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Symplectic Integration for Complex Wigglers 

Etienne Forest*and Kazuhito Ohrni 
KEK, National Laboratory for High Energy Physics, 

Tsukuba, Ibaraki 305, Japan 

19 August 1992 

Abstract 

Using the example of the helical wiggler proposed for the KEK photon factory, we show 
how to integrate the equation of motion through the wiggler. The integration is performed 
in cartesian coordinates. For the usual expanded Hamiltonian (without square root), we 
derive a first order symplectic integrator for the purpose of tracking through a wiggler 
in a ring. We also show how to include classical radiation for the computation of the 
damping decrement. 

·Permanent address, Exploratory Studies Group, Accelerator and Research Division, Lawrence Berke­
ley Laboratory, 1 Cyclotron Road, MS 71-259, Berkeley, California 94720, USA. 
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No Need for the Closed Orbit In the field of accelerator design, the inclusion of 
wiggler and undulator in a tracking code has always looked like a special task. We believe 
that the difficulties are more imaginary than real. In fact, plain integration through a 
wiggler is very simple because the fields are always simply expressed in cartesian coor­
dinates. The starting point are the famous Halbach formulas[l]. For the KEK photon 
factory, we can approximate the helical wiggler by the following expressions for the vector 
potential: 

f= Az 
- Po/q 

A 
9 = -Y-

- Po/q 
Az 

-

-

-

~o cos(ktx) cosh(k2 y) sin(kz) _ k~~o sinh(k3x) sin(k4y) sin(kz + </» 

~ok:t sin(ktx) sinh(k2y) sin(kz) - ~o cosh(k3x)cos(k4y)sin(kz + </» (1) 

o 

q and Po are the charge and the reference momentum of tracked particles. Fo, Go, k's and 
</> are parameters characterizing the wiggler. 

The expression of Eq.(l) assumes an infinitely long wiggler of period), = 2; along the 
z-direction. Therefore it is simplest to integrate it using the normal cartesian coordinates 
where z parametrizes the motion (time-like variables). 

Previous works[2] in the field are based on L.Smith's Hamiltonian [3] which is written 
in terms of deviation from a "closed orbit" through the wiggler and, to compound the 
problem, use a complicated Frenet-Serret system. If we consider that our purpose is to 
obtain the one turn map ( tune and beta function etc ... ) and is to track particles in a 
ring with a computer, this choice of the coordinate system will complicate our problem 
for many reasons: 
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1. the computer does not care about orbit distortions due to the linear part of the 
Hamiltonian 

2. we do not know the closed orbit until we close the ring 
3. the wiggler field is horrible in these variables 
4. the electron does not care about the frame used: so use the simplest 

The Hamiltonian in terms of deviation from a "closed orbit" start with second order 
terms and may be suitable to treat an oscillation around the closed orbit analytically 
(although this is even questionable in complex cases). But writing a tracking code in 
terms of Frenet-Serret coordinate around an actual wiggler orbit will not be suitable. 
If we have the ability to compute maps, we can match wigglers and compute all global 
quantities desired. Maps are always extractable thanks to automatic differentiation. For a 
general discussion of the principles behind modern tracking and analysis in circular rings, 
the reader should consult[4]. 

2 Exact Equation of Motion 

2.1 Exact Hamiltonian 

If we assume that the particle is ultra-relativistic, the exact Hamiltonian for the helical 
wiggler is given in cartesian variables by: 

H = -J{1 + p_l)2 - (pz - f)2 - (py - g)2 - fP-l 

f = 0 ~ total path length computed 

f = 1 ~ differential path length computed. 

(2) 

where f and 9 are given in Eq.(l). 
In Eq.(2), the differential path length is the total path length minus the length of the 

wiggler. The 6-vector describing the motion of a particle is 

z = (x,Px,y,Py,-£,p-l), (3) 

where -£ and P-l are the negative path length and its conjugate momentum which is 
equivalent to the momentum deviation fJp/po, respectively. 

The equations of motion are given by 

dz 
[z,H] 

dz 
! 

dx 8H dpz 8H 
dz 

-
8pz dz = - 8x 

dy 8H dpy 8H 
(4) - -=--

dz 8py dz 8y 
d( -f) 8H dp-l = o. 

" -
dz 8P-l dz 

3 



In the case of the beam envelope calculation it may be necessary to add radiation to 
the equation. The result for the deterministic part of the motion is: 

dz 
[z,H] + r 

dz 

I I' 
2 qBl. 8Hl =1 (5) r6 - -Krad{l + p-l) - 8 

Po P-l 
pxr6 Pyr6 

r2 -
1 + P-l 

r4 = 
1 + P-l 

The constant K rad is given for example by Sands[5] and has the value 1.40789357 X 

10-5 Eg where Eo is the reference energy expressed in GeV. The IBl.1 is the modulus of 
the component of the magnetic field perpendicular to the direction of propagation. The 
direction of propagation is obtained using 

(~ ~l) dx 2 dy2 
1 + - + - dz' dz ' 

dz dz (6) 

1 
e= 

IB.d = IB x el, 
and, of course the magnetic field B is obtained from \7 x A. The non zero value for r2 and 
r4 in Eq.(5) is an expression of the conservation of the unit vector e during the radiation 
process. 

The stochastic part of the beam envelope calculation can be done in a similar manner. 

2.2 Integration Method 

This paper would stop here if the non-radiative part of Eq.(5) (i.e. Eq.(4)) was amenable 
to explicit symplectic integration. Why do we say so? If you have a symplectic integrator, 
then the criteria which must beused in deciding the number of steps of integration are not 
different from those used in the case of a quadrupole or sextupole. The number of thin 
lenses (i.e. integration steps) used for a sextupole depends only on some global properties 
like dynamic aperture, non-linear dispersion, tune shifts, etc ... One stops increasing the 
number of steps when these properties reach a limit. This is also the procedure to follow 
for a wiggler if you integrate the correct equation of motion with a symplectic integrator. 

Unfortunately, we cannot find an explicit symplectic integrator for the Hamiltonian of 
Eq.{ 4). Therefore, one is forced to use a non-symplectic algorithm to integrate the motion 
explicitly. This is not criminal contrary to popular belief, especially in electron machine. 
The remainder of this section is devoted to the care and caution one must exercise when 
using a non-symplectic integrator. In general, the number of steps will depend strongly 
on the purpose of the study. Here are a few checks you should perform if you intend to 
use an ordinary integrator on this exact Hamiltonian. In general, speed is the problem. 
Relative to a symplectic integrator, you must use more steps in a nonsymplectic integrator 
to minimize the diseases caused by "non-symplecticity". 
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Dynamic Aperture Calculation If you track without radiation, you should make 
sure that the damping or anti-damping of the integrator is sufficiently small. This will 
require some trial and error. The result will depend on the number of turns tracked. 

If you track with radiation, then make sure that the actual damping decrement is 
correctly predicted by your integrator. If not, increase the number of steps. This will not 
depend significantly on the number of turns tracked. 

Beam Envelope Calculation As in the radiative dynamic aperture, the beam sizes 
and the damping decrement must stabilize, therefore increase the number of steps until 
they do. 

Taylor Series Map You can always produce a Taylor series map[6] for the wiggler. 
Since the Taylor series can be "symplectified" to the order of truncation (Dragt-Finn 
factorization)[7] or to all order (Irwin factorization)[8], the issue is whether or not your 
wiggler, in your machine, with its special parameters, can be represented by a Taylor 
series of finite degree. If the answer is yes, and the order of the Taylor map is low, this 
can be a good way to do fast tracking (always double check on a few cases with the painful 
nonsymplectic integrator). 

Conclusion on the Exact Hamiltonian Integrating a wiggler by brute force and ex­
tracting maps out of the integrator is trivial. Remember that the work of Lloyd Smith[3], 
whose purpose was purely theoretical, is totally, completely irrelevant to the issue of 
particle tracking. Now, the question remains, can we do better (i.e. explicit symplectic 
integration) if we are willing to approximate H slightly. This is the topic of the next 
section. 

3 Symplectic Methods on the Approximate Hamil­
tonian 

In large rings, it is possible to expand the square-root Hamiltonian to leading order in x' 
and y'. If applied to Eq.(2), the result is 

(7) 

For this Hamiltonian, it is possible to write immediately a first order explicit integrator 
by means of a generating function which we invert exactly. Consider the generating 
function F: 

F(q,p) -
q -
p -

q. p + ~zH(q,p) 
(x,y, -l) 

(Px,Py,P-l). 
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The characteristic function F generates the motion of any Hamiltonian H for a step 
~z with a local error of order (~Z)2. For the Hamiltonian of Eq.(7), this characteristic 
function produces equations which can be inverted exactly. The results are: 

pz: -

py -

P-l -
X -

fi -

(-l) -

8F 8H 
Pi -=p·+~z--

8qi' 8qi 

8F 8H 
iii - -=q·+~z--

8Pi' 8Pi 

! 

{pz: - (ffz: + ggz:)~zp}(l - gy~zp) + {py - (ffy + ggy)~zp}gz:~zp 
(1 - fz:~zp)(l - gy~zp) - fygz:~zp2. 

{PlI - (f fll + ggll)~zp}(l - fz:~zp) + {Pz: - (f fz: + ggz:)~zp} fy~zp 
(1 - fz:~zp)(l - gy~zp) - fygz:~z/ 

P-l 
X + ~zp(Pz: - f) 
y + ~zp(py - g) 

(-l) - ~z { (i~~!, r + (i~ ~~,)'} 
~z 

where ~zp = ---
1+ P-l 

8f 
fz: = ----a;- etc ... 

(9) 

The expression of Eq.(9) is exactly symplectic for all possible functions f or g. There­
fore it is applicable to arbitrary wigglers and undulators. The deterministic radiation is 
calculated as in 2.1 by adding the vector ~zr to Eq.(9). 

It is possible, with some degree of pain, to derive higher order explicit integrators, 
using the generating function used here and the theory of explicit symplectic according 
to Yoshida[9]. For the purpose of our discussion, this first order integrator will suffice. 

4 Discussion 

4.1 Example 

In the case of symplectic integration, the actual accuracy is never a real issue. For 
example, we do not cut the sextupoles into an increasing large number of thin lenses until 
convergence is reached. Instead we look at the global properties of the ring we are trying 
to estimate (dynamic aperture, geometric tune shifts, etc ... ), and we stop splitting the 
sextupoles when the properties reach approximately a limit. Quite often, sextupoles under 
such conditions, require only one thin lens per magnet. But, this is not a rule: for example, 
in a non-interleaved scheme the dynamic aperture of the bare machine (no fringe field) 
for the Hamiltonian of Eq.(7) becomes infinite with one thin lens per sextupole. That is 

6 

,. 



number of slices 35 70 700 
1l.vr -0.002567818 -0.002573105 -0.002579113 
1l.vy 0.007963092 0.007966845 0.007965440 

Table 1: Relation between the tune shifts and the integration step. 

an infinitely incorrect answer, therefore one must use more steps per sextupoles. In the 
case of Eq.(7), we have an explicit (simple and fast) symplectic integrator which implies 
that we should treat the wiggler exactly as we treat multi poles. 

For example, in the KEK photon factory, we simulated a helical wiggler with the 
following parameters: 

Fo = 0.12m-1 Go = 0.024m-t, L = 3.0m, Nperiod = 20, 

k = 211" Nperiod -1 k 20 -1 k 20 0 -1 L m, 1 = .Om , 4 = . m , (10) 

Vr = 8.38, Vy = 3.14. 

We show the (x versus px) and (y versus py) phase plots for 35 integration steps 
and 70 integration steps in figures 1. Notice that 35 integration steps corresponds to an 
apparently outrageous 1.75 steps per period! For reference, the machine without wiggler 
is also shown in figures l(a) and (b). Notice that the x-px plots show clearly that the 
wiggler is not totally insignificant in this example. 

Since the wiggler has a quadrupole component, we should take care of tune shifts. 
Table 1 shows a relation between the tune shifts and the integration steps. The differences 
between each integration steps are not significant. 

Figures 2 are to be contrasted with a nonsymplectic integrator using a total of 120 
function evaluations to go through the wiggler (instead of 35 and 70). So, as we said 
in section 2.2, one must exercise extreme caution with nonsymplectic integrators as is 
already well-known. 1 

Also, we computed the dynamic apertures (on-momentum, 400 turns) for the 35 and 
70 steps cases. Since the wiggler did not produce a significant difference from bare lattice, 
we also did double the wiggler strength to increase its effect. We also compute the bare 
machine aperture for reference. The results are displayed in figure 3. This is not intended 
as a serious KEK photon factory study. It is an illustration of how to choose the number 
of steps in an integrator. (When one fixes the number of steps for sextupoles, one does 
not do it with serious dynamic aperture studies!) 

4.2 Conclusion 

They are two important pOInts made in this paper: 

lThe reader should take our example with a grain of salt: we could be more clever in selecting a better 
behaved nonsymplectic integrator. For example, a first order nonsymplectic integrator which preserves 
the symplecticity of the linear part would do much better than this 6th order Runge-Kutta. 
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1. Integrate in cartesian coordinate. It is the best choice to integrate wigglers. 
2. If you can write a symplectic integrator, treat the wiggler like any other element. If 

you cannot, be very careful in tracking it (nonsymplectic integrator, Taylor series 
map, etc ... ). 
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Figure 1: Phase space plots with 1st order symplectic integrator. Photon Factory with the 
wiggler is simulated. (a) and (b) are x - px and y - py plot without wiggler, respectively. 
(c) and (d) are for 35 integration steps. (e) and (f) are for 70 steps. 
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Figure 2: Phase space plots with 6-th order nonsymplectic Runge-Kutta integrator. (a) 
and (b) are x - Px and y - py plot for 15 integration steps which is equivalent to 120 
function evaluation. 
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