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Data-Driven Remaining Useful Life Estimation Using 

Gaussian Mixture Models  

Yixuan Liu1, Zhen Hu2 

University of Michigan-Dearborn, Dearborn, MI, USA 48124 

Michael Todd3 

University of California-San Diego, La Jolla, CA, USA 92093 

Chao Hu4 

Iowa State University, Ames, IA, USA, 50011 

Data-driven remaining useful life (RUL) estimation plays a vital role in system prognostics 

and health management (PHM). This paper presents an approach for RUL estimation based 

on Gaussian mixture model (GMM). A health index model is first employed to map the high-

dimensional sensor signals into health index that describes the health degradation of an 

engineering system. Based on the mapping of health index, a Gaussian mixture model is then 

constructed in the time domain in the off-line phase to learn the complicated statistical 

relationship between the health index and RUL. The learned GMM is then used in a Bayesian 

scheme to perform RUL prediction in the on-line phase. The proposed approach will not only 

provide a point estimation of the RUL, but also a confidence interval of the RUL prediction. 

Using a miter gate example and the data set in 2008 PHM Data Challenge Competition as our 

case studies, the results show the efficacy of the proposed method. 

Nomenclature 

C   = Life cycle 

e   = Length of training set 

h   = Health index 

k   = Number of estimated parameters in the model 

L̂   = The maximum value of the likelihood function of the model 

l   = Number of windows in selected vector of testing health index 

m   = Number of data steps in the training set 

o   = Length of testing set 

Q   = Number of Gaussian components 

S   = Sensor reading 

s   = Step size 

T   = Transfer matrix 
t   = Remaining useful life 

u   = Standardized health index 

w   = Window size 

Z   = Input data for Gaussian mixture model 

   = Smoothing parameter 

   = Standardized remaining useful life 

   = Weight of Gaussian Mixture Model 
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3 Professor, Department of Structural Engineering, University of California-San Diego, La Jolla, CA, 92093. 
4 Assistant Professor, Dept. of Mechanical Engineering, Iowa State University, Ames, IA, 50011, AIAA Member. 
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   = Mean value for Gaussian mixture model 

Σ   = Covariance matrix of Gaussian mixture model 
   = Training data set 

 

I. Introduction 

Remaining useful life (RUL) is drawing great interest in various research areas [1], such as electronics [2], 

mechanics [3], aircraft industry [4], medicine [5], and even weather forecast [6]. According to its definition, the 

remaining useful life of a system is defined as the distance between the current time and the end life of a system (useful 

life) [7]. RUL estimation plays an important role in condition-based maintenance [8, 9]. It provides information that 

is vital for maintenance planning and reduce the overall lifecycle cost [10, 11]. 

Because of the importance of RUL estimation, numerous approaches have been proposed in recent years. For 

example, Le Son et al. has combined Wiener process with Principal Component Analysis and proposed a probabilistic 

approach for RUL prediction [12]. Cui et al. [13] proposed a new switching unscented Kalman filter algorithm to 

predict the RUL of bearing using its Condition Monitoring (CM) data. Xi et al. [14] established a copula-based 

sampling method with offline training process and online prediction process for RUL estimation. Si et al. [15] 

introduced an approach with the combination of recursive filter, expectation maximization (EM) algorithm, and 

Wiener process to update the degradation model for RUL. Heimes et al. [16] used a recurrent neural network with 

extended Kalman filter for RUL estimation with given system monitoring data. Li et al. [17] proposed an approach 

using deep convolution neural networks (DCNN) for RUL estimation. Similarly, Zhang et al. [18] proposed a multi-

objective deep belief networks ensemble (MODBNE) method to keep a balance between accuracy and diversity during 

RUL prediction. Babu et al. [19] suggested another deep Convolutional Neural Network (CNN) approach RUL 

estimation. 

Even though many approaches have been proposed in recent year for RUL estimation, there is no universal 

approach that is applicable to RUL estimation. Each method has its own advantages and disadvantages. For instance, 

some approaches are too complicated to be implemented by engineers in practical applications; some approaches are 

computationally very expensive for online prediction which cannot be deployed in practical systems without high 

computational power; and some approaches can only provide a point estimation of the RUL. This paper aims to 

overcome limitations of some of the existing approaches by developing a Gaussian mixture model (GMM)-based RUL 

method. By taking advantage of the capability of GMM in learning the complex joint probability density function 

using data, a GMM-based approach is proposed in this paper, which includes an off-line phase and an on-line phase. 

In the off-line phase, a GMM is learned based on health index and RUL data. The GMM is then used under a Bayesian 

updating scheme to improve the prediction accuracy of RUL. Two examples, including a practical application and the 

2008 PHM Data Challenge problem are employed to verify the effectiveness of the proposed approach. 

The remainder of this paper is organized as follows: Section 2 introduces the background of RUL Prediction and 

GMM. Section 3 describes the proposed approach for RUL estimation. Section 4 uses an engineering application and 

the PHM08 datasets to demonstrate the effectiveness of the proposed method. Section 5 concludes this paper and 

discuss future work. 

II. Background 

In this section, we first briefly review the approach used to construct health index. After that, we provide an 

overview of GMM which will be used to develop the proposed method. 

A. Construction of the degradation health index 

To monitor and diagnose the condition of a system, many sensors are used to collect the data of a system. Since 

the data is multi-dimensional and different sensor data is showing different patterns, in order to better assess the 

degradation of the system and estimate the remaining useful life, the dimension of the data need to be reduced (i.e. 

into one dimension) [22]. There are different ways to fulfill it. For instance, Mosallam et al. [23] used principal 

component analysis approach to transform the data form a high-dimensional space into a single-dimensional space. 

The transformed single-dimensional signal is called health index [22] or health indicator (HI) [15]. Similarly, 

Benkedjouh et al. [24] performed the isometric mapping technique (ISOMAP) as the feature reduction approach to 

generate a one-dimensional health index. Both methods have one short come that they are losing too much information 

in the feature reduction process. To maintain the integrity of the data, Yan et al. [25] used logistic regression to convert 

the multi-dimensional sensor readings into one-dimensional health index. However, logistic regression is less sensitive 

near the early and end of a system life and the original pattern of the sensor is deformed too much [15]. As an improved 
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version, Wang et. al [15] used linear regression instead of logistic regression to generate health index. In both methods, 

health index is constrained between 0 and 1, which respectively represents the beginning and the end of system life. 

The method for health index construction we use is similar to the one as discussed by Wang et. [15]. Figure. 1 

shows an example of fusing multi-dimensional sensor readings into a one-dimensional health index.  

 

Figure. 1 An example of constructing health index from sensor readings 

After the multi-dimensional sensor data is selected, it will be used to train the linear regression model. The sensor 

data are related to the HI as follows [20] 

   or  tr tr te te=  = h S T h S T  (1) 

where T is a transfer matrix, trS  and teS  are respectively the training and testing sensor readings, and 
trh  and 

teh  are 

respectively the health indices of the training and testing data. 

In order to get the transfer matrix T, a particular training data set   is selected as follows [20] 

 1 0 { | } { | },off end off startC C C C =  =   S S S S  (2) 

where C is the time cycle, maxC  and minC  respectively represents the early life and the end life of the system.  

After having 0S  and 1S , the transfer matrix Τ  is calculated by   

 
1( ) ,T T−=Τ S S S V  (3) 

where 1 0[ ; ]=S S S , 
1 0[ , ]T=V V V , 1V  is a unity vector that has the same column length as 1S , 0V  is a zero vector 

that has the same column length as 0S  [14]. 

 

B. Gaussian mixture model 

Gaussian Mixture Model (GMM) is an method using a weighted sum of a number of Gaussian components to 

represent one parametric probability density function (PDF) [21]. This method has been commonly applied to analyze 

features from a complex system, such as speaker recognition [22] or background subtraction [23]. 

For a random variable X, a GMM can be used to approximate its PDF as follow 

 2( ) ( , , ),
i

Q

X i i i

i i

f x x  
=

=  (4) 

where Q is the number of Gaussian components, ( )   is the PDF of a Gaussian random variable, i , i  and i  are 

respectively the weight, mean, and standard deviation of the i-th Gaussian component. 

If ,  a b X Y , then for [ , ] a b+= Ζ X Y , the joint PDF , ( , )f
X Y

X Y can be estimated using a multi-

variable GMM as 

 ( ) ( , , ),
Q

i i i

i i

f 
=

=Z
Z z μ Σ  (5) 

where , ,[ , ]i i i=
X Y

μ μ μ  and 
, ,

, ,

i i

i

i i

 
=  
 

XX XY

YX YY

Σ Σ
Σ

Σ Σ
 are the mean and covariance matrices of the i-th Gaussian 

component, in which ,i X
μ  and 

,i Y
μ  are mean vectors and ,i XX

Σ , 
,i XY

Σ , 
,i YX

Σ , and 
,i YY

Σ  are covariance matrices. 
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III. Proposed Approach 

In this section, we present our proposed GMM-based RUL estimation approach. 

A. Overview 

Our research aims to improve the RUL estimation in the following ways. First, we want to provide a distribution 

of the RUL estimation instead of a single value. Second, we want to consider the correlation between the nearby data. 

Inspired by Ref. [24], we propose a GMM-based approach for RUL estimation. Fig. 2 shows the flowchart of the 

proposed method. The basic idea of this approach is by using GMM in conjunction with Bayesian inference for RUL 

estimation and updating. As shown in this figure, this approach also has an offline training phase and an online 

prediction phase. In the offline training phase, the data will go through a series of pre-processing steps and then train 

a GMM. In the online prediction phase, distribution of the RUL will be calculated using the testing health index with 

the trained GMM and Bayesian inference. In what follows, we explain the proposed method in details. 

 

Figure.2 Flowchart of GMM based approach 

 

B. Data processing 

In the single GMM–based approach, the prior sample remains the same all the time, so the uncertainty of the 

prediction is not reduced over time during the prediction phase. In order to overcome this problem, we propose another 

approach by coupling two GMMs under a Bayesian scheme. More specially, one GMM model is used to estimate the 

RUL posterior distribution at each time step and the other GMM is used to update the prior distribution of RUL for 

Bayesian inference.  

Fig. 3 shows the flowchart of data processing. Using the procedure in Section 2.1, we will be able to transfer 

sensor readings into health index h and its corresponding RUL t. Before collecting data to build the Gaussian mixture 

model, we transform the original data h and t into standard normal domain. This step is called data standardization. 

The reason to implement this step is to make sure that the joint PDF of the variables can be approximated as mixture 

of Gaussian components [24], which can increase the accuracy of GMM prediction.  

For the data standardization, we have   2

1 2

,
T e

e

t t t

h h h

 
=  
 

t h  for each training set, where e is the number of 

data points in the training set, knowing that e is different among different training set.  

The data h and t can then be transformed into standard normal domain as follows  

 1( ( )), 1, , ,i T iF t i e −=   =  (6) 

 1( ( )), 1, , ,i H iu F h i e−=   =  (7) 

where is 1−  is the inverse cumulative distribution function (CDF) of a standard normal variable, ( )HF   is the CDF 

of the training health index and ( )TF   is the CDF of the training RUL. ( )HF   and ( )TF   are calculated using the kernel 

density estimation with Gaussian kernel. 

 
1

1
( ) ( )

e
i

H

iH H

h h
F h K

e =

−
=   (8) 

 
1

1
( ) ( )

e
i

T

iT T

t t
F t K

e =

−
=   (9) 
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where ( )K   is the kernel function and ( ) ( )K  =    for Gaussian kernel, 
H  and 

T  are the smoothing parameters 

called bandwidth. 

After data standardization, we have   1 2

1 2

,
T e

eu u u

   
=  
 

θ u  for each training set. Then we can then collect 

the data to build the GMM using a moving window with a window size of 2w and a step size of s, where 2w means 

the number of health index collected in one vector, w will also be used as the window size in the online prediction 

phase, s means the distance between two nearby successive windows. Fig. 3 illustrates a general procedure of the data 

collection process. 

 

Figure.3 Data collection for GMM 

Through the data processing using the sliding window,  ,
T

θ u  of the i-th training signal becomes to be a matrix 

as follow 

 

2 1 2 3 2

2 1 2 3 2

1 2 2 2 1 2 2 2 3 2 2 2

2 1 2 3 2

[ , , , ] ,

w w

w s s s s w s

T

i m w s s s s w s

w ms ms ms ms w ms

u u u u

u u u u

u u u u

u u u u









+ + + + +

+ + + + +

+ + + + +

 
 
 
 = =
 
 
 
 

Z z z z  (10) 

where m is the number of steps in this training set, knowing that m is different among different training sets and 

2w m e+   for each training set.  

If we have N groups of  ,
T

θ u  pair, the sample data Z will become 

 

1

2
,

N

 
 
 =
 
 
 

Z

Z
Z

Z

 (11) 

where iZ  is collected using Eq. (10). 

 

C. Training of Gaussian mixture model 

For the offline training phase, the data pre-processing part is the same as the single GMM-based approach. A 

GMM is constructed based on the health index data in the time domain. For the online prediction phase, Fig. 4 gives 

an overview of the overall process. For the first step, we still choose the first window of HI  0

1 2, , ,w w testh h hH H= 

, by applying Eq. (9) to (12), we will be able to calculate the PDF function of the RUL for the first step. For the next 

step, Bayesian Inference will be applied to update the distribution of RUL as follows 

Once all the training data are collected, a Gaussian Mixture model can be constructed as below using the expected 

maximization methods [25]. A trained GMM will have the PDF function written as 

 ( ) ( , , ),
Q

i i i

i i

f 
=

=Z
Z z μ Σ  (12) 
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where 
iμ  and 

iΣ  are given by 

 1 2 3 2 1[ , , , , ],   i w    +=μ  (13) 

 

2

1 1,2 1,3 1,2 1

2

2,1 2 2,3 2,2 1

2

3,1 3,2 3 3,2 1

2

2 1,1 2 1,2 2 1,3 2 1

w

w

i w

w w w w

   

   

   

   

+

+

+

+ + + +

 
 
 
 =
 
 
 
 

Σ  (14) 

where iμ  and iΣ  are the GMM parameters, i  represents the mean value of the ith element, 
2

i  represents the variance 

of the ith element and ,i j  represents the covariance between the ith and the jth elements.  

According to the format of Z in Eq. (10), the relationship between the variables of HI and RUL and the parameters 

are shown in Fig. 4. 1  and stands for the mean value of RUL in GMM, 2 2 1[ , , ] w  +  stands for the mean value of 

two nearby windows of HIs. Using these relationships, iμ  and iΣ  can be rewritten as follows 

 , , , ,1 ,2 ,0 ,2[ , , ] [ , , ] [ , ],i i i u i i i i i   = = =μ μ μ μ μ  (15) 

where , 1 , 2 1 ,1 2 1 ,2 2 2 1 ,0 1 ,1= ,  = ,  =[ , , ],  =[ , , ],  =[ , ]i i u w i w i w w i i        + + + +μ μ μ μ  

 

2 2

, , , , 1 , 2

,00 ,02

,1 ,11 ,12

,20 ,222

, , ,2 ,21 ,22

i i u i i i

i i

i i i i

i i

i u i u i i i

    



 

  

 

   
    

= = =     
    

   

Σ Σ
Σ Σ

Σ Σ Σ Σ
Σ Σ

Σ Σ Σ

， (16) 

 

Figure.4 Relationship between variables and parameters 

where 2 2

, 1i  = , 2 2

, 2 1i u w  += , , , 1,2 1i u i u w    += = , 

2

2 2, 1

,11

2

1,2 1

w

i

w w

 

 

+

+ +

 
 

=  
 
 

Σ , 

2

2 2,2 1

,22

2

2 1, 2 2 1

w w w

i

w w w

 

 

+ + +

+ + +

 
 

=  
 
 

Σ

, 

2

, , 1

,00

,1 ,11

i i

i

i i

 



 
=  
  

Σ
Σ

Σ Σ
. 

The parameter pair , ,[ , ]i i u   and 

2

, ,

2

, ,

i i u

i u i u

 



 

 

 
 
  

 represent the relationship between RUL and a single HI, and it 

will called the first part of the GMM parameters in the proposed approach. , ,2[ , ]i i μ  and 

2

, , 2

,2 ,22

i i

i i

 



 
 
  

Σ

Σ Σ
 represent 

the relationship between RUL and the corresponding window of HIs, and it is called the second part of the GMM 
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parameters which will be used to estimate RUL in Sec. 3.3. ,0 ,2[ , ]i iμ μ  and 
,00 ,02

,20 ,22

i i

i i

 
 
 

Σ Σ

Σ Σ
 represent the relationship 

between RUL and the corresponding two nearby windows of HIs, and it is called the whole GMM parameters.  

Fig. 5 shows how different parts of parameters is located in iμ  and iΣ . 

 

Figure.5 Locations of different parts of parameters 

When training the GMM, the number of Gaussian components Q will affect the value of parameters in the 

multivariate Gaussian distribution, and lead to different results in the prediction phase. In order to find the best GMM 

with a proper Q, we use can Akaike information criterion (AIC) [26] or Bayesian information criterion (BIC)[27]. 

The AIC value for a statistical model is given as [28] 

 ˆ2 2ln( )AIC k L= −  (17) 

where k is the number of estimated parameters in the model, L̂  is the maximum value of the likelihood function of 

the model. 

The BIC value for a model is defined as [29] 

 ˆln( ) 2ln( )BIC k n L= −  (18) 

where n is the number of data points or the sample size. 

In order to find the best GMM, we construct different GMM with different Q value, them calculate the AIC or 

BIC value of each model using Eq. (17) and (18). The model that has the lowest value is the best model. After the best 

GMM is obtained from the offline training phase, we can go to online prediction phase to use the obtained GMM for 

RUL prediction. 

 

D. RUL estimation using GMM and Bayesian updating 

For a given set of testing sensor readings, we first transform the sensor readings into health index using Eq. (1). 

After that, we transform the testing health index into standard normal domain. For a given group of testing health 

index set  1 2, , ,te oh h h=h , it can be standardized using Eq. (7), then we have  1 2, , ,te ou u u=u , where o is the 

number of health index in the test set. After the transformation, the RUL (i.e. Tt ) for this particular set of health index 

1 2[ , , , ]se ind teu u u= u u  is calculated using Bayesian method as below 

 
( | ) ( )

( | ) ( | ) ( ),
( | ) ( )

se T T

T se se T T T

se T T

f t f t
f t f t f t

f t f t dt
= 



u
u u

u
 (19) 

where “ ” stands for “proportional to”, ( )T Tf t  is the prior distribution of RUL and ( | )se Tf tu  is the likelihood 

function of health index with given RUL.  

Since the length of testing health index is usually long and monitoring data will be continuously collected in the 

online phase, to address this issue, a sliding window with a window size of w is employed to extract subsets of the 

health index from the data. Based on that, we can partition the testing health index into many subsets as follows. 
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Figure.6 Relationship between 
iu  and 

seu  

Since 1 2 1 2[ , , , ]se ind lu u u= = u u u u , where 
iu  are the windows of HI included in 

seu , l is the number of 

windows contained in 
seu  shown in Fig. 6, each window has the same window size w, which is the length of 

iu . After 

the partition of the health index, we have ( | )se Tf tu  as 

 
1

( | ) ( | ),
l

se T k T

k

f t f t
=

=u u  (20) 

If we consider the correlation between the two nearby windows, Eq. (20) becomes 

 
1

1 1

1

( | ) ( | ) ( | , ),
l

se T T k k T

k

f t f t f t
−

+

=

= u u u u  (21) 

As a result, Eq. (19) becomes 

 
1

1 1

1

( | ) ( | ) ( | , ) ( ).
l

T se T k k T T T

k

f t f t f t f t
−

+

=

 u u u u  (22) 

Also, the posterior distribution of standardized RUL ( ) can be written as 

 
1

1 1

1

( | ) ( | ) ( | , ) ( ).
l

se k k

k

f f f f   
−

+

=

 u u u u  (23) 

As shown in the above equations, to perform Bayesian updating of the RUL, there are three parts that need to be 

calculated, namely 

1. The prior distribution of RUL ( )T Tf t  

2. The likelihood function for the first window of health index 1( | )Tf tu  

3. The likelihood function of the two nearby windows of health index 
1

1

1

( | , )
l

k k T

k

f t
−

+

=

 u u . 

In this paper, we use the GMM trained in Sec. III, part C to compute the above three terms. 

 

1. Calculation of the prior distribution ( )T Tf t  

The prior distribution is calculated differently for different steps in order to increase prediction accuracy. For the 

first step, we have 1 teu u , the prior distribution is calculated using the GMM. We use the beginning and the end of 

the standardized health index ( 1, o teu u u ), and calculated the conditional GMM using the following equations 

 
1

(1) (1) 2(1)

| 1 1 1( | ) ( ) ( , ( ), ),
Q

u i i i

i i

f u u u      
=

=  (24) 

 
_

(1) (1) 2(1)

| ( | ) ( ) ( , ( ), ),
n test

Q

t u o i o i o i

i i

f u u u     
=

=  (25) 

where the elements in Eq. (23) and (24) are calculated with the parameters from the first part of the GMM using 
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(1) 2

1 , , , 1 ,(( or )) (( or ) ),i o i i u i u o i uu u u u     = + −  (26) 

 
2(1) 2 2 1

, , , ,( ) ,i i i u i u i u      −= −  (27) 

 

2

1 , ,(1)

1 2

1 , ,1

((  or ), , )
(  or )

((  or ), , )

i o i u i u

i o Q

k o k u k uk

u u
u u

u u

  


   
=

=


， (28) 

After we obtain 
1| 1( | )uf u   and | ( | )

ot u of u , the prior distribution of 
Tt  in the standard normal domain is 

calculated using 

 
1| 1 |( ) ( ( | ), ( | )),

ot u t u of g f u f u   =  (29) 

where ( )g   is a function combining the two different distributions. 

We then convert ( )f   into ( )T Tf t  as 

 
1( ) ( ( ( ))),T T T Tf t f F t

−=   (30) 

where ( )TF   is the CDF of the marginal RUL distribution obtained from the GMM model. 

For the second step, we use  

 1 1( ) ( ( | ) 2 , ( | ) )T T T Tf t g f t w f t w= − −u u  (31) 

where 
1( | )Tf t u  is the posterior distribution calculated from the first step, w is the window size. 

For the rest steps, we use 

 2 1( ) ( ( | ) 2 , ( | ) ),T T T k T kf t g f t w f t w− −= − −u u  (32) 

where 1( | )prior T kf t −u  is the prior distribution form the last step, 2( | )post T kf t −u  is the posterior distribution calculated 

from the two steps before. 

 

2. Calculation of 
1( | )Tf tu  

Similar to ( )T Tf t , the likelihood function 
1( | )Tf tu  is calculated from conditional GMM as follows 

 
(2) (2) (2)

1( | ) ( ) ( , , ) 
Q

T i i i

i i

f t   
=

=u u μ Σ  (33) 

where 1( ( ))T TF t −=  , the mean vector and covariance matrix in Eq. (30) are calculated with the parameters from 

the second part of the GMM using 

 
(2) 2 1

,2 , 2 , ,( ) ( ),i i i i i    −= + −μ μ Σ  (34) 

 (2) 2 1

,22 ,2 , , 2( ) ,i i i i i   −= −Σ Σ Σ Σ  (35) 

 

2

, ,(2)

2

, ,1

( , , )
( )

( , , )

i i i

i Q

k i ik









   
 

    
=

=


， (36) 

With the prior distribution and likelihood function, we will be able to calculate the posterior distribution using 

Bayesian inference. 

 

3. Calculation of 1( | , )k k Tf t+u u  

1( | , )k k Tf t+u u  is calculated using the GMM model trained in Sec. 3.2 as follows  

 (3) (3) (3)

1( | , ) ( , ) ([ , ], , ),
Q

k k T i k k k k i i

i i

f t    +

=

=u u u u μ Σ  (37) 

where k  is given by 

 1( ( ( ( ) ))),k T Tf F t l k w −=  − −   (38) 

And the elements in Eq. (34) are calculated with the parameters from the whole GMM using 

 
(3) 1

,2 ,20 ,00 ,0([ , ] ),i i i i k k i−= + −μ μ Σ Σ u μ  (39) 

 (3) 1

,22 ,20 ,00 ,02 ,i i i i i

−= −Σ Σ Σ Σ Σ  (40) 
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 ,0 ,00(3)

,0 ,001

([ , ], , )
( , )

([ , ], , )

i k k i i

i k k Q

k k k q qq

 
 

  
=

=



u μ Σ
u

u μ Σ
， (41) 

With the prior distribution and likelihood function, we will be able to calculate the posterior distribution of RUL 

using Bayesian inference and GMM. 

 

E. Summary 

Fig. 7 summarizes the overall procedure of RUL prediction using GMM. The prior distribution and the likelihood 

function for the first step and the rest are different. For the first step, the prior distribution is calculated from the first 

part of conditional GMM while the likelihood is calculated from the second part of conditional GMM. For the rest 

steps, the prior distribution is calculated by combining the posterior distribution from the last two steps, noticed that 

at the second step, the posterior distribution is used twice. The likelihood is calculated from the whole conditional 

GMM. Then the posterior distribution can be calculated by applying Bayesian inference using Eq. (22). 

 

Figure.7 Flowchart of the online prediction phase of multi-GMM based approach 

IV. Case Study 

In this section, an engineering application problem and the PHM08 Prognostics Data Challenge Dataset are used 

to demonstrate the effectiveness of the proposed approaches. 

A. An engineering problem 

The dataset of a civil structure collected from 46 sensors are used as the first example to demonstrate the 

effectiveness of the proposed method. It consists 120 groups of data of 46 sensors in total. 100 of them are used as 

training set while the remaining 20 of them are employed as testing set. In these datasets, the first column represents 

the running time of the system. The second column is the response of the system. If the response is greater than 100, 

the system fails. The rest columns are the 46 sensor readings. 

The score of the performance assessment for one testing set is computed using the following function [20] 
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 − 
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 (42) 

The lower the score is, the more accurate the predictions are. 

Using GMM-based approach with step size s=2 and window size w=8, the RUL estimation update of every 

window is shown in Fig. 8. The score of each testing set is shown in Fig. 9 and the average score using Eq. (41) is 

0.68. 

 

Figure.8 Examples of RUL updating for the engineering problem 

 

Figure.9 Score of each testing set 

 

B. PHM08 Prognostics Data Challenge Dataset 

This dataset has been widely used to test the performance of RUL estimation approaches. The data consists 218 

training data sets and 218 testing sets. For each data set, there are 26 columns. The first column represents the unit ID. 

The second column is the time in cycle. The 3rd to 5th columns are the operation settings and the rest columns are the 

46 sensor readings. More details about the PHM08 prognostics data challenge dataset is available in Ref. [26]. 

Using GMM-based approach with step size s=2 and window size w=8, the RUL estimation update of every 

window is shown in Fig. 10. The true and predicted RUL of each testing set is shown in Fig. 11 and the average score 
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using Eq. (41) is 15.62. Table. 1 compares the score of our approach to the state-of-art approaches using the score 

from Ref. [30]. From the result we can tell that our approach can achieve similar accuracy with the state-of-art 

approaches. 

 

Figure.10 Examples of RUL updating for PHM08 challenge dataset 

 

Figure.11 True and predicted RUL comparison 

 

Table .1 Comparison of score for RUL prediction 

Approach Ave. Score 

SBI-RVM 10.24 

SBI-SVM 9.39 

SBI-LSE 10.47 

BLR-Quad 247.01 

RNN 20.15 

Ensemble-AW 8.55 

GMM-based approach 15.62 
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V. Conclusion and Future Work 

We have developed a RUL estimation approaches, called GMM-based approach. We compared our approach 

with similarity-based approach. Using two engineering problems and PHM08 data set, it is shown that our approach 

has good accuracy. However, we still used the traditional way of data preprocessing to transfer sensor readings into 

health index, which will reduce the accuracy of our prediction. In the future, we plan to establish a model that can 

directly connect the sensor reading with remaining useful life and without any other assumptions. 
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