object identity. The centroids of each cluster are pro-
posed as initial tracking points for the implemented trackers.

Benchmark test
The implemented trackers were evaluated for their precision 
and computing time. To evaluate the precision, we manually 
labeled the central positions of each pig body as the ground 
truths. The precision error was determined by the Euclidean 
distance between the ground truth and the centroid of the 
predicted bounding box. To make the results comparable with 
other studies, the error was standardized by being divided by 
the diagonal distance of the video frame ranging from 0 to 1. 
In addition, as the tracking process may be unsuccessful when 
the similarity of two consecutive frames is low, human super-
vision is needed to provide new tracking positions to resume 
tracking. Hence, we also evaluated the number of supervision 
is needed to complete tracking the 300 frames in each dataset. 
To evaluate the computing time, the elapsed time to track one 
single frame is measured for 100 iterations. The time is pre-
sented in FPS by inverting the observed elapsed time. In addi-
tion to the implemented trackers, the object detection models, 
YOLOv5 and Mask R-CNN, pre-trained by the COCO data-
set (Lin et al., 2014) are also included in the evaluation of 
computation time. It can help explore the possibility of adapt-
ing these pre-trained deep learning models in the pig tracking 

tasks. The evaluation was run on a personal laptop, MacBook 
Pro (14-in., 2021) with Apple M1 Max chip, 10 CPU cores, 
and 32 GB RAM. The GPU resources were not utilized during 
the evaluation.

Results
Software interface
The VTag pipeline is released as a Python software and can 
be accessed by a GUI or an interactive Python session. There 
are 3 components that users can interact with in the GUI: the 
video previewer, the playback controller, and the configura-
tion. The preview (Figure 2a) shows the video overlayed by 
the tracking results, which are presented by a centroid and 
its tracking window area. Different tracking points are col-
ored differently to show pig entities. The video can be played, 
paused, and traversed to any video frame by interacting with 
the playback controller (Figure 2b). Each frame in the prog-
ress bar is colored in a gradient scale from yellow to blue, 
showing the tracking errors estimated from the implemented 
tracker. In the configuration panel (Figure 2c), parameters 
needed for the tracking task are tunable. In the panel, users 
can load a directory containing the video to start the tracking 
tasks, adjust the number of tracked objects and tracking size, 
and optimize the quality for displaying the tracking results. 
If users need to work with their own analysis in an interac-
tive programming session, users can load VTag in Python as a 
library. The library has commands available that correspond 
to all the actions in the VTag GUI. In sum, VTag provides a 
friendly platform to annotate video data and generate infor-
mative farming guidance for pig activity.

Benchmark testing
The precision evaluation is presented in Figure 3, the standard-
ized errors over frames were plotted in boxplots. Every 0.1 of 

Figure 2. VTag graphical user interface. (a) Preview panel to display the tracking results. (b) Playback controller to traverse video frames and inspect 
tracking errors. (c) Configuration panel to fine-tune the tracking algorithm and import/export video data.
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the standardized error is 26.29 cm in the presented datasets. 
The colors represent different supervisions. For example, the 
results shown in red are evaluated after 8 times of human 
supervision. With adequate human supervision, all trackers 
can precisely track pig activity with errors less than 22.82 cm 
in all the 4 datasets. In particular, the tracker LK can complete 
the tasks without any resuming supervision with the median 
errors of 18.03 and 13.81 cm for the datasets of one-pig and 
three-pig, respectively. The tracker CSRT performed similarly 
well with only one additional supervision with the median 
error of 16.3 cm in the studied datasets except the dataset of 
two-pig (high motion). Among the studied trackers, MIL has 
similar precision but requires more human supervision than 
others in all the dataset. It is noted that the number of tracked 
objects is not a major limiting factor when it comes to track-
ing precision. In this study, more supervision is needed when 
the objects are found to move rapidly and create blurry image 
features. When the pigs move rapidly, the input video with 
low FPS had latencies to display object positions timely. In the 

2-pig dataset (high motion) although with similar precision, 7, 
5, and 13 supervisions were needed to complete tracking the 
300 frames for the 3 trackers, respectively.

The computing time is presented by FPS, which indi-
cates how many frames the tracker can process per sec-
ond (Figure 4). As results, LK tracked averaged FPS of 900 
and showed outperformance in computing speed to other 
trackers by more than 100 folds. CSRT is the second fast 
tracker with a performance ranging from 9.9 FPS to 60.81 
FPS in the tasks of tracking different number of pigs. MIL 
is found to be the slowest tracker, with as low FPS as 1.8 
FPS when it tracked six pigs. It is also found that for the 
trackers CSRT and MIL, the numbers of tracked objects 
affect the tracking speed nonlinearly. Additionally, the pre-
trained object detection models are evaluated in this study 
as well. Without enabling GPU resources, both models pre-
dict the studied videos slower than the presented trackers. 
Only 4 FPS and 0.17 FPS are processed by YOLOv5 and 
Mask RCNN, respectively.

Figure 3. Evaluation of tracking precision. The standardized errors are plotted in box plots, which are colored in corresponding to the number of 
supervisions. Trackers, LK (sparse optical flow by Lucas and Kanade), CSRT (channel and spatial reliability), and MIL (multi-instance learning) are listed 
on the x-axis.
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Social interaction
The distance between studied subjects implies 2 types of 
general social interactions: separated or engaged. When the 
subjects engage closely, the distance values are low during 
the period of time frames. Otherwise, subjects are separated 
apart without much interaction. A line chart of the distance 
against the 300 timeframes was visualized to monitor such 
patterns, showing 4 peaks and 4 valley values from the 2-pig 

data (Figure 5). To examine whether the distance is an effec-
tive indicator for the interactions, video frames with peak 
and valley values were displayed. Consequently, in the frames 
with peak values, interaction was observed among pigs, and 
they were observed staying in 2 different corners of the pen 
at the examined time frame. On the other hand, in the frame 
with valley values, social interactions were observed for all 
inspected frames. Pigs were in the status of in-taking feeds 
alongside or chasing each other. From the examined 300 
frames, the estimated distance between pigs is an accurate 
indicator to filter time frames where social interactions may 
occur.

By knowing the tracks of each pig, pixel movements per 
time frame were studied to monitor the activities individually. 
In the presented data, 2 studied pigs were denoted as “Pig_1” 
and “Pig_2”. The median movement of Pig_1 and Pig_2 is 
21.1 and 21.98 pixels per frame, which show no significant 
difference (P-value = 0.953) in overall activity (Figure 6a and 
b). However, individual-specific temporal pattern can be dis-
covered by dissecting the activity at certain time frames. For 
example, during the first 50 frames, Pig_2 was much more 
active, the difference between Pig_1 and Pig_2 was especially 
revealed in those peak movements. Moreover, after the 50th 
frame, Pig_2 continuously had greater changes of accumulated 
movements over Pig_1. The superiority was 1739.7 pixels at 
the 50th frame, and it was later expanded to 3612.9 pixels 
at the 250th frame (Figure 6c). Finally, we inspected the syn-
chronicity between pigs by comparing their movements per 
frame (Figure 6d). A moderate correlation (r = 0.605, P-value 
< 0.01) was observed in the studied data, which implied that 
the activity of each individual was not independent and were 
partially determined by its neighboring pig.

In addition to monitoring the temporal activity, spatial pat-
terns of pig movement can be informative for herd management. 
Heat maps (Figure 7) generated from pixel-wise variation across 
all time frames provided insightful guide on what areas were vis-
ited most (coded in yellow). In the one-pig data (Figure 7a), mid-
dle-top and bottom-left regions have found to be the hot spots, 
which were the places to engage with neighboring pigs and the 
feeding area, respectively. Whereas in the 2-pig data (Figure 7b), 
there was no clear spatial trend of the subject activity. Most cor-
ners of the pen were visited by both pigs except the central area.

Figure 4. Evaluation of computing time by frame per second (FPS). 
FPS of each tracking task is plotted in box plots, which are colored 
corresponding to the number of tracked objects. Trackers, LK (sparse 
optical flow by Lucas and Kanade), CSRT (channel and spatial reliability), 
and MIL (multi-instance learning) are listed on the left column. The object 
detection models, YOLOv5 and Mask R-CNN, are plotted on the right 
column.

Figure 5. The predicted distances between pigs over all time frames in the two-pig data. The distance in centimeter is shown on the y-axis, and the 
x-axis represents the 300 timeframes. Six snapshots of the selected timeframes show the 2 extreme scenarios when pigs are closely engaged or 
separated apart.
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Discussion
Continuously tracking pig activity from videos is an import-
ant initial step to monitor farming conditions in swine 
industry. Including animal diseases, welfare, and pen-scale 
social interactions, such complex monitoring tasks require 
detailed observation of pig activity. Many existing works 
have automated the tasks through the aid of CV technology 
but required massive human effort in preparing data sets to 
build an effective system. In contrast, this paper presented 
a semi-supervised pipeline, VTag, which does not require 
laborious work in setting up the training system. Solely 
relying on a top-view and grayscale video, VTag provides 
an efficient approach to continuously track the positions 
of group-housed pigs with an average error of 17.99 cm in 
the presented datasets. The results can serve as preliminary 
farming guidance to infer complex traits that used to require 
intensive labor resources.

For example, by continuously tracking pig positions with 
VTag, individual-level activity per unit time and walking speed 
can be estimated. This is important information for the trait 
assessment of pig lameness, which can be potential indicators 
of fractures, lesions, and development disease (Heinonen et 
al., 2013; Benjamin and Yik, 2019), and diminishes welfare in 
pigs. Hence, effectively evaluating lameness allows farmers to 
control economic losses from losing pigs with poor body con-
ditions (Anil et al., 2009). Another important monitoring task 
that can be improved with VTag is tail biting in pigs. Because 
tail biting is linked to stressful farming conditions (D’Eath 
et al., 2014) and lower body weights (Marques et al., 2012), 
detecting the negative events at an early growing stage can 
be beneficial to both animal welfare and production. As the 
real-time pig positions are obtained automatically, the rela-
tive distance between individuals in the pen can be estimated. 
Behavioral researchers can use this information to filter a 

specific time range from an hour-long video: When the relative 
distance is low, it is more likely to observe tail-biting events.

In addition to evaluating pig behaviors through RGB vid-
eos, automation can be further facilitated by other sources. 
For example, videos containing depth information are useful 
to estimate pig body weights. Body weight is a critical trait 
associated with growing rate, feed efficiency, and meat bio-
mass. Conventionally, pigs are weighed on the electronic scale 
in the pen, but it can be either inaccurate when more than 
one pig is standing on the scale or expensive if the scale is 
integrated into the feeding system. A past study has presented 
a video-based pipeline that can successfully estimate pig body 
weight with an RGB-depth camera by segmenting pig con-
tours (Yu et al., 2021). By combining the existing work and 
VTag, which can continuously track pig positions, the fully 
automatic system of pig weighing is feasible for farms with 
limited resources.

The implemented trackers have successfully shown 
their great performance of tracking objects in their pub-
lished papers (Babenko et al., 2009; Lukežič et al., 2018). 
However, the trackers failed to track pigs without any 
human supervision in our presented results. The potential 
reasons may be explained by the difference in the moni-
toring context. In our study, the tracked objects share sim-
ilar morphological features. Even for the feature-rich areas, 
such as pig heads and tails where unique spatial patterns 
are observed, they were hard for trackers to distinguish the 
difference between different pig individuals. The trackers 
easily lost tracking the correct individual when two pigs fre-
quently interact with each other in a short period. Another 
reason is the video quality. In the papers where the track-
ers were published, the demonstrated videos recorded at 
least 20 FPS. Whereas the studied datasets only have 6 FPS, 
which is a common setting in practical farming to reduce 

Figure 6. The movement of pigs in pixels in the two-pig dataset. Two pigs are colored by blue and orange. (a) A line chart showing the pixel movement 
(y-axis) per time frame (x-axis). (b) A boxplot comparing the movement between two pigs. (c) A line chart showing the accumulated pixel movement 
(y-axis) per time frame (x-axis). (d) A correlation plot between the movement of Pig 1 (x-axis) against Pig 2 (y-axis), and each dot represents the 
movements of the observed time frame.
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power dissipation and save data storage. Such low FPS vid-
eos reduce the similarity between consecutive frames and 
increase the chance of mismatching tracked features over 
time (Porikli and Tuzel, 2005; Li et al., 2007). Additionally, 
when the tracked object moves rapidly, the track features 
are more likely to become blurry in a low-FPS video. These 
limitations make the tracking task in livestock farming 
more difficult than the regular tracking task, where videos 

have 30 FPS, and the video frames are assumed to be sim-
ilar in adjacent frames and the tracked features are unique 
compared to other objects.

We also included pre-trained models, YOLOv5 and Mask 
R-CNN, in our benchmark study. The low-FPS results indi-
cate that it is difficult to fulfill real-time long-term monitor-
ing in livestock farming without accessing GPU resources. 
Although we did not show their precision in the current work, 

Figure 7. Heatmaps showing the spatial activity of pigs. The yellow areas are visited the most by the pigs, and the purple area indicates the least visited 
region in the view scope. (a) One-pig dataset; (b) two-pig dataset.
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the detection results are not comparable with the presented 
trackers. It is because the models were trained by COCO 
datasets, in which top-view pig images are not included. In 
some video frames, pigs are either not detected, or 2 adjacent 
pigs are identified as the same object. Besides, without further 
modification of the models, it cannot force tracking the cer-
tain number of objects. These limitations make the evaluation 
difficult when we want to compare the precision of tracking 
the same number of pigs. In conclusion, the results suggest 
that the object detection models are not as suitable as object 
tracking algorithms in the pig monitoring tasks.

Further improvement can be made in the current version 
of VTag. For example, VTag is found to mis-identified pig 
identities when individuals frequently contact each other in a 
short time as described earlier. Although the wrong labels can 
be corrected manually, it still requires time and effort from 
humans’ supervision. One way to reduce such error is to uti-
lize a strategy called template learning, which was discussed 
in the literature (Lan et al., 2017; Wang et al., 2019). The 
general idea of this strategy is to first select the video frames 
in which pigs are not in close range of their neighbors. Then, 
the pig morphology observed in the selected frames is learned 
as “templates”. Finally, the model can use the templates to 
update the predictions in the frames where pig positions are 
mis-identified due to the closed distance between pigs.

In addition to improving the algorithm, adding information 
by wearable devices is also helpful to increase the monitoring 
precision. The devices, including motion sensors, magnetom-
eters, gyroscopes, and GPS receivers, have been widely used 
to monitor behavioral patterns in large farming environments 
(i.e., pastures and barns) (Chapa et al., 2021; Li et al., 2021; 
Nikodem, 2021; Perisho and Hajnal, 2021; dos Reis et al., 
2021). Specifically, with the use of tracking collar wore by 
pastured livestock, grazing behaviors were successfully identi-
fied for cattle (Brennan et al., 2021) and sheep (dos Reis et al., 
2021). The spatial resolution for outdoor studies was further 
improved to centimeter-level by coupling sensor collars with 
signal receivers deployed around the farm (Li et al., 2021). 
In group-housed scenarios, Smartbow (Weibern, Austria), a 
commercialized ear-tag sensor system, also demonstrated 
promising results in monitoring complex interactions on 
reproduction traits in swine cohorts (Perisho and Hajnal, 
2021) and feeding behaviors of cows (Chapa et al., 2021). In 
conclusion, by coupling the VTag algorithm and the described 
improvement, the automation of the assessment system is 
expected to monitor more complex farm settings.

Conclusion
The presented semi-supervised pipeline, VTag, can track 
pigs in the video clips with a minimal human supervision to 
achieve decent precision. Among the tested trackers, a sim-
ple algorithm as spare optical flow can achieve ideal balance 
between precision and computing speed for the pig tracking 
tasks. The observed median error in the studied videos is no 
larger than 17.99 cm in predicting positions of each individ-
ual. Such performance provides individual-level guidance for 
farming management in knowing animal activity, visiting hot 
spots, and social interaction. In conclusion, this study reports 
a rapid, precise deployment of high-throughput assessment 
for continuous pig tracking. With the efficient monitoring 
system, animal health and derived products can be greatly 
improved.
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Appendix

Gaussian kernelω =




1 4 1
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Edge detection kernel γ =
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